

1 **Supplemental Materials**

2 **Firefighters' absorption of PAHs and VOCs during controlled residential fires by job assignment and fire**
3 **attack tactic**

4

5 Kenneth W. Fent¹, Christine Toennis², Deborah Sammons², Shirley Robertson², Stephen Bertke¹, Antonia
6 Calafat³, Joachim D. Pleil⁴, M. Ariel Geer Wallace⁴, Steve Kerber⁵, Denise Smith^{6,7}, Gavin P. Horn⁷

7

8 1. Division of Surveillance, Hazard Evaluations, and Field Studies, National Institute for Occupational Safety
9 and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Cincinnati, OH, USA

10 2. Division of Applied Research and Technology, NIOSH, CDC, Cincinnati, OH, USA

11 3. Division of Laboratory Services, National Center for Environmental Health, CDC, Atlanta, GA, USA

12 4. National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental
13 Protection Agency, Research Triangle Park, NC, USA

14 5. Firefighter Safety Research Institute, Underwriters Laboratories, Columbia, MD, USA

15 6. Skidmore College, Saratoga Springs, NY, USA

16 7. Illinois Fire Service Institute, University of Illinois at Urbana-Champaign, IL, USA

17

18

Tables

Table S1 Spearman correlation coefficients^a between PAH metabolites measured by ELISA and specific OH-PAH metabolites measured by HPLC-MS-MS for the selected job assignments.

Collection period	n	1-NAP	2-NAP	1-PHE	2,3-PHE	1-PYR	2-FLU	3-FLU
Pre-exposure	96	0.39	0.18	0.36	0.36	0.27	0.41	0.41
3-hr post-exposure	96	0.39	0.31	0.49	0.49	0.53	0.49	0.46
6-hr post-exposure	24	0.37	0.24	0.42	0.30	0.35	0.06	0.14
12-hr post-exposure	24	0.28	0.22	0.17	0.10	0.15	0.21	0.23

^a Bolded values are statistically significant at $p < 0.05$.

19

Table S2 Median pre- to post-firefighting percent change^a in exhaled breath concentrations of VOCs by job assignment

Job assignment	Benzene	Toluene	Ethyl benzene	Styrene	Xylenes
Attack / Search	105%	7.8%	-25%	4.6%	-32%
Outside vent	40%	-2.5%	-19%	14%	-12%
Command / Pump	33%	-14%	-27%	-18%	-22%
Overhaul	28%	-6.4%	-10%	0.5%	-3.5%

^a Bolded values are statistically significant at $p < 0.05$.

20

21

22

Supplemental Materials

Figure Legends

Fig. S1 Study design flow chart showing how participants were distributed and assigned for each of the 4 fire scenarios and the timing, collection, and analysis of biological samples.

Fig. S1

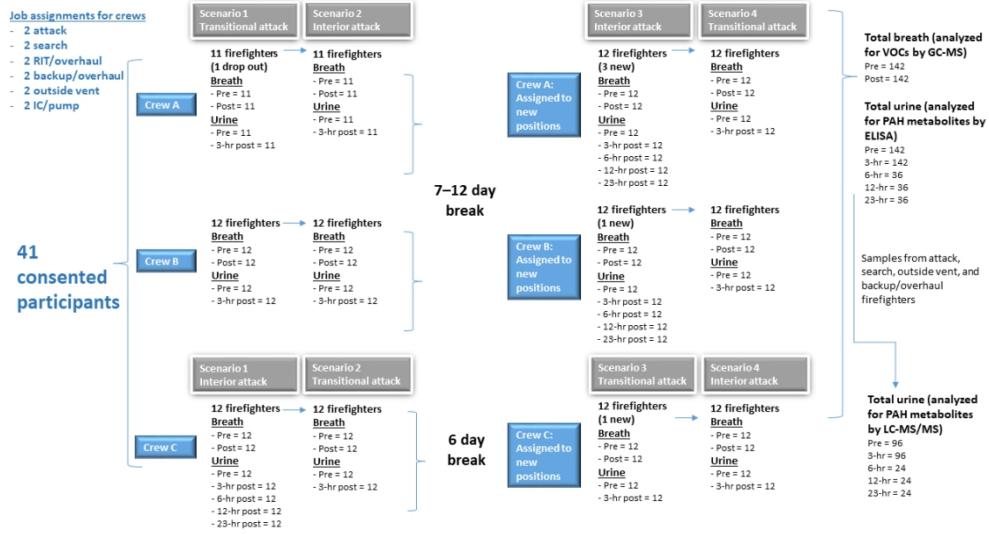


Fig. S1 Study design flow chart showing how participants were distributed and assigned for each of the 4 fire scenarios and the timing, collection, and analysis of biological samples.

338x190mm (96 x 96 DPI)