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This is a discussion of the application of the zonal ser ies  solution. One interesting analytical step that i s  
harmonic series  t o  problems involving dipole sources utilized by both the contour integral formulation a s  well 
in the vicinity of spherical boundaries. The applica- a s  zonal harmonics i s  to expand the denominator for  
tion of a formal zonal-harmonic ser ies  solution to  each component of the ser ies  in a geometric ser ies  and 
directly obtain numerical results involves two distinct then interchange the order of s ~ m m a t i o n . ~  This has the 
problems: namely, the convergence of the ser ies  s o h -  advantage for mode theory that the ionosphere te rm is  
tion and the accurate calculation of the special func- removed from the residue calculation, while for zonal- 
t i ~ ~ i n ~ ~ l v e d i n t h e ~ e r i e ~  solution. Someinteresting harmonicstheconvergence o f the  s e r i e s i s g r e a t l y  
techniques will be introduced which help to improve improved. In each case, the outer ser ies  has the 
the convergence properties of the ser ies  solution. physical interpretation of wave-guide hops for which the 

Introduction ser ies  converges rapidly for V L F  frequencies on up. 

The numerical techniques involved will be discussed In the discussion of these two applications, the con- 
m light of two distinct problems for which numerical vergence of the ser ies  has been alluded to numerous 
gummation of the zonal-harmonic ser ies  i s  especially 
applicable. In the f i r s t  problem, we a r e  interested in 
calculating the magnetic field wave-tilt on the surface 
of a spherical hill due to a buried magnetic dipole 
orientated in a vertical direction off of the axis of 
symmetry, a s  illustrated in figure 1. This problem 
has application to locating the position of a buried 
magnetic dipole source in hilly terrain from surface 
measurements of the field. The major distinction of 
.this problem is that the spherical Bessel functions in- 
volved in the formal series  solution a l l  have complex 
~rguments ,  of which more w i l l  be said later. The 
Porrnal solution or' this problem proceeds, incidentally, 
by summing the zonal harmonic ser ies  solution for an 
inclined dipole source and then performing a rotation 
of coordinates to allign the dipole axis with the verti- 
cal. This leads to the interesting problem of relating 
the spherical coordhate d ' of the rotated sphere to  
the horizontal distance behveen two surface points that 
grow further apart  (the distance X in figure 1) such 
that the bearing $' from the source to the observer 

times. Generally speaking, adequate convergence of 
the amplitude of the zonal harmonic s e r i  is attained 
by summing 10 X k a te rms,  where k = is the 
wave number and a is the radius of the spherical 
boundary.3 Adequate convergence of the phase usually 
requires a 50% increase over that number of terms.  A 
few techniques have been utilized to make minor im - 
provements in the speed of convergence, such a s  not- 
ing that the Legendre polynomial i s  a cyclic function 
of the summation index and consequently selective 
groupkg of the te rms produces partial sums which can 
be averaged to  give sorne iimprovemcnt. However, the 
major technical problem is  the calculation of the spe- 
cial functions, using recursion formula. The Lejiendre 
polynomial is well behaved, but not s o  the spherical 
Bessel functions. One spherical Bessel function in- 
creases asymptotically with the summation index, 
while the other decreases asymptotically. Consequent- 
ly the functions must always be paired to avoid ex-on- 
ential underflow or overflow problems on the machine. 
This can involve some additional problems in arrang- 

remains constant. Another problem of note i s  t o  ob- k g  the Bessel functions a s  components in each te rm of 
tain the magnitude and phase of fie maximum compon- the formal s e r i e s  solution. F o r  the case of the Bessel  

ent of the field in the horizonal plane when the two iunction which decrea6es asympotically with the index 
component fields a r e  not necessarily in phase. 

The second problem of interest is the application of 
the zonal harmonic series  to the calculation of the 
fields in the zarth-ionosphere waveglride due to a di- 
pole source on the ear th ' s  surface. In the preceeding 
problem, the frequency range is restricted to low 
enough values s o  that the zonal harmonic series  was a 
natural consideratian, and so it is also in the case of 
the earth-ionosphere waveguide for frequencies in the 
ELF  or lower part  of the V L F  range. Nevertheless, 
it is frequently felt by many that the mode series  solu- 
tion i s  preferable for physical interpretation a s  well a s  
for iirn?licity of conlputatlon. Tilc ;r,:mer point cannot 
be argued, but the lnttcr point is only valid when ~t is 
possible to oversimplify the problem, say by assuming 

of summation, backward rather  than forward recursion 
must be utilized. How far  backwards one must recurse 
i s  always a problem, but for the case of Bessel func- 
tions of complex argument it i s  of significant practical 
interest to note that tlie starting point need not be a t  an 
order which exceeds the magnitude of the argument, a s  
is necessary fo r  Bes sel  functions of real argument. ' 
This i s  of particular importance for calculating the 
fields below the ssrface,  since there the wave number 
may be much greater  than the free space wave number, 
with the consequence that the argument of the spheri- 
cal Be ssel  function can be quite large. Fortunately, 
tllc calculation of the Bessel functions by recursion is 
not only fast but produces very accurate results since, 
for both forward and backward recursion, the numeri- 
cal process converges naturally to the desired function. 

3 ion~sphc  re reflection cocfficicnt is nearly unity. 
Buried Magnetic Dipole Model h e n  more realistic assumptions about the upper 

boundary a r e  made, a mode theory solution requires a ~~~i~~ thus introduced the rmge  of our investigation, 
search for modes by some sort  of iterative process1, we can proceed with introducing explicit expressions 
which can be more time ccnsuming than summing the for a buried magnetic dipole in a spherical hill. 
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In figure 1 the z ' axis 

/ I  
forms a par t  of a rotated (x , y , z ') coordinate 
system. The x' axis subtends an angle 0 with the 
jC axis, where 8 i s  the dipole tilt angle. The y' and 
y axes a r e  coincident. The corresponding spherical 
coordinates in the rotated coordinate system a r e  R, 
Q', and 13' , where the latter angle lies in a plane 
perpendicular to the z' axis. The formal ser ies  
solution for the magnetic field components can easily 
be expressed in the rotated coordinate system. F o r  
convenience we introduce the abbreviations 

Thus, those te rms multiplied by a denote the con- 
tribution to the fields due to  the source component 
orientated along the z' hxis, v.-bile 'those te rms 
multiplied by denote the contribution from Ft 
source component orientated parallel t o  the x axis. 
The series  solution for the component fields a t  the 
surface of the spherical hill  is given by 

In the above, $,(x) is the spherical Bessel function of 
the f i r s t  kind and 5k2)(:)(1) is the spherical Hankel func- 
tion of the second kind, the primes on the spherical 
Bessel functions denote differentiation with respect to 
the argument in parenthesis, kl i s  the complex wave num- 
ber for  propagation in the media inside the spherical hill, 
and ka is the f ree  space wave-number exterior t o  the 
spherical hill. The dipole magnetic current normali- 
zation i s  Jmda = -jwQoR0A, where A is  the surface 
a r e a  of the sphere. Those t e rms  in equations (1) con- 
taining an and bn constitute contributions from the 
scalar  magnetic potential, while those te rms contain- 
ing cn a r e  contributions from the scalar electr ic  
potential. 

The summations indicated in (1) receive their maxi- 
mum contribution from term s of the order of m a  1 kl R I . 
F o r  orders  of n much larger  than this, we have 

Ro n Dn -- -2n and qn(k1 Ro) / ln[kl R) - ( T) . Conse- 
quently, we can expect the magnitude of subsequent . 

t e rms to decrease very rapidly. Moreover, if t e rms  
of order very much less  than ( k l ~  I a r e  removed 
from the summation there i s  negligible effect on the 
summation value. This, in conjunction with the fact 
that k2R is quite small in most problems of interest,  . 
leads to the validity of the approximation in (5). More- 
over, the contribution from the scalar  electric poten- 
t ial  term ( 3 )  can be expected to be small,  so  that to a 
f i r s t  approximation the only te rm involving frequency 
in the expressions for the field i s  klR. Consequently, 
it can be anticipated that the ratio of the source depth 
to  skin depth. H =J'= X d, where d is the depth 
below point B to the source, i s  a significant para-  
meter of the problem. 

We can introduce the following asymptotic formula for 
the Legendre function, 

aR which provides us .with a suggestive means for grouping 
H ~ , = ~  ~ ( z n + l )  ~ A ( c o s  8')an un t e rms of the summatiqn in order to improve the con- 

2n+l d P ~ ( C O S  e') P ~ O S  B ' ) ~ ~ ]  vergence properties of the ~ e r i e s . ~  Viewed a s  a -B COS+*Z- n(n+l) [ doo bn+ sins' 
function of the summation $I.-dex n, equation (6) i s  

-- nearly periodic of period . Consequently, termin- 

2 n+l P;(COS 0') 8 ~ :  (COS 8') ating successive partial sums when the Legendre func - 
H # ~ ~ S ~ ~ C Z ~ ) [  sins' bn+ cnl ' . tion changes sign and averaging only even numbers of 

where R i s  the radius of the spherical hill (c.f. 
figure I) ,  Ro i s  the radial distance to the dipole 

such partial sums i s  equivalent to integrating (6) with, 
respect to n over the period. - 

source, the index of summation i s  n, Pn(X) i s  the 
Legendre polynomial of order n, F e  associated The practical question to be answered is how many 

Legendre function is 3 )  = 5 pn(cos 31, and te rms a re  required for  graphical accuracy. This i s  
obviouslv a function of the ratio Rn / R a s  well a s  the 

we have 
value o f d  I k l R I .  Assumingthat R ~ / R  i s  n e a r l y m i t y  

)Oln(klRo) $IF (klRo) (2) and that the elevation anglc of the observation point 5 '  
an = )Oln( k,R 

/On bn'klR-xun/Dn 8 

*,(kl R ) lies well away from the estreme positions zero or pi, 
. - then the summation can bc truncated at  n = 10 ( k l ~  I 

qn(k,Ro (k R 1 with negligible effect on the value of the summation 
Cn8 x ( ~ , R ) ~  s (3) from the neglected terms.  It should be pointed out, 

un- id[$n( kin! however, that for very small angles 3 ' the number 
1 of terrns required for convergence increases drast i -  

where 
cally (unless the ratio Ro / R is much less  than unity). 

Dnsun-k,R lnt[$,( k , ~ ) ]  ( 4) 



The calculation of the special functions involved in t l ~ e  
eurnmation proceeds by invoking the recursion formu- 

for  each special function required. Thus the s e r i e s  
,urnmation and the special function calculation a r e  
able to  proceed rapidly together. The recursion 
formula for  the Legendre polynomial is  

Po(x) = 1 and Pl(x) = x  ( 7 )  

This recursion process ,  a s  well a s  related formulas 
for  the derivatives of the Legendre function, absolute- 
l y  converges to  the required functional values. % The 
calculation of the logarithmic derivative of the spheri-  
cal  Hankel function is  a l so  readily accom?lished using 
foward recursion. ' The spherical Bessel  function of 
the f i r s t  kind, however, requires  use  of a backwards 
recursion formula and careful attention to  the prob- 

'lem of computer underflow. The backwards recursion 
relation for  the logarithmic derivative i s  

The starting value of the index ns need only be 
slightly l a rger  than the value of the index n required 
in the s e r i e s  summation when n 2 / z \ . F o r  n signi- 
ficantly le  s s than / z 1 , where the a gument of z i s  '2 , say, woul large,  then a starting %a.lue ns G - 

sufficient5 t o  gene rate functional values when n 2 5 , 
'zl 5 1000. On the other hand, if z is  real,  then a 
;tartirig v a h e  ns z is required a t  a l l  t imes. The 
initial value of the logarithmic derivative is ar 'uitrar- 
ily chosen to  be ze ro  for the backward recursion pro-  . 
cess .  
Using the value of the logarithmic derivative, the 
ratios of two spherical Bcssel  functions of the f i r s t  
kind with different arguments can be obtained from the 
relations + '(XI n + n - I ( ~ )  " + -  

+,,(XI x +n(X) 
( 9 )  

and 
x *,.,(XI q (XI $"-,(Y) 

- a , -  - . (10) +, (y) x Y +n(Y) 

The starting value fo;. (10) is  given by 

q0(x) s i n x  - =- 
y 5'" Y 

Thus, by restricting our calculations t o  the rat ios  of 
the Bessel  functions, we have avoided the numerical 
underflow problem. 

The wave t i l t  of the magnetic-field a t  an  observation 
point on the surface of the spherical hill i s  defined a s  
the rat io  of the maximum horizontal field component 
to  the vertical field componcnt, where the vertical 
direction coincides with the direction of the magnetic 
dipole current  :noment. Two complex components in 
'he horizontal planc combine to form t k e  maximum 
aorizontal component, which lies a t  some unknown 
angle. Y in the horizontai Y - 7 plane. The unknown 
angle can be found by setting to  ze ro  the derivative 
with respect  t o  Y oi 

resulting in 

F r o m  (1.1) and the t r igometr ic  half angle formulas,  we 
a r e  able to  obtain an  expression for Tan Y which en-  
ables  us to  determine the angle Y within IT radians. 
Finally,  ar t i f ical ly  interchanging H, and K, in 

X (13) whenever the fo rmer  is  smal le r  in rnagnitudeYthan 
the la t t e r  enables us ,  af ter  some ado, to  keep t r a ck  of 
the sign ambiguity in (12) and s o  resolve it. 

Explicit  e-upressions for  the field components H , 
H- , and % , orientated along the axes of the Zrt- 
e&an coordinate system of figure 1,  a r e  obtained by 
applying well-known coordinate transformation form- 
ulas t o  the field components given by equations (1). The 
resulting formulation i s  lengthy and will not be r e  - 
produced here .  

The  magnetic field components (1) can be calculated 
independently of both 3 and V' , this being the slow- 
est computer operation, and then combined in a sub- 
sequent program to  produce plots of the wave t i l t ever -  
sus the  horizontal distance X (figure 1). Since the 
component calcuiation routine mus t  have specified 
sequential values of 3 ', and since the spherical  co- 
ordinate transformation requires  both 2' and G' to  
locate a point in the u-arotated (R, 8 , V ) coordinate 
system, we need to  determine a relatianship which 
will enable us t o  obtain Q' a s  a function of 8 '  , 3,and 
Jf if we a r e  to  hold constant the dipole tilt angle 8 and 
the azimuthal hearing angle $ when plotting wave t i l t  
ve rsus  X. F r o m  simple geometrical relationships in 
figure ( I )  we have the law of cosines,  

and the law of s ines ,  . 

f rom which we obtain 

she 'COW' = bOsYJ( I -Sin2.Sin21)Sin2B '-& - '0.8 ')2sin2~Sin2 y 

In ut i l i zpg  (15) i t  is  necessary to  avoid specifying a n  - 
angle 8 too sma l l  to meet  the a r c  OB. The mini- 
mum angle 901 that can be used is  obtained from 

sine: = stn $- j l  + 1 
T ~ ~ ~ Y C O S ~ ( ~ - ~ B I R )  . (1 6, 

TT 
Also,  for  angles 5 > - , for X t o  increase monotonic- 
ly the a&e 3 '  must decrease from i t ' s  maximum 

-Afi- - 1  
value to J O  and then s t a r t  to  increase. It i s  a t  
this crossover  point that the sign of the square root in 
(1 5) changes. Frequently 30' i s  l ess  than the mini- 
mum angle 3 ' for which it is  pract ical  to  sum the 
s e r i e s  to convergence, due t o  the extreme increase in 
the number of t e rms  required when 3' i s  small.  In 
16,  we have - 

A B = ,  - Ro 
R ( F  sin". 

A s  previously mentioned, thc ratio H of source 
depth to skin depth is a n  important problem para-  
meter .  Equally irnpo;tant is  the ratio $ *, where 



The graphical results can be estrapolated to encom- figure 3). We ta? coacludc that the wave tilt amplitt~clc - 
pass any desired frequency, conductivity, sphere is nearly independent of sphere radius close in to tho 
radius, or  source depth by trade off from one para- current moment axis, which in itself is a necessary 

, 

meter to another, a s  long a s  H and d / R  a re  held requirement for a reliable source location scheme. 
constant. 

A sample contour plot of the magnitude of the wave 
tilt function is  given in figure 2, where the abscissa 
axis corresponds to the axis and the ordinate axis 
corresponds to the F axis, the origin locating the 
point of intersection of the magnetic dipole current 
moment. Both coordinates a r e  normalized with 
respect to the source depth, d. Here, d ;u 100 m, the 
aphere radius i s  400 m, and the d i p ~ l e  tilt angle 
e = 20' .  It is  apparent in figure 2 that a great deal of 
symmetry exists about the current moment axis, 
leading to the conclusion that wave tilt measurements 
can lead to a determination of the source location. 
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Figure 2. Wave tilt  con ta r s .  

Figure 3 shows a plot of the amplitude of the wave tilt 
a s  a function of X / d, parametric in sphere radius 
(curve numbering refers to the increasing values of 
R) . but with H held nearly constant (R-R, = 100 m in 
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A comparison of the numerical results for a spherical 
hill with an analysis by J. R. wait6 for the homogen- 
ous half-space leads to the conclusion that the ampli- 
tude of the wave -tilt function in both analyses is cap- 
able of providing useful information for electromagne- 
tic position determination, but in the case of the spher- 
ical hill the phase of the wave-tilt function must be 
considered unreliable for this purpose. 

Stratified Ionosphere Model 

The second problem of interest is the stratified iono- 
sphere problem of figure (4). Here it is  assumed that 
the source is  located a t  a radius r = b, while the ob- 
servation point i s  a t  radius r. The formal problem 
solution, obtained by requiring continuity of the tangen- 
tial fields a t  each spherical boundary, is a straight- 
forwc~rd procedure.= The result i s  considerably 
simplified if it is  specified that kl = ~GJ, which re-  
rults in R1 = T = 0 and U1= -1. Thus, we o3tain, 
for the case r>b. the vertical electl-ic field component 

a, 

The quantity rl is  an effective ionosphere reflection 
coefficiek whose tx?ue is cbtti2e5 z s  +kc ezd result of 
a recursion process, , f 

for j = 1, 2, . . . ,[%I. The inithl  value for the re-  
L. 

cursion process i s  

- 
I , i i l  

W I 

Fig, 4 Stratified ionosphere model of earth- 
ionosphere waveguide. 



Figure (4) suggests the interpretation of R j and T j 
a s  the bottom and top reflection coefficients, respec- 
tively, of the jth layer, while Uj has the character 
,f a transmission coefficient for interlayer coupling. 

Replacing the spherical Bessel functions in R. and 3 
T by the asymptotic expansions for large argument I results in the Fresnel  reflection coefficients7 multi- 

plied times a spherical focusing factor. The specific 

expressions a r e  

.(2) = 17) and (20) we have utilize e notation ,Jr 
adfja.r), U j r =  qn(k.r)# 6jf)'. &'(kjr), gj  = a +  hj. 
Finally, we have the ground reflection coefficient 

Calculation of the special functions involved in this 
formulation and use of the technique for grouping of 
.erms to  Lzprove convergence proceeds i? the ssame 
manner a s  for the spherical hill problem. Identical 
remarks also apply regarding the number of te rms 
required for convergence and regarding which te rms 
make the maximum contribution to the summation. An 
additional technique that is particularly useful in im- 
proving the series  convergence properties is to  sub- 
t ract ,  t e rm by term, the series  expansion of the quasi- 
static fields of a dipole source near a perfectly cbn- 
ducting sphere from the summation (1 7). The asym- 
ptotic expansion of each term in ( I f ) ,  for n large, 
can be shown to equal the corresponding term of the 
quasi-static series  expansion, with the result that the 
term-bv-term subtraction introduces a convergence 

1 
factor of - into the series  summation. The quasi- 
static fierds can be added back in a t  the end a s  a 
closed form expression. One note of caution regarding 
the truncation of the infinite series  applies to the cal- 
culation of the phase correction term. This is defined 
a s  

(3= = - q r  - kld # (22) 

where O r  = arg {E,] and d = a9 .  Since (22) is the 
difference of two very nearly equal terms (Q is nega- 
tive), practical experience has dictated that Ihe accur - 
ate calculation of the phase correction may require 
roughly twice a s  many terms a s  is required to calcul- 
ate the function amplitude. 

In addition to the normal difficulties experienced in the 
-alculation of spherical Bessel functions regarding 

.derflow and overflow, there a r c  also some particular 
problems associated with the formulation (17). Speci- 
fically, for the case b = a ,  we note that, for large n, 

( 2, , assuming that the surface impedance of 
the earth is large. This machine under- 

f a . ,  

flow problem can be resolved by utilizing the Wron- 
skian relation to obtain2 

Asymptotically it may be noted that (23) approaches 
zero  for  large n. Specific use may be made of this 
fact t o  improve the convergence properties of the 
series. Thus, we have 'sn 

Upon substitution of the fir st t e rm in (24) into (17), 
there results simply the ground wave te rm,  which can 
be calculated separately using the classical ground 
wave theory. Interchanging the order  of summation of 
j and n when the second term of (24) is substituted 
into (17) results in the wave -hop summation, illustra- 
ted in figure (5). Here, the source is at  S and the ob- 
server  is at  0. The usefulness of this technique a r i s e s  
from the fact that only a few wave-hops need be sum- 
med for reasonable accuracy while we have introduced 
the additional factor rlr-R c($ which can be treated in 
similar fashion to  (23). Thus, only a few terms be - 
yond n-kla need be summed for the summation over n 
t o  This technique i s  used a t  VLF and LF f re-  -- - 
quencies . 

/- - 
0 \ 

Figure 5. The wave hop fields. 

An example Of the capability of the formulation i s  de- 
picted in figure 6, where we show the complicated field 

... : ,. - ..- .,--,.--,-..,-- $ ....r. - - - >  -..- a , . ,  . .  . , 
" 5!: I 

Fig. 6. Two layer ionosphere with low conductivity 
bottom layer. 



s t ru i tu re  produced by a two layer ionosphere in which 
the upper layer  has a very high conductivity while the 
lower layer is  a moderately lossey dielectric. Thus, 
"he two layer  "ionosphere" functions a s  a dielectric 
oated conducter which guides a surface wave completely 
around the spherical wave -guide, leading to the 
standing-wave pattern shown. The upper t race  is the e 

E r  field, while below that a r e  the Hg and E0 fields. 
The lowest layer ,  a t  a height of 70 km, was taken t o  
be 11 km thick, while the excitation frequency i s  100 Hz. 

- 0  
w'w'lr- 

In figure 7, we show the effect of increasing the con- 
ductivity of the lowe s t  layer by an order  of magnitude. 
Here,  the standing wave structure i s  gmatly enhanced. 
Finally,  in figure 8, we have decreased the conducti- h 

vity of the lowest layer by an order  of magnitude from 
the value used in figure 6. Figure 8, incidentally, i s  
identical with the resul t  obtained for a single layer o r  
sharply bounded ionosphere commonly used when the 
conductivity of lower layers i s  simply ignored. 

Fig. 8. Two layer  ionosphere with extremely' 
low conductivity bottom layer.  
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In conclusion, i t  might be worthwhile to  contrast the 
zonal-harmonic se r ies  summation with the more con- 
vential mode theory approach. Although either for - 
mulation is equally valid, it must be noted that the 
la t ter  approach requires  a time consuming search for 
modes, possibly involving a very complicated modal 
equation. Especially this would be true for the t rea t -  
ment of a spherically layered model. Furthermore,  
it should be pointed out that more than one mode may 
be requi red to  fully explain a complicated field s t ruc-  
ture  such a s  is shown in figure 6, even a t  the low f r e -  
quency of 100 Hz.  Consequently, although the deter-  
mination of the field strength can proceed extremely 

rapidly once the modes a r e  known, I submit that the 
Iecessary mode determination could be a detering fac- 
to r  from considering a mode theory approach. The 
zonal-harmonics summation, on the other hand, can 
be extremely rapid, particularly when 1 kl a1 is  not 
too large,  although some physical insight may be 
sacrified by i t ' s  use. 
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