Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Biomechanical Modeling Of Asymmetric Lifting Tasks In Constrained Lifting Postures

Filetype[PDF-271.01 KB]



Details:

  • Description:
    Twelve subjects participated in an investigation of the biomechanical stresses of asymmetric lifting in stooped and kneeling postures. Three factors were manipulated in this study: Posture (stooped or kneeling), height of lift (35 or 70 cm), and weight of lift (15, 20, or 25 kg). Subjects were required to lift or lower a box every 10 seconds for a period of 2 minutes. Electromyography (PIG) of eight trunk muscles was collected during a lift in this period. The PIG data, normalized to maximum extension and flexion exertions in each posture, were input to a biomechanical model and used to predict compression and shear forces at the L, level of the lumbar spine. Results from the EMG-driven biomechanical model indicated that compression was greater when lifting to a higher shelf (p < 0.001), and indicated a significant interaction between posture and the weight of the lifting box (p < 0.01). Peak lateral shear was not significantly affected by any main effects or interactions (p < 0.05). Anterior shear was increased with increasing height of lift (p < 0.001), and also by the posture x weight interaction (p c 0.01). A multivariate analysis of variance (MANOVA) indicated a complex relationship for recruitment of the eight trunk muscles, with the triple interaction being significant (p < 0.001). The results of this investigation will be used to evaluate safe loads for lifting in these restricted postures.
  • Subjects:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at stacks.cdc.gov