
1. INTRODUCTION 

Stochastic simulations of fractured rock masses can 
provide valuable information for the engineering 
design of rock slopes, particularly when the natural 
geologic discontinuities may form potential slope 
failure modes. An essential component of such 
engineering simulations is being able to compute 
the probability of sliding for a given potential 
failure mass once the geometry of that failure mass 
has been identified through spatial rock-fracture 
simulations.  In cases where several thousand (or 
more) simulations of possible failure geometries are 
needed to provide a realistic representation of the 
rock slope, computational efficiency is essential for 
the repetitious protocol used to calculate the 
probability of sliding. 

An example of applying this type of geotechnical 
approach to rock slope design was presented by 
Miller and others [1] in a paper focused on the 
design of catch benches for open pit mines and 
quarries.  This issue is important to NIOSH 

(National Institute for Occupational Safety and 
Health) as part of its research mission to improve 
safety and health in the mining industry.  Between 
1995 and 2003 there were 42 reported fatalities due 
to slope failure accidents at surface mines in the 
United States, at least one and as many as eleven 
each year.  Additional accident statistics collected 
by the Mine Safety and Health Administration 
(MSHA) have shown that loose material from slope 
and bench failures can pose significant safety 
hazards to miners.  To address these concerns the 
NIOSH Spokane Research Laboratory has been 
developing and testing rock slope stability software 
over the past few years to provide advanced 
technical tools for analyzing bench stability.  A key 
element of this software is a module used to 
compute the probability of sliding for a given viable 
failure geometry that has been simulated for the 
bench under study. 

Several different methods can be used to compute 
the probability of sliding in a slope stability 
analysis, including Monte Carlo simulation [2], 

             
                                                                
 

APPLICATIONS OF THE POINT ESTIMATION METHOD FOR 
STOCHASTIC ROCK SLOPE ENGINEERING 
Stanley M. Miller 
Department of Civil Engineering, University of Idaho, Moscow, ID, USA 

Jeffrey K. Whyatt & Edward L. McHugh 
CDC-NIOSH Spokane Research Laboratory, Spokane, WA, USA 

   
 
    
   
 
   

 ABSTRACT:  The point estimation method can be applied to the safety factor (SF) equation for any specified rock slope failure 
mode (such as plane shear, step path, or wedge) to obtain reliable estimates of the mean and standard deviation of the SF 
probability distribution.  A gamma probability density function is recommended for modeling this probability distribution, because 
it allows only for positive values and is flexible enough to provide symmetrical shapes and right-skewed, exponential-type shapes 
for the SF distribution.  The mean and standard deviation define this distribution, which then can be integrated numerically from 0 
to 1 to obtain the probability of sliding, PS (portion of the SF distribution where SF < 1.0).  The overall probability of failure, PF, 
for the potential slope failure mass is the joint probability that the rock discontinuities are long enough to allow kinematic failure 
(PL) and that sliding occurs along the rock discontinuities (PS); that is,  PF = PSPL.  This method for estimating the probability of 
sliding is extremely efficient computationally, and thus, expedites slope stability simulation routines used by NIOSH software to 
stochastically describe rock slope behavior and assist the engineer in designing catch benches for large rock slopes.  Enhanced 
bench design translates into increased operational efficiency and safer working conditions in open pit mines and quarries.  
 

 

 



Taylor series expansion [2], Fourier analysis [3], 
and statistical point estimation [4].  Initial versions 
of the NIOSH bench stability software relied on the 
Fourier method [1] due to its numerical efficiency 
and its capability to provide a discretized, general 
output pdf (probability density function) for the 
factor of safety, rather than relying on a specific 
model for the pdf (e.g., a normal or lognormal pdf). 

However, our recent experience with probabilistic 
studies of rock slope stability has indicated that the 
safety factor pdf tends to behave like a slightly 
right-skewed gamma pdf or a left-truncated normal 
pdf (truncated at zero, because the safety factor 
realistically cannot take on negative values).  The 
right skew apparently is caused by a combination of 
the positive-only gamma shape of the input pdf for 
the shear strength (along the sliding plane) and the 
exponential-type shape of the input pdf for the 
fracture waviness.  In this context, the waviness is 
measured on a scale of about 1-2 meters and is 
defined as the average dip of the fracture minus its 
minimum dip, as presented by Call and others [5].   
Thus, assuming that the output pdf for the safety 
factor takes on the form of a gamma pdf, then the 
point estimation method clearly has considerable 
computational advantage even over the Fourier 
method (which relies heavily on mathematical 
manipulations of discretized pdf’s [3]). 

2. POINT ESTIMATION METHOD 

When a random variable of interest can be 
expressed in an equation as the result of a 
mathematical operation of other random variables, 
then the point estimation method developed by 
Rosenblueth [6] provides a direct computational 
procedure to obtain moment estimates for that 
random variable.  In particular, these statistical  
moments are the mean (i.e., the first moment about 
the origin) and the variance (i.e., the second 
moment about the mean).  Geotechnical engineering 
applications of this method have been around for 
several decades, and recent publications [2, 4] have 
clearly presented such work.  The particular shape 
of any pdf used for any input random variable is not 
critical to the analysis, because the pdf is 
represented by the mean and two hypothetical point 
masses located at plus and minus one standard 
deviation (s) from the mean (µ). 

Consequently, required inputs for a probabilistic 
rock slope stability analysis are:  1) a defined 

performance function (i.e., safety factor equation), 
2) estimated value for each input attribute if it is 
assumed to have negligible variability, and 3) 
estimated mean µ and standard deviation s of each 
input attribute treated as a random variable.  Typical 
attributes for a rock slope failure mass with a 
defined geometry would include shear strength, 
rock mass unit weight, and fracture waviness.  
Calculation steps are presented below for the point 
estimation method using two random variables X1 
and X2 in a performance function to obtain the mean 
and variance of F, the factor of safety. 

  1. Calculate the output value of F using the 
performance function evaluated with the values of 
mean-plus-one-s.d. for each of the two variables. 

 F++  =  fn[(µ1 + s1), (µ2 + s2)]   (1a) 

 Repeat for other combinations, as follows: 

 F- - =  fn[(µ1 - s1), (µ2 - s2)]   (1b) 

 F+ -  =  fn[(µ1 + s1), (µ2 - s2)]   (1c) 

 F- + =  fn[(µ1 - s1), (µ2 + s2)]   (1d) 

  2. Calculate the point-mass “weights” [6]. 

 P++  =  P- - =   (1/4)(1 + ρ12)    (2a) 

 P+ - =  P- + =  (1/4)(1 - ρ12)       (2b) 

 where ρ12 = correlation coefficient between 
input variables X1 and X2. 

  3. Calculate the expectation (mean, µF) of F  [6]. 

E(F) = P++ F++ + P- - F- - + P+ - F+ - + P- + F- +  (3) 

  4. Calculate the variance (sF
2) of F. 

 Var(F) = E(F 2 ) – [E(F)]2    (4) 

 where E(F 2 ) is calculated using Eq. (3) with F 2 
terms substituted for the F terms. 

  5. The standard deviation (sF) of F then is calcu-
lated by taking the square root of sF

2. 

For three input variables X1, X2, X3, there are eight 
calculations in Step 1, and the point-mass weights 
in Step 2 are given by [6]: 

 P+++  =  P- - - =  (1/8)(1 + ρ12 + ρ23 + ρ31)   (5a) 

 P+ - -
  =  P- ++ =  (1/8)(1 - ρ12 + ρ23 - ρ31)   (5b)  

 P++ -  =  P- - +  =  (1/8)(1 + ρ12 - ρ23 - ρ31)   (5c) 

 P+ - + = P 
- + - =  (1/8)(1 - ρ12 - ρ23 + ρ31)   (5d) 



Eq. (3) for E(F) is extended from a summation of 
four terms to a summation of eight terms for this 
case.  The sF value subsequently can be calculated 
using Eq. (4), after first using eight F 2 terms in the 
extended Eq. (3) to calculate E(F 2 ). 

3. PLANE SHEAR ANALYSIS 

A probabilistic procedure based on the point 
estimation method can be applied to the two-
dimensional slope stability analysis used for the 
plane shear failure mode (Fig.1).  For a plane shear 
mass with a defined geometry (i.e., slope angle δ, 
dip of failure plane α, height of the failure mass H), 
the SF equation is assumed to contain two random 
variables, the shear strength and the waviness of the 
geologic discontinuity.  Other input terms, such as 
the rock-mass density, which is used to calculate the 
weight of the potential failure mass, are treated as 
constants.  The plane shear SF equation is: 
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where:� � τ� = shear strength, r = waviness�� σn = 
effective normal stress, α�= average dip of sliding 
surface, L = length of sliding surface, and W = 
weight of slide mass.  The point estimation method 
can be applied to this expression if we have reliable 
estimates of the mean and standard deviation of 
each random variable. 
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   Fig. 1.  Example of plane shear failure mode. 
 

 
3.1. Mean and S.D. of Shear Strength 
The mean of�τ�is obtained from the linear or power 
curve expression that relates the effective normal 
stress σn to the shear strength [7], as shown by the 
following options: 

    Linear:   τ = c + σntanφ                                      (7) 

where:  c = cohesion, φ = friction angle. 

    Power:   τ = c + aσn
b                                          (8) 

where:  c = y-intercept of power curve,  a,b = shape 
parameters for power curve.  This model reverts to a 
linear model when b equals 1. 

    JRC Power: τ = σntan[JRC·log(JCS/σn) + φb]   (9) 

where: JRC= joint roughness coefficient, JCS= joint 
wall compressive strength, φb = base friction angle. 

For a simple 2d rock-slope bench geometry (shown 
in Fig. 1), the effective normal stress is: 

   UL
W

n −⋅= 1
)cos(ασ                                              (10) 

where:  W = total weight of the failure mass, U = 
ground-water pore pressure on the sliding surface. 

The standard deviation of τ is estimated using the 
standard error (se) obtained from a least-squares 
regression analysis of data obtained by laboratory 
direct shear tests of natural fractures [7].  For a 
linear regression model, we can estimate the 
standard deviation of τ  at a given value of effective 
normal stress σn by the expression [8, p. 371]: 
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where:  se = standard error of the regression; n = 
number of data pairs used in the regression; mτ = 
sample mean of the n τ values; and 

 �=
n

iSSQ 2τ        (sum of the squared τ values) 

For a power-curve regression model, Eq. (11) also 
should give reasonable results if the se value from 
that power-curve model is used.  Example results  
from laboratory direct-shear tests of natural rock 
joints for actual rock-slope design projects are 
summarized in Table 1.  Stress units for the reported 
shear strengths are given in tonnes per square meter 
(tsm).  As seen by the se values for the three rock 
types, the regression errors are small for the latite 



porphyry (a “tight” regression fit) and quite high for 
the granodiorite (a “noisy” regression fit).  These 
examples in Table 1 were selected to show typical 
se values for shear strength regression models. 

Estimated standard deviations of τ reported at the 
bottom of Table 1 were computed using Eq. (11).  
The maximum normal stress acting on potential  
sliding surfaces in a 25-m high bench is about 20 
tsm; this justifies the 2, 10, and 18 tsm σn values in 
the table.  The representative sτ results shown in 
Table 1 provide general guidance for reasonable 
and acceptable values to be used in stochastic rock 
slope studies, especially when direct-shear test 
results are not available.  If the engineer anticipates 
little variability in discontinuity shear strength for 
the critical failure mode in a mine bench, then a 
reasonable value for sτ is 0.1 tsm (0.98 kPa).  If a lot 
of variability in shear strength is expected, then a 
value up to 0.6 tsm (5.88 kPa) should be assumed.  
Our experience has indicated that in most cases 
reasonable “default” values are 0.3 to 0.4 tsm for sτ . 
Table 1. Shear strength estimates for power-curve regressions. 

Regression 
Terms 

Latite 
Porphyry 

Quartz 
Monzonite Granodiorite 

    a 1.3802 1.5412 0.8099 

    b 0.8377 0.7381 0.8468 

    c 0.0 0.0 0.0 

    se  (tsm) 0.1823 0.3953 0.5718 

Est. τ  @  2, 
10, 18 tsm 

2.47            
9.50    15.54 

2.57          
8.43    13.01 

1.46          
5.69    9.36    

SD of τ  @  2, 
10, 18 tsm 

0.118   
0.105  0.202 

0.260   
0.213  0.382 

0.383      
0.294   0.482 

 

3.2. Mean and S.D. of Waviness 
The mean and standard deviation of tan(r) are 
computed by applying a random variable trans-
formation from waviness r to tan(r), then 
numerically integrating the probability density 
function of the new transformed variable.  
Assuming the waviness can be modeled as an 
exponentially distributed random variable, the pdf 
of the new random variable V (i.e., v = tan(r)) is 
given by [3]: 
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where:  µr = mean waviness (in degrees). 

Thus, for any given mean value of the fracture 
waviness, the pdf of V is defined and can be 
integrated numerically to obtain the mean and 
variance of V (in other words, the mean and 
variance of tan(r)).  These procedures are outlined  
below. 

 Mean of V: 

�
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 Variance of V: 

 Var[V] = E[V 2] – µv
2                                   (14) 

    where:   �
∞
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0
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 Standard deviation of V: 

 ][VVarsv =                                                 (15) 

Numerical integrations needed to evaluate Eqs. (13) 
and (14) have been completed for waviness values 
from 1o to 12o, and the results are listed in Table 2.  
Note that values for 0o waviness are not needed, 
because the expression in Eq. (6) reduces to only 
one random variable for r = 0o. 

Therefore, once a specified (simulated) mean 
waviness value is known for a given plane shear 
failure, the corresponding pdf of V (which has an 
exponential-type shape) is defined by Eq. (12).  
Waviness values should only be reported and used 
as integer, whole numbers.  Then, the appropriate 
values for the mean and standard deviation of V can 
be obtained from Table 2. 
Table 2. Calculated means and standard deviations of random 
variable V; note that v = tan(r). 

  Waviness (deg.)        Mean of V        S.D. of V 
             1        0.017464        0.014337 
             2        0.034992        0.035167 
             3        0.052654        0.053264 
             4        0.070523        0.072055 
             5        0.088691        0.091989 



             6        0.107277        0.114034 
             7        0.126444        0.140049 
             8        0.146394        0.172409 
             9        0.167338        0.212872 
           10        0.189444        0.261799 
           11        0.212803        0.318279 
           12        0.237413        0.380713 
 
 

3.3. Example Calculations 
To illustrate the point estimation procedures for 
computing the probability of sliding for a 2-d plane 
shear failure mode, a simple bench geometry is 
considered with the following terms (see Fig. 1): 
 
Bench face angle:  δ = 65o     
Height of failure mass at face:  H = 4.0 m 
Dip of sliding surface:  α = 32o  
Waviness of sliding surface:  r = 3o   
Unit weight of rock mass:  γ = 2.6 tcm (25.5 kN/m3) 
Calculated length of sliding surface:  L = 7.55 m 
Calculated weight of slide mass:  W = 23.588 tonne 
Calculated effective normal stress:  σn = 2.650 tsm 
Shear strength parameters: 
   a = 0.6512     b = 0.988    c = 0.0 
Calculated mean τ:   µτ = 0.6512σn

0.988 = 1.706 tsm 
Standard deviation of τ:   sτ = 0.3 tsm 
For 3o waviness, µv = 0.052654 and sv = 0.053264 
 
The first constant in Eq. (6) is computed as: 

)sin(1 αW
L

C =    =  0.6039 

 
The second constant in Eq. (6) is computed as: 

)sin(2 α
σ

W
L

C n=    =  1.6003 

 
Point estimate calculations from Eq. (1): 
 
F++ =  0.6039(1.706 + 0.3) + 1.6003(0.052654 + 0.053264) 

 =  1.3807 

F- -  =  0.6039(1.706 - 0.3) + 1.6003(0.052654 - 0.053264) 

 =  0.8479  

F+ -  =  0.6039(1.706 + 0.3) + 1.6003(0.052654 - 0.053264) 

 =  1.2102 

F- + =  0.6039(1.706 - 0.3) + 1.6003(0.052654 + 0.053264) 

 =  1.0184 
 

Because the shear strength τ often is based on 
small-scale laboratory test specimens (~15 cm) and 
the waviness is measured over 1-2 m in the field, it 
is reasonable to assume these two attributes are not 
dependent on each other.  Thus, the correlation 
coefficient between the two is zero.  The statistical 
point-mass weights then are calculated from Eq. (2): 
 
P++  = P- - = P+ - = P- +  =  (1/4)(1 + 0)  =  0.25 

Calculate the mean safety factor from Eq. (3): 
 
µF  = 0.25(1.3807 + 0.8479 + 1.2102 + 1.0184) 
 µF =  1.114 
 
Then, calculate the variance of the safety factor 
from Eq. (4): 
 
sF

2 = 0.25(1.38072 + 0.84792 + 1.21022 + 1.01842) – 1.1142   
 
 =  0.0401 
 
Thus, the standard deviation of the safety factor is: 
 
 sF = 0.2002 
 
A gamma pdf [8, p.161-163] for the safety factor 
then can be defined and numerically integrated from 
0 to 1 to estimate the probability of sliding for this 
plane shear analysis.  The u and z shape parameters 
of the gamma pdf are computed directly from the 
mean and variance. 
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Probability of sliding:   Ps = 0.298 
 
The safety factor gamma pdf is shown in Figure 2.  
It is worthy to note that even though the mean 
safety factor is 1.114 (indicating stability), this 
plane shear actually has a 0.30 probability of 
sliding, which results directly from the variability of 
input values. 
 
 



Fig. 2.  Safety factor pdf for plane shear example based on 
point estimation method; mean = 1.114, s.d.= 0.200, PS = 0.30.  

4.   WEDGE ANALYSIS 

The probability of sliding also can be estimated for 
a three-dimensional, tetrahedral wedge that may 
form in the rock slope as a result of two intersecting 
planar discontinuities (Fig. 3).  The safety factor 
equation for this type of wedge can be expressed as: 
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where:  AL = sliding area of left side of wedge, AR = 
sliding area of right side of wedge, Df = driving 
force of the wedge, τL = shear strength along left 
side of wedge, τR  = shear strength along right side 
of wedge, σL = effective normal stress on left side 
of wedge, σR = effective normal stress on right side 
of wedge, rL = waviness of left side of wedge, and  
rR = waviness of right side of wedge. 

The shear strengths on either side of the wedge are 
treated as random variables, and all other inputs are 
considered as constants.  Thus, the first two terms in 
Eq. (16) are used in the point estimation method, 
with the sum of the last two terms being added later 
to the estimated mean of the safety factor.  That is, 
the last two terms in Eq. (16) effectively comprise a 
waviness constant that increases the mean safety 
factor but does not affect its variance. 
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      Fig. 3.  Example of 3-d wedge failure mode. 

4.1   Mean and S.D. of Shear Strength 
Shear strengths for the left and right sides of the 
wedge are handled in a similar fashion to that 
presented in Section 3.1.  In some cases (e.g., for a 
symmetrical wedge), the mean shear strength will 
be the same for both the left and right sides of the 
wedge, but in the general case the two shear 
strengths do not have to be the same.  This is due to 
the weight of the wedge being shared between the 
two sliding surfaces.  Thus, the effective normal 
stress applied to each side of the wedge can vary 
significantly, depending on the steepness of the 
wedge plunge, the dihedral angle of the wedge, and 
other geometric factors. 

Also, application of the same type of shear strength 
model to both sides of the wedge is not required for 
this stability analysis.  For example, the engineer 
can specify a power-curve regression model for the 
left side and a linear model for the right side.  Once 
the effective normal stress is computed for each 
sliding plane of the wedge, the corresponding mean 
and standard deviation of τ for each side are 
obtained independently.   

4.2.  Example Calculations 

To illustrate the procedures for a 3-d wedge, the 
following example analysis is provided for a simple 
bench geometry: 
 
Bench face angle:  δ = 65o     
Bench face dip direction:  Ddir = 160o 
Height of failure mass at face:  H = 4.2 m 
Dip direction and dip of left plane:  106o, 51o 
Dip direction and dip of right plane:  219o, 52o 
Effective waviness of left plane:  3.3o   
Effective waviness of right plane:  4.8o   
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(Note:  Effective waviness is the apparent angle of waviness 
observed in the vertical plane in the direction of sliding rather 
than in the direction of down-dip, so it is always less than the 
true waviness angle.) 
 
Shear strength parameters: 
   Left:    a = 0.5543     b = 0.997    c = 0.0 
   Right:  a = 0.5317     b = 0.988    c = 0.0 
Unit weight of rock mass:  γ = 2.6 tcm (25.5 kN/m3) 
 
Calculated length of wedge intersection: L = 7.23 m 
Calculated volume of slide mass:  V = 14.37 m3  
Calculated weight of slide mass:  W = 37.36 tonne 
Calculated bearing and plunge of the wedge inter-
section:    162o,  36o       
Calculated driving force:  Df = 21.73 tonne 
Calculated area of left side:   AL = 12.92 m2  
Calculated area of right side:  AR = 12.17 m2 
Calculated effective normal stresses: 
 σL = 1.565 tsm       σR = 1.652 tsm       
Calculated mean τ: 
   Left:     µτ L = 0.5543σ L

 0.997 = 0.866 tsm 
   Right:   µτ R = 0.5317σ R

 0.988 = 0.910 tsm 
Standard deviation of τ:  
       sτ L = 0.3 tsm        sτ R = 0.5 tsm 
 
The first two constants in Eq. (16) are computed: 

 A L /Df = 0.5945        A R /Df = 0.5600  

The waviness constant is computed: 

  0.5945(1.565)tan(3.3o) + 0.5600(1.652)tan(4.8o) 

       = 0.132 

Point estimate calculations: 
 
F++ =  0.5945(0.866 + 0.3) + 0.5600(0.910 + 0.5) 

 =  1.4827 

F- -  =  0.5945(0.866 - 0.3) + 0.5600(0.910 - 0.5) 

 =  0.5660 

F+ -  =  0.5945(0.866 + 0.3) + 0.5600(0.910 - 0.5) 

 =  0.9227 

F- + =  0.5945(0.866 - 0.3) + 0.5600(0.910 + 0.5) 

 = 1.1261 

Calculate the mean safety factor from Eq. (3): 
 
µF  = 0.25(1.4827 + 0.5660 + 0.9227 + 1.1261) 
 
 =  1.024 
 

Then, calculate the variance of the safety factor 
from Eq. (4): 
 
sF

2 = 0.25(1.48272 + 0.56602 + 0.92272 + 1.12612) – 1.0242   
 
 =  0.111 
 
Thus, the standard deviation of the safety factor is: 
 
 sF = 0.333 
 
A gamma pdf for the safety factor distribution that 
results from these stochastic procedures then can be 
defined and numerically integrated from 0 to 1 to 
estimate the probability of sliding for this 3-d 
wedge analysis.  The u and z shape parameters of 
the gamma pdf are computed directly from the 
mean and variance. 
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Probability of sliding:   Ps = 0.514 
 
The safety factor gamma pdf is shown in Figure 4.  
It is worthy to note that even though the mean 
safety factor is 1.024 (indicating stability), this 3-d 
wedge actually has a 0.51 probability of sliding, 
which results directly from the variability of input 
values. 
 

 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5
gamma pdf

 

 f x( )

x
 

Fig. 4.  Safety factor pdf for 3-d wedge example based on 
point estimation method; mean = 1.024, s.d.= 0.333, PS = 0.51. 

 



5. STEP-PATH ANALYSIS 

Calculating the probability of sliding for step-path 
failure modes (see Fig. 5) requires the application of 
three variables in the safety factor equation.  The 
safety factor equation used here is based on the 
work of Jaeger [9] and subsequent adaptations of 
the step-path analysis to rock slope engineering by 
others [10, 11]: 
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where:  L = effective sliding length of the potential 
step-path failure; r = waviness of the master joint 
set; α = average dip of the master joint set; W = 
weight of the potential failure mass; and T is the 
effective tensile strength (i.e., resisting force) due to 
intact rock bridges, given by:  

 T = Fir(ht)(To)/L                                             (18) 

where:  Fir = fraction of intact rock contained in 
tensile rock bridges along the step path; ht = 
perpendicular height of the potential step-path 
failure mass; and To = estimated tensile strength of 
the intact rock.  For a given step-path geometry, all 
the terms in Eq. (18) are constants except for To, the 
tensile strength, which typically is estimated by a 
set of Brazilian disk tension tests.  If this set 
consists of at least four specimens, then a mean and 
standard deviation can be computed for To, which 
then are used to describe this input variable in the 
safety factor computations.  Thus, the third term in 
Eq. (17) can be rewritten as: 

( ) oTW
I ⋅)sin(α    where  I = Fir(ht) . 

The following intermediate calculations are useful 
for helping to define the final constants to be used 
in the point estimation method. 

Effective length of sliding (side AC of triangle ABC 
in Fig. 5; obtained by applying the law of sines): 
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where:  αc = average dip of cross joint set; β = 
overall average angle of the step path. 
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      Fig. 5.  Example of step-path failure mode. 

Weight of the potential failure mass: 

)sin()sin(2
)sin(2

βδ
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W                                             (20) 

where: γ = unit weight of the rock mass. 

Perpendicular height of the potential failure mass: 
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5.1. Practical Considerations 
Simulated step paths are generated by combining 
realistic fractures from both the master joint set and 
the cross joint set using the method presented in 
[10].  A path is “continuous” if it continues uninter-
rupted from the daylight point on the slope face all 
the way to the top of the bench.  In this case, the Fir 
value is zero, meaning that the third term in Eq. (17) 
can be ignored.  However, in many cases a 
continuous step path does not form (e.g., a cross 
joint length is not long enough to span the spacing 
between adjacent master joints), and a new path is 
initiated from the gap, leaving an intact rock 
“bridge” that must fail in tension in order for the 
entire failure mass to slide.  The fraction of intact 
rock is estimated as the summed length of all such 
rock bridges divided by the value of ht.  Our 
experience has shown that when this value exceeds 
about 0.08 the probability of sliding is nil. Thus, in 
computer routines the Ps is assigned a very small 
value (say, 0.000001) when Fir > 0.08, and the point 
estimation calculations are not needed. 

If the master joint set is very planar with a waviness 
angle of zero, then the second term in Eq. (17) can 



be ignored, meaning that only two input variables 
are analyzed.  However, for the general case of 
step-path analysis, all three variables are used in the 
point estimation method as described earlier in 
Section 2.  These three variables are: 

 τ,  shear strength along the master joint set; 

tan(r), tangent of the waviness angle for the   
master joint set; 

To,  tensile strength of the intact rock  

Their respective constants (multipliers) are: 

 L /(Wsinα); (22a) 

 Lσn /(Wsinα); (22b) 

 Ι /(Wsinα). (22c) 

It is worthy to note that engineering units of force 
(actually, force per unit width for the 2-d analysis) 
are preserved in the numerators for all three of the 
terms in the safety factor equation (tonne/m).  Such 
units cancel the same units in the denominators (i.e., 
weight per unit width, or tonne/m) to provide a 
unitless value for the safety factor.  This was also 
the case for the 2-d plane shear analysis presented 
previously in Section 3. 

5.2. Example Calculations 
To demonstrate the point estimation procedures for 
analyzing a 2-d step-path failure mode, a simple 
bench geometry is considered with the following 
terms (refer to Fig. 5): 
 
Bench face angle:  δ = 65o     
Height of failure mass at face:  H = 6.1 m 
Average dip of master joint set:  α = 33o  
Waviness of master joint set:  r = 4o   
Average dip of cross joint set:  αc = 79o 
Unit weight of rock mass:  γ = 2.6 tcm (25.5 kN/m3) 
Mean tensile strength of intact rock:  270 tsm 
S.D. of tensile strength of intact rock:  28 tsm 
 
Step-path simulation provides a failure path with 
one intact rock gap: 
 Overall step-path angle:  β = 51o 
 Total span of intact rock gap(s):   I = 0.035 m 
Calculated effective length of step path:  L = 5.12 m 
Calculated weight of slide mass:  W = 16.62 tonne 
Calculated effective normal stress:  σn = 2.722 tsm 
Shear strength parameters: 
   a = 0.5549     b = 0.988    c = 0.0 
Calculated mean τ:   µτ = 0.5549σn

0.988 = 1.492 tsm 

Standard deviation of τ:   sτ = 0.4 tsm 
For 4o waviness, µv = 0.070523 and sv = 0.072055 
 
The first constant from Eq. (22a) is: 

)sin(1 αW
L

C =    =  0.5656 

 
The second constant from Eq. (22b) is: 

)sin(2 α
σ

W
L

C n=    =  1.5396 

 
The third constant from Eq. (22c) is: 

)sin(2 αW
I

C =    =  0.0038 

 
Point estimate calculations adapted from Eq. (1): 
 
F+++ =  0.5656(1.492 + 0.4) + 1.5396(0.070523 + 0.072055) 

  + 0.0038(270 + 28)  =  2.4220 

F- - - =  0.5656(1.492 - 0.4) + 1.5396(0.070523 - 0.072055) 

  + 0.0038(270 - 28)  =  1.5349 

F++ - =  0.5656(1.492 + 0.4) + 1.5396(0.070523 + 0.072055) 

  + 0.0038(270 - 28)  =  2.2092 

F+ - - =  0.5656(1.492 + 0.4) + 1.5396(0.070523 - 0.072055) 

  + 0.0038(270 - 28)  =  1.9873 

F- ++=  0.5656(1.492 - 0.4) + 1.5396(0.070523 + 0.072055) 

  + 0.0038(270 + 28)  =  1.9694 

F- - + =  0.5656(1.492 - 0.4) + 1.5396(0.070523 - 0.072055) 

  + 0.0038(270 + 28)  =  1.7477 

F+ - +=  0.5656(1.492 + 0.4) + 1.5396(0.070523 - 0.072055) 

  + 0.0038(270 + 28)  =  2.2002 

F 
- + -=  0.5656(1.492 - 0.4) + 1.5396(0.070523 + 0.072055) 

 + 0.0038(270 - 28)  =  1.7567 
 
Assuming independence between each pair of the 
three variables, the correlation coefficients are zero.  
The statistical point-mass weights then are given by 
Eq. (5):   (1/8)(1 + 0)  = 0.125 . 
 
Calculate the mean safety factor from an expanded 
form of Eq. (3): 
 
µF  = 0.125(2.422 + 1.5349 + 2.2092 + 1.9873 
 + 1.9694 + 1.7477 + 2.2002 + 1.7567) 
 = 1.978 
 



Then, calculate the variance of the safety factor by 
applying Eq. (4): 
 
sF

2 = 0.125(2.4222 + 1.53492 + 2.20922 + 1.98732 + 1.96942  
 + 1.74772 + 2.20022 + 1.75672 ) – 1.9782   
 
 =  0.0765 
 
Thus, the standard deviation of the safety factor is: 
 
 sF = 0.2766 
 
A gamma pdf for the safety factor distribution that 
results from these stochastic procedures then can be 
defined and numerically integrated from 0 to 1 to 
estimate the probability of sliding for this step-path 
analysis.  The u and z shape parameters of the 
gamma pdf are computed directly from the mean 
and variance. 
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Probability of sliding:   Ps = 0.000074 
 
The safety factor gamma pdf is shown in Figure 6.  
The calculated probability of sliding is small here, 
primarily due to the relatively high mean value of 
the safety factor. 
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Fig. 6.  Safety factor pdf for step-path example based on point 
estimation method; mean = 1.978, s.d.= 0.277, PS = 0.00007. 

 

For this same step-path geometry with no intact 
rock gaps (i.e., I = 0.0), we can neglect the 
contribution from tensile strength and use only the 
first two terms in Eq. (17).  This situation leads to a 
calculated mean safety factor of 0.952 and s.d. of 
0.2537, which yield a value of 0.60 for the 
probability of sliding.  This simple example clearly 
shows the significant increase in stability provided 
by small intact rock bridges along a step-path 
failure surface. 

The driving force for this 2-d step path example is 
Wsin(α) = 9.05 tonne.  The expected contribution to 
stability from the small intact rock bridge is found 
by:  (0.035 m)(1 m)(270 tsm) = 9.45 tonne, which is 
the tensile force that can be carried by the intact 
rock bridge without rupturing.  Thus, we see why 
the mean safety factor can increase from 0.952 to 
1.978 when the effect of the intact rock bridge is 
included in the stability analysis.  If observed field 
conditions do not indicate solid, intact zones of rock 
substance (e.g., rock masses that are highly 
fractured or that contain weathered or altered zones) 
that can form such rock bridges, then the engineer 
should consider reducing the input value for the 
mean tensile strength.  This is especially important 
when the tensile strength has been estimated from 
small, intact specimens used in laboratory testing.   

6. DISCUSSION 

The point estimation method provides a computa-
tionally efficient method to calculate the mean and 
standard deviation of the safety factor for common 
rock slope failure modes.  The shape of the safety 
factor pdf must be specified by the engineer in order 
to estimate the probability of sliding by numerically 
integrating the area under this pdf from zero to one.  
This pdf shape will closely resemble that of the pdf 
chosen for the shear strength.  It is prudent to use a 
pdf model for shear strength that only takes on 
positive values, such as the gamma pdf.  We 
recommend this choice, which rationally leads to an 
assumption of a gamma pdf for the safety factor as 
well.  For this model, the shape of the safety factor 
distribution appears fairly bell-shaped for small 
values of the standard deviation, but becomes more 
right-skewed as the variance increases (Fig. 7). 

For the plane-shear and wedge failure modes, the 
probability that the failure surface is long enough to 
extend all the way to the top of the bench must be 
considered in the final calculation to obtain the 



probability of failure (note:  this probability of suf-
ficient length is not needed for the step-path mode, 
which presumes a continuous failure path including 
any small intact rock bridges present).  The length 
required for a continuous plane shear is shown by L 
in Fig. 1.  The length required for a wedge failure is 
measured along the intersection line of the wedge, 
and both planes must have trace lengths at least as 
long as this intersection for the wedge to be viable. 

A reasonable and convenient model for the length 
distribution in a fracture set is the exponential pdf   
[1, 5], which is a one-parameter pdf defined by its 
mean.  The cumulative distribution function (cdf; 
denoted by F(x)) of an exponential variable can be 
used directly to obtain the probability that length in 
a fracture set will take on a value at least as long as 
that required for the failure mode to be viable: 

PL = 1 – F(x) = 1 - (1 - e-x/m) = e-x/m                  (23) 
 
where:  m = mean length of the fracture set.  Thus, 
for the plane shear mode, the probability of failure 
is:  PF = PSPL , and for the wedge mode it is given 
by:  PF = PS(PL1PL2), which reflects the joint prob-
ability of sufficient length for the two planar 
discontinuities that form the wedge.  There are 
accepted methods for estimating the mean trace 
length of a fracture set based on field data obtained 
by scan-line or window mapping [12].  Such 
procedures provide the mean length to be used in 
Eq. (23) to obtain the needed PL values. 
 
These methods for estimating the probability of 
failure have been programmed into several software 
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Fig. 7.  Comparison of safety factor gamma pdf’s for different 
standard deviation values; the mean SF in all figures is 1.1. 

components used in NIOSH bench simulation 
software [1], which can be used to help engineers  
stochastically describe rock slope behavior.  The 
tools also can be applied to other aspects of rock 
slope engineering whenever estimates of the 
probability of failure are desired. 
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