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Abstract

US large-herd dairy parlour workers experience a high prevalence of musculoskeletal symptoms in
the upper extremity. The purpose of this study was to estimate and compare full-shift and task-
specific muscle activity of the upper extremity among parlour workers. Surface electromyography
data were recorded continuously throughout a full work shift for each participant (77 = 60). For a
subset of participants (7= 33), muscular effort was estimated for milking task cycles. Lower
muscle activity levels and higher per cent muscular rest was observed among rotary parlour
participants as compared to herringbone and parallel parlour participants for anterior deltoid,
forearm flexor and forearm extensor muscles. These findings suggest rotary parlours may offer
workstation designs or work organisational dynamics which may be more beneficial to the health
and performance of the worker, as compared to parallel or herringbone parlours.
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Study findings suggest milking parlour configurations present different biomechanical demands on
workers which may influence worker health and performance. Our findings will enable more
informed decisions regarding both engineering (e.g. parlour configuration or milking equipment)
and administrative (e.g. work organisation) control strategies for large-herd milking parlours.
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1. Introduction

Work-related musculoskeletal symptoms (MSSs) and disorders (MSDs) are prevalent among
workers employed in several agricultural sectors (Fathallah 2012; Fethke et al. 2015;
Oshorne et al. 2012; Xiao et al. 2013) including dairy production. In Europe, estimates of
the 12-month prevalence of MSSs in any body region among dairy workers have exceeded
80% (Kolstrup et al. 2006; Pinzke 2003), with the upper extremity as the most common
MSS location (Kolstrup et al. 2006; Tuure and Alasuutari 2009). A relatively mature
literature of investigations among European dairy workers includes the estimation of
associations between occupational exposure to biomechanical factors and MSSs of the upper
extremity (Kolstrup et al. 2006), characterisations of physical exposure using direct
measurement techniques (e.g. surface electromyography [EMG] to estimate muscular
loading), and identification of milking tasks perceived as the most physically demanding
(Lunner Kolstrup 2012; Pinzke, Stal, and Hansson 2001; Stal, Hansson, and Moritz 2000).

There are substantial differences in both technology used and scale of dairy production
between the US and European industries which limit the extent to which results of studies
among European dairy workers may be generalised to dairy in the US (or elsewhere). For
example, the US dairy industry has changed rapidly over the past two decades from a small-
herd to a large-herd (>500 head) production model due to economies of scale (Reinemann
2001). According to the US Department of Agriculture, large-herd operations experience
lower production costs per cow, leading to increased profitability in comparison to small-
herd operations. As a result, investments have been concentrated in larger herd operations,
leading to higher profit growth rates and further consolidation of US milk production
(USDA 2007). Not surprisingly, in 2012, more than 60% of milk produced in the US came
from large-herd dairy operations (USDA 2013), an increase from less than 40% in 2002
(USDA 2004).

Prior studies have indicated working on large-herd dairy operations is associated with an
increased risk for injury (Crawford et al. 1998; Pratt et al. 1992; Stallones, Pratt, and May
1986). Dairy workers in the US file 8.6 workers” compensation claims per 200,000 work
hours (Douphrate, Rosecrance, and Wahl 2006), higher than the national injury rate (6.2 per
200,000 h) (BLS 2014). The largest percentage (35%) of injury claims involves the upper
extremity, and nearly 50% of injury events occur inside the milking parlour (Douphrate et al.
2009). The experience and anatomic distribution of MSSs among US large-herd dairy
workers appears consistent with studies of European dairy workers (Douphrate et al. 2014),
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as do estimates of association between biomechanical factors (e.g. repetitive motion and
non-neutral posture) and MSSs (Douphrate, Nonnenmann, et al. 2016). However, most
previous estimates of exposure to biomechanical factors among US large-herd dairy workers
are based on self-report, which fails to capture exposure information with sufficient detail to
enable quantitative comparisons of milking parlour designs and/or specific milking tasks.

1.1. Milking parlour operations

Milking parlours on large-herd operations are designed to accommodate large numbers of
cows simultaneously to maximise production efficiency (NAHMS 2003). Working in large-
herd milking parlours involves task specialisation and intense work demands due to higher
cow volume and throughput rates which may increase the risk of work-related MSDs among
workers (Douphrate, Nonnenmann, and Rosecrance 2009).

Milking parlour systems involve cows moving into stalls on a platform which is elevated
relative to the floor where the worker stands (i.e. workers are located in a ‘pit’) while
performing milking tasks. This arrangement positions the cow’s udder at approximately the
same level as a worker’s shoulder. Common parlour configurations include herringbone,
parallel, and rotary, each characterised by the orientation of the cows in relation to each
other and in relation to the worker. Large-herd milking parlours generally operate 24 h a day
to maximise productivity and efficiency. The herd is generally milked three times per day
(Douphrate et al. 2013), and parlour workers often work 8-12 h shifts, six days a week
(Douphrate et al. 2014).

One Health is the multidisciplinary effort to achieve optimal health for people, animals and
the environment (American Veterinary Medicine Association 2016). The One Health
concept recognises that human health is connected to the health of both animals and the
environment (Centers for Disease Control and Prevention 2016). Within the One Health
framework, parlour milking involves multiple interactions between the worker, cow and
working environment (Figure 3). Many of these interactions could influence the health or
performance of the worker (Douphrate et al. 2017). The majority of dairy research
conducted inside the milking parlour has emphasised cow health or milk production, while
limited research has addressed the health of the parlour worker resulting from his/her
interactions with the cow, equipment or working environment.

1.2. Study objective

Given the US industry trend towards large-herd milking operations, workers in these milking
parlours may be exposed to biomechanical risk factors associated with the development of
upper extremity MSDs. Among these risk factors include high muscle forces and insufficient
muscular rest. The purpose of this study was to estimate and compare full-shift as well as
task-specific muscle activity of the upper extremity among US large-herd parlour workers.
We hypothesised that rotary parlour workers would experience lower full-shift and task-
specific muscle activation levels as well as higher muscular rest (% time) in comparison to
herringbone and parallel parlour workers.
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2. Methods

2.1. Participants

Access to large-herd dairy farms (1,000+ head) was enabled through a partnership with
state-based dairy extension personnel. A total of 60 parlour workers were recruited from 17
large-herd dairies in four Western US states. Male workers aged 18 years or older, who
worked full-time in the milking parlour, with no history of pain or pathology in the upper
extremities were eligible for inclusion. Only male parlour workers were recruited to reflect
large-herd parlour workforce characteristics as previous research has demonstrated nearly
90% of large-herd parlour workers are male (Douphrate, et al. 2014). After meeting
inclusion criteria, the study was explained and participants were asked to provide written
informed consent. The informed consent document was made available in both English and
Spanish and a bilingual investigator was present for translation purposes. Each participant
received $20 in appreciation for their time. The University of Texas Health Science Center at
Houston, Committee for the Protection of Human Subjects approved all study procedures.

Age, height, weight and years milking are summarised in Table 1. All participants were right
hand dominant, with a mean age of 29.9 years (range: 18-61 years). Mean height was 170.0
cm (range: 140.0-180.0 cm) and mean body mass was 75.8 kg (range: 54.4-99.8 kg). On
average, participants had 5.6 years of milking experience.

2.2. Parlour configurations and task performance

In herringbone parlours, cows are oriented 45-60 degrees away from the pit (Figure 2(a))
which typically requires the worker to reach around a hind leg of a cow to access the udder
(Figure 2(b)). In parallel parlours, cows are oriented perpendicular to the worker (Figure
2(c)) who gains access to the udder between the cow’s hind legs (Figure 2(d)). The size of a
herringbone or parallel parlour is specified as the number of cows accommodated on each
side of the pit; for example, a ‘Double-24’ parlour can simultaneously accommodate 24
cows on each side of the pit (or 48 cows total at one time). In rotary parlours, cows stand on
a slowly revolving carousel (Figure 2(e)). Milking tasks are performed on each cow as she
passes workers positioned on the carousel periphery (Figure 1(f)). Workers access the udder
the same as in a parallel configuration but with an additional dynamic of the cow slowly
moving as the carousel turns. The size of a rotary parlour is specified as the number of cow
stalls on the carousel. While herringbone configurations are common among older and
smaller dairy operations, parallel parlours are most common among more modern, US large-
herd dairy parlours. Rotary parlours are becoming more prevalent in the US as the machine-
paced carousel allows greater control of aspects of the milking routine critical to production
and food safety, such as the amount of time the disinfectant is in contact with the udder prior
to stimulation of milk flow (Figure 2).

A typical milking routine, as described in a previous publication (Douphrate, Fethke, et al.
2016), includes six sequential tasks: (1) pre-dipping of teats with a cup or spray for
sanitisation (Figure 3(a)); (2) teat strip to stimulate milk flow (Figure 3(b)); (3) teat wipe
(Figure 3(c)); (4) milking unit attachment (Figure 3(d)); (5) detachment of milking unit post
milking; and (6) post-dip of teats for sanitisation. Of the six tasks, only the detachment is
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automated and occurs when the milking system senses a decrease in milk flow. Workers in
herringbone and parallel parlours are typically assigned up to 10 milking stalls on one side
of the parlour and will perform all milking tasks for each stall for the duration of the shift. In
contrast, workers in rotary parlours are assigned to a station corresponding to one milking
task and will rotate to a different station corresponding to a different milking task every one
to two hours. Consequently, although the milking tasks do not functionally change with
parlour configuration, the machine-paced carousel and common use of job rotation in rotary
parlours could impact workers’ exposure to physical demands.

Study participants represented herringbone (n= 17), parallel (n=32) and rotary (n=11)
parlour configurations. Herringbone parlours included two Double-20 and two Double-24
configurations. Parallel parlours included one Double-25, one Double-35, five Double-40,
one Double-48 and one Double-50 configurations. Rotary parlours included one 40 stall, two
60 stall and one 72 stall configurations. Herringbone and parallel parlours used a territorial
milking routine where each worker was assigned a set of milking stalls on both sides of the
milking pit. A group of cows would enter the parlour and align themselves in each milking
stall. In sequential fashion down the line of assigned cows, each worker would perform a
milking routine which included teat dip, followed by strip, wipe then milking unit
attachment. Workers performed the same milking routine on both sides of the milking pit.
Rotary parlours used a task rotation strategy where workers performed a specific milking
task in an assigned position on the periphery of the rotating carousel. Throughout the shift,
workers rotated to other task positions every one to two hours.

2.3. Surface EMG methods

Muscular effort was estimated using surface EMG recordings from five muscles of the
dominant upper extremity. Surface EMG data were recorded continuously throughout a full
work shift for each participant. For a subset of participants (7= 33), milking task cycles
(dip, strip, wipe and attach) were identified using a push-button digital marker connected to
a portable EMG data logger. Task cycles were marked in ‘blocks’ of ten cows, with blocks
distributed throughout the work day (i.e. tasks were not marked continuously), typically
during the morning, mid-day and afternoon portions of the shift.

Full technical details of the surface EMG processing and normalisation methods used in this
study are available in Douphrate et al. (2017). To summarise, raw surface EMG signals were
recorded from the upper trapezius, anterior deltoid, biceps, flexor digitorum superficialis
(forearm flexor) and extensor digitorum communis (forearm extensor). Electrodes were
connected to a belt-worn data logger (Datalog MWX8, Biometrics Ltd., UK), which
digitised the raw EMG signals at a sampling rate of 1,000 Hz. Custom LabVIEW programs
(version 2013, National Instruments, Inc., Austin, TX) were used to process the recorded
data. During post-processing, the raw EMG signals were examined in the time domain for
evidence of signal drift (e.g. as may occur if the skin-to-electrode interface were
compromised) and electrocardiogram interference, and in the frequency domain for
electromagnetic interference. (Douphrate et al. 2017). All raw EMG signals were then (i)
adjusted for DC offset, and (ii) converted to instantaneous root-mean-square (RMS)
amplitude using a 100-sample RMS window with a 50-sample overlap (Fethke et al. 2012).
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For each muscle separately, the processed RMS EMG amplitudes were normalised to the
RMS EMG amplitudes observed during maximal, voluntary isometric reference contractions
(%MVE, i.e. normalisation in the bioelectric domain). Baseline noise was subtracted from
all RMS EMG amplitudes in a power sense (Thorn et al. 2007).

2.4. Exposure summary measures

Mean amplitude (in %MVE) across the entire full-shift and task-specific recordings was
calculated as an index of overall muscular load. Gaps in muscular activity during full-shift
recordings were defined as any periods in which muscle activity fell below 0.5% MVE for a
minimum of 0.25 s (Veiersted, Westgaard, and Andersen 1990). Gap frequency was defined
as the number of gaps/min and muscular rest was defined as the summed duration of all gaps
expressed as a percentage of total full-shift recording time. Full-shift static (10th percentile),
median (50th percentile) and peak (90th percentile) amplitudes of muscle activity were
calculated using a ‘Traditional’ amplitude probability distribution function (APDF) (Jonsson
1982) and using a recent modification referred to as the ‘Active’ APDF (Marker et al. 2016).
The Active APDF removed all EMG amplitude values below the 0.5% MVE muscular rest
threshold prior to calculating percentiles, and reflects the amplitude of muscle activity only
during periods of active muscle contraction. Only Traditional APDF was computed for short
duration, task-specific recordings. The mean duty duration (in seconds) of each milking task
cycle was calculated, as well as a composite (all milking tasks combined) inter-cycle time or
Between Cow Time (BCT).

2.5. Statistical analysis

The EMG summary measures were first described across all participants (i.e. using means
and standard errors) for the full-shift recordings and separately for each milking task. Upon
examination of standard plots of quantiles (Q-Q plots), standardised normal probability
plots (P-Pplots) and results of Chen—Shapiro tests (Chen and Shapiro 1995), it was
determined the distributions of the EMG summary measures for each muscle violated
assumptions of normality. No transformation adequately normalised the distributions. Also,
examination of residuals in preliminary ordinary least square regression models of the
relationship between the full-shift EMG measures and parlour configuration showed signs of
heteroscedasticity and the presence of outliers. Similar normality violations were observed
in preliminary examination of task-specific EMG summary measures. To perform adequate
statistical testing, and given the different data structure for the full-shift and the milking
task-specific samples, different statistical analysis approaches were used.

The effect of parlour configuration on each EMG full-shift summary measure, stratified by
muscle, was estimated using robust regression models. Robust regression assigns less weight
to observations with large residuals using MM-estimators, which are known to be resistant
to different types of outliers. To further increase robustness of the estimates, 95% asymptotic
efficiency for normal errors was computed. Because parlour configuration types were
entered in the model as dummy variables, the initial estimator for the corresponding EMG
estimates was the MS-estimator instead of the S-estimator, which may have computational
problems for dummy variables. Further, initial ~tests were performed to detect overall
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differences in the full-shift measures by parlour configuration type. A p-value of <0.10 was
then used to decide when to perform Bonferroni-corrected post hoc comparisons between
parlour configuration types. Statistically significant differences between configuration types
were declared at a more conservative p-value of 0.05. The ‘mmregress’ command as
implemented in Stata®© (v. 14.1, StataCorp LP, College Station, TX) was used for the above
analyses.

To estimate the effect of parlour configuration on each milking task-specific EMG summary
measure, stratified by muscle, multilevel linear mixed-effects models were used to account
for the inherent nested data structure (i.e. observations within individuals). Restricted
maximum likelihood estimation was used since this method is preferred with somewhat
small sample sizes such as ours (Kenward and Roger 1997). Models assumed residuals to be
independent by parlour configuration type but allowed for heteroscedasticity of the EMG
summary measures. Given both the small sample size and the violation of the assumption of
normality of EMG measures, bootstrapping was used to obtain more accurate estimates
(Kelley 2005; Sufahani and Ahmad 2012). Starting with 500 replications with increments of
500, the final models were performed with 4,000 replications at which point the estimates
did not change meaningfully. While we reported that Bonferroni-corrected post hoc
comparisons for full-shift models were corrected for multiple comparisons, multilevel
modeling (for task-specific comparisons) yielded more reliable estimates since correction of
estimates from multilevel models for multiple comparisons would likely result in
overcorrection (i.e. production of wider confidence intervals than necessary) (Gelman, Hill,
and Yajima 2012). Statistically significant differences were declared at a p-value of 0.05.

3. Results

3.1. Full-shift muscle activity levels

We analysed full-shift EMG recordings representing a total 60 dairy parlour workers which
included 17 herringbone, 32 parallel and 11 rotary workers. Our sample included 299
muscle-specific full-shift recordings. A single muscle-specific (forearm extensor) full-shift
recording from one participant was excluded due to compromised integrity of the skin-to-
electrode interface. Mean full-shift sampling duration across all participants was 8 h and 18
min. Mean RMS, muscular rest, gap frequency, and Traditional and Active APDF values for
all muscles are presented in Table 2.

Comparisons of summary measures between parlour configurations suggested a general
pattern of lower muscle activity levels (both Traditional and Active APDF) and higher per
cent muscular rest among rotary parlour participants as compared to herringbone and
parallel parlour participants for anterior deltoid, forearm flexor and forearm extensor
muscles. Additionally, parallel parlour participants generally had the highest muscle activity
levels and lowest per cent muscular rest for the same muscles with the exception of the
forearm flexor (highest among herringbone parlour participants). No trends were observed in
upper trapezius muscle activity or rest levels between parlour configurations. As expected,
Active APDF values were higher than Traditional APDF values due to removal of all values
below the 0.5%MVE muscular rest threshold prior to calculating the APDF percentiles.
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Post hoc comparisons of full-shift summary measures between parlour configurations
revealed several differences that were statistically significant. For the anterior deltoid,
parallel mean RMS (7.5 £ 0.5%MVE) was significantly higher (p < 0.05) than herringbone
mean RMS (5.9 + 0.4%MVE). Whereas significantly higher Traditional APDF median (50th
percentile) and peak (90th percentile) RMS levels were observed for parallel as compared to
herringbone, only Active APDF peak levels were different.

For the biceps, parallel mean RMS (5.2 + 0.3%MVE) was significantly lower than
herringbone mean RMS (7.1 + 0.6%MVE). Whereas only the herringbone Traditional APDF
peak value (13.1 £ 0.8%MVE) was lower than parallel peak value (18.3 £ 1.5%MVE), all
Active APDF values were significantly lower than parallel values. Additionally, biceps
parallel muscular rest (12.4 + 1.3% time) was significantly lower than both herringbone
(17.7 £ 1.1% time) and rotary (19.0 £ 1.5% time).

For the forearm flexors, herringbone mean RMS (11.0 + 0.9%MVE) was significantly
higher than rotary mean RMS (8.3 £ 0.5%MVE). Both herringbone Traditional and Active
APDF peak values were significantly higher than parallel values. Active APDF peak (37.9
+ 2.3%MVE) was also significantly higher than rotary peak value (29.8 + 2.0%MVE).

For the forearm extensors, parallel mean muscle activity level (8.7 = 0.9%MVE) was
significantly higher than rotary (5.7 = 0.7%MVE). Whereas only parallel Traditional APDF
peak (22.0 + 2.0%MVE) was higher than herringbone (14.7 + 1.3%MVE), only parallel
Active APDF median (11.5 £ 0.6%MVE) was higher than herringbone median (9.6

+ 0.4%MVE). Both rotary Traditional APDF static and peak values were lower than parallel
values, but only rotary Active APDF median (9.4 £ 0.6%MVE) was lower than parallel
median (11.5 + 0.6%MVE). Lastly, rotary muscular rest for the forearm extensor (14.9

+ 1.6% time) was significantly higher than parallel muscular rest (8.8 = 0.8% time).

3.2. Task-specific muscle activity levels

We analysed 19,077 task cycles across the sub-sample of participants with task-specific data
(n=33) with an average of 29 cycles of each milking task per participant. To assess if the
task-specific sub-sample of participants was representative of the full-shift sample of
participants (n7=60), we compared the full-shift summary measures of the sub-sample to the
entire full-shift sample of participants. No significant differences in results were observed
between the two groups.

Task-specific EMG summary metrics by parlour configuration are presented in Table 3.
Comparisons of milking tasks between parlour configurations revealed lower upper
trapezius, anterior deltoid and biceps muscle activity levels during the wipe and milking unit
attachment tasks among rotary participants as compared to herringbone and parallel
participants. In general, no significant differences were observed between configurations for
dip and strip tasks for upper trapezius, anterior deltoid and biceps muscle groups. Forearm
flexor and extensor muscle activity levels were lower among rotary participants during dip
and attachment tasks as comparted to herringbone and parallel. Peak forearm flexor (41.9

+ 3.0%MVE) and extensor (19.2 + 3.9%MVE) muscle activity levels were significantly
lower among rotary participants as compared to parallel participants during wipe task.
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Task times by parlour configuration are also presented in Table 3. Milking unit attachment
had longer mean duration (4.1 £ 1.9s) across all parlour configurations as compared to dip
(2.0 = 1.1s), strip (3.0 = 1.5s) and wipe (2.9 + 1.5s) tasks. Comparison of parlour
configurations revealed significantly longer rotary task durations (all milking tasks) as
compared to herringbone and parallel milking tasks. Additionally, composite (all tasks
combined) inter-task time or BCT was significantly longer in duration among rotary
participants (3.0 + 2.5s) as compared to both herringbone (1.4 £ 2.5s) and parallel (1.5

+ 2.3s) (not presented in table).

4. Discussion

To our knowledge, this study is the first of US large-herd dairy workers to (i) characterise
full-shift patterns of muscle activity and (ii) explore the effect of parlour configuration on
both full-shift muscle activity and muscle activity during specific elements of the milking
routine. Summary measures included a set of well-established variables commonly used to
describe overall muscle effort (i.e. mean muscle activity [Richter et al. 2009]), the
distribution of EMG signal amplitudes (i.e. Traditional APDF [Jonsson 1982]) and the
quantity and temporal aspects of muscle rest (i.e. the proportion of work time with muscle
rest and EMG gap frequency [Veiersted, Westgaard, and Andersen 1990]). In addition, for
the full-shift analyses, the distribution of EMG signal amplitudes independent of muscle rest
was also considered (i.e. Active APDF [Marker et al. 2016]).

4.1. Full-shift muscle activity levels

Full-shift mean muscle activity levels, which include periods of muscle rest, were greatest
among those in parallel parlours for the anterior deltoid, biceps, and forearm flexors, and
greatest among those in herringbone parlours for the forearm flexors. These observations,
along with the general pattern reduced Traditional APDF levels, reduced Active APDF
levels and greater amounts of muscle rest, suggest that those working in rotary parlours
experience lower muscular load than those in parallel and herringbone parlours. Specifically,
(i) 11 of the 15 Traditional APDF summary metrics (5 muscles x 3 metrics) were lowest
among rotary participants, (ii) 10 of the 15 Active APDF summary metrics were lowest
among rotary participants and (iii) the proportion of work time with muscle rest was highest
among rotary participants for all muscles. Further inspection of the results (Table 2) suggests
that reductions in muscle activity levels among rotary participants were most consistently
observed for the forearm flexors and forearm extensors.

Despite the general similarity of work across large-herd milking parlours, each dairy
operation is unique with variation in workstation designs, milking routines, staffing levels
and work-rest schedules both within and between parlour configurations. Such variation
could partially explain the observed differences in common EMG summary measures
between parlour configurations, such as mean muscle activity, Traditional APDF levels, and
the proportion of work time with muscle rest. Most importantly, rotary parlours use a
machine-paced production strategy in which cows are brought to the worker on a revolving
carousel, whereas herringbone and parallel workers must move to each stationary cow to
perform milking tasks. While the machine-pacing in rotary parlours controls the speed of
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milking task performance, workers in herringbone and parallel parlours rapidly perform a
milking task down a line of successive cows. Our task-specific analyses revealed longer
duration composite inter-cycle times (i.e. BCT) among rotary parlour participants than
among both herringbone and parallel participants. An example representation of BCT
differences between parlour configurations is presented in Figure 4. Longer duration inter-
cycle task times in rotary parlours may provide increased opportunity for muscle rest as
compared to herringbone and parallel parlours. Machine-paced production in rotary parlours
may also improve quality control since workers are restricted from performing milking tasks
at speeds which may compromise task effectiveness, cow health and overall parlour
productivity (e.g. machine pacing ensures the pre-dip disinfectant remains on the udder for a
sufficient duration).

The observed differences in Active APDF levels between parlour configurations (i.e. lower
among those in rotary parlours), however, suggests that increased muscle rest time as a
consequence of machine pacing does not fully account for differences in the more common
EMG summary measures. The faster work pace in herringbone and parallel parlours implies
greater movement velocity, which has been associated with increased EMG amplitudes
(Freund and Budingen 1978; Mustard and Lee 1987). Alternatively, localised muscle
fatigue, which results in increased EMG amplitude accompanied by a shift in spectral
content of the EMG signal to lower frequencies (Kallenberg et al. 2007), may have been
more prevalent among those in herringbone and parallel parlours. An increase in muscle
activity in response to psychosocial stressors has also been observed in many occupational
settings (Eijckelhof et al. 2013; Lundberg et al. 1994; Rissén et al. 2000; Van Galen et al.
2002; Visser et al. 2004). Occupational psychosocial stress, commonly quantified using the
psychological job demands/decision latitude model (Karasek et al. 1998) has been linked to
upper extremity musculoskeletal outcomes in several epidemiological studies among non-
agricultural workers (Bongers, Kremer, and Laak 2002; Gerr et al. 2014; Hauke et al. 2011)
and was consistently retained in adjusted models of associations between agricultural
activities and upper extremity pain in a recent study of agricultural workers (Fethke et al.
2015).

Rotary parlours also use a task rotation strategy in which workers perform a specific milking
task for one to two hours then rotate to another task assignment. In contrast, herringbone and
parallel workers perform milking tasks in sequential fashion down a line of assigned cows.
Task rotation is used in many work settings to produce task variety and to reduce worker
fatigue and injuries (Tharmmaphornphilas and Norman 2004), although evidence of rotation
to minimise physical exposures and the occurrence of musculoskeletal health outcomes is
mixed (Bao et al. 2016; Leider et al. 2015).

With volatile milk prices and low-profit margins, there is a need to develop practical, low-
cost interventions to prevent adverse musculoskeletal health outcomes or fatigue among
parlour workers. Higher muscular rest and lower muscle activity levels among rotary
participants provides supporting evidence of the potential effectiveness of task rotation in
reducing physical exposures associated with large-herd parlour milking. Implementing a
task rotation strategy in herringbone and parallel milking is one plausible strategy to
introduce opportunity for muscular rest and task variability. An ancillary milking parlour

Ergonomics. Author manuscript; available in PMC 2020 February 14.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Douphrate et al.

Page 11

position is a “‘cow pusher’ who is responsible for directing cows from pens to the parlour for
milking. In a task rotation strategy, herringbone or parallel parlour milkers could rotate into
a cow pusher role periodically during the shift which would introduce increased task
variability and reduced physical exposures.

4.2. Task-specific muscle activity levels

In addition to lower full-shift muscle activity levels, our findings also suggest lower task-
specific muscle activity levels among those in rotary parlours. Fifty-three of the 80 task-
specific EMG summary metrics compared between parlour configurations (5 muscles x 4
metrics x 4 tasks) were lowest among rotary participants (Table 3). Similar to the full-shift
results, the reductions associated with the rotary configuration were most consistent for the
forearm flexors, forearm extensors and biceps muscle groups. Notably, activity levels across
all metrics and muscles were lowest among rotary participants during the milking unit
attachment task.

Observed muscle activity levels between were greater during the pre-milking tasks (i.e. dip,
strip and wipe) than during the milking unit attachment task. The results suggest that
interventions directed at reducing muscle loads should consider these pre-milking tasks.
Douphrate, Fethke, et al. (2016) compared upper extremity muscle activity levels during the
manual pre-milking tasks (as performed in the current study) to the levels observed during
use of an alternative teat preparation system designed to replace the manual pre-milking
tasks. Results were mixed, with greatly reduced anterior deltoid muscle activity but
modestly increased biceps, forearm flexor and forearm extensor activity. Importantly,
however, the alternative system resulted in a substantial decrease in repetitiveness associated
with manual pre-milking tasks. In the context of full-shift exposure to forceful manual
exertions, the reduced repetition during use of the alternative teat preparation system may
offset the modest increases in activity levels (on a per-cycle basis) for some muscles. We are
aware of no other study that has examined the effect of alternative approaches to performing
the pre-milking tasks on muscle activity levels.

The vast majority of previous ergonomics intervention research in dairy has targeted the
milking unit. For example, Jakob, Liebers, and Behrendt (2009) reported a significant effect
of milking unit weight on upper extremity muscle activity levels, and Jakob and Liebers
(2011) observed a reduction of muscle activity during use of a novel quarter individual
milking unit design. Stal, Pinzke, and Hansson (2003) observed a small reduction in upper
extremity muscle activity when a prototype support arm was used to balance the weight of
the milking unit during the attachment task. Most recently, Douphrate et al. (2017) observed
small differences in upper extremity muscle activity levels during use of both existing and
prototype milking units from multiple manufacturers. Reductions in muscular load and user
satisfaction appeared to be related to reduced milking unit weight, smaller ‘spread’ between
the milk tubes, and milk tubes that were tapered (i.e. narrower) at the hand grasp location.

4.3. Study strengths and limitations

An important strength of this study is the use of a full-shift sampling strategy, which remains
rare in field-based ergonomics research (Mathiassen et al. 2003). Exposure assessments
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based on short-duration or task-specific sampling strategies have been used to represent full-
shift (Norman et al. 1998) or lifetime exposures (Kumar 1990). Common arguments for
short-duration or task-specific sampling include (i) cost due to the time requirements or data
storage and (ii) computational difficulties associated with large data files (van der Beek and
Frings-Dresen 1998; David 2005; Trask et al. 2008). Dramatic advances in data logging
technology and the ability of relatively inexpensive computing hardware to process large
data files common to direct measurement approaches have eased many the past impediments
to prolonged measurement in field environments. Even so, a single full-shift measurement
(as in this study) does not necessarily capture the full extent of the temporal variation in
physical demands that must be understood to establish unbiased estimates of exposure at the
level of the individual worker (Fethke et al. 2012; Mathiassen, Moller, and Forsman 2003;
Trask et al. 2008). However, due to the cyclic nature of milking parlour work and the day-to-
day consistency in the parlour operation, large between-day differences (within-worker) in
muscle activity summary measures are not expected.

Although a sample size of 60 workers was sufficient to detect statistically significant
differences in EMG summary measures between parlour configurations, other factors may
affect muscle activity levels. Most importantly, muscle activity may depend partly on
individual anthropometric characteristics. For example, workers with shorter arm lengths or
lower stature might experience higher levels of upper trapezius activity while reaching
forward during unit attachment than workers with longer arms or higher stature. Another
limitation is that we were unable to control for differing milking unit designs between the
parlours from which participants were recruited. Milking units vary by shape and weight,
and workers use different methods to attach the units to the cows (Douphrate et al. 2017).
Such differences may influence muscle activity during the milking unit attachment task.
Lastly, the non-random selection of participants limits our ability to generalise the observed
results to the broader population of parlour workers.

4.4. Industry implications

Maximisation of dairy operation economies of scale is dependent on herd size as well as
parlour capacity, efficiency and throughput. Number of workers and pre-milking routine are
two factors often considered when determining an ideal parlour design and capacity.
However, worker performance should also be considered. Our findings suggest that parlour
work organisational factors may have a significant influence on worker muscle activity and
potentially the development of worker fatigue. In turn, worker fatigue could result in
compromised parlour productivity or cow health. In addition to parlour configuration and
pre-milking routine, dairy producers should consider work organisation factors and their
influence on worker performance. Further research is needed to investigate the role of
worker health and fatigue on performance, cow health and parlour productivity.

4.5. Conclusions

Our study, which employed continuous measurement of upper extremity muscle activity
over entire work shifts, revealed more desirable lower muscle activity levels and higher
muscular rest among rotary parlour workers as compared to herringbone and parallel parlour
workers. These findings suggest rotary parlours may offer workstation designs or work
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organisational dynamics which may be more beneficial to the health and performance of the
worker, as compared to parallel or herringbone parlours. Our findings can enable more
informed decisions regarding both engineering (e.g. parlour configuration or milking
equipment) and administrative (e.g. work organisation) control strategies.
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Figure 1.
Triad of interactions between cow, equipment/environment and worker.
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Figure 2.
Parlour configurations and worker postures during performance of milking tasks: ((a) and

(b)) herringbone; ((c) and (d)) parallel; ((e) and (f)) rotary. (Douphrate et al. 2014).
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Figure 3.
Milking tasks: (a) dip, (b) strip, (c) wipe and (d) milking unit attachment. (Douphrate,
Fethke, et al. 2016).
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Figure 4.

Time (seconds)

Samples of anterior deltoid muscle activity from three parlour workers (herringbone, parallel
and rotary) performing dip task on 10 cows.
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Summary of demographic variables (7= 60).

Mean (SD) Min Max
Age (years) 29.9(9.2) 180 610
Milking (years) 56(4.7) 025 20.0
Weight (kg) 75.8(12.2) 544 9938
Height (m) 1.7(0.15 1.4 18
BMI (kg/m?) 29.3(16.0) 20.8 355
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Comparison of full-shift EMG summary measures (mean [SE]) across parlour configurations.

Table 2.

Herringbone

. + Parallel Rotary Total
Summary Measure (n=17) (n=32) (n=11) (n=60)
Upper trapezius
Mean RMS (%MVE) 96(0.7) 86(0.7) 9.8(L9) 9.6 (4.4)
Gap frequency (#/min) 1.2(0.4) 1.5(0.2) 1.9(0.8) 2.6 (3.0)
Muscular rest (% time) 1.1 (0.4) 1.7 (0.2) 2.8(1.0) 6.0 (15.5)
Traditional APDF (%MVE)
Static 13(0.2) 12(01) 1.0(02) 1.4 (1.0)
Median 72(06) 58(05) 7.1(15) 6.9 (3.6)
Peak 20.8(15) 19.9(1.8) 21.7(3.7) 21.2(9.5)
Active APDF (%MVE)
Static 6.0(0.1) 59(0.1) 59(0.3) 6.1 (0.6)
Median 11.2(0.5) 109(05) 112(12) 11.4(3.1)
Peak 25.1(1.4) 26.0(1.8) 258(35) 265(9.1)
Anterior deltoid
Mean RMS (%MVE)A 5.9 (0.4) 7.5(0.5) 6.5 (1.9) 7.6 (3.5)
Gap frequency (#/min)AB 15.8(1.0) 116(1.1) 120(11) 128(5.1)
Muscular rest (% time 214(19) 19.1(2.3) 29.4(3.9) 21.7(11.3)
Traditional APDF (%MVE)
Static 03(0.0) 03(00) 02(00)  03(0.2)
MedianAC 1602 24(03) 11(0.2) 2.2 (1.5)
PeakA 18.1(12) 226(1.4) 186(45) 23.2(10.6)
Active APDF (%MVE)
Static 6.2(0.1) 6.3(0.1) 6.2(0.2) 6.4 (0.6)
Median 12.9(0.5) 14.2(04) 13.1(14) 14.6(3.9)
PeakA 28.7(15) 354 (14) 27.9(45) 36.6(18.1)
Biceps
Mean RMS (%MVE)A 5.2 (0.3) 7.1(0.6) 5.4 (0.5) 7.7 (5.5)
Gap frequency (#/min)AB 9.6(05) 7.1(06) 6.4(0.4) 7.7(2.8)
Muscular rest (% time)AC 17.7(1.1) 12.4(1.3) 19.0(15) 15.2(6.5)
Traditional APDF (%MVE)
StaticC® 0.2(0.0) 03(0.0) 0.2(0.0) 0.3(0.3)
Median 31(00.2) 40(05) 3.0(0.4) 43(3.1)
PeakA 13.1(0.8) 183(15) 143(13) 19.6(14.1)
Active APDF (%MVE)
StaticA 57(00) 59(0.1) 57(.1)  59(0.6)
Median” 9.3(0.2) 11.2(0.5) 10.0(0.4) 115(4.4)
PeakA 195(0.8) 25.1(1.6) 21.6(1.5) 26.9(16.1)
Forearm flexors
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. Herringbon$ Parallel Rotary Total
Summary Measure (n=17) (n=32) (n=11) (n=60)
Mean RMS (%MVE)B 11.0(0.9) 10.0(0.9) 8.3(0.5) 11.1 (5.6)
Gap frequency (#/min) 5.4 (0.5) 6.5 (0.5) 5.1(0.6) 5.8 (2.4)
Muscular rest (% time) 9.0(1.5) 106(1.1) 10.9(1.4) 10.3 (5.7)
Traditional APDF (%MVE)
Static 05(0.1) 04(0.0) 0.4(0.1) 0.5 (0.4)
Median 53(0.6) 45(04) 4.4(0.2) 5.5 (3.0)
PeakB 27.7(21) 261(22) 21.1(L5) 28.6(15.0)
Active APDF (%MVE)
Static 6.1(0.1) 6.1(01) 59(0.1) 6.2 (0.5)
Median 13.2(0.6) 13.3(0.6) 11.9(05) 13.7(3.6)
PeakB ¢ 40.1(2.8) 37.9(2.3) 29.8(2.0) 39.9(17.1)
Forearm extensors
Mean RMS (%MVE® 6.3 (0.6) 8.7 (0.9) 5.7(0.7) 83(4.2)
Gap frequency (#/min) 6.1 (0.5) 5.3(0.4) 5.6 (0.4) 5.6 (2.1)
Muscular rest (% time)© 11.8(1.4) 8.8(0.8) 14.9(1.6) 10.9 (5.3)
Traditional APDF (%MVE)
Static® 04(0.1) 05(0.1) 03(00) 05(0.3)
Median 42(04) 47(04) 37(04)  51(28)
PeakAC 147 (1.3) 22.0(2.0) 132(1.6) 20.0(10.4)
Active APDF (%MVE)
Static 57(0.1) 58(0.1) 57(0.1) 5.9 (0.5)
MedianAC 9.6 (0.4) 11.5(0.6) 9.4 (0.6) 11.3(3.4)
Peak 21.0(1.3) 29.6(2.1) 19.1(L7) 28.0(13.3)
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*
Post hoc comparisons (p<0.05) of summary metrics between parlor configuration: A = herringbone vs parallel; B = herringbone vs rotary; C =
parallel vs rotary
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