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Abstract

Medical countermeasure stockpiles in the United States are designed to support healthcare workers
and the public during public health emergencies; they include supplies of personal protective
equipment (PPE). As part of typical PPE manufacturing processes, appropriate test methods are
used to ensure that the devices provide adequate protective performance. At the time of
manufacture, performance is often measured and weighed against an objective standard of quality,
resulting in a pass or fail attribute being assigned to individual PPE items and thence to production
lots. Incorporating periodic performance testing for stockpiled PPE can ensure that they maintain
their protective qualities and integrity over time while in storage. There is an absence of guidance
regarding how to design quality assurance programs for stockpiled PPE. The applicability of the
Lot Quality Assurance Sampling (LQAS) approach to stockpiled PPE was examined in a previous
study that compared and contrasted different sample sizes in recovering the true percentage of
defective units in large lots in the LQAS framework. The current study carries this line of inquiry
forward by integrating PPE degradation over time and comparing different sampling time intervals
in recovering the true underlying degradation rate. The results suggest that product degradation is
more easily detected when tested at shorter time intervals and for higher degradation rates. They
further suggest that sampling interval groupings can be made based on the proficiency with which
they recover the true underlying degradation rate.
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InTHE UNITED STATES, stockpiles of medical supplies and equipment at the federal, state, and
local levels were created with funding and initiatives associated with the Public Health
Security and Bioterrorism Preparedness and Response Act of 2002.1 Since then, large
volumes of personal protective equipment (PPE) have been acquired. PPE such as
respirators, surgical gowns, and gloves are intended to protect healthcare and emergency
responders from the hazards of caring for individuals with contagious diseases and contain
the spread of such diseases.2~ Predictions of the amount of PPE and the rate at which it will
be needed during a public health emergency suggest that PPE consumption will exceed the
amount of product that manufacturers can produce.3°-14 Therefore, millions of units of PPE
are stored across the country in readiness for rapid response in facility-level and public
health (local, state, federal) stockpiles.

While it is reasonable to assume that PPE provided through the normal supply chains will
give the promised protection, component materials may degrade while in a stockpile.15-22
An example is the commonly stockpiled N95 filtering facepiece respirator (FFR),
recommended for protection against a variety of hazards that may be faced during public
health emergencies. Most N95 FFRs incorporate filtering media embedded with electrostatic
charges. The embedded electrostatic charge may dissipate during extended stockpiling,
thereby potentially decreasing the filtration efficiency.2123-25 Thus, stockpiled N95 FFRs,
as well as other PPE, may degrade to an unacceptable level while in the stockpile, at a rate
influenced by variations inherent in varying designs, materials of construction, materials
used in packaging, and stockpile storage conditions.

Given the likelihood of long-term storage, the potential for degradation, and the possible
lack of control over storage conditions, many PPE manufacturers provide shelflife and
expiration guidelines. However, when stored in a suitable environment, stockpiled products
may be effective well beyond their labeled expiration dates, and development of a suitable
shelf-life extension program would be beneficial.

Unsubstantiated stockpile testing schemes may prove unnecessarily expensive. In addition to
the costs of performing the tests and the PPE used in the testing, over-testing without careful
sampling plan design may lead to discarding an excessive number of relatively good lots due
to sampling variation.26

In a previous study, we examined the applicability of a Lot Quality Assurance Sampling
(LQAS) approach to stockpiled PPE and posited it as a mechanism to manage the quality of
stockpiled PPE over time and potentially realize a PPE-specific shelf-life extension program.
21 Given the potential stability of PPE when stored in a suitable environment, our previous
article compared and contrasted different sample sizes in terms of their ability to accurately
estimate a fixed'true quality level over a restricted number of samples. However, in light of
the potential for PPE to degrade over time, true levels of lot quality can be dynamic and a
potentially moving target. Identifying stockpiled PPE that are degrading, and accurately
identifying the rate of degradation, may be a desirable component to a stockpiled PPE
LQAS. For example, degradation of numerous models and lots in a localized area in the
stockpile may indicate localized storage conditions that are less than adequate. Additionally,
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identification of unacceptable levels of degradation in a single model and/or a single lot can
allow for targeted recycling, thereby limiting waste.

Therefore, questions remain regarding how often sampling should be done in order to detect
degradation processes and to estimate the rate at which the PPE is degrading. The current
study addresses this missing piece by integrating PPE degradation over time and comparing
the consistency of different sampling time intervals in recovering the simulated degradation
rate. The primary research questions of the current study are:

1. Can repeated performance testing of PPE samples detect degradation in
stockpiled PPE?

2. Do the trends seen over repeated sampling accurately reflect the rate of
degradation?

3. Do different time intervals of repeated performance testing differ in terms of the
proficiency with which they recover the degradation rate?

Computer Simulation

The research questions posed were answered through a series of statistical simulations. The
study used a computer simulation to “create” batches of stockpiled PPE over the course of
their lifetime with known quality levels at each stage in their life cycle. It also allows for the
simulated PPE samples to be sampled to determine if the parameters that were “created” can
be recovered. This technique makes it possible to vary applicable quality parameters (ie, the
actual percent of passing units in a lot and the rate at which that percent declines as
degradation occurs over time) and create real-life stockpile contexts. A common desktop
mathematical software package, R version 3.5.0, was used to conduct the simulation and
analyze the results.28 The steps taken in the simulation are briefly summarized in Figure 1.

In order to integrate PPE degradation over time, lots or batches of stockpiled PPE were
created and tracked over the course of their lifetime. Lots over time were simulated through
the use of sets containing the total number of PPE items out of lots of 100,000 that would
pass a performance test. A set for each degradation parameter was generated, containing
entries for the true number of passing units every month over a 100-year lifespan. At year
zero, all PPE in each lot were considered to have “passed” an applicable performance test
(eg, the tests used by NIOSH for respirator certification or the tests designated by the FDA
for clearing surgical or isolation gowns). At subsequent times, a proportion of the lot was set
to “fail” the performance test. In total, 9 different linear degradation rates were simulated in
which a fixed number of additional units become defective each year. These rates were
0.01%, 0.05%, 0.1%, 0.25%, 0.5%, 1.0%, 2.0%, 5.0%, and 10% and corresponded to an
additional 10, 50, 100, 250, 500, 1,000, 2,000, 5,000, and 10,000 units becoming defective
every year. The choice of using a linear degradation model was made for conceptual
simplicity. Exponential degradation was also modeled as a comparison, but other forms of
nonlinear degradation could have been selected instead.
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Once these series of sets were created to represent the PPE lots with known degradation
rates over the course of their lifetime, it was then possible to collect random samples from
them over time. Sampling time intervals of 1 month, 3 months, 6 months, 9 months, 1 year,
2 years, 3 years, 4 years, 5 years, and 10 years were examined. Although some of the time
intervals examined are not likely to be selected for use in actual stockpiles, they were chosen
for comparison purposes. A fixed sample size of 32 PPE units was selected to be used for
each sample. As such, 32 random numbers from the lot of 100,000 (representing single units
of PPE) were selected from each designated time point with replacement. The sample fail
rate was then computed according to Equation 1:

~ X

P =7 @
where p is the observed sample fail rate, xis the number of PPE items that failed in the
sample, and r7represents the sample size (ie, the total number of PPE items contained in
each sample—in this case, 32). A linear regression of the sample fail rates for each time
interval was computed for each simulated lot. This process was iterated 150 times. Thus, 150
distinct trials were conducted for each parameter in the study, and trends across these trials
could be used for the analysis designed to answer the research questions.

Detecting and Determining Degree of Degradation

In response to the first research question posed, concerning the utility of periodic testing, the
results of the simulation suggest that repeated performance testing of PPE samples can
detect degradation in stockpiled PPE, but it depends on the time interval of repeated testing
along with the magnitude of the degradation. In order to examine this research question,
linear regressions were performed on sample results over a 15-year period. For each
individual trial, the percent of PPE passing for each sample was used as the dependent
variable, and time was used as the independent variable. The standardized regression
coefficients, or slopes of the fitted lines, directly measured the predicted degradation rate.
Because each lot was simulated to degrade over time, the measured pass rate would be
expected to decrease in consecutive samples, and a negative regression slope should result.
A negative regression slope in any given trial of repeated testing, therefore, suggests that the
simulated degradation was detected. A slope of zero, or a positive slope, would denote a trial
in which there was no detection of any degradation—even though degradation did exist. This
does not necessarily mean that no defective units were found, but rather that linear
regression did not find a consistent increase in defective units over time. These failures to
detect the applied degradation could be considered “false negatives”—in other words, testing
did not discern the decrease in the quality of the lot. If the entire lot were tested at each time,
the regression slope would recover the degradation rate applied to the lot. For smaller
samples, variability due to sampling will affect the accuracy of the recovered slope. Figure 2
provides an illustration of one of the regressions derived from the study in which a negative
standardized regression coefficient was found.
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Table 1 reports the number of trials out of 150 in which sampling failed to detect
degradation for specific sampling intervals, denoted by the rows, and the true linear
degradation rate, denoted by the columns. This table clearly shows that degradation is
detected more often as the sampling interval gets smaller and the true degradation rate
increases.™ For the degradation rates of 2% and higher, each of the sampling intervals was
able to “see” the lot degradation through sample-to-sample trends in every trial. When
degradation was very low, it was undetectable by most sampling intervals. For example, the
0.01% degradation was not detected in some trials for each of the sampling intervals studied.
This is partially a symptom of the duration of time examined. The 0.01% annual degradation
lot results in an additional 10 failing units every year for the 100,000-item lot. At the end of
the regression period—15 years—the 0.01% annual degradation results in only 150 failing
items in the entire lot after 15 years, a 0.15% failure or 99.85% pass rate in the lot after
aging. Hence, the lack of degradation detection is not automatically concerning for this low
degradation rate considering the very small amount of degradation over just 15 years.

Worth considering, however, is the potential impact of degradation rates that some sampling
intervals effectively recover while others do not. For example, a linear annual degradation
rate of 0.25% results in an additional 250 PPE items failing each year from the lot. Over the
course of the 15-year period, this adds up to 3,750 defective PPE items out of the lot.
Depending on the type of PPE and the intended use, this level of degradation can be
consequential. Therefore, it may be important to consider that the linear regression on
annual sampling detected this level of degradation in 98% of the trials, with only 3 false
negatives out of 150 trials, as seen in Table 2. This can be compared to 89% of the trials
when samples are taken every 2 years (17 false negatives out of 150 trials) and 79% of the
trials when sampling is done every 4 years (with 32 false negatives).

Table 2 presents linear regressions over the first 5 years (instead of 15 as seen in Table 1). As
with the 15-year period shown in Table 1, degradation is detected more often with smaller
sampling intervals and higher true degradation rates. But with less data gathered over time
and higher true pass percentages at the end of the period, it is not surprising that the number
of trials in which no degradation was detected generally increased for each sampling interval

*Several variations to the simulation, which are not reported, were performed as robustness checks. In one, an initial stockpile percent
passing of 80% was used instead of the assumption that all PPE would pass testing at time zero. Such an assumption is slightly biased
toward “detection” through finding a negative slope due to the first sample’s being fixed at 32/32 passes. The heteroscedasticity
resulting from the impossibility of sampling higher than 100% passing was mostly avoided by lowering the initial percent passing far
enough to allow room for sampling variability above the true pass percent. As expected, the trials in which no degradation was
detected were more numerous across the board in this simulation. Also of note, breaking down no degradation detected into
standardized regression coefficients of zero and positive values, the 80% initial percent passing simulation resulted in many more
positive values, but fewer zero values. However, the same patterns of detection regarding the effect of sampling intervals and
degradation rates were still strongly shown.

In another variation to the simulation, the sample size taken at any given time point was adjusted (2, 6, 12, 18, 24, 48, 72, 96, 120, and
240) for each sampling interval (1 month, 3 months, 6 months, 9 months, 1 year, 2 years, 3 years, 4 years, 5 years, and 10 years) so
that the total number of individual units sampled would be equal over the examined period of time, regardless of sampling interval. In
this version, the degradation was still detected more often as the true degradation rate increased, but the relationship between detection
and the sampling intervals disappeared. This suggests that the timing of sampling may be less important than the number of samples
tested over the period, although more frequent sampling would presumably be better for detecting sudden changes in the overall
quality of a lot not seen in the constant linear degradation rates simulated. It should also be considered that changing the individual
sampling sizes in this version of the simulation confounds the sampling intervals with the effects of different inherently discrete
probability distributions associated with sampling different sizes. For example, when only 2 samples are taken monthly, there are only
3 possible outcomes: 0%, 50%, and 100% pass rate. There are 241 possible outcomes for the corresponding sample size for the 10-
year interval in this simulation.
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considered. Still, a sampling interval of 1 year and a linear degradation rate of 1%, both
values in the middle of the ranges examined, resulted in just 6 out of 150 trials failing to
detect degradation, or a 96% detection success rate. It should also be noted that degradation
cannot be detected on a 5-year period for the 10-year sampling interval, since this interval
includes only the initial sample set, with no testing of degraded samples.

Having shown that degradation can be detected through repeated sampling of PPE
stockpiles, it follows to examine how well the degradation rates recovered through sample-
to-sample trends conform to the specified rates. Table 3 contains the mean standardized
regression coefficients for regressions performed over a 10-year period across 150 trials for
each sampling interval and linear degradation rate. The values are all close to the true
degradation rate simulated for each lot. In practical terms, when using repeated testing as a
component of a stockpiled PPE LQAS, this finding suggests that the sample-to-sample
trends seen (ie, the difference in the proportion passing from sample to sample) can be used
to estimate the underlying degradation rate with some degree of confidence. Higher
confidence can be placed in sampling intervals that consistently recovered degradation
across the simulated degradation rates (shown in Tables 1 and 2).

The third research question posed was whether different time intervals of repeated sampling
differ in terms of the consistency with which they recover the true lot degradation rate. The
answer to this research question is “yes”: Time intervals did differ in terms of the
consistency with which they estimated the degradation rate in the lot. Greater consistency
(ie, lower variance in the estimated degradation rate) would imply more confidence in the
predicted degradation rate.

Table 4 reports the results of pairwise comparisons of the variances for the standardized
regression coefficients taken from regressions over the first 10-year period for 150 trials of
each sampling interval and linear degradation rates of 0.25%, 1.0%, and 5.0%. An informal
visual inspection of the table suggested that rough groupings of testing time intervals
displayed similar characteristics. Based on the pairwise comparisons of the variance in
regression coefficients, the following time interval groupings emerged: Group 1: 6 months, 9
months, and 1 year; Group 2: 2 years and 3 years; and Group 3: 4 years and 5 years. These
groupings are more pronounced in the 1.0% and 5.0% degradation rate contexts and suggest
that there are similarities in consistency among the time intervals within the same group.
They also suggest that some gains in reliability can be expected as the group number
decreases. Omitted from the table, the time intervals of 1 month, 3 months, and 10 years
produced unique reliability patterns and were not amenable to grouping with other time
intervals.

Additional Analysis

As discussed, the primary research questions were answered using PPE lots that degrade in a
linear fashion. Given the possibility that PPE degradation can be nonlinear, an exponential
function was also used to set the degradation curve over time, and linear regressions were
performed to predict a rate of degradation. Figure 3 depicts the results of this process for a
particular trial.
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Tables 5 and 6 report the same results as Tables 2 and 3, but with exponential degradation
rates. The similar results suggest that degradation can still be detected and that similar
patterns in sampling intervals hold for nonlinear degradation.

Discussion

The fundamental purpose of stockpile quality assurance is to detect potential problems with
the stored supplies arising from degradation, ideally before users are put at risk. Stockpile
quality assurance programs must balance economy with the need for quality assurance.
Over-testing can also lead to excessive discarding of relatively good PPE lots due to random
sampling variability and, thus, can prove expensive and potentially wasteful, in both the
costs of performing the tests and the number of PPE units used in the tests.

By contrast, in a well thought out quality assurance process, the costs associated with the
early disposal and frequent replacement of stockpiled equipment can be balanced against the
costs of testing, while providing adequate evidence that stockpiled equipment will provide
the expected level of protection when needed. The current study has shown that well-
designed periodic testing schemes can detect degrading product in stockpiles before
tolerable limits are exceeded, allowing better replacement planning in stockpile
management.

With appropriate care, a stockpile quality tracking scheme—incorporating both current and
prior testing results—could provide continued assurance of stockpile performance,
improving confidence and economy over a single sample of LQAS testing results. The
simulation presented here shows the ability of one such evaluation protocol. In many cases,
trends observed in quantitative test results could be incorporated into continuing stockpile
evaluations. Simulations such as the ones presented here could incorporate observed real-
world degradation rates to further refine sampling rates and criteria. For instance, criteria
could be developed to identify lots with testing results that significantly differ from the
average, potentially allowing identification of poor storage conditions or other issues. A
wide variety of PPE would need to be covered by a comprehensive stockpile monitoring
protocol, and our work demonstrates that it is possible to develop such guidelines.

Conclusions

In this article and our previously published article,2” we sought to provide evidence to
determine if stockpiled PPE quality can be reasonably estimated by testing a single sample,
to determine if repeated sampling can detect degradation, and to provide some initial
guidance to stockpile managers in choosing between possible sample sizes and sampling
intervals as they consider testing stockpiled PPE. The current study focused on determining
the reliability of different time intervals in recovering rates of PPE lot degradation. It was
found that degradation can be seen through trends in repeated sampling over time. Time
intervals, other than 1 month, 3 months, and 10 years, were broken into groups in terms of
how reliably the actual degradation rates were predicted. Group 1—6 months, 9 months, and
1 year—was comprised of intervals that were similar and had the best reliability in
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recovering the true degradation rates, while Group 2 had less reliability and Group 3 had the
least.

It is recognized that stockpile resource availability, the volume of PPE at individual
stockpiles, and the number of lots per manufacturer/model can vary widely, and these
parameters may heavily influence the time interval options appropriate for individual
stockpiles. As such, the conclusions provided are not recommendations or guidelines, but
rather information and tools to help inform stockpile managers when developing plans for
testing the quality of their stockpiles. It is also recognized that the administration of an
LQAS for stockpiled PPE can be costly and time consuming. However, the alternative—
replacing massive amounts of expired, unused, and potentially good quality PPE—will be
even more costly in many cases.
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Generate the true number of passing PPE for every month over 100 years based on a true 0.01% linear
degradation rate.

Take 32 random samples every month.

Perform linear regressions of sample pass percentage vs. time over the first 5, 10, and 15 years to get
standardized regression coefficients that approximate the true degradation rate.

Repeat steps 2 and 3 for 150 separate trials.

Calculate the mean and variance of the standardized regression coefficients for the first 10 years.
Calculate the number of trials in which no degradation was detected (i.e. the standardized regression
coefficient was >= 0) for the first 5 and 15 years.

Repeat steps 2-6 using sampling intervals of 3 months, 6 months, 9 months, 1 year, 2 years, 3 years, 4
years, 5 years, and 10 years.

Repeat steps 1-7 using 0.05%, 0.1%, 0.25%, 0.5%, 1.0%, 2.0%, 5.0%, and 10% true linear degradation
rates.

Repeat steps 1-8 using true exponential rates.

. Statistically compare the variances of the standardized regression coefficients across the 10 different

sampling intervals for linear degradation rates of 0.25%, 1.0% and 5.0%.

Figure 1.
Simulation Steps
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Standardized Regression Coefficient: -0.00881

00 25 50 75 10.0
Time (years)

Figure 2.
An example linear regression over 10 years for yearly sampling intervals and 1.0% linear

degradation rate
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Proportion Passing

Standardized Regression Coefficient: —-0.03636
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Figure 3.
An example linear regression over 10 years for 6-month sampling intervals applied to an

underlying exponential rate of 5.0%
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