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Abstract

Type 1 interferons (T1-IFNs) play a major role in antiviral defense, but when or how they protect during infections that
spread through the lympho-hematogenous route is not known. Orthopoxviruses, including those that produce smallpox
and mousepox, spread lympho-hematogenously. They also encode a decoy receptor for T1-IFN, the T1-IFN binding protein
(T1-IFNbp), which is essential for virulence. We demonstrate that during mousepox, T1-IFNs protect the liver locally rather
than systemically, and that the T1-IFNbp attaches to uninfected cells surrounding infected foci in the liver and the spleen to
impair their ability to receive T1-IFN signaling, thus facilitating virus spread. Remarkably, this process can be reversed and
mousepox cured late in infection by treating with antibodies that block the biological function of the T1-IFNbp. Thus, our
findings provide insights on how T1-IFNs function and are evaded during a viral infection in vivo, and unveil a novel
mechanism for antibody-mediated antiviral therapy.
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Introduction

Type 1 interferons (T1-IFNs) are cytokines produced during

viral infections by most infected cells and by some uninfected cells

that recognize exogenous pathogen associated molecular patterns

(PAMPS) through pattern-recognition receptors such as toll-like

receptors. An important function of T1-IFNs is to stimulate the

transcription of interferon stimulated genes (ISGs) through the

nuclear translocation of the phosphorylated Stat1 transcription

factor in cells which results in increased resistance to viral infection

at the cellular and organismal level [1]. Many experimental

approaches use systemic infection with viruses, which results in the

rapid induction of systemic T1-IFNs and, consequently, ISGs.

However, this type of infection rarely occurs in nature.

To cause systemic disease, many viruses of importance to

human and animal health such as viruses in the genera

Orthopoxvirus (OPV, variola (VARV), monkeypox (MPXV)),

Enterovirus (polio, coxsackie), Aphtovirus (foot-and-mouth dis-

ease), Rubivirus (rubella), Flavivirus (Yellow Fever, Dengue, West

Nile), Rubulavirus (mumps), Morbillivirus (measles), Varicelovirus

(chickenpox), and others, penetrate their hosts through disruptions

of epithelial surfaces and disseminate stepwise to distant organs

through a lympho-hematogenic (LH) route [2,3]. In these cases,

we do not know whether PAMPS or T1-IFNs produced at the

initial sites of a viral infection can respectively stimulate T1-IFN or

ISGs systemically to protect organs before the arrival of the virus

or whether the induction and effects of T1-IFNs require local viral

replication in the target organ.

To counteract the anti-viral effects of T1-IFNs, OPVs including

ectromelia virus (ECTV, the causative agent of mousepox), variola

virus (VARV, the agent of smallpox), monkeypox virus (MPXV,

the agent of monkeypox) and vaccinia virus (VACV, the virus in

the smallpox vaccine) encode a highly conserved T1-IFN binding

protein (T1-IFN bp), an early protein that functions as a decoy to

divert T1-IFN from the cellular receptor [4–9]. Despite that the

ECTV T1-IFNbp blocks mouse IFN-a but not IFN-b [5], it is

essential for its virulence [10]. Still, how and where the T1-IFNbp

exerts its effects in vivo is not known.

It is generally assumed that the major mechanism whereby

antibodies protect from viral diseases in general and OPVs in

particular is through viral particle neutralization. Alternatively, Ab

protection may results from Ab effector functions such as the

induction of antibody dependent cellular cytoxicity (ADCC), the

promotion of phagocytosis and the activation of the complement

cascade to eliminate virions and/or infected cells [11–13]. It is well

established that Abs that block secreted bacterial virulence factors
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such as the toxins produce by Clostridia are protective [14]. Some

viral immune evasion molecules, including the T1-IFNbp of

OPVs, are secreted and theoretically similarly susceptible to the

action of Abs [15]. Whether Abs that block the function of these

virulence factors can protect or cure viral diseases is not known. If

they do, they could provide new opportunities for anti-viral

intervention. We have recently shown that ECTV T1-IFNbp

induces antibody (Ab) responses during infection and that, despite

being an non-structural protein, immunization with recombinant

T1-IFNbp protects mice from mousepox [10]. However, the

mechanism of this protection remains undefined.

The pathogenesis of ECTV serves as the classic textbook

example of stepwise pathogenesis [3,16]. ECTV infects through

microabrasions in the footpad, spreads via draining lymph nodes

(D-LN) and the blood to infect the liver and spleen, and causes

death 8–11 days post infection (dpi) due to acute liver failure [17].

Here we used ECTV as a model to show that local as opposed to

distant infection mediates T1-IFNs production and ISG induction

during infection with a virus that disseminate following the

common LH route. Moreover, we demonstrate that the T1-IFNbp

exerts its effects by attaching to uninfected cells p to block T1-IFN

signaling. Finally, we show that Abs that block the biological

activity of the T1-IFNbp cure mousepox late in infection

demonstrating for the first time that Abs to a secreted immune

evasion protein can cure a viral disease.

Results

Type 1 IFN production and signaling depends on local
virus replication and is blocked in situ by the T1-IFNbp

To determine when T1-IFN and ISG are induced during

ECTV stepwise dissemination, we determined T1-IFN (IFN-b and

IFN-a5) and ISG (Mx1, IRF-7 and sometimes ISG15) transcripts

in organs of ECTV infected or uninfected BALB/c mice by

quantitative PCR (qPCR). Preliminary experiments indicated

these T1-IFNs and ISGs are representative of several other T-

1IFNs and ISGs. We focused on the popliteal D-LN because it is

an obligatory D-LN for ECTV spread, and on the liver, because it

is the major target organ of ECTV and liver necrosis is thought to

be the cause of death during acute mousepox. At 3 dpi with

ECTV, transcripts for T1-IFNs and ISGs increased in the D-LN

as compared to uninfected (0 dpi) mice (Figure 1A) and virus

titers were 6.14260.1 Log10 PFU/organ. At this early time point,

T1-IFN and ISG transcripts had not been induced in the liver

(Figure 1B). Furthermore, T1-IFN was not detected in the serum

using a sensitive biological assay (Figure 1C). This indicated that

virus replication and T1-IFN production in the D-LN did not

result in systemically available T1-IFN or in T1-IFN production or

IFN signaling in the liver. The appearance of ISGs (Figure 1B,
right panel) in the liver followed the appearance of virus and T1-

IFN transcripts in the organ (Figure 1B, left panel) indicating

that local virus replication and T1-IFN production are respectively

required for T1-IFN and ISG induction in the liver. Similar to T1-

IFN transcripts, ISG transcripts increased in the liver from 3 to 5

dpi. However, while virus loads and T1-IFN transcripts continued

to increase from 5 to 7 dpi, ISG transcripts decreased (Figure 1B)

suggesting a blockade of T1-IFN signaling in the liver of infected

mice. In addition, significant T1-IFN activity was observed in the

serum at 5 and 7 dpi (Figure 1C). This was IFN-b because the

biological assay was inhibited by pre-treating the serum with anti-

IFN-b but not with anti-IFN-a Ab (not shown). The absence of

IFN-a activity could be due to the action of the T1-IFNbp.

We used a sandwich ELISA to test whether at different dpi, T1-

IFNbp was released systemically (Figure 1C). At 3 dpi, the

amount of T1-IFNbp in sera was variable (55637 ng/ml) but

significantly different from uninfected mice (P = 0.0251) indicating

that the soluble protein percolated systemically. The amount of

T1-IFNbp did not increase significantly between 3 and 5 dpi

(209657 ng/ml). However, there was a highly significant 20 fold

increase (P = 0.0001) from 5 to 7 dpi (4,29161,172 ng/ml).

To directly determine whether the T1-IFNbp was responsible

for the decrease in ISG transcription in the liver at 7 dpi, we used

ECTV D166-GFP (a mutant where EVM166, the gene coding for

the T1-IFNbp, was replaced by green fluorescence protein) which

is highly attenuated in BALB/c mice [10] but is lethal to severe

combined immunodeficient (SCID [18]) mice. As in BALB/c mice

infected with WT ECTV, the appearance of T1-IFNs (Figure 1E,
left panel) and ISG (Figure 1E, right panel) transcripts in the

liver of SCID mice also followed the appearance of virus. Thus,

the relatively low levels of T1-IFNbp in the blood during WT

ECTV infection do not appear to be responsible for the lack of

systemic induction of ISG in the liver. Most likely, this is because

unlike other frequently used models such as intraperitoneal

infection with lymphocytic choriomeningitis virus (LCMV,

Figure 1C, clear circles) there is no systemic T1-IFN activity

during early ECTV infection. Still, different to WT ECTV

infection of BALB/c mice, the transcription of ISG in the liver of

SCID mice infected with ECTV D166 increased significantly

between 5 and 7 dpi (Figure 1E, right panel). Consequently,

even though systemic T1-IFN activity was present at 7 dpi, the T1-

IFNbp was able to dampen T1-IFN signaling in the liver of

BALB/c mice infected with WT ECTV.

T1-IFNbp binds to infected and uninfected cells in the
liver and spleen

In vitro, the early T1-IFNbp is secreted from infected cells, but

can also bind back to the surface of infected and uninfected cells

[8,19] by attaching to glycosaminoglycans at the cell membrane

[20]. Consistent with these reports, when we infected L cells with 1

MOI ECTV-GFP (a recombinant ECTV expressing non-

structural cytosolic GFP under the early/late 7.5 VACV promoter

[21] and as virulent as WT ECTV, [10]), both, the GFP+ and

Author Summary

Type 1 interferons are molecules important in the defense
against viruses. Orthopoxviruses encode a Type 1 interfer-
on binding protein that acts as a decoy for the Type 1
interferon receptor. Here we show that during infection
with the Orthopoxvirus ectromelia virus, the agent of
mousepox, Type 1 interferons protect the liver locally
rather than systemically. We also show that the Type 1
interferon binding protein of ectromelia virus attaches to
uninfected cells surrounding infected foci in the liver to
impair their ability to receive Type 1 interferon signaling
and facilitate virus spread and disease progression. We also
show that this process can be reversed and mousepox
cured late in infection by treating mice with antibodies
that block the biological function of the Type 1 interferon
binding protein. Because the Type 1 interferon binding
proteins of different Orthopoxviruses are very well
conserved, the antibodies also block the biological
function of the Type 1 interferon binding proteins from
variola virus (the virus of smallpox) and monkeypoxvirus.
Thus, our findings provide insights on how Type 1
interferons function and are evaded during a viral infection
in vivo, and unveil a novel mechanism for antibody-
mediated antiviral therapy.

Antibody Inhibition of a Viral Interferon Decoy Receptor
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GFP- cell populations were stained by the anti-T1-IFNbp sera.

Presumably, the GFP- cells were not actively synthesizing viral

proteins and most likely acquired T1-IFNbp from the GFP+ cells.

As a control, L cells infected with ECTV D166-GFP did not stain

with anti- T1-IFNbp (Figure 2). We tested whether a similar

phenomenon occurred in vivo. At 3 dpi, very few cells stained with

rabbit antisera toT1-IFNbp or to EVM135, the ECTV ortholog of

the early/late VACV structural protein A33R [9,22] which

exclusively stains infected cells. On the other hand, at 5 dpi, both

antisera stained numerous foci of cells in serial sections of the livers

of BALB/c mice. While coincident in space, the foci stained with

anti-T1-IFNbp were significantly larger than those stained with

anti-EVM135 suggesting that the T1-IFNbp spread further than

the virus itself (Figure 3A). Consistent with the large quantities of

T1-IFNbp in the serum, at 7 dpi, the liver appeared saturated

when stained with anti-T1-IFNbp even though some areas did not

stain with anti-EVM135 (Figure 3B). We also infected mice with

ECTV expressing cytosolic firefly luciferase (ECTV-Luc) con-

trolled by the 7.5 promoter as a surrogate of viral protein. This

allowed us to perform two-color immunoflourescence using rabbit

anti-T1-IFNbp and goat anti-Luc to reveal T1-IFNbp bound to

uninfected cells surrounding liver infected foci at 5 and 7 dpi

Figure 1. Type I IFN production and signaling depends on local virus replication and is blocked in situ by the T1-IFNbp. A) BALB/c
mice were infected with 100 PFU ECTV WT in the footpad. At the indicated dpi, IFNs and Mx1 transcripts were determined by RT-qPCR in the D-LN.
B) As in A, but the indicated transcripts were determined in the liver by RT-qPCR (left y axes) and virus titers were determined by plaque assay (open
circles, right y axis, virus titers in upper and lower panels are identical data). C) BALB/c mice were infected with 100 PFU ECTV and at the indicated dpi
T1-IFN in serum was determined using ISRE-Luc reporter cells. Mice infected intraperitoneally with LCMV were used as a positive control (2 dpi).
D) BALB/c mice were infected with 100 PFU ECTV and at the indicated dpi T1-IFNbp in the sera was quantified using a sandwich ELISA and
recombinant T1-IFNbp as standard. E) As in B, but SCID mice were infected with ECTV D166-GFP. All graphs show the mean 6 SEM and are
representative of two or three similar experiments with 3–5 mice/group in each experiment.
doi:10.1371/journal.ppat.1002475.g001
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(Figure 3C). A similar phenomenon was also observed in the

spleen, which is also a target of ECTV (Figure S1). Thus, as in

tissue culture, secreted T1-IFNbp binds to the surface of

uninfected cells in vivo.

T1-IFNbp Abs bind to cells in and surrounding infected
foci in vivo and cure mice from lethal mousepox

It was of interest to test whether T1-IFNbp Ab could also bind

to the surface of cells in and surrounding infected foci in the liver

following in vivo administration. For this purpose, BALB/c mice

infected with ECTV-Luc were given 200 ml anti-T1-IFNbp or

control naive sera at 5 dpi and their livers stained with anti-rabbit

and anti-luc 16 h later. We found that the cells within and

surrounding infected foci in the liver were decorated with rabbit

IgG in mice treated with T1-IFNbp antisera but not with control

sera (Figure 4A).

Given that T1-IFNbp Ab bound to infected foci in vivo, we tested

whether T1-IFNbp antisera could prevent or cure mousepox. We

inoculated BALB/c mice with rabbit T1-IFNbp antisera on

different days post infection (dpi). The antisera significantly

protected from lethality when given as late as at 5 dpi

(Figure 4B). Treatment with T1-IFNbp antisera at 5 dpi

significantly reduced virus titers in the liver (Figure 4C) and

liver necrosis seen as dark pink areas devoid of nuclei (Figure 4D)

at 2 days post treatment (dpt).

Identification of a mAb that inhibits the biological
activity of ECTV T1-IFNbp

The protection observed with the T1-IFNbp antisera could

be due to an ability to restore T1-IFN signaling (i.e. by

inhibiting the biological activity of the T1-IFNbp) and/or by

traditional Ab effector mechanisms such as antibody dependent

cellular cytotoxicity (ADCC), phagocytosis, or complement

activation [11–13]. We identified two mAbs, 10F3 and 10G7

that bound to recombinant ECTV T1-IFNbp with similar

efficiency in ELISA (Figure 5A) and at the surface of cells

incubated with recombinant ECTV T1-IFNbp (Figure 5B) or

infected with ECTV-GFP (Figure 5C). However, 10G7 fully

blocked the ability of ECTV T1-IFNbp to inhibit the antiviral

function of mouse IFN-a as determined in vesicular stomatitis

virus (VSV) inhibition assays while 10F3 had a very moderate

inhibitory effect (Figure 5D). Both mAbs were IgG1, an

isotype known to have poor effector function in the mouse

[23,24].

The T1-IFNbp inhibitory mAb 10G7 restores T1-IFN
signaling in vivo and cures mousepox

To determine whether 10G7 and 10F3 also differed in their

ability to inhibit the biological function of T1-IFNbp in vivo,

BALB/c mice were infected with ECTV and at 5 dpi treated with

inhibitory 10G7 or poorly-inhibitory 10F3. At one dpt, the virus

titers (not shown) and T1-IFN transcripts in the livers of 10G7-

and 10F3-treated mice were similar. However, ISG transcription

in mice treated with inhibitory 10G7 was significantly increased

as compared to mice treated with 10F3 (Figure 6A). In other

experiments, mice treated with isotype control also failed to

upregulate T1-IFN and ISG transcripts (not shown) The

upregulation of ISGs after 10G7 treatment was not due to direct

stimulation of IFNAR by 10G7 because uninfected mice treated

with 10G7 did not upregulate Mx1 (Figure S2). Moreover,

phosphorylated Stat1 in the nuclei of infected hepatocytes was

readily apparent in the livers of mice treated with 10G7 but not

Figure 2. Secreted T1-IFNbp bind back to the cell surface of
infected and uninfected cells in vitro. L929 cells were left
uninfected (top panels), infected with ECTV-GFP (middle panels) or
ECTV D166-GFP (lower panels). 6 h after infection, the presence of T1-
IFNbp at the cell surface was detected using anti-T1IFNbp (left panels)
or naı̈ve control sera (right panel). The data are representative of two
similar experiments.
doi:10.1371/journal.ppat.1002475.g002

Figure 3. T1-IFNbp binds to infected and uninfected cells in the liver. A) BALB/c mice were infected with WT ECTV. At 5 dpi livers were
harvested and serial sections were stained with anti-T1-IFNbp or anti-EVM135 as indicated. Data are representative of three mice/group and of two
independent experiments. The dot plot represents the size of all the foci found in five randomly selected microscopy fields as detected with the two
antisera at 5 dpi. B) As in A, but showing serial sections at 7 dpi. Data are representative of three mice/group and of two independent experiments.
C) As in A and B, but mice were infected with ECTV-Luc and livers sections stained with anti-Luc Ab to identify infected cells (green) and anti-T1-
IFNbp (Red). Data are representative of 3 mice and two independent experiments. Original magnification was 200X.
doi:10.1371/journal.ppat.1002475.g003

Antibody Inhibition of a Viral Interferon Decoy Receptor
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with 10F3 (Figure 6B). At 2 dpt, mice treated with inhibitory

10G7 had significantly lower virus titers in their livers as

compared with mice treated with inhibitory 10F3 or isotype

control in plaque assays (Figure 6C) suggesting that the increase

in ISG transcription resulted in improved antiviral state.

Moreover, immunohistochemistry with anti-EVM135 sera at 2

and 3 dpt (Figure 6D upper and middle panels and
Figure 6E)) showed that the foci in mice treated with inhibitory

10G7 were smaller than those of mice treated with 10F3 or IC

suggesting reduced virus spread. Also, at 3 dpt the livers of mice

treated with inhibitory 10F3 or IC were necrotic but not those

from mice treated with inhibitory 10G7 (Figure 6D, lower
panels). Finally, the survival of mice treated with inhibitory

10G7 was significantly higher than of those treated with 10F3 or

IC (Figure 6F). Thus, while 10F3 and 10G7 T1-IFNbp mAbs

bound equally well to cell surfaces and similar numbers of

inflammatory cells were recruited to the livers of treated mice,

only the inhibitory mAb 10G7 rescued T1-IFN signaling,

decreased liver damage and virus loads, and prevented lethal

mousepox. Decreased virus loads after 10G7 treatment was also

observed when mice were infected with ECTV-Luc and the virus

loads visualized by whole animal imaging (Figure 7). Addition-

ally, at 2 dpt significantly more leukocytes and more CD8+ T cells

were recovered from the livers of mice treated with inhibitory

10G7 and 10F3 as compared with uninfected mice. On the other

hand, no significant differences were observed between groups of

mice treated with 10G7, 10F3 or IC. Also, no significant

differences were observed in other immune populations (Figure
S3). Thus, mAb treatment did not affect the infiltration of

leukocytes in the liver that normally occurs during ECTV

infection.

The ECTV T1-IFNbp inhibitory mAb 10G7 inhibits the
biological activity of the T1-IFNbp from OPVs important
for human health

Given that 10G7 can inhibit the biological activity of T1-IFNbp

from ECTV and protect from disease, it was of interest to

determine whether 10G7 can also block the biological activity of

T1-IFNbp from OPVs important to human health. We found that

10G7 recognized cells pre-incubated with recombinant T1-IFNbp

from the OPV variola virus (VARV, the agent of human

smallpox), or supernatants of cells infected with the OPVs vaccinia

virus (VACV, the virus in the smallpox vaccine) or monkeypox

virus (MPXV, endemic in human populations of central Africa)

(Figure 8A). Furthermore, while the antiviral activity of 10 U/ml

Human IFN-a (hIFN-a) was inhibited by recombinant VARV T1-

IFNbp or supernatants of MPXV infected cells ([4,6,19,25]

Figure 8B); pre-incubation of VARV T1-IFNbp or MPXV

supernatants with mAb 10G7 blocked their ability to inhibit the

antiviral function of hIFN-a (Figure 8C) demonstrating the

ability of 10G7 to block the biological function of T1-IFNbp from

different OPVs.

Discussion

The results presented here provide novel information regar-

dingT1-IFN induction and protection in vivo. While the induction

of T1-IFNs in vivo following systemic (intravenous (i.v.) or

intraperitoneal (i.p.) administration of viruses has been studied to

a great extent [26–28] and their ability to induce an antiviral

response is well known [1], we still lack an understanding of how

T1-IFNs and ISGs are temporally induced and protect from

disease during the course of the many viral infections that follow a

Figure 4. T1-IFNbp Abs bind to cells in and surrounding infected foci in vivo and cure mice from lethal mousepox. A) Mice were
infected with 100 PFU ECTV-Luc. At 5 dpi they were treated with 200 ml (,30 mg/ml protein) anti-T1-IFNbp or naı̈ve sera. 16 h later the livers were
harvested and stained with anti-rabbit IgG (red) and anti-luc (green). B) BALB/c mice were infected with 100 PFU of WT ECTV in the footpad. At 5 dpi,
mice were treated i.p. with 200 ml rabbit antisera to the T1-IFNbp or, as a control, with naı̈ve sera on the day of infection and monitored for survival.
Data are representative of three similar experiments with groups of 10 mice. P values are vs. naı̈ve sera. C) BALB/c mice were infected with WT ECTV.
At 5 dpi they were treated with 200 ml anti-T1-IFNbp rabbit sera. Livers were harvested 2 dpt and virus loads determined by plaque assay. Graph
shows the mean +/2 SEM for 5 individual mice/group and two independent experiments. D) As in C but livers sections stained with H&E. Data are
representative of five mice/group and two independent experiments.
doi:10.1371/journal.ppat.1002475.g004
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stepwise mode of LH dissemination [16]. The induction of T1-

IFN genes depends on cells sensing viral infection. Cells recognize

Pathogen Associated Molecular Patterns (PAMPs) of viruses (in

most cases nucleic acids) by means of Pathogen Recognition

Receptors (PRR) expressed at the plasma membrane (e.g. Toll

Like Receptor (TLR)2, TLR4), in endosomes (TLR3, TLR7,

TLR9) or in the cytosol (RIG-I, MDA5, DAI). [29–31]. Signaling

through PRRs culminate in the activation of specific members of

the IRF family of transcription factors, most notably IRF3, IRF7,

NF-kB and c-jun which stimulate the T1-IFN promoters. During

stepwise infection, T1-IFNs could act on vital target organ

indirectly. For example, they could induce ISGs and help

orchestrate the innate and adaptive immune response in the D-

LN thereby curbing virus spread to the target organ. As we have

previously shown, this is a major mechanism whereby NK [32–34]

and memory CD8+ T cells [35] protect mice from mousepox.

Alternatively, T1-IFNs could directly induce ISGs in the target

organ and/or contribute to the recruitment of immune cells. In

this case, the protection of the target organ could result from the

T1-IFN produced at the primary site of infection that is distributed

systemically, or from the T1-IFN produced locally in the target

organ from PAMPS either distributed systemically or locally

produced. Here we have used the classical ECTV model of LH

spread to show that during ECTV infection, T1-IFN signaling in

the liver (the target organ) strongly correlates with resistance to

disease. We also show that ISG induction in the liver correlates

with T1-IFN transcription in the liver but not in the D-LN

suggesting that T1-IFN signaling in the liver is reliant on local T1-

IFN production. Moreover, we demonstrate that the induction of

T1-IFN in the liver depends exclusively on local viral replication.

This suggests that PAMPS produced in the footpad or in the D-

LN do not distribute systemically to the liver before virus arrival. It

should be noted, however, that poxviruses excel in the number of

immune evasion proteins that affect innate immunity [36]. Hence,

it is possible that during other viral infections where T1-IFN

production and signaling is not targeted by the virus, the systemic

distribution of T1-IFN may have a more important role in distant

ISG induction.

Figure 5. Identification of a mAb that inhibits the biological activity of ECTV T1-IFNbp. A) ELISA plates were covered with recombinant
T1-IFNbp and the presence of the protein was detected with the indicated mAbs or isotype control (IC). Data are representatives of 2 independent
experiments with similar results. B) L929 cells (105) were incubated with 10 ng recombinant T1-IFNbp at 37uC for 1 h, thoroughly washed, and the
binding of mAb 10G7 (blue line) or 10F3 (green) to the cell surface was analyzed by flow cytometry. C) L929 cells were infected with ECTV-GFP (upper
panels) or ECTV-D166-GFP (lower panels) at MOI of 0.05 for 16 h. GFP expression and the binding of IC, 10G7 or 10F3 mAbs were determined by flow
cytometry as indicated. D) 10 ng of recombinant ECTV T1-IFNbp was incubated with 10 ml rabbit anti-IFNbp or 10 ng of indicated mAbs for 30 min at
37uC, incubated with 1U mIFN-a for another 30 min at 37uC. The cocktail was then added to L929 cells in 96-well plates. The cells were incubated
with this cocktail for 24 h, infected with VSV-eGFP at MOI of 0.1 for 16 h and observed for GFP fluorescence under the microscope.
doi:10.1371/journal.ppat.1002475.g005

Antibody Inhibition of a Viral Interferon Decoy Receptor
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Figure 6. The T1-IFNbp inhibitory mAb 10G7 restores T1-IFN signaling in vivo and cures mousepox. A) BALB/c mice were infected with
100 PFU of ECTV in the footpad. At 5 dpi, mice were treated with the indicated mAbs i.p. One day later (a time when virus loads remain the same in all
mice), the indicated transcripts in the livers were determined by RT-qPCR. Data are representative of two similar experiments with 3–5 mice/group.
B) BALB/c mice were infected with ECTV-Luc in the footpad. At 5 and 6 dpi, mice were treated with the indicated mAbs. 2 dpt the livers were
harvested and sections were stained with anti-Phospho-Stat1 (green), anti-Luciferase (red) and with DAPI to reveal nuclei. For the picture on the right
(10G7 treated), the small rectangular area at the bottom is shown at higher magnification in the upper-left rectangular area. Data are representative
of two similar experiments. C) As in A, but livers were harvested 2 dpt and viral load determined by plaque assay. Graph shows individual mice with
the mean 6 SEM and is representative of three similar experiments. D) As in A, but livers were harvested 2 or 3 dpt as indicated.
Immunohistochemistry with anti-EVM135 sera (top and middle panels) and H&E staining (lower panels). E) Size of individual foci and the mean 6 SEM
2 dpt in five randomly selected microscopy fields from D. F) BALB/c mice were infected with 100 PFU of WT ECTV in the footpad. At 5 dpi, mice were
treated with indicated mAb i.p. and survival was monitored. Data are representative of 3 independent experiments each with 10 mice/group.
doi:10.1371/journal.ppat.1002475.g006
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Our work also impinges on our understanding of viral immune

evasion. During the past few years there has been much progress

towards the characterization of virally encoded immune evasion

genes. While the cellular and molecular mechanisms whereby

many of these evasion molecules operate are well known [36–39],

we still have an incomplete understanding on how they subvert the

immune response in vivo. We have previously shown that the OPV

T1-IFNbp is secreted from infected cells and binds back to cell

Figure 7. Treatment with blocking 10G7 but not with non-blocking 10F3 decreases overall virus loads as determined by whole
body imaging. BALB/c mice were infected with 300 pfu of ECTV-Luc in the footpad, at 5 dpi, the mice were treated with indicated mAbs IP and
imaged 2 dpt for light emission using a Carestream In vivo instrument for bioluminescence detection (left) The mouse on the top-left is an uninfected
control. The bar graph (right) shows the mean 6 SEM quantitative luminescence intensity of the two groups. The experiment is representative of two
similar experiments.
doi:10.1371/journal.ppat.1002475.g007

Figure 8. The ECTV T1-IFNbp inhibitory mAb 10G7 inhibits the biological activity of the T1-IFNbp from OPVs important for human
health. A) Hela cells were incubated with 10 ng recombinant VARV T1-IFNbp,UV treated supernatants from cells infected with VACV WR, or gamma-
irradiated supernatants of cells infected with MPXV USA or MPXV Republic of Congo (RoC) strains as indicated. After 30 min the cells were thoroughly
washed, incubated with mAb 10G7 (blue line) or IC (red line) for 1 h followed by FITC-anti-mouse IgG and flow cytometry analysis. All data are
representative of 2 or 3 independent experiments with similar results. B) Tissue culture media (TCM, RPMI 10% fetal calf serum), 10 ng of recombinant
VARV T1-IFNbp in TCM, 100 ml of supernatant of insect cells expressing recombinant VARV T1-IFNbp in TCM, or the indicated irradiated TCM
supernatant from cells that had been infected with the indicated viruses were pre-incubated with the indicated amounts of hIFN-a for 1 h. The
cocktails were then added to Hela cells in 24 well plates. Following 24 h incubation at 37uC, the cells were infected with VSV at a MOI of 0.1 for 24 h,
fixed, and stained with crystal violet. Left and right panels correspond to the same plate but were separated to facilitate labeling of the figure. C)
10 ng of recombinant VARV T1-IFNbp or 100 ml of irradiated supernatant from cells that had been infected with MPXV USA were incubated with
10 ng mAb 10G7. After 30 minutes, 10 U/ml hIFN-a were added to the mixture and incubated for 1 h at 37uC. The cocktail was then added to Hela
cells in 24 well plates. Following 24 h incubation at 37uC, the cells were infected with VSV at a MOI of 0.1 for 24 h, fixed, and stained with crystal
violet. All data are representative of 2 or 3 independent experiments with similar results.
doi:10.1371/journal.ppat.1002475.g008
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surfaces [19] by attaching to glycosaminoglycans at the cell

membrane [20]. Whether this also occurs in vivo and is significant

for viral virulence remained unknown. Our experiments reveal

that the T1-IFNbp produces its evasive effect at least in part by

attaching to uninfected liver cells surrounding infected foci,

thereby precluding their ability to signal through the T1-IFN

receptor. Of interest, the ECTV T1-IFNbp does not block IFN-b
although ECTV infection induced IFN-b transcription. A

remaining question is why IFN-b was insufficient to induce high

levels of ISGs; our data may indicate that in vivo, IFN-a and IFN-b
have different functions.

Our results also have implications to our understanding of Ab-

mediated protection from viral disease. The most commonly

accepted mechanism of Ab protection is viral particle neutraliza-

tion [11–13]. Indeed, it has been suggested that this is the

mechanism whereby the smallpox vaccine protects [40]. However,

while clinical data showed that protection from smallpox

correlated with Ab neutralization, the same investigators could

not find a causal association between neutralizing Ab titers and

protection against smallpox [41,42]. These findings suggests that

mechanisms other than viral particle neutralization may be

involved in protection by the smallpox vaccine. In support of this,

Benhnia et al. recently demonstrated that mice can be protected

from VACV by prior administration of Abs to the structural

protein B5R and that this protection relied in complement

activation [13,43], a well known Ab effector mechanism. Here we

show that Abs can protect from and cure advanced systemic OPV

disease by a previously unsuspected mechanism: inhibiting the

function of an immune evasion protein. Of interest, while it is

known that polyclonal antibodies in the form of convalescent sera

and vaccinia immunoglobulin (VIG) are protective pre- and soon

after exposure to VARV, the possible mechanisms of this

protection remain unknown [12,13]. We show that Abs to the

T1-IFNbp cure mousepox even when administered as late as at 5

dpi suggesting that Abs to the T1-IFNbp may play a role in

protection not only by the smallpox vaccine but also by VIG

because, at least in mice, anti T1-IFNbp are present in sera

following VACV vaccination [10]. Thus, our experiments

uncovered a novel mechanism of Ab mediated protection. We

have previously shown the importance of the T-1 IFNbp in ECTV

pathogenesis [10]. Whether Abs to other secreted immunoregu-

latory viral protein could have a similar effect will likely depend on

whether they play an essential role in pathogenesis or not and

remains to be studied.

It is interesting to note that while resistance to primary infection

with ECTV requires T1-IFN function, resistance to secondary

infection does not as IFNAR1 deficient mice immunized with

attenuated ECTV or VACV resisted a challenge with WT ECTV

[44,45]. This suggests that the main role of T1-IFNs in protection

is to control the virus until an adaptive response is generated and

thereafter become irrelevant. Hence, it is likely that Abs to the T1-

IFNbp also have a similar effect.

Drugs being tested for the treatment of OPV infections are ST-

246 [46], which targets VACV F13L protein and its orthologs in

other OPVs to inhibit the egress of extracellular virions from cells,

and CMX001, an oral ether-lipid analogue of the acyclic

nucleoside phosphonate Cidofovir [47], that target the viral

DNA polymerase. These two drug types have been very effective

for the treatment of various OPVs in several animal models [48–

54]. CMX001 has been shown to cure intranasal ECTV infection

when treatment was started as late as at 5 dpi [51]. Still, there is

the caveat that OPVs could naturally develop resistance, or that

resistant viruses could be artificially created. Indeed, VACV

resistant to Cidofovir and its derivatives has been demonstrated

[55–59]. Similarly, cowpox virus resistant to ST-246 has been

isolated [46]. Thus, more than one or two anti-poxvirus drugs

directed towards different targets are needed.10G7 mAb or similar

T1-IFNbp mAbs could be exploited to treat humans against OPV

infections because OPVs that affect humans encode a T1-IFNbp

and at least three of them (VACV,VARV and MPXV) are

inhibited by 10G7. In addition, a strategy of using mAbs to inhibit

secreted immune evasion proteins important for viral pathogenesis

could be explored to prevent and treat infections with any other

virus that encode proteins of this kind.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

protocols were approved by Fox Chase Cancer Center’s

Institutional Animal Care and Use Committee.

Mice
BALB/c female mice were purchased from Taconic Farms.

SCID mice in a BALB/c background were bred at FCCC

Laboratory Animal Facility. All mice used in experiments were 5–

12 week old.

Cells, viruses and recombinant proteins
Media and cells were as previously described [10,60,61]. For

antibody production, hybridomas were grown in a Celline devise

(BD) using protein free MAb Medium (BD) as recommended by

the manufacturer. The mAbs were purified from the medium

using ammonium sulfate precipitation and purity confirmed by

SDS-PAGE gel.

Stocks of ECTV Moscow strain (ATCC VR-1374) were

propagated in tissue culture as previously described [10]. Virus

titers were performed in BS-C-1 cells. Stocks of VSV Indiana

VSV-eGFP were a gift of Dr. S. Balachandran. They were

expanded in BHK cells and virus titers were determined in Vero

cells by plaque assay as previously described [10].

For the generation of recombinant ECTV expressing firefly

luciferase (Luc, GenBank accession number AAL30790), we used

homologous recombination as previously described using ECTV-

GFP [10] as host virus to replace GFP for Luc. Non-fluorescent

plaques were purified 10 times, expanded, and the insertion

sequenced with primers flanking the site of homologous recom-

bination. This virus was as pathogenic as WT virus in LD50

experiments.

Mice were infected in the footpad with 100 PFU ECTV WT or

Luc as indicated. For the determination of survival, the mice were

monitored daily. To avoid unnecessary suffering, mice were

euthanized and counted as dead if imminent death was certain.

For virus titers mice were infected with 100 PFU ECTV. Mice

were euthanized when indicated and whole LNs or 100 mg of liver

were homogenized in PBS using a Tissue Lyser homogenizer

(Qiagen). Virus titers were determined on BS-C-1 cells in 6-well-

plates as before [10,60,61].

MPXV RoC (2003 358) and MPXV USA (2003 044) (Center

for Disease Control, USA) were incubated on a BSC-40

monolayer (7.76106 cells) at a MOI of 1 for one hour at 36 oC,

6% CO2 in 1 ml of Opti-MEM. After one hour the infectious

inoculum was removed, replaced with 2 ml Opti-MEM and

incubated for 18 hours. The supernatants were collected and spun

at 10006g for 10 min. in a tabletop microcentrifuge to remove cell

debris. After transfer to a new microcentrifuge tube, the
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supernatants were stored at 270 oC. The samples were subjected

to 4.46106 rads of gamma rays for 4 hours on dry ice and stored

at 270uC until use. Production of recombinant T1-IFNbp from

ECTV and VARV was exactly as described previously [6,10].

Preparation of polyclonal Abs and monoclonal Abs to T1-
IFNbp

Rabbits were immunized three times at 1 month interval with

recombinant T1-IFNbp [10] or EVM135 [62] in incomplete

Freund’s adjuvant, sera were obtained 1 month after last injection.

Antisera were evaluated for antibodies by ELISA.

To generate mouse hybridomas producing T1-IFNbp specific

mAbs, BALb/c mice were immunized three times with 50 mg

recombinant T1-IFNbp s.c. in incomplete Freund adjuvant. After

one month of rest, the mice were boosted with 10 mg T1-IFNbp in

PBS intravenous and their spleens fused the next day using

standard hybridoma procedures at the FCCC Hybridoma Facility.

The initial screening of mAb against T1-IFNbp was performed by

ELISA. Positive mAbs were further analyzed for their ability to

block T1-IFNbp using a VSV inhibition assay.

ELISA assays
To compare the binding of Binding of mAbs to T1-IFNbp the

T1-IFNbp was determined by ELISA assay was performed with

immobilized T1-IFNbp as previously [10] but using dilutions of

mAbs rather than serum.

For the detection of T1-IFNbp in serum, we used a sandwich

ELISA. For this purpose, high-binding 96-well plates (Corning)

were coated with mouse anti-T1-IFNbp (10G7, 50ng/well) at 4uC
overnight. After washing and blocking, diluted sera (1:10 dilution

in PBS) were added to each well, and incubated at 37uC for 1 hr.

After washing, secondary rabbit anti-T1-IFNbp serum (1:1000 in

PBS) was added and incubated at RT for 2 hr. The plates were

washed four times and incubated with HRP conjugated anti-

Rabbit IgG (KPL, 100 ng/well) at RT for 1 hr. Following

washing, signal was developed with 100 ul of TMB (Sigma, USA)

and the reaction was stopped by adding 0.5N sulfuric acid. The

OD was determined at 450 nm using a multiwell plate reader. For

quantification, a serial dilution (10 ug to 1 pg/ml) of recombinant

T1-IFNbp was included in the same plate.

Detection T1-IFN in serum
Concentrations of biologically active T1-IFN in serum were

measured using an ISRE- (interferon stimulated responsive

element) luc reporter assay as described [63]. Briefly, 1:10 diluted

sera were overlaid on L929 ISRE-Luc reporter cells (a gift from

Dr. Russell Vance, University of California, Berkeley) in a 96-well

plate and incubated overnight at 37uC. L929 ISRE-Luc reporter

cells were lysed and the luciferase activity was measured by adding

firefly luciferin substrate (Agilent Technologies) and measuring

luminescence in a 96-well plate reader. Recombinant IFN-b (PBL

Interferon Source) was included in the same plate for quantifica-

tion.

VSV inhibition assays
The VSV inhibition assays were modified from those described

before [10]. Briefly, 10 ml of mIFN-a (0.1 I/ul, PBL) was

incubated or not with recombinant T1-IFNbp (10 ng/ml) or with

T1-IFNbp and the indicated mAbs (100 ml of supernatant) for 1 h

at 37uC. IFN-a or the indicated mixtures were then added to L929

cells in a 12-well-plate and incubated at 37uC for 24 h to induce

(or not) an antiviral state. The cells were then infected with VSV-

GFP (at MOI of 0.01 for 16 h) or VSV (at MOI of 0.01 for 48 h).

Protection or lack of protection of the cells by the mIFN-a was

assessed by determining the expression of GFP under fluorescent

microscope or by staining with crystal violet.

The blockade of the VARV and MPXV T1-IFNbps by the

mAbs were determined similarly but using HeLa cells in 24-well

plates instead of L929 cells in 12 well plates, recombinant human

IFN-a (PBL) instead of mouse IFN-a, and recombinant VARV

T1-IFNbp or irradiated supernatant of BS-C-1 cells that had been

infected with the indicated strains of MPXV instead of ECTV T1-

IFNbp. In this case, protection of the cells was determined by

staining with crystal violet.

Flow cytometry
To detect T1-IFNbp expression at the cell surface, 106 L929

cells were infected with ECTV-GFP or ECTV-D166-GFP at MOI

of 1 for 24 h, the next day, the cells were trypsinized and

incubated with 100 ml of 1/1000 T1-IFNbp antisera or naı̈ve

control serum, or incubated with 10 ng of mAbs (10F3 and 10G7)

in 100 ml PBS for 1 h at 37uC. The cells were then washed, stained

with PE-conjugated goat anti-rabbit IgG Ab or PE-conjugated

goat anti-mouse IgG Ab for 30 min, respectively and analyzed

using an LSRII flow cytometer (BD).

For detection of mAb binding to recombinant T1-IFNbp

attached to the surface of uninfected cells, L929 cells were

incubated with 10 ng of recombinant T1-IFNbp at 37uC for 1 h,

washed, incubated with 10 ng of mAb (10 F3 or 10 G7) for 1h,

washed again and stained with PE goat anti-mouse IgG Ab.

For the detection mAb binding to recombinant VARV T1-

IFNbp [6] and supernatant of MPVX infected cells, HeLa cells

were incubated with 10 ng of recombinant VARV T1-IFNbp or

100 ul of irradiated supernatant from BS-C-1 cells that been

infected with the indicated strains of MPVX for 1 h at 37uC,

washed, incubated with 10 ng of mAb (10 F3 or 10 G7) for 1 h at

RT, washed again and stained with PE conjugated goat anti-

mouse IgG Ab for 30 min washed and analyzed by flow

cytometry.

For the analysis of splenocytes and liver infiltrating leukocytes,

BALB/c mice were infected with 100 PFU of ECTV. At 5 dpi,

200 ug of indicated mAb were injected i.p. 2 dpt, mice spleens and

livers were harvested. Spleens were made into single cell

suspensions and infiltrating lymphocytes were isolated from the

livers using a Percoll gradient as previously described [64]. Cells

were surface stained with Cy7PE-anti-CD8a, APC-anti-CD49b,

PE-anti-CD4 and Cascade Blue anti-CD3 (Biolegend) and

intracellularly with PE-anti-IFN-c (Biolegend) and cy5.5PE-anti

human Granzyme B (Invitrogen) as described previously

[10,60,61]. Flow cytometry was performed using an LSRII flow

cytometer (BD) and Flowjo software for analysis.

Histology and immunohistochemistry
These were performed by standard procedures. Briefly, mouse

livers were fixed with formalin and embedded in paraffin. 5 mM

sections were stained with rabbit anti-EVM135 or T1-IFNbp

antisera diluted 1:500, followed by biotin goat anti-rabbit and

extravidin-peroxidase each for 30 min. The slides were revealed

using chromogen-DAB (Sigma) as substrate and counter stain with

Gill’s Hematoxylin. For double immunohistochemistry staining,

BALB/c mice were infected with ECTV-luc for 5 days; liver

sections were prepared and stained with the above procedure in

two steps. In the first step, sections were stained with goat anti-

Luciferase Ab and anti-goat IgG-HRP secondary and chromogen-

DAB (Sigma) as the substrate. In the second step, sections were

stained with rabbit antiserum to T1-IFNbp and anti-Rabbit IgG-

HRP, the substrate was VIP (Vector Lab SK-4600).
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For immunofluorescent double staining of luciferase and T1-

IFNbp, mice were infected with ECTV-Luc rather than WT

ECTV. Livers were immersed in PBS and snapped frozen in liquid

nitrogen. 10 mM cryosections were fixed in 95% acetone at

220uC for 10 min, air dried at room temperature, and

sequentially stained with goat anti-luciferase (Invitrogen) (1:400),

rabbit anti-T1-IFNbp antiserum (1:400) for 60 min at RT, anti-

goat Alexa Fluor 488 and anti-Rabbit Alexa fluor 555 (Invitrogen)

at 1:500 dilution for 60 min. after several washes, slides were

mounted under coverslips with one drop of Fluoromount G.

For immunofluorescent double staining of luciferase and

phosphor-Stat1, mice were infected with 1000 PFU ECTV-luc

and treated at 5 and 6 dpi with 200 mg of the indicated mAbs. At 7

dpi, the livers were fixed with 4% paraformaldehyde for

30 minutes, washed and permeabilized with 1% Triton X-100.

Slides were stained with goat anti-luciferase and rabbit anti-

phospho Stat1 overnight. After several washes cells were stained

with donkey anti-goat-DyLight 488 and donkey anti-rabbit-Alexa

fluor 647 (both from Jackson ImmunoResearch) for 90 minutes,

and then washed before mounting in Fluromount containing

DAPI.

For detection of distribution of rabbit Ab in vivo, BALB/c mice

were infected with ECTV-Luc in the footpad. At 5 dpi, 200 ml of

antisera were injected i.p., 16 h later, mice were sacrificed and

livers were snap frozen and cut into 10 um sections. Following

fixation, sections were stained with Alexa-555 conjugated anti-

rabbit IgG (Invitrogen) and goat anti-luciferase for 30 min and

Alexa-488 conjugated anti-goat IgG Ab for another 30 min.

Bioluminescent imaging luciferase activities in vivo
In vivo bioluminescent imaging was performed using a Care-

stream In-Vivo Multispectral FX PRO Imaging System (Care-

stream healthcare). Briefly, BALB/c mice were infected with 300

PFU of ECTV-luc in the footpad, at 5 dpi, mice were treated with

indicated Ab i.p., 2 dpt, the mice were anesthetized using ketamine

(70 mg/kg of body weight) and xylazine (7 mg/kg of body weight)

and 150 mg/kg of D-luciferin substrate was administered i.p.

exactly 10 min before acquisition. Luminescence was captured

with an exposure time of 10 s. Five mice were imaged at each

time. The mean luminescent intensity was determined using

Carestream’s Molecular Imaging software.

Reverse transcriptase quantitative PCR (RT-qPCR)
RNA was isolated from organs using Trizol reagent (Invitrogen)

according to manufacturer’s instructions. Total RNA was treated

with DNase I (Qiagen) and further purified using the RNeasy Mini

Kit (Qiagen). 2 mg of total RNA samples were reverse transcribed

using the High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems). 1 ng cDNA was amplified by real time

PCR using TaqMan Probes for ifna5 (ID:Mm00833976_s1),

ifna2 (ID:Mm00833961_s1), ifnb1 (ID:Mm00439546_s1), Mx1

(ID:Mm00487796_m1) and IRF7 (ID:Mm00516793_g1), and

GAPDH (ID:Mm99999915_g1) as an internal control for

normalization. Each sample was run in 20 ul reaction using

TaqMan Universal PCR Master Mix. Reactions were performed

in an ABI real time PCR 7500 (Applied Biosystems, Foster City,

CA). Ratios of mRNA levels to control values were calculated

using the DCt method (2-DDCt) at a threshold of 0.02 [65]. All data

were normalized to control GAPDH. PCR conditions used: hold

for 10 min at 95uC, followed by 40 cycles of 15 s at 95uC and 60 s

at 60uC.

Statistics
Statistical analyses were performed using Prism software.

Supporting Information

Figure S1 T1-IFNbp binds to infected and uninfected
cells in the spleen. A) BALB/c mice were infected with 100

PFU ECTV-Luc. At 5 dpi spleens were harvested and frozen

sections stained with anti-Luc Ab to identify infected cells (green)

and anti-T1-IFNbp (red). Data are representative of 3 mice and

two independent experiments (the original magnification was

200X).

(TIF)

Figure S2 The T1-IFNbp mAbs do not activate IFNAR
signaling directly. Uninfected BALB/c mice were treated with

500 mg IC, 10F3 or 10G7 or i.p. as indicated. One day later the

indicated transcripts in the livers were determined by RT-qPCR.

Data correspond to 5 mice/group.

(TIF)

Figure S3 Increased absolute numbers of leukocytes
and CD8+ T cells but not NK cells or CD4+ T cells in the
livers of infected mice is not affected by mAb treatment.
BALB/c mice were infected with 100 PFU ECTV in the footpad

and treated with the indicated mAbs at 5 dpi. At 2 dpt the

leukocytes infiltrating the liver were isolated, counted, stained with

various Abs and analyzed by flow cytometry. Graphs indicate the

absolute numbers of the indicated leukocytes. Experiment

corresponds to five mice/group and is representative of two

similar experiments. Statistical analysis using one tailed Mann-

Whitney U test showed significant increases in total leukocytes and

CD8+ T cells (P = 0.0286) in all groups of infected mice as

compared to uninfected mice. All other comparisons were not

significant.

(TIF)
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