PLoS Negl Trop DisPLoS Negl Trop DisplosplosntdsPLoS Neglected Tropical Diseases1935-27271935-2735Public Library of ScienceSan Francisco, USA224796553313921PNTD-D-11-0028610.1371/journal.pntd.0001450Policy PlatformBiologyImmunologyImmunityMicrobiologyVirologyPopulation BiologyEpidemiologyPopulation DynamicsAssessing the Potential of a Candidate Dengue Vaccine with Mathematical ModelingWHO-VMI Dengue Vaccine Modeling Group*Kent CrockettRebekah J.EditorCenters for Disease Control and Prevention, United States of America* E-mail: mboni@oucru.org, dcumming@jhsph.edu

¶ Members of the WHO-VMI Dengue Vaccine Modeling Group are listed in the Acknowledgments.

32012273201263e1450WHO-VMI Dengue Vaccine Modeling Group. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.2012
Background

Dengue viruses are single-stranded positive-sense RNA viruses (genus Flavivirus, family Flaviviridae) that are the etiological agents of dengue fever (DF). More than 2 billion people live in dengue-endemic areas [1][3], and dengue virus infections account for an estimated 500,000 episodes of severe disease each year [4]. A recent review suggests that these may be underestimates [5]. Despite the fact that the virus has been expanding in geographic range over the past four decades [6][12], there are still no licensed drugs or vaccines and no consistently effective vector interventions to combat dengue. DF is caused by four antigenically distinct viral serotypes. Each type gives rise to both life-long serotype-specific immunity and short-term cross-protective immunity against the other serotypes thought to last between 2 and 9 months [13]. The spectrum of disease ranges from asymptomatic infection to life threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The most distinctive feature of dengue's clinical/epidemiological profile is the increased risk of severe disease following infection by a heterologous dengue serotype in an immunologically primed individual. During this secondary infection, a complex interaction is triggered between the host's immune system and the infecting virus. In this setting, elevated risk of severe dengue has been attributed to the circulation of sub-neutralizing concentrations of heterologous anti-dengue virus antibody creating an effect known as antibody-dependent enhancement (ADE) of infection and greater viral burden in vivo [2], [14][16]. In turn, this leads to a host immune response that is suggested to precipitate increased capillary permeability, cardiovascular shock, and hemorrhage characteristic of clinically severe dengue. Viral and other host factors may also contribute to pathogenicity. To accurately assess the effects of dengue vaccine candidates on individuals and populations, these pathophysiological mechanisms of severe dengue must be understood.

The most advanced dengue vaccine candidate—a live-attenuated, tetravalent, chimeric yellow fever dengue vaccine—commenced Phase II and Phase IIB clinical trials in 2009, and Phase III trials in December of 2010 [17][21]. Preliminary results have demonstrated significant immunogenicity in all age groups after three vaccine doses over a 12-month period. Immunogenicity increased steadily with each dose and was higher in individuals with previous flavivirus immunity [21]. A tetravalent dengue vaccine (TDV) candidate is currently the preferred formulation of a dengue vaccine, as it should prevent infection by all serotypes, thereby eliminating the potential risk of severe infections associated with pre-existing immunity [22].

In line with the theory behind ADE, subneutralizing antibody concentrations—theoretically occurring when immunity is waning or between vaccine doses—represent a potential risk of severe dengue to patients infected with wild-type virus during this critical period. This individual-level risk can be evaluated with sufficient follow-up, but population-level effects cannot be analyzed in the context of a vaccine trial. Population-level immunity may change the proportion of infections that occur in individuals with partial immunity, and these infections may be associated with higher viraemia and thus possibly higher transmission, generating a potential indirect detrimental effect of vaccination [23]. Although there is no evidence that vaccine-derived immunity could lead to increased severity or transmissibility upon infection, given the immunopathogenesis of dengue, this possibility should be planned for.

Population-level effects, whether related to ADE or not, can be analyzed with mathematical models. Since it is not feasible to enroll and randomize populations to dengue vaccine or placebo, mathematical models may provide the only environment where multiple types of population-wide dengue strategies can be evaluated. Models allow for assessment of multiple intervention and evaluation strategies. They can be used to understand the specific population-level mechanisms by which vaccines reduce incidence and can aid in the design of evaluation studies. The World Health Organization (WHO) has recommended that mathematical models be used to assess and inform various methods of new vaccine introductions [24], [25].

To date, most models of dengue transmission have been limited in scope and focused on specific questions in transmission dynamics. However, many aspects of the dynamics of dengue transmission are still not fully understood. In order for models to be accurate, realistic, and useful, there is an urgent need for improved understanding of dengue virology and immunology, as well as the entomological, social, and environmental factors that modulate dengue transmission. As these facets of dengue biology are further investigated, we will gain confidence that future mathematical models may come close to an accurate representation of true dengue epidemics.

Mathematical Modeling

A mathematical model is a set of equations or rules describing how a certain process unfolds in time. Manipulating these rules allows one to experiment with components of the model to explore their effects on the modeled process as a whole, and it allows one to compare predicted model outcomes with observed data. Mathematical models of disease transmission have three main purposes: understanding the fundamental driving forces of disease ecology and epidemiology, measuring epidemiological parameters that cannot be directly measured with field or laboratory data, and making predictions of future disease incidence under specified conditions. Recent applied dengue modeling examples include models to explore and validate the effects of weather on the mosquito life cycle [26], to estimate serotype-specific forces of infection [27], to determine the degree to which ADE enhances viral fitness [28], to test if ADE alone is sufficient to generate the oscillating serotype patterns seen in dengue [29], [30], to determine the impact that long-term trends in dengue transmission rates may have on DHF incidence [31], to determine if long-term demographic trends are responsible for a shift in the age structure of dengue cases [32], and to investigate whether tertiary or quaternary dengue infections are compatible with the known epidemiology of dengue [33]. Although none of these models included vaccination, they provide the necessary modeling platform in which the impacts of alternative dengue control strategies, and vaccination in particular, can be evaluated. Some common dengue model structures are shown in Figure 1.

10.1371/journal.pntd.0001450.g001Example structures of dengue models.

The disease state space of five alternative dengue model structures incorporating immune enhancement and short-term cross protection are shown. The disease states are: S susceptible, E exposed but not yet infectious, Ii infectious with serotype i, Iij infectious with serotype j having had serotype i, Ri recovered from and immune to serotype i, Zij recovered from and immune to serotypes i and j and hence immune to all serotypes, C temporarily cross-protected from all serotypes due to recent exposure. Model (a): individuals immune to one serotype are more likely to experience a severe infection (denoted by red box). Model (b): similar to model a with the addition of a pre-infectious exposed class E. Model (c): includes a short-term cross-protection class C in which recently recovered individuals are protected from infection for a certain amount of time. Model (d): model with short-term cross-protection and increased infectiousness of class Iij indicated by red arrows showing an increase in the rates of acquisition of primary and secondary infection due to this effect. Model (e): increased transmissibility among secondary infections Iij to a mosquito species. Note that in this formulation, mosquitoes that have obtained infection from a secondary human infection are not more likely to transmit to humans. Subscripts h and m denote human and mosquito, respectively.

Dengue modeling has been useful in helping us understand the virus' dynamics and in generating some new hypotheses about why the dynamics exhibit certain irregularities, both short-term and long-term. Nevertheless, when compared to diseases such as influenza or malaria, the dengue modeling literature is sparse and focused on a small number of topics, often serotype oscillations or antibody-dependent enhancement. Given the importance of mosquito populations to dengue transmission, we have a relatively poor understanding of their population dynamics. In addition, dengue models are rarely analyzed with a public health goal in mind, and very little modeling has been done to evaluate dengue interventions.

In developing an appropriate mathematical model (or set of models) for dengue vaccination, the main challenge lies in resolving the complexity of interactions among host immune status, demography, vector populations, and environmental factors. A current focus of much modeling work is the strong interaction between dengue immunology and epidemiology. Through conferral of immunity, dengue epidemics generate population-wide immune profiles that subsequently determine the severity, speed, and magnitude of dengue's second pass through that same population. Typically, as a dengue epidemic progresses, surveillance focuses on case numbers and severity without recording changes in immune status; this deprives us of essential data necessary for understanding the immuno-epidemiology of dengue. One of the greatest challenges for epidemiologists and mathematical modelers alike may be determining study designs that can collect data on host immune status as efficiently and completely as possible; such data sets may allow us to describe the dynamics of population-wide immunity and its effects on future disease incidence.

Because we do not yet have a well-tested general model of dengue immuno-epidemiology, we cannot predict accurately how a TDV would alter future dengue dynamics. Mathematical modeling research must thus start by identifying realistic expectations for a TDV campaign, given a varied set of scenarios for vaccine introduction in a population. These analyses may need to evaluate if TDV rollout will have a greater impact on case numbers or severity, and if vaccination-induced shifts in the age burden have positive or negative impacts on overall disease severity.

The next challenge will be to create a set of public health objectives that will define the success of a dengue vaccination campaign. Reduced case numbers, fewer severe cases, and fewer deaths are all potential marks of success, but these three indicators may not correlate with one another, either in the population as a whole or across age classes. For example, dengue in the elderly can be complicated by comorbidities that increase the risk of severe outcomes [34], [35], and severity and mortality rates can vary among age classes [36]. Focused vaccination of children may not reduce mortality rates in adults unless herd immunity is achieved, but the level of coverage needed to reach the threshold of herd immunity has not yet been established. Balancing these objectives may prove difficult, as a vaccination campaign could potentially prevent many infections today while creating the conditions for more infections in the future. Dengue modeling may benefit from previous mathematical modeling analyses of population-level public health benefits in malaria, influenza, and nosocomial infections [37][39].

Because the interactions among key determinants of dengue transmission, such as environmental factors and vector biology, are not well understood, exploring the role of these determinants through modeling will require significant effort. There are still gaps in our understanding of short-term cross protective immunity [13], original antigenic sin [40][42], long-term serotype-specific immunity [13], [43], [44], ADE, the mode of action of the vaccine, the association of infecting serotype sequence on disease severity [44][47], variation in mosquito biting patterns [48][51], host variation in susceptibility and transmission [30], [52], [53], population and vector mobility [54], [55], and virus dynamics between dengue seasons [56]. All of these factors should have an important effect on the critical vaccination fraction—or, more precisely, the age-stratified critical vaccination fraction needed to interrupt dengue transmission—as well as the optimal design of a vaccination catch-up campaign after the vaccine is introduced.

Dengue Vaccine Modeling Group

To address these uncertainties and to accelerate the development of mathematical models that can evaluate dengue vaccination strategies, WHO and the Vaccine Modeling Initiative (VMI) convened a group of dengue epidemiologists, clinicians, immunologists, public health officials, vaccine developers, entomologists, and mathematical modelers to discuss possibilities for assessing the population-wide impact of a tetravalent dengue vaccine. This was the first such meeting, which was hosted by WHO in late 2010. Its purpose was to establish (1) a forum for an inter-disciplinary working group to discuss the development of optimal dengue vaccination strategies, and (2) future meetings with more experts and stakeholders in dengue vaccination. The WHO-VMI Dengue Vaccine Modeling Group's first phase of collaboration has begun by linking modelers with epidemiologists, clinicians, immunologists, and vaccine developers for the purpose of conducting preliminary modeling analyses on the risks and benefits of dengue vaccination.

The initial questions identified by the group as critical in assessing a dengue vaccine are listed in Box 1. Future meetings will need to include more experts on virology, vector control, demographics, environmental change and urbanization, and economic and social aspects of dengue burden. A second meeting is being planned for 2012, the goals of which will be to (1) evaluate progress of current modeling and identify critical tests to validate models, (2) identify the areas of greatest uncertainty in dengue modeling, (3) identify key data sets, reviews, and/or meta-analyses that can aid the development of models, and (4) broaden the community of natural scientists, social scientists, and policy makers involved in research on dengue vaccination.

Box 1. Urgent Questions for Dengue Vaccination Roll-Out

Are there vaccine product profiles that could lead to increased transmission from secondary infections?

What changes in age distribution of primary and secondary infection are expected after vaccine introduction and mass immunization?

Given the demographics and force of infection in any particular setting, what is the optimal age of vaccination and/or the age-stratified critical vaccination fraction?

If vaccine efficacy depends on pre-existing immunity, what is the optimal age of vaccination and/or the age-stratified critical vaccination fraction?

Should a vaccination strategy change given geographical variation in transmission?

How should catch-up campaigns be implemented?

What immune escape or other viral evolutionary responses can be expected?

How should the immune system be represented in models?

How should individual risk profiles (i.e., the characteristics of an individual, including past infections and vaccination status, that affect the individual's risk for severe dengue) be defined and modeled?

How should population-level vaccine effects be monitored?

Parameterizing Models and Data Sharing

The utility of models to assess vaccine candidates depends on the models' ability to represent transmission dynamics accurately. Measuring or estimating model parameters is therefore a critical step in constructing an accurate dengue model. Some parameters can be measured directly from epidemiological or laboratory data (duration of viraemia, mean age of first infection), while in other cases models may be used to statistically infer the impacts of certain features of transmission dynamics that cannot be measured directly (duration of cross-protective immunity [57], effect of disease severity on transmissibility). In both cases, it is critical that modelers work closely with dengue virologists and epidemiologists who understand the lab/epidemiological data and the parameter measurements. These data will be critical for the iterative process of model design and validation.

Many of the individual-level parameters concerning immunity and disease severity are ideally measured in prospective cohort studies with long-term follow up. Table 1 lists the known prospective cohort studies that contain valuable individual-level data on immune responses, differences between primary/secondary infections, asymptomatic infections, disease severity, and age burden. Equally valuable data can be obtained from natural epidemics in populations where dengue has been absent for a long time [44], [58][60]. Analyzing these data with mathematical models will be helpful for determining many of the individual-level parameters that are necessary for evaluating population-wide dengue vaccination. As different stages of clinical trials are completed in the next several years, their results will also be critical in improving the accuracy and validity of mathematical models.

10.1371/journal.pntd.0001450.t001Prospective Dengue Cohort Studies.
LocationYearsAgesFollow-UpPopulation with Follow-UpNotesReference
Bangkok, Thailand1962–1964All ages6–11 months1,887Includes entomological indices and hospitalization data.[63]
Koh Samui, Thailand1966–19672–12 years1 year336[64]
Yangon, Myanmar1984–19882–6 years1 year3,579Five separate cohorts started each year. Includes hospitalization data.[47]
Bangkok, Thailand1980–19814–16 years6 months1,757[65]
Rayong, Thailand1980–19814–14 years1 year1,056[66]
Iquitos, Peru1993–19967–20 years2.5 years129No DHF/DSS found in secondary cases.[67]
Bangkok+Khamphaeng Phet, Thailand1994–19966 months –14 years1 year16848 had follow-up past 180 days.[68], [69]
Yogyakarta, Indonesia1995–19964–9 years1 year1,837[45]
Khamphaeng Phet, Thailand1998–ongoing7–11 years2 years2,119Study performed in two periods: 1998–2002, 2004–2006[70][72]
Bandung, West Java, Indonesia2000–200218–66 years2 years2,536[73]
West Jakarta, Indonesia2001–2003Children and adults14 days; 6 months for cases785Cluster investigation enrolling contacts of known cases.[74]
Managua, Nicaragua2001–20034–16 years1–2 years999[75]
An Giang, Vietnam2004–20072–15 years3 years>3,000Additional children recruited every year. 1,594 children had 3 years of follow-up.[76]
Managua, Nicaragua2004–ongoing2–9 years4 years3,721Includes entomological indices.[77], [78]
Ho Chi Minh City, Vietnam2006–2007Newborns enrolled1 year1,244 infants[79]
Ratchaburi, Thailand2006–20103–15 years4 years∼3,000Study ended.Unpublished
Colombo, Sri Lanka2008–2010<12 years2 years800Study ended.Unpublished
Ho Chi Minh City, Vietnam2009–ongoingNewborns1 year∼3,000 infantsUnpublished

For all those involved—whether in epidemiology, in clinical or laboratory settings, or as modelers—it is critical that complete data sets and the analysis of that data be shared so that all the partners can come to a common understanding of the interpretation of the data. The recent meeting in 2010 sought to catalyze this effort by taking advantage of the participants' varied skills and experiences and by bringing together those scientists specializing in theory/modeling with those that have a detailed understanding of the data. Sharing and analyzing data from ongoing and past studies will be critical for building robust mathematical models of dengue. The first small step in this partnership will be the joint design and analysis of mathematical models rooted in the most recent epidemiological and laboratory data, with each collaboration including modelers and non-modelers.

Future Challenges

In addition to sharing data sets and analyses and interpreting results, we must recognize that dengue vaccination planning will probably happen alongside vector control, social outreach and educational campaigns, multiple types of surveillance, expansion of local capacity to diagnose and manage dengue, and perhaps novel entomological approaches of reducing transmission by altering mosquito ecology or genetics [61], [62]. This broader picture of dengue control may not be easy to model mathematically, but some of these aspects will need to be evaluated in terms of their added population-level benefits to dengue vaccination. Currently, very little is known about the effectiveness of modeling social dynamics or modeling epidemics and response/intervention policies in the context of imperfect surveillance.

The mathematical models developed through the joint effort of the modeling community and dengue community will give us prediction and evaluation tools that can be used to determine optimal vaccination strategies for each endemic country. Recommendations will be discussed with national public health authorities and adapted to the requirements and realities of the host countries. When an implementation method is chosen for rolling out dengue vaccines, appropriate and timely surveillance activities should be planned so that the effectiveness of the vaccination strategy can be tested and adjusted in real time. The implemented strategy will almost certainly not be the one determined to be optimal by a mathematical model, but one that combines relevant aspects of feasibility, cost-effectiveness, political acceptability, and public health benefits. We must recognize that mathematical models are at best fallible as prediction tools and that the implementation process itself will reveal new trends and facts that can be used to improve future models and recommendations.

The WHO-VMI Dengue Vaccine Modeling Group consists of a group of experts in dengue epidemiology, clinical practice, immunology, virology, vaccinology, entomology, and mathematical modeling. All contributed to the writing of this Policy Forum. In alphabetical order, the group members and contributing authors are Mark Beatty (International Vaccine Institute, South Korea), Maciej F Boni (corresponding authormboni@oucru.org; Oxford University Clinical Research Unit, Vietnam), Shawn Brown (University of Pittsburgh, USA), Rome Buathong (Ministry of Public Health, Thailand), Donald Burke (University of Pittsburgh, USA), Laurent Coudeville (Sanofi-Pasteur, France), Derek A T Cummings (corresponding author, dcumming@jhsph.edu; Johns Hopkins Bloomberg School of Public Health, USA), Robert Edelman (Center for Vaccine Development, University of Maryland, USA), Jeremy Farrar (Oxford University Clinical Research Unit, Vietnam), Dana A Focks (University of Florida, USA), M Gabriela M Gomes (Instituto Gulbenkian de Ciencia, Portugal), Adrienne Guignard (GSK Biologicals, Belgium), Scott Halstead (International Vaccine Institute, South Korea), Joachim Hombach (World Health Organization, Switzerland), Gerhart Knerer (GSK Biologicals, Belgium), Katia Koelle (Duke University, USA), Fook Chang Lam (University of Malaya, Malaysia), Jean Lang (Sanofi-Pasteur France), Ira Longini (University of Washington, USA), Jan Medlock (Clemson University, USA), Pem Namgyal (World Health Organization, Switzerland), Mair Powell (Medicines and Healthcare Products Regulatory Agency, United Kingdom), Mario Recker (University of Oxford, USA), Pejman Rohani (University of Michigan, USA), Baudoin Standaert (GSK Biologicals, Belgium), Claudio Struchiner (Oswaldo Cruz Foundation, Brazil), Remy Teyssou (Sanofi-Pasteur, France), Helen Wearing (University of New Mexico, USA). Members of v2V contributed to the preparation of the meeting agenda.

Laurent Coudeville, Jean Lang, and Remy Teyssou are employees of Sanofi-Pasteur (France). Adrienne Guignard, Gerhart Knerer, and Baudoin Standaert are employees of GSK Biologicals (Belgium). Joachim Hombach and Pem Namgyal are staff members of the World Health Organization. This report contains the collective views of an international group of experts, and does not necessarily represent the decisions or the stated policy of the World Health Organization. All other authors have declared that no competing interests exist.

This work was primarily funded by the World Health Organization, and funded in part by the Gates Foundation's Vaccine Modeling Initiative, the Dengue Vaccine to Vaccination Initiative (v2V), and the Pediatric Dengue Vaccine Initiative (PDVI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References HalsteadSB 2007 Dengue. Lancet 370 1644 1652 17993365 HalsteadSB 1988 Pathogenesis of dengue: challenges to molecular biology. Science 239 476 3277268 WhitehornJFarrarJ 2010 Dengue. Brit Med Bul 95 161 173 GublerDJ 2002 Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10 100 103 11827812 BeattyMEBeutelsPMeltzerMIShepardDSHombachJ 2011 Health economics of dengue: a systematic literature review and expert panel's assessment. Am J Trop Med Hyg 84 473 478 21363989 da Silva-NunesMde SouzaVAFPannutiCSSperançaMATerzianACB 2008 Risk factors for dengue virus infection in rural Amazonia: population-based cross-sectional surveys. Am J Trop Med Hyg 79 485 494 18840734 HalsteadSB 1980 Dengue haemorrhagic fever - a public health problem and a field of research. Bull World Health Org 58 1 21 6966540 PandeyBDRaiSKMoritaKKuraneI 2004 First case of Dengue virus infection in Nepal. Nepal Med Coll J 6 157 159 16295753 CDC 2010 Morbidity and mortality weekly report. MMWR Morb Mortal Wkly Rep 59 577 581 20489680 US Centers for Disease Control 2011 DengueMap: a CDC-HealthMap collaboration. Available: http://www.healthmap.org/dengue/index.php. Accessed 24 February 2012 GublerDJ 1998 Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11 480 496 9665979 GublerDJMeltzerM 1999 The impact of dengue/dengue hemorrhagic fever on the developing world. Adv Virus Res 53 35 70 10582094 SabinA 1952 Research on dengue during World War II. Am J Trop Med Hyg 1 30 50 14903434 HalsteadSBMahalingamSMarovichMAUbolSMosserDM 2010 Intrinsic antibody-dependent enhancement of microbial infection in macrophages : disease regulation by immune complexes. Lancet Infect Dis 10 712 722 20883967 HalsteadSB 1979 In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis 140 527 533 117061 RothmanAL 2004 Dengue: defining protective versus pathologic immunity. J Clin Invest 113 946 951 15057297 GuyBAlmondJLangJ 2011 Dengue vaccine prospects: a step forward. Lancet 377 381 382 21277439 GuyB 2009 Immunogenicity of sanofi pasteur tetravalent dengue vaccine. J Clin Virol 46 Suppl 2 S16 S19 19800561 GuyBSavilleMLangJ 2010 Development of Sanofi Pasteur tetravalent dengue vaccine. Human Vaccines 6 696 705 HombachJ 2009 Guidelines for clinical trials of dengue vaccine in endemic areas. J Clin Virol 46 Suppl 2 S7 S9 19800564 LangJ 2009 Recent progress on sanofi pasteur's dengue vaccine candidate. J Clin Virol 46 S20 S24 19800562 HalsteadSBO'RourkeEJ 1977 Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265 739 741 404559 StephensonJR 2005 Understanding dengue pathogenesis: implications for vaccine design. Bull World Health Org 83 308 314 15868023 WHO 2011 Report of the meeting of the WHO/VMI Workshop on Dengue modeling Geneva World Health Organization. WHO/IVB/11.02 WHO 2005 Vaccine introduction guidelines. Adding a vaccine to national immunization programme: decision and implementation Geneva World Health Organization. WHO/IVB/05.18 FocksDADanielsEHaileDGKeeslingJE 1995 A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53 489 506 7485707 FergusonNMDonnellyCAAndersonRM 1999 Transmission dynamics and epidemiology of dengue: insights from age–stratified sero–prevalence surveys. Phil Trans R Soc Lond B 354 757 768 10365401 CummingsDATSchwartzIBBillingsLShawLBBurkeDS 2005 Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Proc Natl Acad Sci U S A 102 15259 15264 16217017 WearingHJRohaniP 2006 Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci U S A 103 11802 11807 16868086 ReckerMBlyussKBSimmonsCPHienTTWillsB 2009 Immunological serotype interactions and their effect on the epidemiological pattern of dengue. Proc R Soc Lond B 276 2541 2548 NagaoYKoelleK 2008 Decreases in dengue transmission may act to increase the incidence of dengue hemorrhagic fever. Proc Natl Acad Sci U S A 105 2238 2243 18250338 CummingsDATIamsirithawornSLesslerJTMcDermottAPrasanthongR 2009 The impact of the demographic transition on dengue in Thailand: insights from a statistical analysis and mathematical modeling. PLoS Med 6 e1000139 doi:10.1371/journal.pmed.1000139 19721696 WikramaratnaPSSimmonsCPGuptaSReckerM 2010 The effects of tertiary and quaternary infections on the epidemiology of dengue. PLoS ONE 5 e12347 doi:10.1371/journal.pone.0012347 20808806 LahiriMFisherDTambyahPA 2008 Dengue mortality: reassessing the risks in transition countries. Trans R Soc Trop Med Hyg 102 1011 1016 18639910 GuzmánMGAlvarezMRodríguezRRosarioDVázquezS 1999 Fatal dengue hemorrhagic fever in Cuba, 1997. Intl J Infect Dis 3 130 135 AndersKLNguyetNMChauNVVHungNTThuyTT 2011 Epidemiological factors associated with dengue shock syndrome and mortality in hospitalized dengue patients in Ho Chi Minh City, Vietnam. Am J Trop Med Hyg 84 127 134 21212214 LipsitchMBergstromCTLevinBR 2000 The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci U S A 97 1938 1943 10677558 MedlockJGalvaniAP 2009 Optimizing Influenza Vaccine Distribution. Science 325 1705 1708 19696313 BoniMFSmithDLLaxminarayanR 2008 Benefits of using multiple first-line therapies against malaria. Proc Natl Acad Sci U S A 105 14216 14221 18780786 HalsteadSBRojanasuphotSSangkawibhaN 1983 Original Antigenic Sin in Dengue. Am J Trop Med Hyg 32 154 156 6824120 MongkolsapayaJDejnirattisaiWXuX-NVasanawathanaSTangthawornchaikulN 2003 Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9 921 927 12808447 MidgleyCMBajwa-JosephMVasanawathanaSLimpitikulWWillsB 2011 An in-depth analysis of original antigenic sin in dengue virus infection. J Virol 85 410 421 20980526 WebsterDPFarrarJRowland-JonesS 2009 Progress towards a dengue vaccine. Lancet Infect Dis 9 678 687 19850226 GuzmánMGKouriGPBravoJSolerMVazquezS 1990 Dengue hemorrhagic fever in Cuba, 1981: a retrospective seroepidemiologic study. Am J Trop Med Hyg 42 179 184 2316788 GrahamRRJuffrieMTanRHayesCGLaksonoI 1999 A prospective seroepidemiologic study on dengue in children four to nine years of age in Yogyakarta, Indonesia I. studies in 1995–1996. Am J Trop Med Hyg 61 412 419 10497982 HalsteadSB 2003 Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60 421 467 14689700 TheinSAungMMShweTNAyeMZawA 1997 Risk factors of dengue shock syndrome in children. Am J Trop Med Hyg 56 566 572 9180609 HalsteadSB 2008 Dengue virus-mosquito interactions. Annual Rev Entomol 53 273 291 17803458 BrownMKlowdenMCrimJYoungLShrouderL 1994 Endogenous regulation of mosquito host-seeking behavior by a neuropeptide. J Insect Physiol 40 399 406 PlattKBLinthicumKJMyintKSInnisBLLerdthusneeK 1997 Impact of dengue virus infection on feeding behavior of Aedes aegypti. Am J Trop Med Hyg 57 119 125 9288801 ScottTWAmerasinghePHMorrisonACLorenzLHClarkGG 2000 Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37 89 101 15218911 BallF 1985 Deterministic and stochastic epidemics with several kinds of susceptibles. Adv Appl Prob 17 1 22 AndersonRMMedleyGFMayRMJohnsonAM 1986 A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J Math Appl Med Biol 3 229 263 3453839 RabaaMATy HangVTWillsBFarrarJSimmonsCP 2010 Phylogeography of recently emerged DENV-2 in Southern Viet Nam. PLoS Negl Trop Dis 4 e766 doi:10.1371/journal.pntd.0000766 20668540 RaghwaniJRambautAHolmesECHangVTHienTT 2011 Endemic dengue associated with the co-circulation of multiple viral lineages and localized density-dependent transmission. PLoS Pathog 7 e1002064 doi:10.1371/journal.ppat.1002064 21655108 FocksDABrennerRJHayesJDanielsE 2000 Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg 62 11 18 10761719 ShresthaSKingAARohaniP 2011 Statistical inference for multi-pathogen systems. PLoS Comput Biol 7 e1002135 doi:10.1371/journal.pcbi.1002135 21876665 GuzmanMGKouriGValdesLBravoJAlvarezM 2000 Epidemiologic studies on dengue in Santiago de Cuba, 1997. Am J Epidemiol 152 793 799 11085389 WinterPEYuillTMSuchindaUGouldDNantapanichS 1968 An insular outbreak of dengue hemorrhagic fever. I. Epidemiologic observations. Am J Trop Med Hyg 17 590 599 5672790 WinterPENantapanichSNisalakAUdomsakdiSDeweyRW 1969 Recurrence of epidemic dengue hemorrhagic fever in an insular setting. Am J Trop Med Hyg 18 573 579 5795449 MoreiraLaIturbe-OrmaetxeIJefferyJALuGPykeAT 2009 A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139 1268 1278 20064373 ThomasDDDonnellyCAWoodRJAlpheyLS 2000 Insect population control using a dominant, repressible, lethal genetic system. Science 287 2474 2476 10741964 HalsteadSBScanlonJEUmpaivitPUdomsakdiS 1969 Dengue and Chikungunya virus infection in man in Thailand, 1962–1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am J Trop Med Hyg 18 997 1021 4390977 RussellPKYuillTMNisalakAAUdomsakdiSGouldDJ 1968 An insular outbreak of dengue hemorrhagic fever. II. Virologic and serologic studies. Am J Trop Med Hyg 17 600 608 4970512 BurkeDSNisalakAJohnsonDEScottRM 1988 A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 38 172 180 3341519 SangkawibhaNRojanasuphotSAhandrikSViriyapongseSJatanasenS 1984 Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol 120 653 669 6496446 WattsDMPorterKRPutvatanaPVasquezBCalampaC 1999 Failure of secondary infection with American genotype dengue 2 to cause dengue haemorrhagic fever. Lancet 354 1431 1434 10543670 VaughnDWGreenSKalayanaroojSInnisBLNimmannityaS 2000 Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181 2 9 10608744 VaughnDWGreenSKalayanaroojSInnisBLNimmannityaS 1997 Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis 176 322 330 9237696 AndersonKBChunsuttiwatSNisalakAMammenMPLibratyDH 2007 Burden of symptomatic dengue infection in children at primary school in Thailand: a prospective study. Lancet 369 1452 1459 17467515 EndyTPYoonI-KMammenMP 2010 Prospective cohort studies of dengue viral transmission and severity of disease. Curr Topics Microbiol Immunol 338 1 13 EndyTP 2002 Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. Am J Epidemiol 156 40 51 12076887 PorterKRBeckettCGKosasihHTanRIAlisjahbanaB 2005 Epidemiology of dengue and dengue hemorrhagic fever in a cohort of adults living in Bandung, West Java, Indonesia. Am J Trop Med Hyg 72 60 66 15728868 BeckettCGKosasihHFaisalINurhayatiTanR 2005 Early detection of dengue infections using cluster sampling around index cases. Am J Trop Med Hyg 72 777 782 15967759 BalmasedaAHammondSNTellezYImhoffLRodriguezY 2006 High seroprevalence of antibodies against dengue virus in a prospective study of schoolchildren in Managua, Nicaragua. Trop Med Intl Health 11 935 942 TienNTKLuxemburgerCToanNTPollissard-GadroyLHuongVTQ 2010 A prospective cohort study of dengue infection in schoolchildren in Long Xuyen, Viet Nam. Trans R Soc Trop Med Hyg 104 592 600 20630553 KuanGGordonAAvilésWOrtegaOHammondSN 2009 The Nicaraguan pediatric dengue cohort study: study design, methods, use of information technology, and extension to other infectious diseases. Am J Epidemiol 170 120 129 19435864 BalmasedaAStandishKMercadoJCMatuteJCTellezY 2010 Trends in patterns of dengue transmission over 4 years in a pediatric cohort study in Nicaragua. J Infect Dis 201 5 14 19929380 ChauTNBHieuNTAndersKLWolbersMLienLB 2009 Dengue virus infections and maternal antibody decay in a prospective birth cohort study of Vietnamese infants. J Infect Dis 200 1893 1900 19911991