

HHS Public Access

Author manuscript

Public Health Genomics. Author manuscript; available in PMC 2019 August 29.

Published in final edited form as: *Public Health Genomics.* 2018 ; 21(1-2): 100. doi:10.1159/000495265.

Erratum.

BK Yoo, SD Grosse

In the article by Yoo and Grosse, entitled "The Cost Effectiveness of Screening Newborns for Congenital Adrenal Hyperplasia" [Public Health Genomics 2009;12:67–72], the cost-effectiveness results for newborn screening for congenital adrenal hyperplasia (CAH) do not accurately reflect the assumptions stated in Table 1 of the article. Mr. Orban Holdgate informed Dr. Grosse that the original cost-effectiveness model incorrectly applied the 80% reduction in mortality among infants with the salt-wasting (SW) form of CAH with screening to just a subset of infants with SW-CAH.

When the deterministic cost-effectiveness model was corrected for that error, the number of deaths from SW-CAH in the screening scenario was 3.2 times less and the number of averted deaths was 2.22 times greater. Consequently, the incremental cost-effectiveness ratio (ICER) reported in the article, USD 292,000 per life-year (LY) saved, was greatly overstated. A corrected estimate by Mr. Holdgate of the base-case ICER, assuming all assumptions reported in the original article, is USD 128,000 per LY saved, in 2005. All ICERs reported in the original Table 2 for the various sensitivity analyses should be similarly adjusted downwards. The results for the probabilistic cost-effectiveness analysis should be disregarded; Dr. Grosse was not able to replicate that analysis.

In qualitative terms, the original conclusion of Yoo and Grosse is not affected: newborn screening for CAH would not be considered cost-effective using a threshold value of USD 50,000 per LY saved. However, it might be considered cost-effective if a higher threshold value were used.

The correct Table 2 reads as follows:

karger@karger.com.

Yoo and Grosse

CEA for newborn screening for CAH: year 2005, discount rate 3%

	Range	ICER (USD/life-year saved)
Traditional CEA		
Base-case analysis		128,200
Best-case analysis		15,700
Worst-case analysis		706,600
One-way sensitivity analysis of base-case analysis		
(1) Cost per screening infant without follow-up	USD 2.3	80,900
	USD 6.0	175,600
(2) Cost of follow-up and confirmatory test per screen positive	USD 130	117,300
	USD 637	182,000
(3) Screen false-positive rate	0.1%	105,800
	1.0%	156,300
(4) Incidence of CAH	1 in 25,000	182,300
	1 in 12,000	84,700
(5) SW mortality without screening	2.0%	269,300
	9.0%	59,800
(6) Reduction in SW mortality with screening	74%	138,600
	86%	119,300

Public Health Genomics. Author manuscript; available in PMC 2019 August 29.