SUPPLEMENTARY INFORMATION

A Conserved Allosteric Pathway in Tyrosine Kinase Regulation

William M. Marsiglia¹, Joseph Katigbak^{1‡}, Sijin Zheng^{1‡}, Moosa Mohammadi², Yingkai Zhang^{1,3}, and Nathaniel J. Traaseth^{1*}

¹ Department of Chemistry, New York University, New York, NY 10003, USA

² Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA

³ NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China

Figure S1. Supplemental figure related to Figure 1. Differential scanning calorimetry (DSC) thermograms showing that molecular brake mutants have a destabilizing effect relative to wild-type FGFRK, whereas A-loop mutation/phosphorylation do not change the melting temperature. (Left) Thermogram data measured using DSC comparing unphosphorylated FGFR2K (blue; Y656/Y657), A-loop phosphorylated FGFR2K (orange; pY656/pY657), and the most pathogenic A-loop mutant K659E of FGFR2K (magenta; K659E). Note that to ensure a well-defined phosphorylated state (i.e., phosphorylation at Y656 and Y657), the Y656/Y657 and pY656/Y657 samples had mutations at other tyrosine residues (Y466, Y586L, Y588S). (Right) Thermogram data measured using DSC for wild-type FGFR4K (black; FGFR4K) and an FGFR4K molecular brake mutant (green; N535K) corresponding to the N549K mutation in FGFR2K.

Figure S2. Supplemental figure related to Figure 2. (a) Representative NMR fitted curves of ¹H-¹H dipolar cross-correlated relaxation rate (η) experiments used to derive order parameters (S²). Example overlays of intensity ratio curves calculated as the intensity of triple quantum (forbidden) peaks divided by single quantum intensities as a function of the mixing delay. Wild-type FGFR2K data are shown in blue circles, while the E565A mutant from FGFR2K are shown in red squares. Example curves displayed for residues I503 (in the β 2- β 3 loop) and I760 (in the α I helix) showed no difference in η (s⁻¹) values between wild-type FGFR2K and E565A. The other plots corresponding to residues 514, 532, 541, 551, 564, and 617 displayed different η (s⁻¹) values between wild-type FGFR2K and E565A. Error bars represent the standard deviation of the intensity ratio from duplicate measurements. Fitted η (s⁻¹) values and corresponding errors for all residues are listed in Table S2. (b) Experimentally derived order parameters (S²) plotted on a cartoon representation of FGFR1K (PDB ID: 3KY2). The top panels display S² values for wildtype FGFR2K, while the bottom panels show S² values for the molecular brake E565A mutation of FGFR2K. Two structural views are displayed for each dataset. Spheres depict Ile, Val, and Leu methyl sites used for the NMR measurements. White spheres indicated methyl sites that could not be assigned or sites that could not be analyzed due to spectral overlap. The remaining spheres are colored according to the scale: red, $S^2 = 0$; yellow, $S^2 = 1$. The phenylalanine displayed in green is F645 from the DFG motif, while the residues in the blue surface correspond to the molecular brake residues of FGFR2K: N549, E565, and K641.

Figure S3. Supplemental figure related to Figure 3. (a) The RMSD time series of molecular dynamics simulations run on wild-type FGFR1K and the single site E565A mutant. Each of the three replica 200 nsec simulations are shown in a different color: run 1, green; run 2, blue; run 3, red. The plot on the left displays wild-type FGFR1K, while the plot on the right displays the E565A results. RMSD values were calculated using heavy atoms (CA, C', N, and O) of the kinase domain that excluded the A-loop and kinase insert regions. (b) Representative structural views from molecular dynamics simulations highlighting residues I547 and F645 (i.e., Phe from DFG motif). The four rotamer combinations correspond to those displayed in Figure 3b and 3c. The inhibited-like rotamers are shown in magenta and the active-like rotamers are shown in orange. (c) Superimposition of representative structures from molecular dynamics of I547 and F645 as depicted in panel (b), while the orange A-loop has active-like rotamers for I547 and F645. (d) Superimposition of inhibited (PDB ID: 3KY2) and active crystal structures (PDB ID: 2PVF) with the A-loops of the kinase highlighted in magenta (inhibited) and orange (active) colors.

Figure S4. Supplemental figure related to Figure 4. (a) The molecular brake residues glutamic acid and lysine are highly conserved in tyrosine kinases. Homology modeling results of all tyrosine kinases at the three molecular brake residues displayed as the conservation of the position (normalized to 100%) as a function of the 20 amino acid residues. The molecular brake residues of N549 (left, red), E565 (center, blue), and K641 (right; green) correspond to the numbering convention of FGFR2K. (b) Structural view of the molecular brake for FGFR1K (PDB ID: 3KY2) depicting the interaction between the side chain oxygen of the glutamic acid (E565 in FGFR2K numbering) with the backbone nitrogen from the asparagine position (N549 in FGFR2K numbering). The kinase molecule is shown as a gray cartoon; α C- β 4 loop, kinase hinge, and β 8 strand contributing residues to the molecular brake are highlighted in red, blue and green, respectively. The triad of residues (i.e., N549, E565 and K641) comprising the molecular brake are shown as green sticks. Oxygen and nitrogen atoms are colored red and blue, respectively; the hydrogen bond between E565 and N549 is denoted by a dashed black line. (c) Conservation of hydrogen bonding at the molecular brake for tyrosine kinases that do not share the asparagine position of the molecular brake present within the FGFR subfamily. Measured distances for available tyrosine kinase structures within the PDB corresponding to the backbone nitrogen of the analogous N549 position (FGFR2K numbering) with the side chain oxygen of the analogous E565 (FGFR2K numbering). Note that only kinases sharing the glutamic acid and lysine positions within the molecular brake were analyzed. The three letter titles above the brackets depict the three residues comprising the molecular brake. For example, kinases with asparagine, glutamic acid, and lysine are labeled "NEK" and are shared in FGFR, VEGFR, PDGFR, c-KIT, TIE, TEK, CSF1R, and FLT3.

Figure S5. Supplemental figure related to Figure 2. Mutation at the molecular brake perturbs chemical shifts corresponding residues within the A-loop. ${}^{1}\text{H}/{}^{13}\text{C}$ HMQC spectra of ILV labeled wild-type FGFR2K (blue spectra) and the single site mutation E565A of FGFR2K (red spectra). The spectral overlay highlights that A-loop residues such as I651 and I654 are perturbed between wild-type FGFR2K and the molecular brake mutant. Both HMQC datasets were acquired at 10 °C and the concentration of each kinase was 0.5 mM.

	Molecular	N549	E565	K641
Kinase	Brake ^a	position	position	position
EGFR	RQK	C/H/S/L/G		N/R
ErbB2	RQK	K/H	Р	
ErbB4	RQK	Q		
EphA3	REK	Q	Κ	N/M
EphA6	REK			Ν
EphB1	REK	C/H		
EphB3	REK	W	Q	
EphB4	REK	С		
EphA8	REK	Н		
EphA2	REK	L/C		
LYN	REK	S	Q	
BLK	REK	Q		
FES	REK	Н		
IGF1R	REK			R
EphA5	HEK		Q/V	
EphA7	HEK	Ν		
EphB2	HEK		Κ	R
DDR2	HEK			Ν
JAK2	KEK	Т		
JAK3	KEK	E		
MUSK	KEK		D	
HCK	KEK		Κ	
RET	KEK	N/E		
ABL	QEK			R
SRC	QEK		Κ	
FGFR2	NEK	S/D/K/H	K/G/A	R
FGFR3	NEK	S		
FGFR1	NEK	K/D		
FGFR4	NEK	Κ		
KDR	NEK	S		
KIT	NEK	Κ		N/R
PDGFRa	NEK	K/Y/S/D/H	Q	
PDGFRb	NEK	S		
FLT3	NEK	K/T		
TIE1	NEK		G	
AXL	RPC	K	L	
MET	SPK	W		
DDR1	RDK	W/L		
ROR1	CEK			Ν
ROR2	CSK			Ν

Table S1. Supplemental table related to Figure 1. Mutations in cancers that occur in one of the three molecular brake residues of tyrosine kinases. Data were obtained from the Catalogue of Somatic Mutations in Cancer (COSMIC) database: <u>https://cancer.sanger.ac.uk/cosmic</u>.

^{*a*} The three molecular brake positions of N549, E565, and K641 correspond to the numbering of FGFR2K and are denoted as "NEK" under the "Molecular Brake" heading.

Table S2. Supplemental table related to Figure 2 that lists NMR derived order parameters (S²) and η values for wild-type FGFR2K (top) and E565A (bottom). Errors reflect non-linear least square fitting errors from datasets acquired in duplicate.

	Residue	η (s ⁻¹)	Error η (s ⁻¹)	\mathbf{S}^2	Error S ²
	1503	31.30	1.76	0.32	0.02
	I541	43.45	2.12	0.45	0.02
	I547	90.54	9.48	0.93	0.10
	I548	99.12	5.97	1.02	0.06
	1563	77.46	9.01	0.80	0.09
	1590	37.89	0.82	0.39	0.01
	I623	55.14	2.79	0.57	0.03
	I651	27.68	1.48	0.28	0.02
	I654	40.29	0.92	0.41	0.01
	I696	89.81	6.15	0.92	0.06
	1707	30.11	0.87	0.31	0.01
	1760	76.85	5.61	0.79	0.06
	V463	12.16	0.33	0.12	0.00
	V495	83.37	4 11	0.86	0.04
	V496	36.95	0.97	0.38	0.01
	V512	72 72	3.88	0.20	0.04
	V514	104 10	8 29	1.07	0.09
	V514	107.10	10.63	1.07	0.11
	V516	96 38	5 29	0.99	0.05
	V516	92.10	3.98	0.95	0.05
	V532	117.80	7.10	1.21	0.07
	V532 V532	94.92	3 38	0.97	0.03
	V562	107.10	3 38	1 10	0.03
wild-type	V564	107.10	<i>J</i> 30	1.10	0.03
	V 564	102.30	4.30	1.03	0.04
	V503	55 21	2 22	0.57	0.08
	V 593	30.21	2.52	0.37	0.02
	V 595 V 634	05.61	5.71	0.41	0.02
	V034 V634	101.80	0.20	0.98	0.00
	V034 V630	02.51	9.39	1.03	0.10
	V 039 V667	92.31	7.00	0.93	0.07
	V00/	91.44	4.83	0.94	0.03
	V6/9	67.13	2.90	0.69	0.03
	V 691	91.93	11.23	0.94	0.12
	V691	89.65	/.04	0.92	0.07
	V /09	20.91	0.97	0.21	0.01
	V 709	43.92	1.75	0.45	0.02
	V /43	112.20	8.38	1.15	0.09
	V754	107.80	3.57	1.11	0.04
	V754	94.86	3.85	0.97	0.04
	L468	36.05	2.35	0.37	0.02
	L468	30.18	1.17	0.31	0.01
	L481	55.13	4.37	0.57	0.04
	L481	53.18	2.65	0.55	0.03
	L483	46.64	2.95	0.48	0.03
	L483	50.81	1.58	0.52	0.02
	L487	65.60	3.86	0.67	0.04
	L487	51.79	2.93	0.53	0.03

	L519	74.62	3.07	0.77	0.03
	L531	105.20	4.08	1.08	0.04
	L551	96.23	3.03	0.99	0.03
	L551	90.61	2.05	0.93	0.02
	L551 L560	88 27	6.56	0.95	0.02
	L500 L576	84.85	6.33	0.91	0.07
	L370 L576	101 10	0.33	0.87	0.00
		101.10	2.70	1.04	0.03
	L603	96.98	4.25	1.00	0.04
	L61/	110.40	9.65	1.13	0.10
	L627	79.33	4.08	0.81	0.04
	L633	99.25	2.95	1.02	0.03
	L647	36.24	1.97	0.37	0.02
	L647	25.80	1.76	0.26	0.02
wild_type	L665	40.15	1.20	0.41	0.01
wild-type	L675	37.25	2.44	0.38	0.03
	L675	30.47	2.75	0.31	0.03
	L712	66.71	4.87	0.68	0.05
	L633	63.89	5.07	0.66	0.05
	L692	82.24	4.94	0.84	0.05
	L699	32.99	2.39	0.34	0.02
	L715	55.40	2.36	0.57	0.02
	L715	63 57	3.84	0.65	0.04
	L716	75.00	4 48	0.02	0.01
	L710 L732	70.73	2.61	0.77	0.03
	L732 L732	58.03	2.01	0.75	0.03
	L752 1757	101 20	5.11	0.01	0.05
	L/3/	101.20	4.07	1.04	0.03
	L/01	48.14	2.00	0.49	0.02
	L/03	54.90	0.71	0.30	0.01
	1502	20.27	2 17	0.21	0.04
	1505	26.42	3.47 1.75	0.31	0.04
	1547	20.42	5.80	0.27	0.02
	1347	07.43 20.70	5.80 9.10	0.90	0.00
	1548	89.70	8.10	0.92	0.08
	1563	74.02	/.81	0.76	0.08
	1590	25.10	1.19	0.26	0.01
	1623	51.20	3.41	0.53	0.04
	1651	26.03	1.63	0.27	0.02
	I654	31.01	2.57	0.32	0.03
	I696	82.91	8.00	0.85	0.08
	I707	28.87	2.86	0.30	0.03
E565A	I760	76.56	3.92	0.79	0.04
	V463	12.19	0.52	0.13	0.01
	V495	63.74	4.31	0.65	0.04
	V496	50.62	2.45	0.52	0.03
	V512	57.17	4.96	0.59	0.05
	V514	84.75	16.44	0.87	0.17
	V514	91.61	11.10	0.94	0.11
	V516	71.54	8.73	0.73	0.09
	V516	72 35	7 93	0.74	0.08
	V532	8 <u>4</u> 41	8 35	0.87	0.00
	V532	88 /0	6.06	0.07	0.09
	v 552 V562	00. 4 7 101.60	20.70	1.04	0.07
	V.)0Z	101.00	ZU.40	1.04	U. Z. I

	V564	77.11	7.27	0.79	0.07
	V564	82.36	6.62	0.85	0.07
	V593	51 70	2 38	0.53	0.02
	V593	37.28	1.01	0.38	0.01
	V634	82.62	12 31	0.85	0.13
	V634	96.47	13.01	0.09	0.13
	V639	87.04	9.56	0.99	0.10
	V667	08.07	10.43	1.01	0.10
	V670	90.02 60.82	2.60	0.62	0.11
	V601	82.50	2.00	0.02	0.03
	V 091 V 601	82.30	1/.45	0.83	0.18
	V 091 V 700	00.17 22.20	0.90	0.82	0.09
	V 709 V 700	22.29	1.00	0.23	0.02
	V 709	57.99	1.91	0.39	0.02
	V /43	95.85	/.48	0.98	0.08
	V / 54	101.90	6.83	1.05	0.07
	V / 54	93.38	3.55	0.96	0.04
	L468	36.10	1.54	0.37	0.02
	L468	31.72	2.38	0.33	0.02
	L481	44.63	4.82	0.46	0.05
	L481	47.79	4.96	0.49	0.05
	L483	37.01	2.87	0.38	0.03
	L483	53.11	1.88	0.55	0.02
	L487	63.09	4.53	0.65	0.05
	L487	57.21	2.52	0.59	0.03
	L519	63.88	4.22	0.66	0.04
5A	L531	107.90	4.96	1.11	0.05
	L551	68.59	4.68	0.70	0.05
	L551	67.28	3.55	0.69	0.04
	L560	82.82	7.52	0.85	0.08
	L576	82.57	9.31	0.85	0.10
	L576	103.20	5.92	1.06	0.06
	L603	87.70	7.05	0.90	0.07
	L617	74.99	11.32	0.77	0.12
	L627	77.72	9.92	0.80	0.10
	L633	88.73	8.61	0.91	0.09
	L647	38.11	2.73	0.39	0.03
	L647	37.20	4.30	0.38	0.04
	L665	47.07	2.79	0.48	0.03
	L675	35.02	2.16	0.36	0.02
	L675	28.31	1.84	0.29	0.02
	L712	60.56	4.81	0.62	0.05
	L633	53.40	6.19	0.55	0.06
	L692	77.14	7.91	0.79	0.08
	L699	31.77	1.89	0.33	0.02
	L715	53.32	5.03	0.55	0.05
	L715	52.63	3.57	0.54	0.04
	L716	62.77	5.51	0.64	0.06
	L732	78.26	3.07	0.80	0.03
	L732	57.15	6.43	0.59	0.07
	L757	109.20	5.03	1.12	0.05
	L761	51.78	5.95	0.53	0.06
	L763	34.80	1.62	0.36	0.02

E565A

"I547-"F645" Residue at **Residue** at **"I547"** K641" Molecular Kinase PDB ID 547 645 chi1 chi1 Brake^a distance position position (deg) (deg) (Å)^b REK I1179 -64.5 -70.0 5.0 ALK 2yjs F1271 -66.4 4.9 ALK REK 4anl I1179 F1271 -67.5 ALK REK 4fnw -67.1 -70.8 5.0 I1179 F1271 ALK REK 2yjr I1179 F1271 -63.5 -65.1 5.1 ALK REK 4fnx F1271 -65.1 -65.6 5.1 I1179 I1179 ALK REK 2yhv F1271 -63.2 -71.0 5.1 ALK REK 3lct F1271 -57.4 -68.6 5.2 I1179 ALK REK 319p I1179 F1271 -65.7 -68.8 5.0 EPHA2 REK 4p2k I675 F758 -62.6 -74.2 5.1 EPHA2 REK 4trl I675 F758 -64.3 -60.6 5.0 EPHA2 REK 1mqb (1) I675 F758 -59.9 -53.4 4.7 EPHA2 REK 1mqb (2) I675 F758 -58.4 -67.0 4.4 EPHA3 REK I682 F765 -54.2 -66.7 5.2 2qoi EPHA3 I682 F765 -55.6 5.2 REK 2qof -65.7 **EPHA3** REK I682 F765 -58.2 5.3 2qod -67.5 EPHA3 REK 2qol I682 F765 -55.0 -68.7 5.2 **EPHA3** REK 2q00 I682 F765 -53.1 -63.7 5.3 **EPHA3** REK 2qoc I682 F765 -59.6 -62.9 5.2 EPHA3 I682 F765 -66.9 5.2 REK 2gsf -66.2 EPHA3 REK 2qo7 I682 F765 -57.5 -62.4 5.1 EPHA8 REK 3kul (1) I696 F779 -55.8 -63.8 4.8 EPHA8 REK 3kul (2) I696 F779 -55.9 -61.3 5.0 EPHB1 REK 3zfx (1) I680 F763 -61.7 -62.1 4.8 -58.1 -62.1 EPHB1 REK 3zfx (2) I680 F763 4.7 EPHB1 REK I680 F763 -58.6 -66.1 4.8 3zfx (3) EPHB1 I680 -64.6 -63.9 5.0 REK 3zfx (4) F763 EPHB1 REK 3zfx (5) I680 F763 -61.6 -63.4 4.8 I680 -63.4 4.9 EPHB1 REK 3zfx (6) F763 -61.1 4.9 **EPHB1** REK I680 F763 -61.4 -64.2 3zfx (7) EPHB1 REK I680 F763 -68.0 -62.7 5.2 3zfx (8) EPHB1 REK 3zfx (9) I680 F763 -61.3 -64.6 4.6 SYK REK 4fl1 I432 F513 -66.3 -73.0 4.2 -70.7 3.9 SYK REK 1xba I432 F513 -62.4 SYK REK 4xg2 I432 F513 -63.5 -69.4 3.8

Table S3. Supplemental table related to Figure 4. Bioinformatic analysis of tyrosine kinases used to derive a general activation mechanism involving the molecular brake.

ZAP70	REK	4k2r	I398	F480	66.1	31.3	3.1
FAK1	KEK	2ijm (1)	I483	F565	-69.5	-51.1	5.2
FAK1	KEK	2ijm (2)	I483	F565	-68	-76.2	5.0
FAK2	KEK	3cc6	I486	F568	-56.0	-75.5	4.6
FAK2	KEK	3fzo	I486	F568	-56.4	-81.9	4.3
FGFR1	NEK	4rwi (1)	I544	F642	68.1	54.3	3.0
FGFR1	NEK	4rwi (2)	I544	F642	69.5	57.5	3.2
FGFR1	NEK	3kxx (1)	I544	F642	-70.3	-63.8	4.1
FGFR1	NEK	3kxx (2)	I544	F642	-61.9	-66.2	3.6
FGFR1	NEK	3kxx (3)	I544	F642	52.3	-63.7	3.5
FGFR1	NEK	3kxx (4)	I544	F642	67.9	-65.9	3.4
FGFR1	NEK	5flf (1)	I544	F642	-62.5	-72.5	3.7
FGFR1	NEK	5flf (2)	I544	F642	-66.8	-75.9	4.4
FGFR1	NEK	5flf (3)	I544	F642	-53.1	-70.1	3.7
FGFR1	NEK	5flf (4)	I544	F642	-68.3	-71.1	3.6
FGFR1	NEK	5flf (5)	I544	F642	63.5	46.9	3.3
FGFR1	NEK	4uwy (1)	I544	F642	67.4	54.1	3.2
FGFR1	NEK	4uwy (2)	I544	F642	66.8	53.8	3.3
FGFR1	NEK	3ky2 (1)	I544	F642	62.4	57.0	3.5
FGFR1	NEK	3ky2 (2)	I544	F642	59.3	55.6	3.3
FGFR1	NEK	1fgk (1)	I544	F642	74.7	57.8	3.1
FGFR1	NEK	1fgk (2)	I544	F642	68.5	56.5	3.2
FGFR1	NEK	3gqi	I544	F642	-80.4	-71.6	4.7
FGFR2	NEK	2pvf	I547	F645	-68.4	-68.9	4.6
FGFR2	NEK	2q0b (1)	I547	F645	-67.9	-74.6	4.1
FGFR2	NEK	2q0b (2)	I547	F645	-73.4	-63.3	3.3
FGFR2	NEK	4j95 (1)	I547	F645	69.6	-67.7	3.6
FGFR2	NEK	4j95 (2)	I547	F645	-81.8	-69.8	3.4
FGFR2	NEK	4j95 (3)	I547	F645	81.6	-70.6	3.7
FGFR2	NEK	4j95 (4)	I547	F645	-83.1	-70.5	3.7
FGFR2	NEK	4j97 (1)	I547	F645	-64.9	-69.4	5.0
FGFR2	NEK	4j97 (2)	I547	F645	-65.3	-66.3	5.1
FGFR2	NEK	4j97 (3)	I547	F645	-69.0	-65.8	4.3
FGFR2	NEK	4j97 (4)	I547	F645	-80.3	-68.3	5.1
FGFR2	NEK	4j96 (1)	I547	F645	-73.3	-74.9	3.3
FGFR2	NEK	4j96 (2)	I547	F645	-70.2	-76.3	4.2
FGFR2	NEK	2pzp (1)	I547	F645	-68.8	-71.2	4.4
FGFR2	NEK	2pzp (2)	I547	F645	-66.6	-71.5	3.9
FGFR2	NEK	2pwl (1)	I547	F645	-74.2	-67.0	4.1
FGFR2	NEK	2pwl (2)	I547	F645	-66.1	-66.4	4.2

FGFR2	NEK	4j98 (1)	I547	F645	-80.1	-74.7	3.2
FGFR2	NEK	4j98 (2)	I547	F645	-79.6	-74.9	3.8
FGFR2	NEK	2pvy (1)	I547	F645	-78.3	-66.2	4.8
FGFR2	NEK	2pvy (2)	I547	F645	-76.6	-66.2	5.2
FGFR2	NEK	2pvy (3)	I547	F645	-74.3	-66.7	4.1
FGFR2	NEK	2pvy (4)	I547	F645	-76.2	-66.5	4.7
FGFR2	NEK	2pz5 (1)	I547	F645	-69.4	-71.7	4.3
FGFR2	NEK	2pz5 (2)	I547	F645	-72.2	-70.9	4.2
FGFR2	NEK	4j99 (1)	I547	F645	77.9	-68.2	3.4
FGFR2	NEK	4j99 (2)	I547	F645	74.9	-69.0	4.2
FGFR2	NEK	4j99 (3)	I547	F645	-66.9	-68.3	3.2
FGFR2	NEK	4j99 (4)	I547	F645	78.5	-67.2	3.2
FGFR2	NEK	3b2t (1)	I547	F645	-65.8	-63.9	4.4
FGFR2	NEK	3b2t (2)	I547	F645	-61.6	-62.9	4.1
FGFR2	NEK	3cly	I1547	F1645	-64.8	-69.5	5.1
FGFR2	NEK	2py3 (1)	I547	F645	-74.6	-72.0	5.2
FGFR2	NEK	2py3 (2)	I547	F645	-73.9	-72.2	4.3
FGFR2	NEK	2psq (1)	I547	F645	-75.9	-61.0	3.2
FGFR2	NEK	2psq (2)	I547	F645	-75.8	-64.1	2.5
FGFR3	NEK	4k33	1538	F636	-71.2	-68.2	4.9
FGFR4	NEK	4qqj	1533	F631	72.5	51.7	3.1
FGFR4	NEK	4tyg	1533	F631	70.9	55.8	4.0
FGFR4	NEK	4qqt	1533	F631	71.6	51.7	3.1
FGFR4	NEK	4tye	1533	F631	65.5	74.7	3.8
KIT	NEK	1pkg (1)	I653	F811	-86.4	-69.8	5.2
KIT	NEK	1pkg (2)	I653	F811	-46.4	-69.1	4.0
EPHA5	HEK	2r2p	I736	F819	-72.7	-52.0	5.1

^{*a*} Three residues comprising the molecular brake of the respective kinase. The sites correspond to the analogous positions of N549, E565, and K641 within FGFR2K.

^b The I547-K641 distance is between the side chain nitrogen of the lysine and the backbone carbonyl oxygen of the isoleucine. In FGFR2K numbering, these residues correspond to I547 and K641.