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Introduction

In the last two decades, the field of environmental epidemiology has used several “-omics” 

platforms in an untargeted fashion to gain new insights into the complex relations between 

environmental pollutant exposures and human health.1 For instance, exposomics has been 

used to understand how exposure to complex mixtures of air pollution, chemicals, and 

metals affect health.2–4 Metabolomics and methylomics have been used to identify putative 

biological pathways affected by environmental exposures, as well as biological responses to 

exposures.5,6 Despite progress in understanding the health effects of and biological 

responses to complex exposures, relatively little has been done to understand how 

environmental pollutants affect complex disease phenotypes. Many environmental exposures 

– air pollution, lead, and secondhand tobacco smoke – have been associated with multiple 

diseases, but potentially informative patterns of multimorbidity have often been ignored.7–9

We propose to use the phenome as a novel approach to study the health effects of 

environmental exposures. We define the phenome as the patterns and profiles of human 

disease that individuals experience from birth to death; this includes disease diagnoses, 

continuous traits related to disease, and biological pathways underlying disease states. Thus, 

the phenome represents a continuum that spans from the biological pathways underpinning 

disease to the clinical manifestations of disease. Quantifying the patterns of multimorbidity 

associated with an environmental pollutant exposure may provide new information about the 

health effects of that exposure, as well as potential biological pathways related to an 

exposure. Here we describe how the Phenome-Wide Association Study (PheWAS) can be 

used as a tool to better understand how environmental exposures impact the multitude of 

health states that humans experience across the life course.
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PheWAS Background

In the early 2000’s, as the Human Genome Project was nearing completion, scientists were 

contemplating if phenotypes could be “sequenced” by the Human Phenome Project in an 

effort to understand how individual genes were associated with multiple phenotypes, thus 

gaining insight into pleiotropic effects of genes.10,11 In the context of studying individual 

single nucleotide polymorphisms (SNPs) or pollutant exposures, the PheWAS can be 

thought of as a reverse genome-wide association study (GWAS) (Figure 1). The GWAS 

estimates associations between thousands of SNPs and one or a few phenotypes or diseases, 

much like an environment-wide association study (EWAS) that examines the associations 

between multiple exposures and a phenotype.12 In contrast to these approaches, the PheWAS 

estimates associations of one or a few SNPs (or exposures) with hundreds or thousands of 

phenotypes or health states in order to identify patterns of multimorbidity related to a given 

gene or exposure.

Note, the terms comorbidity and multimorbidity have been used interchangeably in the 

literature with little consensus on the best definition.13 Here, we use the term multimorbidity 

and cumulative hierarchy proposed by van den Akker.

1. Simple multimorbidity, which includes causal, correlated, and coincidental 

disease co-occurrence. For example, the co-occurrence of cardiovascular disease 

and osteoarthritis is likely coincidental.

2. Associative multimorbidity implies a statistical relation between two or more 

diseases, and thus, includes causally-related and correlated diseases. For 

example, the symptoms of some micronutrient deficiencies are correlated, but 

non-causal since they are all related to the same common cause (e.g., Vitamin C 

deficiency).

3. Causal multimorbidity implies a causal relation between two or more diseases. 

For example, the co-occurrence of type 2 diabetes and diabetic retinopathy is 

causal since the former causes the latter.

The first PheWAS we are aware of examined the association between five SNPs and 776 

diseases or phenotypes in over 6,000 adults.14 They used the International Classification of 

Disease-9 (ICD-9) codes to define binary disease phenotypes (i.e., cases or controls). Many 

subsequent PheWAS adopted this model and have examined the association of SNPs with a 

range of clinical outcomes, usually derived from electronic medical records (EMRs).15 

Some studies have examined clinical biomarkers such as white blood cell counts or 

autoantibodies instead of SNPs as their primary exposure.16,17 For instance, Liao et al. 

reported associations between autoantibodies and clinical diagnoses defined by ICD-9 

codes, finding that antinuclear antibodies were associated with Sjӧgren’s/sicca syndrome.17 

Table 1 summarizes the design and results of several PheWAS studies.

We are unaware of any PheWAS examining an environmental pollutant as the exposure. 

However, Chen and VanderWeele used a PheWAS approach (referred to as an Outcome-

Wide Association Study by the authors) to examine the relations of religious service 
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attendance and prayer/meditation with 26 character strengths and psychological, mental, 

behavioral, and physical health outcomes.18,19

Phenome and PheWAS Framework

Regardless of the exposure of interest, a PheWAS begins by carefully defining the phenome 

and selecting appropriate data resources and study designs. Most PheWAS have used the 

ICD codes to identify specific clinical diseases. Other approaches to define phenotypes 

include using clinical text data from EMRs or data from large population-based studies.
18,20,21 While prospective designs are the most robust in terms of causal inference, cross-

sectional studies could be used to generate new hypotheses.

Phenotypes can be classified using available ontologies like Phecodes or the Human 

Phenotype Ontology.22–24 Phecodes was developed to aggregate the ICD9 or ICD10 codes 

into hierarchical trait or disease-relevant groupings that can be used for biomedical research.
23 The Human Phenotype Ontology also uses hierarchical groupings, but they are based on 

phenotypic abnormalities encountered in human disease and not billing codes.22,24 It is 

important to note that these ontologies use binary classifications of the phenotype (e.g., 

disease vs. no disease). However, in many epidemiologic studies, outcomes are measured as 

continuous traits (e.g., blood pressure), that can also be characterized as clinically vs. non-

clinically significant (e.g., hypertension). Thus, continuous traits are important to study 

because they may detect earlier manifestations of disease that clinical diagnosis would 

otherwise miss and provide a relative ranking of the outcomes while enhancing statistical 

power.

Here we expand the scope of the phenome beyond clinical or disease diagnoses as has been 

done in previous studies. We propose that the phenome includes clinical diagnoses, 

continuous traits underlying these diagnoses, and biological pathways related to these traits 

or diagnoses. For example, individuals can be diagnosed as obese or normal weight based on 

their body mass index (BMI), which in turn is a continuous trait that is used to assess an 

individual’s adiposity. Biological pathways related to the development or maintenance of 

obesity include hormones produced by adipose tissue (e.g., adipocytokines).

Clinical Data

Many PheWAS take advantage of EMRs that include the ICD codes. These types of data 

could be used to examine associations between environmental exposures and clinical disease 

diagnoses. The ICD-9 coding system contains a wide spectrum of phenotypes, including 

over 17,000 disease codes grouped in a multi-level hierarchy.25,26 Because the ICD coding 

system was designed primarily for billing and administrative functions, customized 

groupings of ICD codes are needed to approximate clinical disease phenotypes for a 

PheWAS. For example, similar ICD codes like primary tuberculosis and late effects of 

tuberculosis should be combined, but similar codes representing distinctly different diseases, 

like Type 2 and Type 2 diabetes, should be separated.14 Finally, another approach that may 

capture more detailed information, is to use clinical text, examination, or laboratory data 

from EMRs instead of ICD-9 codes to define the phenome. For instance, Hebbring and 
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colleagues used EMR data to develop a text-based phenome by documenting clinical text 

and reducing it to clinically relevant phenotypes.20

Two limitations of using administrative databases containing ICD codes or EMRs for a 

PheWAS are worth noting. First, these databases have a limited number of environmental 

pollutant exposures available. Ambient air pollution, temperature, or other built environment 

factors could be assessed by linking participant addresses to publicly available datasets. In 

addition, for some sub-populations, individual-level environmental exposure data might be 

available (e.g., childhood blood lead concentrations). Second, outcome misclassification 

may arise when relying on the ICD codes or EMRs, which would result in reduced statistical 

power, assuming non-differential misclassification. For instance, the ICD codes are specific, 

but not sensitive, at classifying cardiovascular and chronic kidney disease.27,28

Large Datasets with Detailed Phenotyping

Large datasets, such as the National Health and Nutrition Examination Surveys (NHANES), 

conduct biomonitoring for a wide range of ubiquitous environmental chemicals and assess a 

large and diverse set of phenotypes.29 A number of disease diagnoses, continuous 

phenotypes, and underlying biological pathway data have been systematically assessed using 

questionnaires, direct assessments, and biomarkers in the NHANES (Table 1). These include 

anthropometry, oral health, metabolic and endocrine biomarkers, neurodevelopment, 

respiratory health, allergies, and questionnaire data related to numerous disease diagnoses.30 

Other data resources that would have detailed phenotype information include ongoing 

prospective cohort studies of adults or children, including the National Institutes of Health 

Environmental Determinants of Child Health Outcomes (ECHO) Study.31–33

Several limitations to using these types of datasets for PheWAS are worth noting. First, some 

databases, like the NHANES, are cross-sectional, thus, creating temporal ambiguity between 

exposure and phenotypes. Second, cross-sectional data could only be used to study prevalent 

conditions. Third, some of these databases would have low statistical power for rare 

conditions (e.g., specific forms of cancer). Finally, some self-reported diagnoses may not be 

completely accurate, but in some cases they could be augmented by clinical examination 

data (e.g., measured blood pressure instead of self-reported diagnosis of hypertension).

Analyzing and Interpreting Phenome Data

To facilitate analysis and interpretation, phenotypic information could be hierarchically 

classified based on available ontologies or characterized in coarser groupings based on organ 

systems (e.g., cardiovascular vs. metabolism).22–24 These classes could serve as a 

“backbone” that can be used to organize the array of assessed phenotypes and facilitate 

interpretation of associations between a given pollutant and multiple phenotypes. This is 

akin to chromosomes in a GWAS or groups of exposure (e.g., metals, phthalates, pesticides, 

etc.) in a EWAS. For example, using the Human Phenotype Ontology, Type 2 diabetes and 

hypothyroidism are both classified as endocrine system abnormalities, but further 

distinctions can be made based on the specific endocrine organs affected.

Some additional considerations should be made when curating phenotype data. First, the 

same phenotype is often measured with multiple measures and some of these measures are 
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highly correlated (e.g., different measures of adiposity).34 Thus, it may only be necessary to 

include one of these measures depending on the degree of correlation and goal of the 

specific PheWAS. Additionally, some diseases or phenotypes with similar etiologies may 

need to be distinguished based on lifestage (e.g., Type 2 diabetes vs. gestational diabetes).

When analyzing phenome data, the entire phenome could be examined or a specific class of 

the phenome. This latter approach could be used when there is limited phenotype data 

available for some classes or there is an a priori hypothesis about the potential effects of an 

exposure. For instance, one could conduct a PheWAS to examine the association between a 

potentially immunotoxic compound and immune-related outcomes.

Interpreting PheWAS results can be facilitated by examining patterns of associations 

between the exposure and outcomes within and across phenotype classes. Using ontologies 

and the observed pattern of exposure-associated multimorbidity, decisions about the causal 

or non-causal nature of the relations between an exposure and outcome(s) can be made. For 

instance, observing associations between an exposure and multiple cardiovascular endpoints 

might suggest a common biological mechanism of action for that agent. However, an 

exposure associated with two biologically unrelated diseases could suggest a non-causal 

multimorbidity.

Like GWAS and EWAS, replication is necessary for PheWAS to ensure that significant 

associations are not spurious. Replication studies could be conducted on a portion of the 

original data (e.g. 20%) or another dataset with similar features of the original data set.

Advantages of PheWAS

The PheWAS has several potential applications to the field of environmental epidemiology 

that could help enhance our knowledge about specific pollutants and biological pathways 

related to these pollutants.

First, the PheWAS can be used as a tool to generate new hypotheses about specific exposures 

and human health. By examining a multitude of phenotypes, the PheWAS can efficiently 

provide information for exposures with little or no data about their potential health effects. 

Thus, the PheWAS can be used to guide the development of more targeted studies in cases 

where human health data are lacking. For instance, this can be quite important as some 

chemicals are phased out of commerce and industry, and replaced with compounds that have 

little or no toxicity data available (e.g., phthalate and perfluoroalkyl substance 

replacements).

Second, the PheWAS can improve our understanding of environmental exposures and related 

biological pathways by examining patterns of phenotypes associated with a single exposure. 

Because many disease processes are related to common biological pathways, exposure-

induced effects on a given pathway or set of pathways could produce ‘environmentally 

pleiotropic’ effects. Thus, the PheWAS can provide evidence that an exposure alters specific 

biological pathways if that exposure is associated with multiple diseases or phenotypes 

related to that pathway. For example, active and secondhand tobacco smoke exposures are 

associated with the metabolic syndrome, a constellation of symptoms that includes excess 
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central adiposity, hypertension, dyslipidemia, impaired glucose tolerance, and insulin 

resistance.35–37 Thus, tobacco smoke exposure may cause these effects by altering 

inflammatory, epithelial, and vascular pathways that are related to features of the metabolic 

syndrome.

Finally, the PheWAS can be used to generate new hypotheses about established toxicants 

(e.g., lead or tobacco smoke exposure) in an effort to more comprehensively assess their 

potential health effects. Novel exposure-phenotype associations would be difficult to identify 

when studying individual outcomes one-at-a-time. Exposure-associated patterns of 

multimorbidity may occur when an exposure affects a biological pathway related to multiple 

diseases or phenotypes. For instance, children often have multiple neurodevelopmental 

disorders (e.g., both attention-deficit/hyperactivity disorder and conduct disorder), and this 

pattern of multimorbidity may be related to perturbations of the same biological pathway(s).
38 Indeed, some environmental neurotoxicants, like lead, have been associated with both 

attention-deficit/hyperactivity disorder and conduct disorder.39,40 Moreover, the PheWAS 

approach avoids selective reporting and publication bias by describing an exposure’s 

association with all outcomes, even those that are null.

Challenges to Conducting PheWAS

Despite the advantages of PheWAS, there are several challenges in implementing them 

related to multiple testing, data availability, phenotyping quality, sample size, analyzing and 

characterizing phenotypes, the dynamic nature of exposure and outcomes, and controlling 

for confounding.

As is the case with all high dimensional data, there is a risk of false positives when 

examining associations between a single exposure and hundreds or thousands of phenotypes. 

For instance, there are over 17,000 potential ICD-9 codes and >155,000 ICD-10 codes.41 

Traditionally, null hypothesis testing with correction for multiple comparisons is used to 

“filter” out potentially false positive results using Bonferroni correction, family-wise error 

rates correction, or false discovery rate control.42 Alternatively, statistical techniques can be 

used to reduce the dimensionality of the phenotype data (e.g., principal components). 

However, these statistical techniques could produce components or clusters that are difficult 

to interpret, not related to the exposure, or be method-dependent.43

Another potential concern when conducting a PheWAS is the availability and quality of the 

phenotyping data. One cannot acquire phenotype data in a similar to that used for other “-

omics” technologies. In genomics, epigenomics, and metabolomics, thousands of features 

can be interrogated simultaneously on a single platform (e.g., sequencing, microarrays, or 

mass-spectrometry based approaches). Despite their high cost on a per-assay level, these 

platforms are quite efficient on a per-feature level. However, these platforms do not exist for 

phenotyping, thus making it more challenging to conduct a PheWAS.

PheWAS require studies that collectively have a large sample size and common protocol for 

phenotype assessment. Examples include EMR databases, the NHANES, or extraordinary 

cohorts such as the Nurses’ Health Study or ECHO.44,45 While smaller cohort studies with 
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detailed and research-quality phenotype measures could be used to conduct a PheWAS, they 

may assess a small number of diseases or phenotypes, have limited statistical power in the 

face of multiple testing correction, and be unable to examine rare diseases. Larger studies 

using EMRs will have access to a fuller spectrum of clinical disorders and sufficient 

statistical power to analyze most rare diseases, but there may be misclassification of some 

outcomes and inability to examine biological pathways. A hybrid approach could be 

employed where larger studies are used for discovery and smaller studies for replication and 

interrogation of specific biological pathways.

The dynamic nature of exposure must be considered in PheWAS. In genetic studies 

employing PheWAS, the exposure (i.e., single nucleotide polymorphisms) is static across the 

lifespan. However, in the environmental PheWAS, exposures change across the lifespan and 

there may be discrete periods of vulnerability for some exposures that differ with respect to 

phenotype.46 There are at least three strategies to deal with this. First, PheWAS studies could 

examine exposures exhibiting less within-person variation (e.g., persistent pollutants) since 

exposure misclassification would be reduced relative to exposures with more within-person 

variation (e.g., bisphenol A).47 Second, cumulative measures of exposure representing 

specific periods of life could be used (e.g., deciduous tooth biomarkers).48 Third, exposure 

during discrete periods of life could be examined (e.g., early childhood or concurrent), 

acknowledging that they may not be relevant for some health outcomes

In addition, phenotypes change over time. For example, some phenotypes might not 

manifest until a specific age (e.g., pubertal development) or some diseases might resolve 

(e.g., eczema). Moreover, the development of one disease may increase the risk of another 

disease or phenotype. For instance, adults with type 2 diabetes have impairments in 

executive functions, which might arise because of diabetes-induced damage to brain 

microvasculature.49 The possibility of a chain of risk makes it necessary to consider the 

longitudinal nature of health trajectories and comorbidities when conducting a PheWAS 

study.

Finally, in any observational study, proper confounding control requires adjustment for 

predictors of both exposure and outcome, while not adjusting for causal intermediates or 

colliders.50 As Vanderweele points out, this can be relatively easily accomplished in a 

PheWAS since only one exposure is being considered and it is sufficient to adjust only for 

predictors of exposure, even if not all these variables predict the outcome.19 This is in 

contrast to exposomic studies, which consider a multitude of exposures, some of which are 

correlated to one another due to shared exposure sources (e.g., phthalates),51 or may be 

related to each other through various causal pathways (e.g., built environment factors 

affecting activity patterns). Additionally, measuring confounder data prospectively with 

respect to exposure mitigates the risk of adjusting for colliders or intermediates. 

Investigators could minimize bias from confounding and adjustment for colliders or 

intermediates by carefully select confounding variables using directed acyclic graphs or 

single world intervention graphs.52,53
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Future Directions

The time has come for the field of environmental epidemiology to embrace the phenome 

given the increasing emphasis on studying complex exposures and biological pathways 

using different “-omics” methods. As a first step, we propose that PheWAS studies of 

relatively well-characterized exposures be conducted to demonstrate the utility of these 

studies and identify hurdles to implementing them. This will require the identification and 

curation of data resources that have assessed at least one environmental exposure and the 

phenome. Potential resources include the NHANES, large cohorts studies (e.g., Nurse’s 

Health Study),32 or EMR databases. More specialized resources focused on distinct life 

stages (i.e., children’s health) could pool data from existing National Institute of 

Environmental Health Sciences funded Children’s Environmental Health Centers or the 

National Institute of Health funded ECHO Study.31,54

Several issues bear additional reflection as we incorporate the PheWAS into our “-omics” 

toolbox. First, it will be important to consider how to incorporate life course approaches into 

studies of the phenome given that many diseases and phenotypes have early life origins and 

are dynamic in nature.55,56 Second, there will be the need to consider how to combine and 

analyze different forms of highly dimensional data (e.g., the exposome and phenome). 

Already, there have been calls for more integration of different types of molecular data, but 

this call could be extended to include the exposome and phenome as well.57 Finally, and 

related to this, it will be necessary to examine the relations between environmental pollutant 

mixtures and the phenome.58 Ultimately, studying the relations between complex exposures, 

biological pathways, and the phenome across the lifespan may lead to new insights about the 

contribution of environmental exposures to human health and wellbeing.
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Highlights

• Epidemiology has not considered whether pollutants have pleiotropic effects.

• The phenome is the patterns/profiles of disease experienced from birth to 

death.

• Phenome Wide Association Studies (PheWAS) examine a pollutant and all 

phenotypes.

• Using PheWAS could improve our understanding of the health effects of 

pollutants.
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Figure 1: 
Graphical depiction of a GWAS (A), genotype PheWAS (B), EWAS (C), and exposure 

PheWAS (D)

*-GWAS: Genome Wide Association Study, PheWAS: Phenome Wide Association Study, 

EWAS: Exposome Wide Association Study.
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Table 1:

Selected examples of prior phenome wide association studies

Paper N Exposure Phenome Number of phenotypes Results

Denny et al. 
2010

6,005 SNPs (5) previously 
linked to atrial 
fibrillation, Crohn’s 
disease, carotid artery 
stenosis, coronary artery 
disease, multiple 
sclerosis, systemic lupus 
erythematosus and 
rheumatoid arthritis

ICD9 codes 776 Four of the known SNP-
disease associations were 
replicated and 19 new 
associations were identified

Polimanti et 
al. 2016

26,394 SNPs (8) in CHRNA3–
CHRNA5 locus, 
ADH1B, and ALDH2

Large cohort database 360 Replicated findings that 
these SNPs are associated 
with drinking and smoking 
behaviors as well as novel 
findings that these SNPs 
were associated with 
psychological traits

Hebbring et 
al. 2015

4,235 SNPs (5) previously 
linked to multiple 
sclerosis, ankylosing 
spondylitis, triglyceride 
levels, atrial fibrillation 
and age-related macular 
degeneration

Clinical text data from 
EMRs

23,384 Replicated findings and 
demonstrated that raw text 
data can be used to define a 
phenome

Warner and 
Alterovitz 
2012

36,095 White blood cell counts ICD9 codes 5,675 Peak WBC counts between 
15–45 K/μl were associated 
with Clostridium difficile 
and bacterial sepsis

Liao et al. 
2013

1,290 cases
1,236 controls

Autoantibodies (anti-
citrullinated protein 
antibodies, antinuclear 
antibodies, antitissue 
transglutaminase 
antibodies, antithyroid 
peroxidase)

ICD9 codes 512 in cases
698 in controls

In cases, the presence of 
antinuclear antibodies 
(ANA) was associated with 
Sjӧgren’s/sicca syndrome
In controls, higher ANA 
was associated with chronic 
nonalcoholic liver disease
In both cases and controls, 
anti-thyroid peroxidase 
antibodies was associated 
with hypothyroidism
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Table 2:

Health dimensions assessed in NHANES, corresponding measurements, and measurement method(s)
a

Health Dimension NHANES Measurements Method Of Measurement

General Health

Current Health Status Questionnaire

Physician Exam Physical Examination

Medical Conditions Questionnaire

Physical Health

Physical Activity and Physical Fitness Questionnaire

Physical Activity Monitor Physical Examination

Physical Functioning Questionnaire

Physical Functioning-Timed Walks Physical Examination

Isokinetic Knee Extensors Strength Physical Examination

Mental Health

Attention Deficit Hyperactivity Disorder Questionnaire

Anxiety Questionnaire

Conduct Disorders Questionnaire

Depression Questionnaire

Eating Disorders Questionnaire

Elimination Disorders Questionnaire

Panic Disorder Questionnaire

Depression Questionnaire

Cognitive Functioning

Cognitive Functioning Examination

Body Composition/Bone Health

Anthropometry Measurements Physical Examination

Bioelectric Impedance Analysis Physical Examination

Dual Energy X-Ray Absorptiometry Physical Examination

Body Composition Physical Examination

Bone Density-Hip and Spine Physical Examination

Vertebral Fracture Assessment Physical Examination

Weight History Questionnaire

Osteoporosis Questionnaire

Bone Alkaline Phosphatase Laboratory Measurement

N-telopeptide (NTX) Laboratory Measurement

Muscular Health

Grip Strength Test Physical Examination

Muscle Pain Questionnaire

Creatinine Kinase Laboratory Measurement

Creatinine Phosphokinase Laboratory Measurement

Creatinine Laboratory Measurement

Dermatologic Health
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Health Dimension NHANES Measurements Method Of Measurement

Dermatology Questionnaire, Physical Examination

Ocular Health

Vision Questionnaire, Physical Examination

Retinal Photography Physical Examination

Visual Fields Physical Examination

Oral Health

Oral Health Questionnaire

Dental Fluorosis Imaging Physical Examination

Auditory Health

Audiometry Physical Examination

Hearing/Audiometry Questionnaire

Respiratory Health

Respiratory Health and Disease Questionnaire

Exhaled Nitric Oxide Laboratory Measurement

Spirometry Laboratory Measurement

Cardiovascular Health

Cardiovascular Disease Questionnaire

Cardiovascular Fitness Physical Examination

Blood Pressure Questionnaire, Physical Examination

Peripheral Vascular Disease Physical Examination

Fibrinogen Laboratory Measurement

Thyroid Function

Thyroid Hormones Laboratory Measurement

Parathyroid Hormone Laboratory Measurement

Gastrointestinal Health

Bowel Health Questionnaire

Celiac Disease Laboratory Measurement

Renal and Urinary Health

Urology Questionnaire

Kidney Conditions Questionnaire

Urine Flow Rate Calculations Laboratory Measurement

Urine Osmolality Laboratory Measurement

Chemistry Panel Laboratory Measurement

Prostrate Conditions Questionnaire

Prostrate Health Specific Antigens Laboratory Measurement

Hepatobiliary System

Chemistry Panel Laboratory Measurement

Albumin Laboratory Measurement

C-Reactive Protein Laboratory Measurement

Reproductive Health and Gonadal Hormone Function

Reproductive Health Questionnaire

Pubertal Maturation Questionnaire
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Health Dimension NHANES Measurements Method Of Measurement

Testosterone Laboratory Measurement

Sex Hormone Binding Globulin Laboratory Measurement

Follicle Stimulating Hormone Laboratory Measurement

Luteinizing Hormone Laboratory Measurement

Immune System

Complete Blood Count Laboratory Measurement

White Blood Count Laboratory Measurement

Deoxyribonucleic Acid Laboratory Measurement

Sleep

Sleep Disorders Questionnaire

Arthritis

Arthritis Body Measures Physical Examination

Inflammatory Arthritis Pain Questionnaire

Arthritis Biomarkers Laboratory Measurement

Glucose Metabolism/Diabetes

Diabetes Questionnaire

Oral Glucose Tolerance Laboratory Measurement

Glucose Laboratory Measurement

Insulin/C-peptide Laboratory Measurement

Glycohemoglobin Laboratory Measurement

Peripheral Neuropathy Physical Examination

Dyslipidemia

Questionnaire, Laboratory

Cholesterol Measurement

High Density Lipoprotein Laboratory Measurement

Low Density Lipoprotein Laboratory Measurement

Triglycerides Laboratory Measurement

Lipoprotein(a) Laboratory Measurement

Apolipoprotein Laboratory Measurement

Allergy

Allergy Questionnaire

Immunoglobulin E-allergens Laboratory Measurement

Nutritional Biomarkers

Erythrocyte Protoporphyrin Laboratory Measurement

Ferritin Laboratory Measurement

Total Iron Binding Capacity/Transferrin 
Saturation

Laboratory Measurement

Transferrin Receptor Laboratory Measurement

Methylmalonic Acid Laboratory Measurement

Vitamin A Laboratory Measurement

Vitamin E Laboratory Measurement

Carotenoids Laboratory Measurement
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Health Dimension NHANES Measurements Method Of Measurement

Vitamin B6 Laboratory Measurement

Vitamin B12 Laboratory Measurement

Vitamin C Laboratory Measurement

Vitamin D Laboratory Measurement

Vestibular Function

Balance Questionnaire, Physical Examination

a-
Some measurements are assessed using multiple modalities. For instance, diabetes can be assessed by questionnaire and laboratory-based 

measurements.
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