Supplementary Materials for

Direct arene $\mathbf{C}-\mathbf{H}$ fluorination with ${ }^{18} \mathrm{~F}^{-}$via organic photoredox catalysis

Wei Chen*, Zeng Huang*, Nicholas E. S. Tay*, Benjamin Giglio, Mengzhe Wang, Hui Wang, Zhanhong Wu, David A. Nicewicz \dagger, Zibo Li \dagger
*These authors contributed equally to this work.
\dagger Corresponding author. Email: nicewicz@unc.edu (D.A.N.); ziboli@med.unc.edu (Z.L.)

Published 21 June 2019, Science 364, 1170 (2019)
DOI: 10.1126/science.aav7019
This PDF file includes:
Materials and Methods
Figs. S1 to S101
Tables S1 to S58
Spectral Data
Radio-HPLC Traces
Captions for Movies S1 to S3
References
Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/364/6446/1170/suppl/DC1)

Movies S1 to S3 (.mp4)

Table of Contents

1. Materials and Methods S3
1.1 General reagent information
1.2 General analytical information
1.3 Photoreactor configuration (LEDs)
1.4 Radiochemistry
2. Optimization Studies for Arene C-H ${ }^{19}$ F-fluorination S6
3. Experimental Procedures: Catalyst and Substrate Synthesis S73.1 Preparation of acridinium photocatalysts3.2 Preparation of arene substrates (S2-S23)3.3 Preparation of aromatic fluorinated standards (7, 12, 13, 14, 17, 19, 20 [2-F], 21-24, 26-37) and corresponding synthetic intermediates (i-1-i-32)
4. Synthesis and Analysis of Fluorinated HPLC Standards for Arene C-H Fluorination S54
4.1 General C-H fluorination procedure for CsF as the fluorine source
4.2 General C-H fluorination procedure for TBAF as the fluorine source
4.3 General HPLC condition
5. Experimental Procedures for Radiochemistry S565.1 Synthesis of [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF, $\left[{ }^{18} \mathrm{~F}\right] \mathrm{CsF},\left[{ }^{18} \mathrm{~F}\right] \mathrm{KF}, \mathrm{K}\left[{ }^{18} \mathrm{~F}\right] F$-kryptofix5.2 General HPLC conditions5.3 General procedure for the synthesis of ${ }^{18} \mathrm{~F}$-fluoroarenes5.4 Comparision of isolation, radio-TLC and radio-HPLC yields for the radiofluorination ofdiphenyl ether.
5.5 Summary of reaction optimization for arene radiofluorination
5.6 Radio-HPLC analysis and characterization for ${ }^{18} \mathrm{~F}$-radiolabeled arenes
6. Positron Emission Tomography (PET) and Computed Tomography (CT) Imaging S121 Studies
6.1 Ex vivo PET/CT imaging of mouse ear inflammation models
6.2 In vivo PET/CT imaging of mouse tumor models
7. Mechanism Proposal and Computational DataS125
8. Spectra Data for New Compounds (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19}$ F NMR; IR) S129
9. Movie Captions S320
10. References S321

1. Materials and Methods

1.1 General Reagent Information

Commercially available reagents were purchased from Sigma-Aldrich, Acros, Alfa Aesar, or TCI, Matrix Scientific, Combi-Blocks, Oakwood Chemical, Chem Impex International, and Fisher Scientific and were used as received unless otherwise noted. Diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), dichloromethane (DCM), tetrahydrofuran (THF), toluene (PhMe), and dimethylformamide (DMF) were dried by passing through activated alumina under nitrogen prior to use. Other common solvents and chemical reagents were purified by standard published methods as noted or used as received. All catalyst and substrate syntheses were run under a nitrogen atmosphere unless specified otherwise.

The following compounds employed as reagents in the photoredox-catalyzed $\mathrm{C}-\mathrm{H}$ (radio)fluorination were obtained from commercial vendors and used as received: diphenyl ether, biphenyl, naphthalene, 2-bromoansiole, 2-chloroanisole, 2-methoxyacetophenone, 2methoxybenzonitrile, o-anisaldehyde, p-anisaldehyde, 4-methoxyacetophenone, 4methoxybenzophenone, 3-methoxyacetophenone, mesitylene, 3,5-dimethoxypyridine, 2-chloro-5-fluoro-6-methoxyquinoline, 2-methylbenzo[d]oxazole, clofibrate, and fenofibrate.

1.2 General Analytical Information

Proton, carbon, and fluorine nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR) were recorded on a Bruker Avance $400\left({ }^{1} \mathrm{H}\right.$ NMR at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 100 MHz , and ${ }^{19} \mathrm{~F}$ NMR at 376 MHz), a Bruker Avance III $600\left({ }^{1} \mathrm{H}\right.$ NMR at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 151 MHz , and ${ }^{19} \mathrm{~F}$ NMR at 565 MHz) spectrometer, an Inova $700 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR at $700 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 176 MHz), and a Bruker Avance III HD $850\left({ }^{1} \mathrm{H}\right.$ NMR at $850 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 214 MHz$)$. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the solvent (${ }^{1} \mathrm{H}$ NMR: CHCl_{3} at $7.26 \mathrm{ppm}, \mathrm{MeOD}$ at 3.31 ppm , acetone- d_{6} at 2.05 ppm and DMSO- d_{6} at 2.50 ppm$)$. Chemical shifts for carbon signals are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent peak (${ }^{13} \mathrm{C}$ NMR: CDCl_{3} at 77.16 ppm , MeOD at 49.00 ppm , acetone $-d_{6}$ at $29.84 \mathrm{ppm}\left(\mathrm{CD}_{3}\right)$ and at $206.46(\mathrm{C}=0)$, and DMSO- d_{6} at 39.52 $\mathrm{ppm})$. Chemical shifts for fluorine signals are reported in parts per million downfield from tetramethylsilane and are referenced to hexafluorobenzene, which was added as an internal standard. Solvent-dependent ${ }^{19} \mathrm{~F}$ values of hexafluorobenzene are obtained from Togni et al. (48) [${ }^{19} \mathrm{~F}$ NMR: $\mathrm{C}_{6} \mathrm{~F}_{6}\left(\mathrm{CDCl}_{3}\right)$ at $-161.64 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{~F}_{6}(\mathrm{MeOD})$ at $-165.37 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{~F}_{6}$ (acetone- d_{6}) at -164.67 ppm , $\mathrm{C}_{6} \mathrm{~F}_{6}\left(\mathrm{DMSO}-d_{6}\right)$ at $\left.-162.45 \mathrm{ppm}\right] .{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR data are reported as follows: chemical shift, multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, hept = heptet, $d d=$ doublet of doublets, ddd = doublet of doublet of doublets, $m=$ multiplet, $b s=$ broad singlet, app $=$ apparent), coupling constants (Hz), and integration. Attenuated total reflectance FTIR spectra were recorded on a Bruker Alpha FTIR Spectrometer with the Plantinum ATR attachment. Spectra were averaged over 24 scans with a spectral resolution of $4 \mathrm{~cm}^{-1}$. Data processing was performed using Bruker's OPUS spectroscopy software. High Resolution Mass Spectra (HRMS) were obtained via direct infusion using a Thermo LTQ FT mass spectrometer with positive mode electrospray ionization, via gas chromatography using an Exactive GC gas chromatographic system in positive mode chemical ionization, equipped with a Trace 1300 SSL injector and TriPlus RSH autosampler, or via liquid chromatography using Waters Acquity Hclass liquid chromatograph system coupled to a Thermo LTQ FT mass spectrometer with positive mode electrospray ionization. The instrumental control, data acquisition and data processing for HRMS were performed with Thermo's Xcalibur and TraceFinder software packages. Thin layer chromatography (TLC) was performed on SiliaPlate $250 \mu \mathrm{~m}$ thick silica gel plates provided by Silicycle or on Alumina N $200 \mu \mathrm{~m}$ thick aluminium oxide plates (polyester backed) provided by Sorbtech. Visualization was accomplished with short wave UV light (254 nm), or development with iodine, ninhydrin solution, cerium ammonium molybdate or potassium permanganate solution followed by heating. Column chromatography was performed using SiliaFlash P60 silica gel ($40-63 \mu \mathrm{~m}$) purchased from Silicycle or using Acros Organics aluminium oxide (basic, Brockmann I, 50-200 $\mu \mathrm{m}, 60 \AA$). Reverse-phase flash
liquid chromatography was performed using a Biotage ${ }^{\circledR}$ Isolera One instrument with a Biotage ${ }^{\circledR}$ SNAP Ultra C18 cartridge (30 g). Unless noted all reactions were run under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. Irradiation of photochemical reactions was carried out using a PAR38 Royal Blue aquarium LED lamp (Model \#6851) fabricated with high-power Cree XR-E LEDs as purchased from Ecoxotic (www.ecoxotic.com) with standard borosilicate glass vials purchased from Fischer Scientific. For all photolyses, reactions were stirred using a PTFE coated magnetic stir bar on a magnetic stir plate. GC quantitation experiments were performed on an Agilent 6850 series instrument equipped with a split- mode capillary injection system and Agilent 5973 network mass spec detector (MSD). Yield refers to isolated yield of analytically pure material unless otherwise noted. GC yields were determined using 3-bromotoluene as an internal standard. All other reagents were obtained from commercial sources and used without further purification unless otherwise noted.

1.3 Photoreactor Configuration (LEDs)

Reactions were irradiated using a simple photoreactor consisting of two Par38 Royal Blue Aquarium LED lamps (Model \#6851) is shown in which one reaction (2 dram vial) is irradiated with a foil barrier preventing irradiation by two lamps. In order to ensure that the reactions are run near room temperature, a simple cooling fan was installed perpendicular to the reactor to aid in heat dissipation (generated from both nonradiative decay pathways of the excited state catalysts and the heat generated from high power LEDs). The vial was positioned on a stir plate approximately $3-4 \mathrm{~cm}$ from a Par38 LED lamp supplying blue light $(\lambda=440-460 \mathrm{~nm})$. An equilibrium temperature of $33^{\circ} \mathrm{C}$ was measured with a standard alcohol thermometer. While a number of other blue LED sources are effective, we have found that LED emitters with high luminous flux and narrow viewing angle give the best results. Reaction optimizations were performed on a 16 -well proprietary photoreactor with the following parameters.

Basic Parameters:

Input: AC $100-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
Output: 12 W
Light-emitting angle: 45°
Pulse current: 700 mA
Lumens (LM): 130-140 LM
Wavelength: 465-470 nm; Max wavelength: 467.5 nm
Working temperature: $-10-+60{ }^{\circ} \mathrm{C}$
LED lifetime : 100000 hours
Size: $20 \mathrm{~cm} * 20 \mathrm{~cm} * 20 \mathrm{~cm}$

Fig. S1. Side-on (top left) and top-down (top right) views of the simple photoreactor.

1.4. Radiochemistry

All chemicals are analytical grade and used without further purification. Ultrapure water was obtained from a Millipore MilliQ Gradient A10 system. Pre-conditioned Sep-PAK ${ }^{\circledR}$ light QMA cartridge were purchased form ABX Corporation, and were flushed with 10 ml of water before use. The 450 nm OEM blue diode laser used (OEM-SD-450, 450nm, the power rating is 3.5 W after fiber coupling). for the photochemical experiments was purchased from Changchun New Industries Optoelectronics Tech. Co., Ltd. A schematic of the reaction set-up is shown in section 5.3 (Fig. S3). Glass backed thin layer chromatography (TLC) plates coated with silica gel 60F254 were used for radio-TLC analysis and were purchased from EMD-Millipore.
[$\left.{ }^{18} \mathrm{~F}\right]$ Fluoride was produced via the ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{n}){ }^{18} \mathrm{~F}$ reaction by proton irradiation $(40 \mu \mathrm{~A}, 2-5 \mathrm{~min})$ of an $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ containing target in a GE PETTrace cyclotron. The [$\left.{ }^{18} \mathrm{~F}\right] f l u o r i d e ~(c a .1 .2-2.2 \mathrm{Ci}$) was delivered to the synthesis module in a bolus of $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ by stream of argon. The aqueous solution of [${ }^{18} \mathrm{~F}$]fluoride was passed through a QMA cartridge (water preconditioning) to trap [${ }^{18} \mathrm{~F}$]fluoride before elution into the reactor vessel with a aqueous solution of $20 \% \mathrm{w} / \mathrm{w}$ tetrabutylammonium bicarbonate (TBAB). This solution was azeotropically dried by heating the reaction vessel to $100{ }^{\circ} \mathrm{C}$ and drawing vacuum (ca. 1 kPa) for 5 min , followed by simultaneous vacuum draw and nitrogen stream for a further 6 minutes. The dried [${ }^{18} \mathrm{~F}$]TBAF was cooled to $50{ }^{\circ} \mathrm{C}$ before addition of anhydrous MeCN. The mixture was transferred out of the reactor under N_{2} pressure into a sterile vial to yield a solution of [${ }^{18} \mathrm{~F}$]TBAF (1.1-1.8 Ci , average $=1.5 \mathrm{Ci}$) in $\mathrm{MeCN} .10-100 \mu \mathrm{~L}$ aliquots of this solution were then used for manual methodology experiments.

Radio-TLC analysis was performed using a Bioscan AR 2000 Radio-TLC scanner (Ekert and Ziegler) ${ }^{18} \mathrm{~F}$ activity was counted using a CRC-25 PET detector from Capintec. Analytical reversed-phase highperformance liquid chromatography (HPLC) was accomplished on a SHIMADZU chromatography system (Model CBM-20A) and analyzed using LabSolutions software. The λ absorbance detector and the model 2200 scaler ratemeter radiation detector were added to the HPLC system. HPLC conditions are listed accordingly for each experiment (Section 5).

All radiochemical yields (RCY) quoted are decay corrected and are reported as isolated RCY other than Section 5.4. An aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis. The activity injected into HPLC was measured (this activity was denoted by a) and the time of injection was recorded. The fraction corresponding to radiolabeled product was collected and the activity was measured (this activity was denoted by β). The decay-corrected RCY was calculated by dividing the decay-corrected β by a. All RCY were calculated with respect to the starting ${ }^{18} \mathrm{~F}$ activity of the eluted fluoride. The identities of the ${ }^{18} \mathrm{~F}$-labeled compounds were confirmed by comparison to authentic ${ }^{19} \mathrm{~F}$ standards. The following fluorination standards were obtained from commercial vendors and used as received: 4-fluorophenoxybenzene (2), 4-fluorobiphenyl (3), 1-fluoronaphthalene (4), 2-bromo-4-fluoroanisole (5), 2-chloro-4-fluoroanisole (6), methyl 5-fluoro-2-methoxybenzoate (8), 1-(5-fluoro-2-methoxyphenyl)ethenone (9), 5-fluoro-2-methoxybenzonitrile (10), 5-fluoro-2methoxybenzaldehyde (11), 3-fluoro-4-methoxybenzaldehyde (15), 1-(3-fluoro-4methoxyphenyl)ethenone (16), methyl 3-fluoro-4-methoxybenzoate (18), 1-(4-fluoro-3methoxyphenyl)ethenone (20, [4-F]) and 2-fluoromesitylene (25). The preparation of aromatic fluorinated standards (7, 12, 13, 14, 17, 19, 20 [2-F], 21-24, 26-42) are found in section 3.3 .

2. Optimization Studies for Arene C-H ${ }^{\mathbf{1 9}} \mathbf{F}$-fluorination

Table S1: Selected optimization table for photoredox-catalyzed C-H fluorination

entry	additive	TEMPO eq.	fluoride source	solvent $[\mathrm{M}]^{\dagger}$	total yield** \ddagger
1	$\mathrm{NBU}_{4} \mathrm{HSO}_{4}$	0.20	sat. KF solution	DCE[0.10]	6\%
2	$\mathrm{NBU}_{4} \mathrm{Cl}$	0.20	sat. KF solution	DCE [0.10]	4\%
3	$\mathrm{NBU}_{4} \mathrm{BF}_{4}$	0.20	sat. KF solution	DCE [0.10]	3%
4	$\mathrm{NBU}_{4} \mathrm{PF}_{6}$	0.20	sat. KF solution	DCE [0.10]	0\%
5	none	0.20	sat. KF solution	DCE [0.10]	<1\%
6	$\mathrm{NBU}_{4} \mathrm{HSO}_{4}$	0.20	sat. KF solution	MeCN [0.10]	2%
7	$\mathrm{NBU}_{4} \mathrm{HSO}_{4}$	0.20	sat. KF solution	TFT [0.10]	0\%
8	$\mathrm{NBU}_{4} \mathrm{HSO}_{4}$	0.50	KF (10 eq.)	DCE [0.10]	9%
9	$\mathrm{NBU}_{4} \mathrm{HSO}_{4}$	0.50	CsF (10 eq.)	DCE [0.10]	12\%
10	$\mathrm{NBU}_{4} \mathrm{HSO}_{4}(0.50 \mathrm{eq})$	0.50	CsF (10 eq.)	DCE [0.10]	17\%

Reactions were performed using diphenyl ether (0.50 mmol), catalyst $\mathbf{\$ 1}$ (0.05 eq.) under O_{2}
*Yields determined by gas chromatography analysis using 3-bromotolvene as the internal standard \dagger DCE: 1,2 Dichloroethane; TFT: α, α, α Trifluorotoluene; MeCN: Acetonitrile
\ddagger Greater than 10:1 ratio of 4-fluoro product typically detected; 13:1 ratio detected for entry 10

Table S1. Optimization of photoredox-catalyzed C-H fluorination for diphenyl ether

3. Experimental Procedures: Catalyst and Substrate Synthesis

3.1 Preparation of Acridinium Photocatalysts

9-Mesityl-3,6-di-tert-butyl-10-phenylacridinium tetrafluoroborate (S1) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (23)

9-Mesityl-3,6-di-tert-butyl-10-phenylacridinium perchlorate (1) To a dry, clean roundbottomed flask was added 9-mesityl-3,6-di-tert-butyl-10-phenylacridinium tetrafluoroborate (150 mg , $0.262 \mathrm{mmol}, 1.0$ eq.), which was dissolved in 10 mL of dry acetone. Then an excess of sodium perchlorate (approximately 10-15 eq.) was added to the solution and the reaction was stirred for 2 h . After 2 h . the reaction was diluted with DCM (40 mL) and a formation of a precipitate was observed. This precipitate was dissolved in deionized $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and the two layers were separated. The aqueous layer was extracted with 20 mL DCM and the organic layers were combined and washed with brine. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting product (yelloworange amorphous solid) was then resuspended in dry diethyl ether and sonicated to yield a bright yellow solid which was collected by vacuum filtration ($150 \mathrm{mg}, 98 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.95(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 6 \mathrm{H})$, $7.41(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (176 MHz, $\mathbf{C D C l}_{3}$) $\delta 163.55,162.33,142.35,140.22,137.13,136.42,131.84,131.63$, $129.54,129.04,128.41,128.33,127.53,124.25,115.30,36.79,30.37,21.43,20.43$.

IR (thin film): 2956.5784, 2912.2719, 2871.2659, 1611.6495, 1575.68, 1455.0618, 1440.7732, 1098.8189, 1079.2542, 1059.5842, 1030.7769, 849.4037, 620.8047

HRMS (ESI): Calculated for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}(\mathrm{M}+)^{+}: 486.31553$; found: 486.31408 .

3.2 Preparation of Arene Substrates (S2-S27)

2-Methoxyphenyl trifluoromethanesulfonate (S2) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (49)

Methyl 2-methoxybenzoate (S3) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (50)

\mathbf{N}, \mathbf{N}-diethyl-2-methoxybenzamide (S4) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (51)

2'-Methoxy-[1,1'-biphenyl]-4-carbonitrile (S5) The title compound was prepared according to a published procedure (52); spectra data are in agreement with literature values. (53)

2-Chloro-2'-methoxy-1,1'-biphenyl (S6) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (52)

Methyl 4-methoxybenzoate (S7) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (54)

$\boldsymbol{N}, \boldsymbol{N}$-diethyl-4-methoxybenzamide (S8) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (55)

4-Ethyl-2-methoxyphenyl trifluoromethanesulfonate (S9) To a dry, clean round bottomed flask equipped with a stir bar was added 4-ethyl-2-methoxyphenol ($457 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and the solid was dissolved in 30 mL of DCM under N_{2}. The solution was cooled to $0^{\circ} \mathrm{C}$ before pyridine (0.48 $\mathrm{mL}, 6.00 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added to the solution. Trifluoromethanesulfonic anhydride (0.61 mL , $3.60 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added to the reaction dropwise and the solution was stirred for 15 minutes before being warmed to room temperature. The reaction was then run for 2 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10% EtOAc) to yield 4-ethyl-2methoxyphenyl trifluoromethanesulfonate as a yellow oil ($810 \mathrm{mg}, 95 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.12(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dt}, \mathrm{J}=8.3$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.66(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 151.21,146.11,136.92,122.16,120.15,118.91(q, J=320.5 \mathrm{~Hz})$, 112.84, 56.16, 28.98, 15.46.
${ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-73.75$.
HRMS (ESI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 285.03989; found: 285.04028.

Tert-butyl (4-hydroxy-3-methoxybenzyl)carbamate (S10) was prepared according to a published procedure; spectra data are in agreement with literature values. (56)

4-(((Tert-butoxycarbonyl)amino)methyl)-2-methoxyphenyl trifluoromethanesulfonate (S11) Tert-butyl (4-hydroxy-3-methoxybenzyl)carbamate ($0.834 \mathrm{~g}, 3.29 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added to a dry, clean round bottomed flask equipped with a stir bar and dissolved in 30 mL of DCM under N_{2}. The solution was cooled to $0^{\circ} \mathrm{C}$ before pyridine ($0.53 \mathrm{~mL}, 6.59 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added to the solution. Trifluoromethanesulfonic anhydride ($0.67 \mathrm{~mL}, 4.00 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added to the reaction dropwise and the solution was stirred for 15 minutes before being warmed to room temperature. The reaction was then run for 2 h . before being quenched with DI water. The reaction
was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10 to 20\% EtOAc) to yield 4-(((Tert-butoxycarbonyl)amino)-methyl)-2methoxyphenyl trifluoromethanesulfonate as a white solid (1.15 g, 91\%).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{dd}, \mathrm{J}=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta 156.06,151.56,141.03,137.92,122.53,119.56,118.85$ ($\mathrm{q}, \mathrm{J}=$ $320.5 \mathrm{~Hz}), 112.28,80.03,56.27,44.34,28.48$.
${ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-73.78$.
HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}$: 408.06993; found: 408.06909 .

2-Methoxy-4-(nonanamidomethyl)phenyl trifluoromethanesulfonate (S12) To a dry, clean round bottomed flask equipped with a stir bar was added nonivamide ($354.0 \mathrm{mg}, 1.21 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and the solid was dissolved in 12 mL of DCM under N_{2}. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ before triethylamine ($0.18 \mathrm{~mL}, 1.33 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and 1,1,1-trifluoro-N-phenyl-N((trifluoromethyl)sulfonyl)methanesulfonamide ($440 \mathrm{mg}, 1.23 \mathrm{mmol}, 1.02 \mathrm{eq}$.) were sequentially added. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes before being warmed to room temperature. The reaction was then run for 4 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (40% EtOAc) to yield 2-methoxy-4-(nonanamidomethyl) phenyl trifluoromethanesulfonate as an offwhite solid ($439 \mathrm{mg}, 86 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz} \mathbf{C D C l}_{3}\right) \delta 7.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, \mathrm{J}=8.3$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{p}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.18(\mathrm{~m}, 10 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.40,151.61,140.46,138.01,122.59,119.93,118.84$ ($\mathrm{q}, \mathrm{J}=$ 320.4 Hz), 112.72, 56.30, 43.18, 36.86, 31.93, 29.44, 29.43, 29.28, 25.88, 22.75, 14.19.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-73.77$.

HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 448.13762$; found: 448.13638 .

2-methoxy-4-(3-oxobutyl)phenyl trifluoromethanesulfonate (S13) (NT-06-180) To a dry, clean round bottomed flask equipped with a stir bar was added zingerone ($971.0 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0$ eq.) and the solid was dissolved in 50 mL of DCM under N_{2}. The solution was cooled to $0^{\circ} \mathrm{C}$ before
triethylamine ($0.76 \mathrm{~mL}, 5.50 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and 1,1,1-trifluoro-N-phenyl-N-
((trifluoromethyl)sulfonyl)methanesulfonamide ($440 \mathrm{mg}, 1.23 \mathrm{mmol}, 1.02 \mathrm{eq}$.) were sequentially added. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes before being warmed to room temperature. The reaction was then run for 4 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 20 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (40% to 50% EtOAc) to yield 2-methoxy-4-(3-oxobutyl)phenyl trifluoromethanesulfonate as an cream-colored liquid ($1.39 \mathrm{~g}, 85 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, \mathrm{J}=8.3$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 207.25,151.14,143.08,137.04,122.18,120.52,118.75$ ($\mathrm{q}, \mathrm{J}=$ $320.3 \mathrm{~Hz})$, 113.40, 56.04, 44.63, 29.93, 29.42.
${ }^{19}$ F NMR ($565 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-73.67$.
HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 327.05203$; found: 327.05085

1,3-dihexylquinazoline-2,4(1H,3H)-dione (S14) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (23)

1-methyl-1H-indazole (S15) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (23)

2-chloro-1-methyl-1H-benzo[d]imidazole (S16) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (57)

Methyl 2-(3-phenoxyphenyl)propanoate (S17) The title compound was prepared according to a published procedure; spectral data are in agreement with literature values. (58)

Methyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (S18) The title compound was prepared according to a published procedure; spectral data are in agreement with literature values. (59)

3-Methoxy-4-((triisopropylsilyl)oxy)benzaldehyde (S19) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (60)

Methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(3-methoxy-4-

((triisopropylsilyI)oxy)phenyl)acrylate (S20) Methyl 2-((tert-butoxycarbonyl)amino)-2-
(dimethoxyphosphoryl)acetate ($2.58 \mathrm{~g}, 8.67 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added to a flame dried round bottomed flask equipped with a stir bar and dissolved in 10 mL of dry DCM under N_{2}. Then 1,8-diazabicyclo[5.4.0]undec-7-ene ($1.09 \mathrm{~mL}, 7.23 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added via syringe and the mixture was stirred at room temperature for 15 minutes. While the phosphonate ester solution was stirring, a solution of 3-methoxy-4-((triisopropylsilyl)oxy)benzaldehyde ($2.23 \mathrm{~g}, 7.23 \mathrm{mmol}, 1.0$ eq.) in 10 mL DCM was prepared. This benzaldehyde solution was added to the phosphonate ester solution dropwise at room temperature. Reaction conversion was monitored via TLC (reaction takes approximately 4 h .) and at the end of the reaction, the solution was concentrated and loaded onto Celite. The crude reaction mixture was then purified via flash chromatography (10 to 20% EtOAc) to yield methyl 2-((tert-butoxycarbonyl)-amino)-3-(3-methoxy-4-((triisopropylsilyl)oxy)phenyl)propanoate as a white solid ($2.00 \mathrm{~g}, 58 \%$)
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 7.20(\mathrm{bs}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.25 (bs, 1H), 3.77 (s, 3H), 3.75 (s, 3H), 1.36 (bs, 9H), $1.25-1.16$ (m, 3H), 1.05 (d, J = $7.6 \mathrm{~Hz}, 18 \mathrm{H}$).
${ }^{13}$ C NMR ($\left.151 ~ M H z, C D C l_{3}\right) \delta 166.31,153.28,150.58,146.97,132.02,127.36,123.85,122.58$, 120.21, 113.29, 80.56, 55.21, 52.30, 28.09, 17.83, 12.86.

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 480.27760$; found: 480.27620 .

Methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(3-methoxy-4-
((triisopropylsilyl)oxy)phenyl)acrylate (S21) To a dry, clean round bottomed flask equipped with
a stir bar was added methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(3-methoxy-4-
((triisopropylsilyl)oxy)phenyl)acrylate ($2.30 \mathrm{~g}, 4.79 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 60 mL of a THF:EtOH (2:1) solution. 10% Palladium on carbon ($153.0 \mathrm{mg}, 1.44 \mathrm{mmol}, 0.30 \mathrm{eq}$.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude mixture was then purified by flash chromatography (10\% EtOAc:Hex) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methoxy-4-((triisopropylsilyl)oxy)phenyl)propanoate as a white solid ($2.26 \mathrm{~g}, 98 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{dd}, \mathrm{J}=8.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.67(\mathrm{bs}), 4.53(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.34(\mathrm{bs}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.03-2.96(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.27-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}$, $J=7.4 \mathrm{~Hz}, 18 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.151 ~ M H z, \mathbf{C D C l}_{3}\right) \delta 172.66,155.22,150.94,144.70,129.11,121.50,120.53,113.20$, 80.00, 55.55, 54.69, 52.26, 38.21, 28.46, 18.03, 12.98.

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}: 504.27522$; found: 504.27398.

Methyl 2-((tert-butoxycarbonyl)amino)-3-(4-hydroxy-3-methoxyphenyl)propanoate (S22) Methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methoxy-4-((triisopropylsilyl)oxy)phenyl)propanoate $(2.00 \mathrm{~g}, 4.15 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was added to a clean, dry round bottomed flask equipped with a stir bar$ and the solid was dissolved in 35 mL of THF under N_{2}. The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ before a solution of tetrabutylammonium fluoride (1.0 M in $\mathrm{THF}, 4.6 \mathrm{~mL}, 4.57 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise to the reaction mixture. The reaction was then warmed to room temperature and allowed to stir for 2 h . At the end of the reaction, the reaction was quenched with $15 \mathrm{~mL} \mathrm{NH}_{4} \mathrm{Cl}$ solution before being diluted with EtOAc. The layers were separated and the aqueous layer was extracted twice with 10 mL EtOAc. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (40-50\% EtOAc:Hex) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(4-hydroxy-3-methoxyphenyl)propanoate as a white solid ($1.25 \mathrm{~g}, 93 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.82(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.71(\mathrm{bs}), 4.54(\mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.34(\mathrm{bs}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{qd}, J=14.0,6.0 \mathrm{~Hz}, 2 \mathrm{H})+$ rotamer at $2.88(\mathrm{bs}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 172.59,155.23,146.61,144.83,127.86,122.22,114.51,111.77$, 80.06, 55.97, 54.69, 52.33, 38.13, 28.45.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{6}(\mathrm{M}+\mathrm{Na})^{+}: 348.14179$; found: 348.14087 .

Methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methoxy-4

(((trifluoromethyl)sulfonyl)oxy)phenyl)-propanoate (S23) To a dry, clean round bottomed flask equipped with a stir bar was added methyl 2-((tert-butoxycarbonyl)amino)-3-(4-hydroxy-3-
methoxyphenyl)propanoate ($1.25 \mathrm{~g}, 3.84 \mathrm{mmol}, 1.0$ eq.) and the solid was dissolved in 30 mL of DCM under N_{2}. The solution was cooled to $0^{\circ} \mathrm{C}$ before pyridine ($0.62 \mathrm{~mL}, 7.68 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added to the solution. Trifluoromethanesulfonic anhydride ($0.78 \mathrm{~mL}, 4.61 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added to the reaction dropwise and the solution was stirred for 15 minutes before being warmed to room temperature. The reaction was then run for 2 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10\% EtOAc) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methoxy-4 (((trifluoromethyl)sulfonyl)oxy)phenyl)-propanoate as a white solid (1.67 g, 95\%).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right){ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.86(\mathrm{bs}), 4.60(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H})+$ rotamer at $4.38(\mathrm{bs}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=14.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=$ $14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $2.91(\mathrm{bs}), 1.40(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.10,155.09,151.31,138.11,137.84,122.40,121.71,118.83$ (q, J $=320.3 \mathrm{~Hz}$), 114.18, 80.29, 56.24, 54.28, 52.47, 38.46, 28.36 .
${ }^{19}$ F NMR ($376 \mathbf{~ M H z} \mathbf{C D C l}_{3}$) $\delta-73.76$.

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 480.09106$; found: 480.08988 .

Methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(3-methoxyphenyl)acrylate (S24)

Methyl 2-((tert-butoxycarbonyl)amino)-2-(dimethoxyphosphoryl)acetate ($2.500 \mathrm{~g}, 8.40 \mathrm{mmol}, 1.2$ eq.) was added to a flame dried round bottomed flask equipped with a stir bar and dissolved in 15 mL of dry DCM under N_{2}. Then 1,8-diazabicyclo[5.4.0]undec-7-ene ($1.06 \mathrm{~mL}, 7.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added via syringe and the mixture was stirred at room temperature for 15 minutes. While the phosphonate ester solution was stirring, a solution of 2-methoxybenzaldehyde ($0.9530 \mathrm{~g}, 7.00 \mathrm{mmol}$, 1.0 eq.) in 15 mL DCM was prepared. This benzaldehyde solution was added to the phosphonate ester solution dropwise at room temperature. Reaction conversion was monitored via TLC (reaction takes approximately 4 h.) and at the end of the reaction, the solution was concentrated and loaded onto Celite. The crude reaction mixture was then purified via flash chromatography (20 to 30% EtOAc) to yield methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(3-methoxyphenyl)acrylate as a white solid (1.84 g, 86\%)
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.52(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{bs}, 1 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ ($\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}$) , $6.92(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{bs}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 10 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($151 \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 166.25,157.13,152.87,130.42,129.80,125.70,123.76,123.17$, 120.65, 111.15, 80.77, 55.77, 52.58, 28.16.

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 330.13122$; found: 330.13130 .

Methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methoxyphenyl)propanoate (S25)

To a dry, clean round bottomed flask equipped with a stir bar was added methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(3-methoxyphenyl)acrylate ($1.84 \mathrm{~g}, 5.99 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 60 mL of a THF:EtOH (2:1) solution. 10% Palladium on carbon ($191 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.10$ eq.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude mixture was then purified by flash chromatography (10 to 20% EtOAc:Hex) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(3-methoxyphenyl)propanoate as a white solid ($1.75 \mathrm{~g}, 95 \%$). The spectra data are in agreement with literature values. (61)

Methyl (Z)-3-([1,1'-biphenyl]-4-yl)-2-((tert-butoxycarbonyl)amino)acrylate (S26) Methyl 2-((tert-butoxycarbonyl)amino)-2-(dimethoxyphosphoryl)acetate ($1.783 \mathrm{~g}, 6.00 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added to a flame dried round bottomed flask equipped with a stir bar and dissolved in 15 mL of dry DCM under N_{2}. Then 1,8 -diazabicyclo[5.4.0]undec-7-ene ($0.75 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ eq.) was added via syringe and the mixture was stirred at room temperature for 15 minutes. While the phosphonate ester solution was stirring, a solution of biphenyl-4-carboxaldehyde ($0.9111 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 15 mL DCM was prepared. This benzaldehyde solution was added to the phosphonate ester solution dropwise at room temperature. Reaction conversion was monitored via TLC (reaction takes approximately 4 h .) and at the end of the reaction, the solution was concentrated and loaded onto Celite. The crude reaction mixture was then purified via flash chromatography (20 to $30 \% \mathrm{EtOAc}$) to yield methyl (Z)-3-([1,1'-biphenyl]-4-yl)-2-((tert-butoxycarbonyl)amino)acrylate as a white solid ($1.56 \mathrm{~g}, 88 \%$). The spectra data are in agreement with literature values. (62)

Methyl 3-([1,1'-biphenyl]-4-yl)-2-((tert-butoxycarbonyl)amino)propanoate (S27) To a dry, clean round bottomed flask equipped with a stir bar was added methyl (Z)-3-([1,1'-biphenyl]-4-yl)-2-((tert-butoxycarbonyl)amino)acrylate ($1.55 \mathrm{~g}, 4.39 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 20 mL of a THF:EtOH (3:1) solution. 10% Palladium on carbon ($93.3 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.10 \mathrm{eq}$.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude mixture was then purified by flash chromatography (10 to $20 \% \mathrm{EtOAc}: \mathrm{Hex}$) to yield methyl 3-([1,1'-biphenyl]-4-yl)-2-((tert-butoxycarbonyl)amino)propanoate as a white solid ($1.34 \mathrm{~g}, 97 \%$). The spectra data are in agreement with literature values. (63)

3.3 Preparation of aromatic fluorinated standards (7, 12, 13, 14, 17, 19, 20 [2F], 21-24, 26-42) and corresponding synthetic intermediates (i-1 - i-39)

The following fluorination standards were obtained from commercial vendors and used as received: 4fluorophenoxybenzene (2), 4-fluorobiphenyl (3), 1-fluoronaphthalene (4), 2-bromo-4-fluoroanisole (5), 2-chloro-4-fluoroanisole (6), methyl 5-fluoro-2-methoxybenzoate (8), 1-(5-fluoro-2methoxyphenyl)ethenone (9), 5-fluoro-2-methoxybenzonitrile (10), 5-fluoro-2-methoxybenzaldehyde
(11), 3-fluoro-4-methoxybenzaldehyde (15), 1-(3-fluoro-4-methoxyphenyl)ethenone (16), methyl 3-fluoro-4-methoxybenzoate (18), 1-(4-fluoro-3-methoxyphenyl)ethenone (20, [4-F]) and 2fluoromesitylene (25).

General Method A (Synthesis of $\mathbf{2 6}$ and 27)

To a clean, dry 2 dram vial containing a Teflon-coated magnetic stir bar was added 380.0 mg of cesium fluoride ($2.50 \mathrm{mmol}, 10$ eq.) under an inert atmosphere. The vial was then removed from the inert atmosphere and a series of reagents were added: 0.0125 mmol of $\mathbf{S 1}$ (0.05 eq .), tetrabutylammonium hydrogensulfate ($2.50 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 2,2,6,6-tetramethyl-1-piperidinyloxy ($0.125 \mathrm{mmol}, 0.50 \mathrm{eq}$.$) , and arene (0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The reagent mixture was then dissolved in solvent ($2.5 \mathrm{~mL}, 0.1 \mathrm{M}$) and DI water ($0.25 \mathrm{~mL}, 1.0 \mathrm{M}$) was subsequently added. The vial was then sealed with a Teflon-lined septum screw cap. The septum was pierced with a disposable steel needle connected to a balloon containing positive oxygen pressure. A vent needle was inserted and the reaction medium was sparged for 10 minutes by bubbling oxygen through the mixture. The vent needle was removed and the positive oxygen pressure was maintained. The vial was positioned on a stir plate approximately $3-4 \mathrm{~cm}$ from a Par38 LED lamp supplying blue light ($\lambda=440-460 \mathrm{~nm}$) and irradiated for a designated time. The crude reaction mixture was then concentrated in vacuo and purified by reverse-phase flash liquid chromatography (conditions noted in each entry).

5-Fluoro-2-methoxyphenyl trifluoromethanesulfonate (7) 5-fluoro-2-methoxyphenol ($0.426 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.0$ eq.) was added to a dry, clean round bottomed flask equipped with a stir bar and dissolved in 20 mL of DCM under N_{2}. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ before pyridine (0.48 $\mathrm{mL}, 6.00 \mathrm{mmol}, 2.0$ eq.) was added to the solution. Trifluoromethanesulfonic anhydride (0.60 mL , $3.60 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) was then added to the reaction dropwise and the solution was stirred for 15$ minutes before being warmed to room temperature. The reaction was then run for 2 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM $(10 \mathrm{~mL})$ and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10 to 20% EtOAc) to yield 5-fluoro-2methoxyphenyl trifluoromethanesulfonate as a yellow oil ($757 \mathrm{mg}, 92 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05$ (ddd, $\left.J=9.1,7.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.02-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 155.90(\mathrm{~d}, \mathrm{~J}=243.1 \mathrm{~Hz}), 148.30(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 138.30(\mathrm{~d}, \mathrm{~J}=11.0$ $\mathrm{Hz}), 118.87(\mathrm{q}, J=320.3 \mathrm{~Hz}), 115.68(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}), 113.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 110.81(\mathrm{~d}, J=26.9$ $\mathrm{Hz}), 56.68$.
${ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-73.68,-120.14$ (td, $J=7.8,5.1 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M})^{+}: 273.9923$; found: 273.9997 .

\mathbf{N}, \mathbf{N}-diethyl-5-fluoro-2-methoxybenzamide (12) To a clean, dry round bottomed flask equipped with a stir bar was added 5 -fluoro-2-methoxybenzoic acid ($851 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The solid was dissolved in PhMe (10 mL) before a catalytic amount of DMF ($19.4 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 0.05 \mathrm{eq}$.) and thionyl chloride ($0.73 \mathrm{~mL}, 10.0 \mathrm{mmol}, 2.0$ eq.) was added. The reaction was allowed to stir for 2 h . before being concentrated under reduced pressure to yield the acid chloride as a pale yellow solid. The crude product was then dissolved in 10 mL of DCM under N_{2} and cooled to $0^{\circ} \mathrm{C}$. Triethylamine (1.74 $\mathrm{mL}, 12.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and diethylamine ($0.67 \mathrm{~mL}, 6.5 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were sequentially added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . before warming up to room temperature, where it was stirred further for an additional hour. At the end of the reaction, the mixture was quenched with 10 mL dilute acid (3 N HCl solution) and the layers were separated. The aqueous layer was extracted with $2 \times 10 \mathrm{~mL}$ of DCM and the organic layers were combined. The organic layers were washed sequentially with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield a yellow liquid. The crude product was then purified by flash chromatography ($50 \% \mathrm{EtOAc}$:Hex) to yield N, N-diethyl-5-fluoro-2-methoxybenzamide as a pale yellow liquid ($1.01 \mathrm{~g}, 89 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.96$ (ddd, $\left.J=9.1,8.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.87(\mathrm{dd}, \mathrm{J}=8.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.80(\mathrm{dd}, \mathrm{J}=9.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 167.24(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}), 156.81(\mathrm{~d}, \mathrm{~J}=240.3 \mathrm{~Hz}), 151.35(\mathrm{~d}, \mathrm{~J}=2.1$ $\mathrm{Hz}), 128.03(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}), 115.91(\mathrm{~d}, \mathrm{~J}=22.8 \mathrm{~Hz}), 114.45(\mathrm{~d}, \mathrm{~J}=24.4 \mathrm{~Hz}), 112.18(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz})$, 56.14, 42.79, 38.91, 13.93, 12.81.
${ }^{9}$ F NMR (376 MHz, CDCl ${ }_{3}$) $\delta-123.19(t d, J=8.0,4.1 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 226.1243; found: 226.1232.

5'-Fluoro-2'-methoxy-[1,1'-biphenyl]-4-carbonitrile (13) To a dry, clean 3-neck round bottomed flask equipped with a stir bar and a condenser was added (5 -fluoro-2-
methoxyphenyl) boronic acid ($357 \mathrm{mg}, 2.10 \mathrm{mmol}, 1.05 \mathrm{eq}$), potassium carbonate ($829 \mathrm{mg}, 6.00$ mmol, 3.0 eq.) and 4 -bromobenzonitrile ($364 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The flask was then transferred to a glovebox $\left(\mathrm{N}_{2}\right)$, where tetrakis(triphenylphosphine)-palladium(0) ($231.1 \mathrm{mg}, 0.200 \mathrm{mmol}, 0.10$ eq.) was added to the mixture. The flask was then sealed with rubber septa, brought out of the glovebox and placed under positive N_{2} pressure. 1,2-Dimethoxyethane (13 mL) and degassed $\mathrm{H}_{2} \mathrm{O}$ (4 mL) were then added to the reaction mixture and stirred. The suspension was then purged and backfilled three times with N_{2} before being heated to $80^{\circ} \mathrm{C}$ for 22 h . At the end of the reaction, the mixture was cooled to room temperature and subsequently diluted with ether. The suspension was then neutralized with 2 N HCl solution (10 mL) and the layers were separated. The aqueous layer was then extracted twice with ether ($2 \times 10 \mathrm{~mL}$) and the organic layers were combined. The organic layers were then washed sequentially with NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield an off-white solid. The crude product was then purified by flash chromatography (10 to 15% EtOAc:Hex) to yield a white solid ($426 \mathrm{mg}, 94 \%$).
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 7.69$ (d, $\mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.62(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (ddd, J = 9.0, $7.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, \mathrm{J}=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=9.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR (151 MHz, CDCl ${ }_{3}$) $\delta 156.98(d, J=239.8 \mathrm{~Hz}), 152.44(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 142.09,129.65(\mathrm{~d}, \mathrm{~J}$ $=7.3 \mathrm{~Hz}), 117.08(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}), 115.62(\mathrm{~d}, \mathrm{~J}=22.6 \mathrm{~Hz}), 112.41(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 56.06$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-123.36(\mathrm{td}, \mathrm{J}=8.3,4.6 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{CIFNO}(\mathrm{M}+\mathrm{H})^{+}$: 228.0825; found: 228.0814.

2'-Chloro-5-fluoro-2-methoxy-1,1'-biphenyl (14) To a dry, clean 3-neck round bottomed flask equipped with a stir bar and a condenser was added (2-chlorophenyl)boronic acid ($1.06 \mathrm{~g}, 6.80 \mathrm{mmol}$, 1.7 eq.) and potassium carbonate ($1.38 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.5$ eq.). The flask was transferred into a glovebox (N_{2}), where tetrakis(triphenylphosphine)-palladium(0) ($231.1 \mathrm{mg}, 0.200 \mathrm{mmol}, 0.10 \mathrm{eq}$.) was added to the mixture. The flask was then sealed with rubber septa, brought out of the glovebox and placed under positive N_{2} pressure. 1,2-Dimethoxyethane (27 mL) and degassed $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ were then added to the reaction mixture and stirred. 2-Bromo-4-fluoroanisole ($0.52 \mathrm{~mL}, 4.00 \mathrm{mmol}, 1.0$ eq.) was added to the reaction before the suspension was purged and backfilled three times with N_{2}. The reaction was then heated to $80^{\circ} \mathrm{C}$ for 22 h . At the end of the reaction, the mixture was cooled to room temperature and subsequently diluted with ether. The suspension was then neutralized with 2 N HCl solution (10 mL) and the layers were separated. The aqueous layer was then extracted twice with ether ($2 \times 10 \mathrm{~mL}$) and the organic layers were combined. The organic layers were then washed sequentially with NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was then purified by flash chromatography (10 to 15% EtOAc:Hex) to yield a colorless liquid (900 mg , $95 \%)$.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.50(\mathrm{dt}, \mathrm{J}=7.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, \mathrm{J}=5.9,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.10$ (ddd, $J=9.0,8.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=9.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} \mathbf{I}_{3}$) $\delta 156.74(\mathrm{~d}, \mathrm{~J}=238.9 \mathrm{~Hz}), 153.13(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}), 136.74(\mathrm{~d}, \mathrm{~J}=1.8$ $\mathrm{Hz}), 133.84,131.60,129.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 129.53,129.02,126.62,117.89(\mathrm{~d}, \mathrm{~J}=23.3 \mathrm{~Hz})$, $115.21,112.09(d, J=8.3 \mathrm{~Hz}), 56.30$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-124.24(\mathrm{td}, \mathrm{J}=8.2,4.4 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClFO}(\mathrm{M})^{+}$: 236.0404; found: 236.0256 .

\mathbf{N}-methoxy- \mathbf{N}-methylbenzamide (i-1) was prepared according to a published procedure; spectra data are in agreement with literature values. (64)

(3-Fluoro-4-methoxyphenyl)(phenyl)methanone (17) To a clean, dry round-bottomed flask equipped with a stir bar was added 4-bromo-2-fluoroanisole ($0.38 \mathrm{~mL}, 2.94 \mathrm{mmol}, 0.91$ eq.) under N_{2}. Then THF (20 mL) was added and the reaction was cooled to $-78^{\circ} \mathrm{C}$. A solution of nBuLi (2.5 M in
hexanes, $1.3 \mathrm{~mL}, 3.23 \mathrm{mmol}, 1.0$ eq.) was added dropwise under positive N_{2} pressure and the reaction was allowed to stir for 20 minutes. A solution of N-methoxy- N-methylbenzamide (0.535 g , 3.24 mmol, 1.0 eq.) in THF (5 mL) was prepared and added dropwise to the aryllithium species under positive N_{2} pressure. The solution was allowed to stir at $-78^{\circ} \mathrm{C}$ for 1.5 h and subsequently quenched at $-78^{\circ} \mathrm{C}$ with $i-\mathrm{PrOH}(5 \mathrm{~mL})$ and $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and allowed to warm to room temperature. Ether (10 mL) and $\mathrm{DI} \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were then added to the reaction mixture and the layers were separated. The aqeuous layer was extracted with ether ($10 \mathrm{~mL} \times 2$) and the organic layers were combined. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was purified via flash chromatography (10 to 20\% EtOAc:Hex) to yield (3-fluoro-4methoxyphenyl)(phenyl)methanone as a white solid ($0.447 \mathrm{~g}, 60 \%$). The spectral data for the product are in agreement with literature values. (65)

N,N-diethyl-3-fluoro-4-methoxybenzamide (19) To a clean, dry round bottomed flask equipped with a stir bar was added 3-fluoro-4-methoxybenzoic acid ($0.680 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The solid was dissolved in PhMe (10 mL) before a catalytic amount of DMF ($16.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 0.05 \mathrm{eq}$.) and thionyl chloride ($0.58 \mathrm{~mL}, 8.00 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added. The reaction was allowed to stir for 2 h . before being concentrated under reduced pressure to yield the acid chloride as a pale yellow solid. The crude product was then dissolved in 10 mL of DCM under N_{2} and cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine (1.40 $\mathrm{mL}, 10.0 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and diethylamine ($0.54 \mathrm{~mL}, 5.2 \mathrm{mmol}, 1.3 \mathrm{eq}$.) were sequentially added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . before warming up to room temperature, where it was stirred further for an additional hour. At the end of the reaction, the mixture was quenched with 10 mL dilute acid (3 N HCl solution) and the layers were separated. The aqueous layer was extracted with $2 \times 10 \mathrm{~mL}$ of DCM and the organic layers were combined. The organic layers were washed sequentially with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to yield a yellow liquid. The crude product was then purified by flash chromatography (50% EtOAc:Hex) to yield N, N-diethyl-3-fluoro-4-methoxybenzamide as pale yellow liquid ($0.79 \mathrm{~g}, 88 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.04-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.43-$ 3.02 (m, 4H, 2 rotamers), 1.05 (bs, 6H, 2 rotamers).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 151.61(\mathrm{~d}, \mathrm{~J}=247.4 \mathrm{~Hz}), 148.30(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}), 129.59(\mathrm{~d}, \mathrm{~J}=5.6$ $\mathrm{Hz}), 122.70(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 114.64(\mathrm{~d}, \mathrm{~J}=19.5 \mathrm{~Hz}), 112.83(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 56.00,43.20,39.32$, 13.92, 12.66.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-129.35--145.34(\mathrm{~m})$.

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+}:$226.1243; found: 226.1232 .

1-(2-Fluoro-5-methoxyphenyl)ethan-1-ol (i-2) To a clean, dry 2-neck round bottomed flask equipped with a stir bar was added 2-fluoro-5-methoxybenzaldehyde ($0.50 \mathrm{~mL}, 4.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in THF (10 mL) under N_{2}. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ before a solution of methylmagnesium bromide (3.0 M in THF, $1.6 \mathrm{~mL}, 4.80 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise. The reaction was then warmed up to room temperature and allowed to stir for 5 h . After the reaction was complete, the solution was quenched with HCl solution ($3 \mathrm{~N}, 10 \mathrm{~mL}$) and diluted with EtOAc (15 mL). The layers were separated and the aqueous layer was extracted once with 10 mL of EtOAc. The organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10 to 30\% EtOAc:Hex) to yield 1-(2-fluoro-5-methoxyphenyl)ethan-1-ol ($0.64 \mathrm{~g}, 94 \%$).
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.00(\mathrm{dd}, \mathrm{J}=6.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dt}, \mathrm{J}=$ $8.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{qd}, \mathrm{J}=6.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 155.89(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 153.95(\mathrm{~d}, \mathrm{~J}=237.5 \mathrm{~Hz}), 133.55(\mathrm{~d}, \mathrm{~J}=15.3$ $\mathrm{Hz}), 115.90(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}), 113.55(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 111.36(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}), 64.54(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz})$, 55.82, 24.11.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-130.65(\mathrm{dt}, \mathrm{J}=10.1,4.6 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}_{2}(\mathrm{M}+)^{+}: 170.07430$; found: 170.0731

1-(2-Fluoro-5-methoxyphenyl)ethan-1-one (20, 2-F) To a clean, dry round bottomed flask equipped with a stir bar was added 1-(2-fluoro-5-methoxyphenyl)ethan-1-ol ($0.53 \mathrm{~g}, 3.12 \mathrm{mmol}, 1.0$ eq.), which was then dissolved in 10 mL of DCM. Pyridinium dichromate ($3.52 \mathrm{~g}, 9.36 \mathrm{mmol}, 3.0$ eq.) was then added to the reaction mixture and allowed to stir overnight. At the end of the reaction, the solution was diluted with 20 mL of DCM and filtered through Celite. The filtrate was then concentrated and purified via flash chromatography (5-10\% EtOAc:Hex) to yield 1-(2-fluoro-5-
methoxyphenyl)ethan-1-one as a colorless liquid ($0.45 \mathrm{~g}, 87 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 ($\mathrm{s}, 3 \mathrm{H}$), $2.61(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 195.83(d, J=3.8 \mathrm{~Hz}), 156.99(d, J=247.9 \mathrm{~Hz}), 155.68(\mathrm{~d}, \mathrm{~J}=1.9$ $\mathrm{Hz}), 125.58(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}), 121.79(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}), 117.72(\mathrm{~d}, \mathrm{~J}=26.4 \mathrm{~Hz}), 112.60(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz})$, $55.91,31.57(d, J=8.1 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C I} 3$) $\delta-119.33(\mathrm{dt}, \mathrm{J}=8.1,4.8 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 169.06593$; found: 169.0656 .

major

2-Fluoro-4-hydroxy-5-methoxybenzaldehyde (i-3, major) and 2-fluoro-5-hydroxy-4methoxybenzaldehyde (i-4, minor) To a clean, dry round bottomed flask equipped with a stir bar was added 2-fluoro-4,5-dimethoxybenzaldehyde ($1.84 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq}$), which was then dissolved in 100 mL of DCM. Aluminum trichloride ($8.00 \mathrm{~g}, 60.0 \mathrm{mmol}, 6.0 \mathrm{eq}$.) was then added in three portions to the reaction mixture and the reaction was kept under N_{2} for 20 h . The reaction was then carefully poured into ice (caution: exothermic!) and stirred until all the ice was melted. The organic layer was then separated, dried over MgSO_{4} and concentrated to yield an off-white solid. The crude product ($1.68 \mathrm{~g}, 98.8 \%$) was clean by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis and showed an approximate 9:1 ratio of the major isomer 2-fluoro-4-hydroxy-5-methoxybenzaldehyde to the minor isomer 2-fluoro-5-hydroxy-4-methoxybenzaldehyde. The assigned peaks for the products are in agreement with reported spectra (66) and the crude product was carried forward without further purification.

Major:

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.38$ (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 185.97(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}), 161.63(\mathrm{~d}, \mathrm{~J}=253.0 \mathrm{~Hz}), 153.15(\mathrm{~d}, \mathrm{~J}=13.4$ $\mathrm{Hz}), 143.81(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}), 116.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 107.64(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 102.90(\mathrm{~d}, \mathrm{~J}=26.3 \mathrm{~Hz})$, 56.61.
${ }^{19}$ F NMR (376 MHz, CDCl 3) $\delta-128.32$. (ddd, $J=11.0,6.1,1.5 \mathrm{~Hz}$)
Minor:
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52$ (s, 1H), 3.97 (s, 3H).
${ }^{13} \mathrm{C}$ assignments for the minor isomer were not provided due to low abundance.
${ }^{19}$ F NMR ($376 \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta-128.58$ (multiplet not assigned due to low abundance)

HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 171.0448 ; found: 171.0457 .

major

minor

5-Fluoro-2-methoxy-4-vinylphenol (i-5, major) and 4-fluoro-2-methoxy-5-vinylphenol (i-6, minor) To a clean, dry two-neck round bottomed flask equipped with an addition funnel and a stir bar was added methyltriphenylphosphonium bromide ($5.29 \mathrm{~g}, 14.8 \mathrm{mmol}, 1.5 \mathrm{eq}$.), which was dissolved in dry THF (20 mL). The reaction was then placed under N_{2} and potassium tert-butoxide ($2.77 \mathrm{~g}, 24.7$ mmol, 2.5 eq.) was added to the mixture, which turned bright yellow, and the suspension was stirred for 10 minutes. A solution of 2-fluoro-4-hydroxy-5-methoxybenzaldehyde and 2-fluoro-5-hydroxy-4methoxybenzaldehyde ($9: 1$) in THF (10 mL) was prepared and transferred to the addition funnel, where it was then added to the ylide suspension. The reaction was then stirred overnight at room temperature and when the reaction was complete, it was quenched with saturated ammonium chloride solution (15 mL) and diluted with $\mathrm{DCM}(20 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted twice with DCM ($2 \times 10 \mathrm{~mL}$). The organic layers were collected and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was then purified via flash chromatography (15 to 30% EtOAc:Hex) to yield a pale, off-white solid ($1.57 \mathrm{~g}, 95 \%$) containing a $9: 1$ ratio of 5-fluoro-2-methoxy-4-vinylphenol to 4-fluoro-2-methoxy-5-vinylphenol.

Major:

${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 6.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, \mathrm{J}=17.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=11.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 155.14(\mathrm{~d}, \mathrm{~J}=243.1 \mathrm{~Hz}), 146.40(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz}), 143.20(\mathrm{~d}, \mathrm{~J}=2.6$ $\mathrm{Hz}), 129.21(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 116.52(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 113.60(\mathrm{~d}, J=4.6 \mathrm{~Hz}), 107.76(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz})$, 102.86 (d, J = 27.8 Hz), 56.50.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-125.67$.

Minor:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.03(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=17.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=17.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=11.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 154.20(\mathrm{~d}, \mathrm{~J}=242.3 \mathrm{~Hz}), 146.75(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 141.81(\mathrm{~d}, \mathrm{~J}=2.6$ $\mathrm{Hz}), 128.74(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 117.59(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}), 114.30(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}), 111.14(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz})$, 99.36 (d, J = 28.6 Hz), 56.32.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-126.55$.

HRMS (ESI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{FO}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 169.0656 ; found: 169.0665 .

major

minor

4-Ethyl-5-fluoro-2-methoxyphenol (i-7, major) and 5-ethyl-4-fluoro-2-methoxyphenol (i-8, minor) To a dry, clean round bottomed flask equipped with a stir bar was added a solid containing a 9:1 mixture of 5-fluoro-2-methoxy-4-vinylphenol and 4-fluoro-2-methoxy-5-vinylphenol (1.54 g, 9.16 mmol, 1.0 eq.), which was then dissolved in 20 mL of a THF. 10% Palladium on carbon ($97.5 \mathrm{mg}, 0.92$ $\mathrm{mmol}, 0.10$ eq.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude mixture was then purified by flash chromatography (10\% EtOAc:Hex) to yield a colorless liquid ($1.50 \mathrm{~g}, 96 \%$) containing a ($9: 1$) mixture of 4-ethyl-5-fluoro-2methoxyphenol to 5-ethyl-4-fluoro-2-methoxyphenol.

Major:

${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 6.65(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 5.63$ $(\mathrm{s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{qd}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 155.18(\mathrm{~d}, \mathrm{~J}=237.1 \mathrm{~Hz}), 144.30(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}), 142.80(\mathrm{~d}, \mathrm{~J}=2.5$ $\mathrm{Hz}), 121.43(\mathrm{~d}, \mathrm{~J}=17.8 \mathrm{~Hz}), 111.59(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}), 102.66(\mathrm{~d}, \mathrm{~J}=28.2 \mathrm{~Hz}), 56.55,22.03(\mathrm{~d}, \mathrm{~J}=$ $2.4 \mathrm{~Hz}), 14.97$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-126.85$ (dd, $J=10.3,7.4 \mathrm{~Hz}$)

Minor:

${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.75(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.84$ ($\mathrm{s}, 3 \mathrm{H}$). 2.60-2.55 (m, 2H), 1.20-1.17 (m, 3H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 154.29(\mathrm{~d}, \mathrm{~J}=236.5 \mathrm{~Hz}), 144.79(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}), 141.48(\mathrm{~d}, \mathrm{~J}=2.8$ $\mathrm{Hz}), 122.71(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}), 114.77(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}), 99.38(\mathrm{~d}, \mathrm{~J}=28.6 \mathrm{~Hz}), 56.30,21.61(\mathrm{~d}, \mathrm{~J}=2.6$ $\mathrm{Hz})$, 14.70.
${ }^{19}$ F NMR (376 MHz, CDCl ${ }_{3}$) $\delta-127.56(d d, J=10.7,7.5 \mathrm{~Hz})$.

HRMS (ESI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FO}_{2}(\mathrm{M})^{+}: 170.0734$; found: 170.0749 .

major

minor

4-Ethyl-5-fluoro-2-methoxyphenyl trifluoromethanesulfonate (21, major) and 5-ethyl-4-fluoro-2-methoxyphenyl trifluoromethanesulfonate (i-9, minor) To a dry, clean round bottomed flask equipped with a stir bar was added a 9:1 mixture of 4-ethyl-5-fluoro-2-methoxyphenol to 5-ethyl-4-fluoro-2-methoxyphenol ($1.10 \mathrm{~g}, 6.46 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 20 mL of DCM under N_{2}. The solution was cooled to $0^{\circ}{ }^{\circ} \mathrm{C}$ before pyridine ($1.0 \mathrm{~mL}, 12.9 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added to the solution. Trifluoromethanesulfonic anhydride ($1.31 \mathrm{~mL}, 7.76 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added to the reaction dropwise and the solution was stirred for 15 minutes before being warmed to room temperature. The reaction was then run for 2 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10% EtOAc) to yield a yellow liquid ($1.77 \mathrm{~g}, 91 \%$) consisting of a 9:1 mixture of 4-ethyl-5-fluoro-2-methoxyphenyl trifluoromethanesulfonate to 5-ethyl-4-fluoro-2methoxyphenyl trifluoromethanesulfonate.

Major:

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.94(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.67$ (qd, J = $7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.24(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 153.78(d, J=241.6 \mathrm{~Hz}), 147.92(d, J=3.0 \mathrm{~Hz}), 136.05(\mathrm{~d}, \mathrm{~J}=11.1$ $\mathrm{Hz}), 132.12(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}), 118.87(\mathrm{q}, J=320.3 \mathrm{~Hz}), 113.82(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 110.27(\mathrm{~d}, J=28.1$ $\mathrm{Hz}), 56.66,22.50(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}), 14.24(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}-73.71,-125.35$.

Minor:

${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.61$ (qd, J = 7.5, 1.2 Hz, 2H), 1.20 ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz, Chloroform-d) $\delta 160.09(d, J=247.4 \mathrm{~Hz}), 150.48(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}), 134.58$ (d , $J=3.4 \mathrm{~Hz}), 123.37(\mathrm{~d}, J=19.1 \mathrm{~Hz}), 123.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 118.90(\mathrm{q}, J=320.3 \mathrm{~Hz}), 101.40(\mathrm{~d}, J=$ 28.7 Hz), 56.53, 21.43 ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}$), 14.19.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}$-73.68, -114.61.
HRMS (ESI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}$: 303.0309; found: 303.0412.

2-Fluoro-4-hydroxy-5-methoxybenzaldehyde oxime (i-10) To a clean, dry two-neck round bottomed flask equipped with a condenser and a stir bar was added 2-fluoro-4-hydroxy-5methoxybenzaldehyde ($681 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in $\mathrm{EtOH}(8 \mathrm{~mL})$ and placed under N_{2}. Hydroxylamine sulfate ($629 \mathrm{mg}, 4.80 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and sodium acetate (328 mg , $4.00 \mathrm{mmol}, 1.0$ eq.) were then added successively to the reaction mixture and the suspension was refluxed for 4 h . Once the reaction was complete, it was cooled to room temperature and concentrated under reduced pressure. The crude mixture was then resuspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, filtered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was then concentrated and purified via flash chromatography (30% EtOAc:Hex) to yield 2-fluoro-4-hydroxy-5-methoxybenzaldehyde oxime as a white solid (740 mg, 99\%).
${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO-d $_{6}$) $\delta 11.20(\mathrm{~s}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.64 (d, J = $11.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H).
${ }^{13}$ C NMR (151 MHz, DMSO- \mathbf{d}_{6}) $\delta 154.74(\mathrm{~d}, \mathrm{~J}=242.8 \mathrm{~Hz}), 149.38(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}), 144.84(\mathrm{~d}, \mathrm{~J}=$ $1.7 \mathrm{~Hz}), 141.55(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 110.12(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}), 108.02(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 103.23(\mathrm{~d}, \mathrm{~J}=25.4$ Hz), 56.01.
${ }^{19}$ F NMR (376 MHz, DMSO) $\delta-127.84(\mathrm{dt}, J=11.6,5.6 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 186.05609$; found: 186.05579 .

4-(Aminomethyl)-5-fluoro-2-methoxyphenol hydrochloride (i-11) To a dry, clean round bottomed flask equipped with a stir bar was added 2-fluoro-4-hydroxy-5-methoxybenzaldehyde oxime ($0.699 \mathrm{~g}, 3.78 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 50 mL of EtOH. 10% Palladium on carbon ($40.2 \mathrm{mg}, 0.38 \mathrm{mmol}, 0.10$ eq.) and $\mathrm{HCl}(14 \mathrm{~N}, 2.73 \mathrm{~mL}, 90 \mathrm{mmol}, 24 \mathrm{eq}$.) were added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude product was then reconstituted in EtOH and concentrated again to remove excess HCl . This process yields 4-(aminomethyl)-5-fluoro-2-methoxyphenol hydrochloride as a tan-grey solid ($0.760 \mathrm{~g}, 97 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, DMSO-d $\mathbf{d}_{\mathbf{~}}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 3 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, DMSO-d \mathbf{d}_{6}) $\delta 154.50(\mathrm{~d}, \mathrm{~J}=238.8 \mathrm{~Hz}), 148.35(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}), 144.30(\mathrm{~d}, \mathrm{~J}=$ $2.0 \mathrm{~Hz}), 114.45(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 109.69(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}), 103.02(\mathrm{~d}, \mathrm{~J}=25.6 \mathrm{~Hz}), 56.33,35.50(\mathrm{~d}, \mathrm{~J}$ $=3.5 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, DMSO-d $_{6}$) $\delta-125.73$ (dd, $J=10.8,7.3 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 172.07683 ; found: 172.07653 (only free amine mass detected).

Tert-butyl (2-fluoro-4-hydroxy-5-methoxybenzyl)carbamate (i-12) To a dry, clean round bottomed flask equipped with a stir bar was added 4-(aminomethyl)-5-fluoro-2-methoxyphenol hydrochloride ($300 \mathrm{mg}, 1.45 \mathrm{mmol}, 1.0$ eq.), which was dissolved in 10 mL of DCM. The suspension is then placed under N_{2} and cooled to $0{ }^{\circ} \mathrm{C}$ before successive additions of triethylamine ($0.66 \mathrm{~mL}, 4.77$ $\mathrm{mmol}, 3.3 \mathrm{eq}$.$) and di-tert-butyl dicarbonate (0.34 \mathrm{~mL}, 1.46 \mathrm{mmol}, 1.01 \mathrm{eq}$.) . The reaction is allowed to stir for 30 min . before it is warmed to room temperature and stirred overnight. At the end of the reaction, the reaction was quenched with $\mathrm{DI}_{2} \mathrm{O}$ and the layers separated. The aqueous layer was extracted with DCM ($2 \times 5 \mathrm{~mL}$) and the organic layers were combined, dried over MgSO_{4} and concentrated under reduced pressure. The crude product was purified via flash chromatography (30 to

40\% EtOAc:Hex) to yield tert-butyl (2-fluoro-4-hydroxy-5-methoxybenzyl)carbamate as a white solid ($333.0 \mathrm{mg}, 85 \%$)
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.76(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, \mathbf{1 H}), 6.59(\mathrm{dd}, \mathrm{J}=11.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{bs}$, $1 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\delta 156.14,155.21(d, J=238.1 \mathrm{~Hz}), 145.97(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}), 143.10(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}), 116.14(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}), 111.87(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}), 102.78(\mathrm{~d}, \mathrm{~J}=27.0 \mathrm{~Hz}), 79.69,56.35$, 38.42, 28.39.
${ }^{19}$ F NMR (376 MHz, CDCl ${ }_{3}$) $\delta-127.03(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 294.11123; found: 294.11040 .

4-(((Tert-butoxycarbonyl)amino)methyl)-5-fluoro-2-methoxyphenyl

trifluoromethanesulfonate (22) To a dry, clean round bottomed flask equipped with a stir bar was added tert-butyl (2-fluoro-4-hydroxy-5-methoxybenzyl)carbamate ($0.197 \mathrm{~g}, 0.777 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and the solid was dissolved in 20 mL of DCM under N_{2}. The solution was cooled to $0^{\circ} \mathrm{C}$ before pyridine ($0.13 \mathrm{~mL}, 1.56 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was added to the solution. Trifluoromethanesulfonic anhydride (0.16 $\mathrm{mL}, 0.932 \mathrm{mmol}, 1.2$ eq.) was then added to the reaction dropwise and the solution was stirred for 15 minutes before being warmed to room temperature. The reaction was then run for 2 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM $(10 \mathrm{~mL})$ and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10% EtOAc) to yield 4-(((tert-butoxycarbonyl)amino)methyl)-5-fluoro-2-methoxyphenyl trifluoromethanesulfonate as a white solid ($269 \mathrm{mg}, 90 \%$).
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 7.04(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}$, 1 H), 4.34 ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 1.45 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 156.02,153.55(\mathrm{~d}, \mathrm{~J}=242.3 \mathrm{~Hz}), 148.16(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 137.20(\mathrm{~d}, \mathrm{~J}$ $=10.8 \mathrm{~Hz}), 127.22(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}), 118.81(\mathrm{q}, \mathrm{J}=320.6 \mathrm{~Hz}), 113.80,110.65(\mathrm{~d}, \mathrm{~J}=27.2 \mathrm{~Hz})$, 80.19, 56.81, 38.43, 28.47.
${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$) $\delta-73.77,-125.87(t, J=7.8 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{4} \mathrm{NO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 426.06051$; found: 426.05936 .

\mathbf{N}-(2-fluoro-4-hydroxy-5-methoxybenzyl)nonanamide (i-13) To a dry, clean round bottomed flask equipped with a stir bar was added 4-(aminomethyl)-5-fluoro-2-methoxyphenol hydrochloride ($190 \mathrm{mg}, 0.915 \mathrm{mmol}, 1.0$ eq.) which was then dissolved in DMF (2 mL) under $\mathrm{N}_{2} . \mathrm{N}, \mathrm{N}-$ Diisopropylethylamine ($0.32 \mathrm{~mL}, 1.83 \mathrm{mmol}, 2.0 \mathrm{eq}$.) was then added to the solution, which was stirred for an hour at room temperature. Nonanoyl chloride ($162 \mathrm{mg}, 0.915 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was then added dropwise to the reaction and the reaction was allowed to stir for 5 h . At the end of the reaction, the mixture was diluted with EtOAc (15 mL) and DI $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted twice with EtOAc ($2 \times 10 \mathrm{~mL}$). The organic layers were then combined, washed sequentially with $20 \% \mathrm{LiCl}$ solution (twice) and brine, dried over MgSO_{4} and concentrated. The crude mixture was purified via flash chromatography (40 to $50 \% \mathrm{EtOAc}$:Hex) to yield N-(2-fluoro-4-hydroxy-5-methoxybenzyl)nonanamide as an off-white solid ($261.3 \mathrm{mg}, 95 \%$). The isolated product contains minor impurity N, N-dimethylnonanamide ($\mathrm{i}-14$, vide infra), which is inseparable from the desired product. Its spectral data are in agreement with literature values. (67)

N, N-dimethyInonanamide (i-14)

${ }^{1}{ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 6.82(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.82$ $(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, \mathrm{J}=5.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{dq}, \mathrm{J}=$ $14.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{dqt}, \mathrm{J}=19.8,13.0,5.3 \mathrm{~Hz}, 10 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) б $173.25,155.54(\mathrm{~d}, \mathrm{~J}=238.2 \mathrm{~Hz}), 146.14(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}), 143.07(\mathrm{~d}$, $J=2.5 \mathrm{~Hz}), 115.90(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}), 112.28(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}), 102.73(\mathrm{~d}, \mathrm{~J}=27.3 \mathrm{~Hz}), 56.56,37.43$ (d, J = 3.2 Hz), 36.91, 31.92, 29.42, 29.39, 29.27, 25.84, 22.76, 14.21.
${ }^{19}{ }^{9}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-126.99$ (td, $J=11.4,10.9,6.3 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 312.19695$; found: 312.19606 .

5-Fluoro-2-methoxy-4-(nonanamidomethyl)phenyl trifluoromethanesulfonate (23) To a dry, clean round bottomed flask equipped with a stir bar was added N-(2-fluoro-4-hydroxy-5methoxybenzyl)nonanamide ($248 \mathrm{mg}, 0.795 \mathrm{mmol}, 1.0$ eq.), which was then dissolved in 10 mL of DCM under N_{2}. The solution was then cooled to $0^{\circ} \mathrm{C}$ before triethylamine ($0.12 \mathrm{~mL}, 0.874 \mathrm{mmol}, 1.1$ eq.) and 1,1,1-trifluoro-N-phenyl- N -((trifluoromethyl)sulfonyl)methanesulfonamide ($290 \mathrm{mg}, 0.811$ $\mathrm{mmol}, 1.02$ eq.) were added consecutively to the reaction and the mixture was stirred for an additional 15 min . The reaction was then warmed to room temperature and stirred overnight before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (30 to 40% EtOAc) to yield 5 -
fluoro-2-methoxy-4-(nonanamidomethyl)phenyl trifluoromethanesulfonate as an off-white solid (295.2 $\mathrm{mg}, 84 \%$). The isolated product contains a minor amount of impurity N, N-dimethylnonanamide (i-14, vide supra).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.02(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.27-$ $1.16(\mathrm{~m}, 10 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.67,153.55(\mathrm{~d}, \mathrm{~J}=242.8 \mathrm{~Hz}), 148.05(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 137.14(\mathrm{~d}, \mathrm{~J}$ $=10.9 \mathrm{~Hz}), 126.71(\mathrm{~d}, \mathrm{~J}=16.1 \mathrm{~Hz}), 118.73(\mathrm{q}, \mathrm{J}=320.5 \mathrm{~Hz}), 114.19(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}), 110.52(\mathrm{~d}, \mathrm{~J}=$ 27.1 Hz), $56.67,37.07(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 36.60,31.85,29.37,29.35,29.21,25.78,22.67,14.08$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-73.61(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}),-125.49(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{NO}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 444.14622$; found: 444.14498 .

i-15, 99%

(E)-4-(2-fluoro-4-hydroxy-5-methoxyphenyl)but-3-en-2-one (i-15) To a dry, clean two-neck round bottomed flask equipped with an addition funnel and a stir bar was added 2-fluoro-4-hydroxy-5methoxybenzaldehyde ($341.3 \mathrm{mg}, 2.01 \mathrm{mmol}, 1.0$ eq.), which was then dissolved in acetone (11 mL , 2.0 M) and placed under N_{2}. An aqueous solution (1 N) of NaOH was transferred to the addition funnel, which was then added dropwise to the reaction mixture. The mixture was stirred at room temperature for 12 h . The reaction turned a bright yellow color upon addition of NaOH solution. At the end of the reaction, the reaction was neutralized with 2 N HCl , and the acetone was evaporated off under reduced pressure. The crude mixture was then diluted with EtOAc and the layers were separated. The aqueous layer was washed with EtOAc $(2 \times 15 \mathrm{~mL})$ and the organic layers were combined, washed with brine, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude mixture was then concentrated and purified via column chromatography (50-60\% EtOAc:Hex) to yield (E)-4-(2-fluoro-4-hydroxy-5-methoxyphenyl)but-3-en2 -one as a pale yellow solid ($421.0 \mathrm{mg}, 99 \%$)
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.64(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=10.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{bs}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 198.76,156.96(d, J=248.1 \mathrm{~Hz}), 149.32(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}), 143.59(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}), 136.09(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 126.68(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 113.58(\mathrm{~d}, J=12.9 \mathrm{~Hz}), 108.44(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}), 103.27(\mathrm{~d}, \mathrm{~J}=27.6 \mathrm{~Hz}), 56.52,27.25$.
${ }^{19}$ F NMR (565 MHz, CDCl ${ }_{3}$) $\delta-121.06$ (ddd, $J=10.6,6.7,3.9 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 211.07650$; found: 211.07588

4-(2-Fluoro-4-hydroxy-5-methoxyphenyl)butan-2-one (i-16) To a dry, clean round bottomed flask equipped with a stir bar was added (E)-4-(2-fluoro-4-hydroxy-5-methoxyphenyl)but-3-en-2-one ($0.421 .4 \mathrm{~g}, 2.01 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , which was then dissolved in 10 \mathrm{~mL}$ of $\mathrm{MeOH} .10 \%$ Palladium on carbon ($21.3 \mathrm{mg}, 0.201 \mathrm{mmol}, 0.10 \mathrm{eq}$.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight. The reaction was checked by TLC and no further conversion was observed after 12 h . The solution was then run through a Celite plug and concentrated. The crude product was then purified via column chromatography (30-50\% EtOAc:Hex) to yield 4-(2-fluoro-4-hydroxy-5-methoxyphenyl)butan-2-one as a pale-yellow liquid ($0.283 \mathrm{~g}, 67 \%$) with (E)-4-(2-fluoro-4-hydroxy-5-methoxyphenyl)but-3-en-2-one recovered ($134.8 \mathrm{mg}, 32 \%$) [99\% brsm].
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.66(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 208.17,155.35(\mathrm{~d}, \mathrm{~J}=237.2 \mathrm{~Hz}), 144.85(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}), 142.79(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}), 118.14(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}), 112.48(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}), 102.75(\mathrm{~d}, \mathrm{~J}=27.7 \mathrm{~Hz}), 56.56,44.17$, 30.18, $23.38(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz})$.
${ }^{19}$ F NMR (565 MHz, $\mathbf{C D C l}_{3}$) $\delta-126.09(\mathrm{td}, J=11.1,6.8 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 213.09215$; found: 213.09174

5-fluoro-2-methoxy-4-(3-oxobutyl)phenyl trifluoromethanesulfonate (24) To a dry, clean round bottomed flask equipped with a stir bar was added 4-(2-fluoro-4-hydroxy-5-methoxyphenyl)butan-2-one ($272.7 \mathrm{mg}, 1.40 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 20 mL of DCM under N_{2}. The solution was then cooled to $0^{\circ} \mathrm{C}$ before triethylamine ($0.21 \mathrm{~mL}, 1.54 \mathrm{mmol}, 1.1$ eq.) and 1,1,1-trifluoro-N-phenyl- N -((trifluoromethyl)sulfonyl)methanesulfonamide ($512 \mathrm{mg}, 1.43$ $\mathrm{mmol}, 1.02 \mathrm{eq}$.) were added consecutively to the reaction and the mixture was stirred for an additional 15 min . The reaction was then warmed to room temperature and stirred overnight before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (20 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (20 to 30% EtOAc) to yield 5-fluoro-2-methoxy-4-(3-oxobutyl)phenyl trifluoromethanesulfonate as a pale-yellow liquid (300.8 mg ,

66\%) with 4-(2-fluoro-4-hydroxy-5-methoxyphenyl)butan-2-one recovered ($90.1 \mathrm{mg}, 33 \%$) [99\% brsm].
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.92(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.88$ ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.76(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.06,153.79(\mathrm{~d}, \mathrm{~J}=242.1 \mathrm{~Hz}), 147.81(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 136.35(\mathrm{~d}, \mathrm{~J}$ $=11.1 \mathrm{~Hz}), 129.06(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 118.76(\mathrm{q}, J=320.4 \mathrm{~Hz}), 114.92(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 110.41(\mathrm{~d}, J=$ $27.7 \mathrm{~Hz}), 56.68,43.21,29.95,23.44(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz})$.
${ }^{19}$ F NMR (565 MHz, CDCl $\mathbf{~}_{3}$) $\delta-73.62,-124.62(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{O}_{5} \mathrm{~S}(\mathrm{M}+\mathrm{H})^{+}: 345.04142$; found: 345.04071

2-Fluoro-3,5-dimethoxypyridine (26) The title compound was prepared from 3,5dimethoxypyridine according to General Method A with an irradiation time of 24 h . The crude mixture was purified via flash LC with (20% acetonitrile: water to 30% acetonitrile: water with 0.1% TFA) to afford a yellow oil ($2.5 \mathrm{mg}, 6.5 \%$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.32(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, 3.85 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 154.75(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 148.20(\mathrm{~d}, \mathrm{~J}=232.0 \mathrm{~Hz}), 143.16(\mathrm{~d}, \mathrm{~J}=29.2$ $\mathrm{Hz}), 119.85(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz}), 110.54(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-92.72(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 158.06118$; found: 158.06084 .

2-Chloro-5-fluoro-6-methoxyquinoline (27) The title compound was prepared from 2-chloro-6methoxyquinoline according to General Method A with an irradiation time of 24 h . The crude mixture was purified via flash LC with (20% acetonitrile: water to 30% acetonitrile:water with 0.1% TFA) to afford a yellow oil ($2.5 \mathrm{mg}, 5 \%$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($700 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.32(\mathrm{dd}, \mathrm{J}=8.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{t}, \mathrm{J}=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.57,145.56(\mathrm{~d}, \mathrm{~J}=252.7 \mathrm{~Hz}), 143.92(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}), 142.75(\mathrm{~d}, \mathrm{~J}$ $=1.4 \mathrm{~Hz}), 131.45(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}), 124.75(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}), 122.88(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 119.66(\mathrm{~d}, \mathrm{~J}=2.5$ $\mathrm{Hz}), 118.47(\mathrm{~d}, \mathrm{~J}=13.9 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-144.92(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{CIFNO}(\mathrm{M}+\mathrm{H})^{+}: 212.02729$; found: 212.02690 .

i-17, 83\%

28, 65\%
i-18, 92%

2-Amino-5-fluoro-N-hexylbenzamide (i-17) To a dry, clean round bottomed flask equipped with a stir bar was added 2-amino-5-fluorobenzoic acid ($1.86 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in THF (24 mL) under N_{2}. Carbonyldiimidazole ($2.05 \mathrm{~g}, 12.6 \mathrm{mmol}, 1.05 \mathrm{eq}$.) was then added to the reaction mixture and the suspension was allowed to stir for $30 \mathrm{~min} . \mathrm{N}, \mathrm{N}-$ Diisopropylethylamine ($2.5 \mathrm{~mL}, 14.4 \mathrm{mmol}, 1.2$ eq.) and n-hexylamine ($1.7 \mathrm{~mL}, 13.2 \mathrm{mmol}, 1.1 \mathrm{eq}$) were then sequentially added to the reaction mixture and the reaction was allowed to stir overnight (done in about 5-6 h.). At the end of the reaction, the mixture was quenched with $1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ and diluted with EtOAc (20 mL) before the pH was adjusted to 7 with 2 M NaOH . The layers were separated and the aqueous layer was extracted once with 10 mL of ETOAc. The organic layers were then combined, washed consecutively with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (30 to $50 \% \mathrm{EtOAc}$:Hex) to yield 2 -amino-5-fluoro- N-hexylbenzamide as a pale yellow solid ($2.38 \mathrm{~g}, 83 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.01(\mathrm{dd}, J=9.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{ddd}, \mathrm{J}=8.9,7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.63 (dd, $J=8.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{td}, J=7.2,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.53$ $(\mathrm{m}, 3 \mathrm{H}), 1.45-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.80(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 168.38(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}), 154.64(\mathrm{~d}, \mathrm{~J}=236.0 \mathrm{~Hz}), 144.85,119.50(\mathrm{~d}, \mathrm{~J}$ $=22.5 \mathrm{~Hz}), 118.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 117.09(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 113.10(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 39.99,31.64$, 29.72, 26.83, 22.71, 14.16.
${ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-127.59(\mathrm{dt}, \mathrm{J}=8.3,4.3 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$: 239.15541 ; found: 239.15467.

6-Fluoro-3-hexylquinazoline-2,4(1H,3H)-dione (i-18) To a dry, clean round bottomed flask equipped with a stir bar was added 2 -amino- 5 -fluoro- N-hexylbenzamide ($2.38 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in DMF (20 mL) under N_{2}. Carbonyldiimidazole ($2.11 \mathrm{~g}, 13.0 \mathrm{mmol}, 1.30$ eq.) was then added to the reaction mixture and the suspension was allowed to stir overnight. At the end of the reaction, the mixture was diluted with EtOAc (30 mL) and DI $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted twice with EtOAc $(2 \times 15 \mathrm{~mL})$. The organic layers were then combined, washed sequentially with 20% LiCl solution (twice) and brine, dried over MgSO_{4} and concentrated to yield 6 -fluoro-3-hexylquinazoline-2,4(1H,3H)-dione as a pale, off-white solid (2.44 g , 92%) that was analytically pure by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The crude product was carried onto the next synthetic step without further purification.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z} \mathbf{C D C l}_{3}$) $\delta 10.93$ ($\mathrm{s}, 1 \mathrm{H}$), 7.79 (dd, $J=8.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (td, $J=8.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 2 \mathrm{H})$, $1.37-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 161.70(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 158.67(\mathrm{~d}, \mathrm{~J}=244.1 \mathrm{~Hz}), 152.32,135.23$, 123.16 (d, J = 24.4 Hz), 117.07 ($d, J=7.6 \mathrm{~Hz}), 115.89(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 113.82(\mathrm{~d}, \mathrm{~J}=24.2 \mathrm{~Hz})$, 41.41, 31.62, 27.93, 26.74, 22.68, 14.19.
${ }^{19}$ F NMR (376 MHz, CDCI3) $\delta-117.93$ (td, $J=8.1,4.1 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{FN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 265.13468 ; found: 265.13404 .

6-Fluoro-1,3-dihexylquinazoline-2,4(1H,3H)-dione (28) To a dry, clean round bottomed flask equipped with a stir bar was added 6 -fluoro-3-hexylquinazoline-2,4($1 H, 3 \mathrm{H}$)-dione ($2.44 \mathrm{~g}, 9.20 \mathrm{mmol}$, 1.0 eq.) and potassium carbonate ($6.36 \mathrm{~g}, 46 \mathrm{mmol}, 5.0 \mathrm{eq}$.). The solids were dissolved in DMF (28 mL) under N_{2} before 1-bromohexane ($3.9 \mathrm{~mL}, 27.6 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added dropwise. The reaction was then heated to $60^{\circ} \mathrm{C}$ and stirred overnight. At the end of the reaction, the mixture was diluted with ether (30 mL) and DI $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$. The layers were separated and the aqueous layer extracted twice with ether ($2 \times 15 \mathrm{~mL}$). The organic layers were then combined, washed sequentially with 20% LiCl solution and brine, dried over MgSO_{4} and concentrated. The crude product was purified via flash chromatography (5 to 10\% EtOAc:Hex) to yield 6-fluoro-1,3-dihexylquinazoline-2,4(1H,3H)-dione as an off-white solid ($2.08 \mathrm{~g}, 65 \%$).
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 7.86$ (dd, $\left.J=8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.35$ (ddd, J = 9.3, 7.6, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.13 (dd, J = 9.2, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.10-3.99(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.15(\mathrm{~m}, 12 \mathrm{H}), 0.86$ (dt, J = 11.6, $6.9 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 160.90(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 158.16(\mathrm{~d}, \mathrm{~J}=244.1 \mathrm{~Hz}), 136.34(\mathrm{~d}, \mathrm{~J}=1.7$ $\mathrm{Hz}), 122.63(\mathrm{~d}, \mathrm{~J}=24.0 \mathrm{~Hz}), 117.15(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 115.50(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}), 114.61(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz})$, 44.15, 42.24, 31.58, 31.54, 27.81, 27.35, 26.73, 26.54, 22.65, 22.64, 14.11, 14.06.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-119.59(\mathrm{td}, \mathrm{J}=7.9,4.0 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$: 349.2291; found: 349.2280.

3-fluoro-1-methyl-1H-indazole (26) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (68)

6-fluoro-2-methylbenzo[d]oxazole The title compound was prepared according to a published procedure (69); spectra data are in agreement with literature values. (70)

6-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one (i-19) The title compound was prepared by adapting a procedure from Buchwald et al. (71). An oven-dried test tube equipped with a magnetic stir bar and a Teflon screw-cap was charged with BrettPhos-G3 ($22.7 \mathrm{mg}, 25.0 \mu \mathrm{mmol}, 0.05$ eq.), 1-methylurea ($92.60 \mathrm{mg}, 1.25 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ ($254.7 \mathrm{mg}, 1.2 \mathrm{mmol}, 2.4 \mathrm{eq}$.). The tube was evacuated and backfilled with nitrogen (repeated two additional times). $\mathrm{t}-\mathrm{BuOH}(2 \mathrm{~mL}$) and 1-bromo-2-chloro-4-fluorobenzene ($59.8 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were sequentially added via syringe and the punctured cap was replaced with a new one under a stream of nitrogen. The test tube was placed in a preheated oil bath at $110^{\circ} \mathrm{C}$ and stirred for 14 h . After cooling to room temperature, the mixture was diluted with EtOAc (5 mL), filtered through a short silica plug (EtOAc rinse) and concentrated using a rotary evaporator. The residue was purified using silica gel chromatography (50 to 80% EtOAc:Hex) to afford 6-fluoro-1-methyl-1,3-dihydro-2H-benzo[d]imidazol-2-one as a white solid ($58.5 \mathrm{mg}, 70 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.00$ (dd, J = 8.6, $4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 ($\mathrm{s}, 1 \mathrm{H}$), $6.83-6.76$ (m, 1H), 3.37 (s, 3H), 2.12 (t, J = $2.3 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z , ~ M e O D) ~ \delta ~} 160.13$ ($\mathrm{d}, \mathrm{J}=236.1 \mathrm{~Hz}$), 157.40, 133.05 ($\mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}$), 125.62, 110.66 (d, J = 9.4 Hz), 108.79 (d, J = 24.3 Hz), 97.17 (d, J = 29.1 Hz), 27.18.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, MeOD) $\delta-123.16$ (td, $J=9.3,4.5 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}: 167.06151$; found: 167.06227

2-chloro-6-fluoro-1-methyl-1H-benzo[d]imidazole (31) The title compound was synthesized according to a published procedure (72); the compound was purified via flash chromatography (20 to 30% EtOAc:Hex) with basic aluminum oxide as the stationary phase (substrate: $91.5 \mathrm{mg}, 0.55 \mathrm{mmol}$; product: $38.3 \mathrm{mg}, 38 \%$)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($850 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{dd}, \mathrm{J}=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($214 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.12(\mathrm{~d}, \mathrm{~J}=241.7 \mathrm{~Hz}), 141.01 \mathrm{~s}, 137.34,135.61(\mathrm{~d}, \mathrm{~J}=13.1 \mathrm{~Hz})$, $120.31(d, J=9.9 \mathrm{~Hz}), 111.60(\mathrm{~d}, \mathrm{~J}=25.0 \mathrm{~Hz}), 96.63(\mathrm{~d}, \mathrm{~J}=27.9 \mathrm{~Hz}), 31.05$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-117.17.

HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{CIFN}_{2}(\mathrm{M}+\mathrm{H})^{+}: 185.02848$; found: 185.02762

Tert-butyl 2-(3-(4-fluorophenoxy)phenyl)propanoate (i-20) To a clean, dry 3-neck round bottomed flask equipped with a stir bar and a condenser were added palladium (II) acetate (33.7 mg , $0.15 \mathrm{mmol}, 0.03$ eq.) and 2-dicyclohexylphosphino-2'-(N, N-dimethylamino)biphenyl (DavePhos, 118.1 $\mathrm{mg}, 0.30 \mathrm{mmol}, 0.06 \mathrm{eq}$.) under an inert atmosphere. The flask was sealed with rubber septa and placed under a positive N_{2} pressure. The solids were then dissolved in PhMe (15 mL) and stirred for 15 min . before a solution of lithium bis(trimethylsilyl)amide (1.0 M in hexanes, $12.5 \mathrm{~mL}, 12.5 \mathrm{mmol}, 2.5$ eq.) was added dropwise. The reaction was stirred for an additional 15 minutes before it was cooled to $-10{ }^{\circ} \mathrm{C}$. Tert-butyl propionate ($1.7 \mathrm{~mL}, 11.5 \mathrm{mmol}, 2.3 \mathrm{eq}$.) was then added dropwise to the reaction mixture and stirred for an additional 10 minutes. 1-Bromo-3-(4-fluorophenoxy)benzene (0.90 mL , $5.00 \mathrm{mmol}, 1.0$ eq.) was then added dropwise and the reaction was allowed to warm to room temperature before being heated to $80^{\circ} \mathrm{C}$ and stirred overnight. At the end of the reaction, the reaction mixture was filtered through a silica plug and concentrated to yield a liquid. The crude product was then purified via flash chromatography (2 to 5% EtOAc:Hex) to yield tert-butyl 2-(3-(4fluorophenoxy) phenyl) propanoate as a yellow liquid ($1.15 \mathrm{~g}, 73 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.28(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.95(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 173.48,158.91(\mathrm{~d}, \mathrm{~J}=241.6 \mathrm{~Hz}), 157.84,153.01(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz})$, $143.35,129.84,122.38,120.59(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 117.57,116.80,116.37(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}), 80.70$, 46.46, 28.01, 18.48.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-120.14(\mathrm{td}, \mathrm{J}=8.0,4.1 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 317.1553 ; found: 317.1557.

Methyl 2-(3-(4-fluorophenoxy)phenyl)propanoate (32) To a clean, dry round bottomed flask equipped with a stir bar was added tert-butyl 2-(3-(4-fluorophenoxy)phenyl)propanoate ($1.15 \mathrm{~g}, 3.63$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 8.6 mL of DCM. Trifluoroacetic acid (8.6 mL) was then added to the solution and the reaction was stirred for 2 h . At the end of the reaction, the mixture was concentrated under reduced pressure and reconstituted in 10 mL of DCM. TLC analysis suggested full conversion to the desired product, thus the crude was then re-concentrated to remove excess trifluoroacetic acid and was carried forward to the esterification without further purification. The dry crude was then dissolved in 10 mL of dry MeOH under N_{2} and a catalytic amount of sulfuric acid was added to the solution. The reaction was then refluxed for 3 h . At the end of the reaction, the solution was concentrated, diluted with ether and neutralized with saturated NaHCO_{3} solution. The layers were then separated and the aqueous layer was extracted once with 10 mL of ether. The organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via column chromatography (5 to 15\% EtOAc:Hex) to yield methyl 2-(3-(4fluorophenoxy)phenyl) propanoate as a colorless liquid ($0.851 \mathrm{~g}, 84 \%$)
${ }^{1}{ }^{1} \mathbf{H}$ NMR ($600 \mathbf{M H z}$, CDCl $_{3}$) $\delta 7.26(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.96-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{ddd}, \mathrm{J}=8.2,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 1.49$ (d, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 174.68,158.96(d, J=241.7 \mathrm{~Hz}), 157.98,152.75(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz})$, $142.68,129.97,122.28,120.70(d, J=8.3 \mathrm{~Hz}), 117.61,116.74,116.39(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}), 52.14$, 45.34, 18.58.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-119.87$ (ddd, $J=12.3,8.0,4.6 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 275.1083; found: 275.1073.

Tert-butyl 2-(4-chloro-3-fluorophenyl)propanoate (i-21) To a clean, dry 3-neck round bottomed flask equipped with a stir bar and a condenser were added palladium (II) acetate ($33.7 \mathrm{mg}, 0.15$ mmol, 0.03 eq.), 2-dicyclohexylphosphino-2'-(N, N-dimethylamino)biphenyl (DavePhos, 118.1 mg , $0.30 \mathrm{mmol}, 0.06 \mathrm{eq}$.), and lithium bis(trimethylsilyl)amide ($2.09 \mathrm{~g}, 12.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.) under an inert atmosphere. The flask was sealed with rubber septa and placed under a positive N_{2} pressure. The solids were then dissolved in $\mathrm{PhMe}(15 \mathrm{~mL})$ and stirred for 15 min . at room temperature before the solution was cooled to $-10^{\circ} \mathrm{C}$. Tert-butyl propionate ($1.7 \mathrm{~mL}, 11.5 \mathrm{mmol}, 2.3$ eq.) was then added dropwise to the reaction mixture and stirred for an additional 10 minutes. 4-bBromo-1-chloro-2fluorobenzene ($0.61 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ eq.) was then added dropwise and the reaction was allowed to warm to room temperature before being heated to $80^{\circ} \mathrm{C}$ and stirred overnight. At the end of the reaction, the reaction mixture was filtered through a silica plug and concentrated to yield a liquid. The crude product was then purified via flash chromatography (5 to 10% DCM:Hex) to yield tert-butyl 2(4 -chloro-3-fluorophenyl) propanoate as a pale yellow liquid ($0.760 \mathrm{~g}, 58 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.31(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, \mathrm{J}=10.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, \mathrm{J}=$ $8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 172.96,158.10(\mathrm{~d}, \mathrm{~J}=248.6 \mathrm{~Hz}), 142.07(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}), 130.55$, $124.09(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 119.43(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}), 115.85(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 81.16,45.97(\mathrm{~d}, \mathrm{~J}=1.6$ Hz), 27.99, 18.42.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.27(\mathrm{dd}, \mathrm{J}=10.1,7.7 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClFO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 259.08956$; found: 259.15081 .

Methyl 2-(4-chloro-3-fluorophenyl)propanoate (i-22) To a clean, dry round bottomed flask equipped with a stir bar was added tert-butyl 2-(4-chloro-3-fluorophenyl)propanoate ($0.648 \mathrm{~g}, 2.50$
mmol, 1.0 eq.), which was then dissolved in 5.9 mL of DCM. Trifluoroacetic acid (5.9 mL) was then added to the solution and the reaction was stirred for 2 h . At the end of the reaction, the mixture was concentrated under reduced pressure and reconstituted in 10 mL of DCM. TLC analysis suggested full conversion to the desired product, thus the crude was then re-concentrated to remove excess trifluoroacetic acid and was carried forward to the esterification without further purification. The dry crude was then dissolved in 10 mL of dry MeOH under N_{2} and a catalytic amount of sulfuric acid was added to the solution. The reaction was then refluxed for 3 h . At the end of the reaction, the solution was concentrated, diluted with ether and neutralized with saturated NaHCO_{3} solution. The layers were then separated and the aqueous layer was extracted once with 10 mL of ether. The organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via column chromatography (5 to 10% DCM:Hex) to yield methyl 2-(4-chloro-3fluorophenyl)propanoate as a colorless liquid ($0.468 \mathrm{~g}, 86 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{td}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dt}, J=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (dd, J = 8.3, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 174.14,158.12(d, J=248.8 \mathrm{~Hz}), 141.32(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 130.69$, $124.14(d, J=3.7 \mathrm{~Hz}), 119.75(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 115.93(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 52.31,44.82,18.44$.
${ }^{19}$ F NMR (376 MHz, CDCl 3) $\delta-114.86$ (ddd, $J=11.0,7.7,3.4 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClFO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 217.04261$; found: 217.04216 .

Methyl 2-(2,4'-difluoro-[1,1'-biphenyl]-4-yl)propanoate (33) To a clean, dry 2 dram vial equipped with a stir bar was added potassium phosphate tribasic ($212.3 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and (4-fluorophenyl)boronic acid ($70.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The vial was then brought into the glovebox (N_{2}), where palladium (II) acetate ($2.3 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 0.02 \mathrm{eq}$.) and dicyclohexyl(2', $6^{\prime}-$ dimethoxy-[1,1'-biphenyl]-2-yl)phosphine (SPhos, $8.2 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 0.04 \mathrm{eq}$.) were added consecutively to the solids. Dry toluene (1 mL) was added, the vial was then sealed with a septum cap and the reaction was stirred for approximately 2 min . before the addition of methyl 2-(4-chloro-3fluorophenyl)propanoate ($108.3 \mathrm{mg}, 88.9 \mu \mathrm{~L}, 0.500 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) . The vial was resealed with the$ septum cap, brought out of the glovebox and heated at $90^{\circ} \mathrm{C}$ for 19 h . At the end of the reaction, the the vial was cooled to room temperature before being diluted with ether (10 mL), filtered through a silica plug and concentrated to yield a liquid. The crude product was then purified via flash chromatography (20 to 30% DCM:Hex) to yield methyl 2-(2,4'-difluoro-[1,1'-biphenyl]-4$\mathrm{yl})$ propanoate as a colorless liquid ($136 \mathrm{mg}, 99 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{ddt}, \mathrm{J}=6.9,5.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $7.10(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 174.53,162.55(\mathrm{~d}, \mathrm{~J}=247.2 \mathrm{~Hz}), 159.71(\mathrm{~d}, \mathrm{~J}=248.1 \mathrm{~Hz}), 142.07$
$(d, J=7.5 \mathrm{~Hz}), 131.56(d, J=3.3 \mathrm{~Hz}), 130.78(d, J=3.9 \mathrm{~Hz}), 130.71(d d, J=8.1,3.1 \mathrm{~Hz}), 126.97$
$(d, J=13.4 \mathrm{~Hz}), 123.72(d, J=3.6 \mathrm{~Hz}), 115.54(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 115.42(\mathrm{~d}, \mathrm{~J}=23.4 \mathrm{~Hz}), 52.36$, 45.02, 18.54.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.44$ (ddd, $J=14.2,8.8,5.2 \mathrm{~Hz}$), $-117.61(\mathrm{dd}, J=11.5,8.1 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 277.07899$; found: 277.08288 .

Ethyl 2-(4-chloro-2-fluorophenoxy)-2-methylpropanoate (34) To a dry, clean 3-neck round bottomed flask equipped with a condenser and a stir bar was added potassium carbonate (1.73 g , $12.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and 4-chloro-2-fluorophenol ($733 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The flask was then sealed with rubber septa and the solids were then dissolved in DMF (10 mL) under N_{2}. Ethyl 2-bromo-2-methylpropanoate ($1.47 \mathrm{~mL}, 10.0 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) was added dropwise via syringe and the reaction$ was heated to $70^{\circ} \mathrm{C}$ overnight. At the end of the reaction, the reaction was cooled to room temperature before being diluted with ether (15 mL) and water (30 mL). The layers were separated and the aqueous layer was extracted twice with 10 mL of ether. The organic layers were combined, washed sequentially with $20 \% \mathrm{LiCl}$ solution (15 mL) and brine (15 mL), dried over MgSO_{4} and concentrated to yield a yellow oil. The crude product was then purified via flash chromatography (520\% EtOAc:Hex) to yield ethyl 2-(4-chloro-2-fluorophenoxy)-2-methylpropanoate as an oil (0.885 g, 68\%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.07(\mathrm{dd}, \mathrm{J}=10.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 173.46,155.12(d, J=250.4 \mathrm{~Hz}), 141.92(d, J=11.1 \mathrm{~Hz}), 128.26(d$, $J=9.2 \mathrm{~Hz}), 124.23(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 123.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 117.29(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 81.41,61.64$, 24.97, 14.15.
${ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-119.87-135.56$ (m).

HRMS (ESI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClFO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 261.0688$; found: 261.0682.

4-Chloro- \mathbf{N}-methoxy- \mathbf{N}-methylbenzamide (i-23) was prepared according to a published procedure; spectra data are in agreement with literature values. (73)

(4-Chlorophenyl)(3-fluoro-4-methoxyphenyl)methanone (i-24) To a clean, dry roundbottomed flask equipped with a stir bar was added 4-bromo-2-fluoroanisole ($0.88 \mathrm{~mL}, 6.79 \mathrm{mmol}$, 0.91 eq.) under N_{2}. Then THF (45 mL) was added and the reaction was cooled to $-78^{\circ} \mathrm{C}$. A solution of nBuLi (2.5 M in hexanes, $3.0 \mathrm{~mL}, 7.48 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added dropwise under positive N_{2} pressure and the reaction was allowed to stir for 20 minutes. A solution of 4 -chloro- N-methoxy- N methylbenzamide ($1.49 \mathrm{~g}, 7.49 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF (10 mL) was prepared and added dropwise to the aryllithium species under positive N_{2} pressure. The solution was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and subsequently quenched at $-78^{\circ} \mathrm{C}$ with $i-\mathrm{PrOH}(10 \mathrm{~mL})$ and DI $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and allowed to warm to room temperature. Ether (20 mL) and DI $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ were then added to the reaction mixture and the layers were separated. The aqeuous layer was extracted with ether ($10 \mathrm{~mL} \times 2$) and the organic layers were combined. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude mixture was purified via flash chromatography (10 to 20% EtOAc:Hex) to yield 4-chlorophenyl)(3-fluoro-4-methoxyphenyl)methanone as a white solid (1.25 g, 63\%).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.72$ - $7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.02$ ($\mathrm{t}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.98(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz} \mathbf{C D C l}_{3}$) $\delta 151.98(\mathrm{~d}, J=248.6 \mathrm{~Hz}), 151.91(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}), 138.83,136.07$, $131.27,130.13(d, J=5.0 \mathrm{~Hz}), 128.82,127.73(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}), 117.86(\mathrm{~d}, \mathrm{~J}=19.1 \mathrm{~Hz}), 112.41(\mathrm{~d}, \mathrm{~J}$ $=2.1 \mathrm{~Hz})$, 56.50 .
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-133.81--133.89$ (m).

HRMS (ESI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{ClFO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 265.04261$; found: 265.04216.

(4-Chlorophenyl)(3-fluoro-4-hydroxyphenyl)methanone (i-25) To a clean, dry 2-neck round bottomed flask equipped with a stir bar was added (4-chlorophenyl)(3-fluoro-4methoxyphenyl)methanone ($1.23 \mathrm{~g}, 4.63 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in benzene (50 mL) under N_{2}. Aluminum chloride ($3.70 \mathrm{~g}, 27.8 \mathrm{mmol}, 6.0 \mathrm{eq}$.) was then added in three portions to the solution and the reaction mixture was refluxed overnight. At the end of the reaction, the reaction was quenched with ice (approx. 10 g), and the layers were separated. The aqueous layer was extracted twice with DCM (10 mL) and the organic layers were combined. The organic fractions were then washed with saturated ammonium chloride solution, dried over MgSO_{4} and concentrated. The crude product was purified via flash chromatography (30 to 40% EtOAc:Hex) to yield (4-chlorophenyl)(3-fluoro-4-hydroxyphenyl)methanone as a pink solid ($1.10 \mathrm{~g}, 95 \%$).

[^0]HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClFO}_{2}(\mathrm{M}+\mathrm{H})^{+}:$251.02696; found: 251.02653.

Isopropyl 2-(4-(4-chlorobenzoyl)-2-fluorophenoxy)-2-methylpropanoate (35) To a dry, clean 3-neck round bottomed flask equipped with a condenser and a stir bar was added potassium carbonate ($1.49 \mathrm{~g}, 10.8 \mathrm{mmol}, 2.5 \mathrm{eq}$.) and (4-chlorophenyl)(3-fluoro-4-hydroxyphenyl)methanone $(1.08 \mathrm{mg}, 4.31 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The flask was then sealed with rubber septa and the solids were then dissolved in DMF (10 mL) under N_{2}. Isopropyl 2-bromo-2-methylpropanoate ($1.45 \mathrm{~mL}, 8.62 \mathrm{mmol}, 2.0$ eq.) was added dropwise via syringe and the reaction was heated to $70^{\circ} \mathrm{C}$ overnight. At the end of the reaction, the reaction was cooled to room temperature before being diluted with ether (15 mL) and water (30 mL). The layers were separated and the aqueous layer was extracted twice with 10 mL of ether. The organic layers were combined, washed sequentially with $20 \% \mathrm{LiCl}$ solution (15 mL) and brine (15 mL), dried over MgSO_{4} and concentrated to yield a pink-red solid. The crude product was then purified via flash chromatography ($5-20 \%$ EtOAc:Hex) to yield isopropyl 2-(4-(4-chlorobenzoyl)-2-fluorophenoxy)-2-methylpropanoate as a pink-red solid ($983 \mathrm{mg}, 60 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.72$ - 7.65 (m, 2H), 7.57 (dd, J = 11.3, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48 - 7.42 (m, $3 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09$ (hept, $\mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $1.65(\mathrm{~s}, 6 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 193.31(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}), 172.73,153.63(\mathrm{~d}, \mathrm{~J}=248.9 \mathrm{~Hz}), 147.88(\mathrm{~d}, \mathrm{~J}$ $=10.9 \mathrm{~Hz}), 138.89,135.86,131.44(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}), 131.25,128.80,126.63(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 119.16$, 118.29 ($\mathrm{d}, \mathrm{J}=20.4 \mathrm{~Hz}$), 81.12, 69.54, 25.28, 21.65.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-129.29$ (dd, J = 11.4, 8.0 Hz).
HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClFO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 379.11068$; found: 379.10971 .

2-Fluoro-4-hydroxy-5-methoxybenzaldehyde (i-26) To a clean, dry round bottomed flask equipped with a stir bar was added 2 -fluoro-4,5-dimethoxybenzaldehyde ($1.04 \mathrm{~g}, 5.64 \mathrm{mmol}, 1.0$ eq.), which was then dissolved in 80 mL of DCM. Aluminum trichloride ($4.51 \mathrm{~g}, 33.8 \mathrm{mmol}, 6.0 \mathrm{eq}$.) was then added in three portions to the reaction mixture and the reaction was kept under N_{2} for 20 h . The reaction was then carefully poured into ice (caution: exothermic!) and stirred until all the ice was melted. The organic layer was then separated, dried over MgSO_{4}, concentrated and purified via flash chromatography (DCM to 10\% EtOAc:DCM) to provide 2-fluoro-4-hydroxy-5-methoxybenzaldehyde ($0.785 \mathrm{~g}, 82 \%$) as a white solid and the isomeric 2 -fluoro-5-hydroxy-4-methoxybenzaldehyde (97.0 $\mathrm{mg}, 10 \%$) as a pale yellow solid.
${ }^{1} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 10.21(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.35$ (d, J = $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\delta 185.96(d, J=6.7 \mathrm{~Hz}), 161.63(\mathrm{~d}, \mathrm{~J}=253.0 \mathrm{~Hz}), 153.13(\mathrm{~d}, \mathrm{~J}=13.5$ $\mathrm{Hz}), 143.79(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 116.60(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}), 107.63(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 102.90(\mathrm{~d}, \mathrm{~J}=26.3 \mathrm{~Hz})$, 56.61.
${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$) $\delta-128.30(\mathrm{dt}, \mathrm{J}=10.2,4.7 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 171.04250$; found: 171.04477 .

2-Fluoro-5-methoxy-4-((triisopropylsilyl)oxy)benzaldehyde (i-27) To a clean, dry round bottomed flask equipped with a stir bar was added 2-fluoro-4-hydroxy-5-methoxybenzaldehyde (681 $\mathrm{mg}, 4.00 \mathrm{mmol}, 1.0$ eq.) and imidazole ($545 \mathrm{mg}, 8.00 \mathrm{mmol}, 2.0 \mathrm{eq}$.). The solids were dissolved in 20 mL of DCM under N_{2} and the solution was cooled to $0^{\circ} \mathrm{C}$. Triisopropylsilyl chloride $(1.0 \mathrm{~mL}, 4.80$ mmol, 1.2 eq.) was then added to the reaction mixture dropwise and the reaction was then warmed to room temperature and stirred for 6 h . At the end of the reaction, the mixture was concentrated under reduced pressure, loaded onto Celite and purified via column chromatography (2 to 10% EtOAc:Hex) to yield a colorless oil ($1.09 \mathrm{~g}, 84 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.17(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=6.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, \mathrm{J}=$ $11.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{dt}, \mathrm{J}=15.0,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{dd}, J=7.6,2.7 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 185.95(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}), 160.76(\mathrm{~d}, \mathrm{~J}=253.4 \mathrm{~Hz}), 153.23(\mathrm{~d}, \mathrm{~J}=12.2$ $\mathrm{Hz}), 148.31(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 117.24(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}), 108.42(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 108.12(\mathrm{~d}, \mathrm{~J}=23.4 \mathrm{~Hz})$, 55.81, 17.82, 12.96.
${ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-129.93$ (ddd, $J=10.7,7.2,3.4 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{FO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}$: 327.17863 ; found: 327.17776.

Methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4((triisopropylsilyl)oxy)phenyl)acrylate (i-28)

Methyl 2-((tert-butoxycarbonyl)amino)-2-(dimethoxyphosphoryl)acetate ($1.08 \mathrm{~g}, 3.62 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added to a flame dried round bottomed flask equipped with a stir bar and dissolved in 6 mL of dry DCM under N_{2}. Then 1,8-diazabicyclo[5.4.0]undec-7-ene ($0.46 \mathrm{~mL}, 3.02 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added via syringe and the mixture was stirred at room temperature for 15 minutes. While the phosphonate ester solution was stirring, a solution of 2-fluoro-5-methoxy-4-((triisopropylsilyl)oxy)benzaldehyde ($2.23 \mathrm{~g}, 7.23 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 6 mL DCM was prepared. This benzaldehyde solution was added to the phosphonate ester solution dropwise at room temperature. Reaction conversion was monitored via TLC (reaction takes approximately 4 h .) and at the end of the reaction, the solution was concentrated and loaded onto Celite. The crude reaction mixture was then purified via flash chromatography (10 to 20\% EtOAc) to yield methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4-
((triisopropylsilyl)oxy)phenyl)acrylate as a white solid (1.01 g, 67\%)
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{dt}, \mathrm{J}=14.9,7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.151 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 166.14,155.63(\mathrm{~d}, \mathrm{~J}=246.5 \mathrm{~Hz}), 148.10(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}), 147.41$, $122.76(d, J=4.3 \mathrm{~Hz}), 114.28(d, J=13.9 \mathrm{~Hz}), 111.77,108.08(\mathrm{~d}, \mathrm{~J}=25.3 \mathrm{~Hz}), 81.02,56.00$, 52.74, 28.26, 17.96, 13.00.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta-120.13$.

HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{FNO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{H})^{+}: 498.26817$; found: 498.26692 .

Methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4-
((triisopropylsilyl)oxy)phenyl)propanoate (i-29) To a dry, clean round bottomed flask equipped with a stir bar was added methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4((triisopropylsilyl)oxy)phenyl)acrylate ($0.977 \mathrm{~g}, 1.96 \mathrm{mmol}, 1.0$ eq.), which was then dissolved in 12 mL of a THF:EtOH ($2: 1$) solution. 10% Palladium on carbon ($20.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.10 \mathrm{eq}$.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude mixture was then purified by flash chromatography (10% EtOAc:Hex) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4-
((triisopropylsilyl)oxy)phenyl)propanoate as a white solid ($0.950 \mathrm{~g}, 97 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.58(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H})+$ rotamer at $4.80(\mathrm{~s}), 4.52(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.36(\mathrm{~s}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}$, 3 H), 3.03 ($\mathrm{qd}, \mathrm{J}=14.0,6.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.41(\mathrm{~s}, 9 \mathrm{H}), 1.27-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 172.49,155.22(\mathrm{~d}, \mathrm{~J}=238.6 \mathrm{~Hz}), 155.15,147.43(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz})$, $145.46(d, J=11.4 \mathrm{~Hz}), 114.58(\mathrm{~d}, \mathrm{~J}=17.4 \mathrm{~Hz}), 114.26(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}), 108.20(\mathrm{~d}, \mathrm{~J}=25.3 \mathrm{~Hz})$, 79.97, 56.20, 53.93, 52.41, 31.73, 28.43, 17.96, 12.91.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-126.06$ (dd, $J=10.8,7.3 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{FNO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na})^{+}$: 522.26579 ; found: 522.26462.

Methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4-hydroxy-5-

methoxyphenyl)propanoate (i-30) Methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4-((triisopropylsilyl)oxy)phenyl)propanoate ($0.925 \mathrm{~g}, 1.85 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) was added to a clean, dry$ round bottomed flask equipped with a stir bar and the solid was dissolved in 20 mL of THF under N_{2}. The solution was then cooled to $0^{\circ} \mathrm{C}$ before a solution of tetrabutylammonium fluoride (1.0 M in THF , $2.0 \mathrm{~mL}, 2.04 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) was added dropwise to the reaction mixture. The reaction was then$ warmed to room temperature and allowed to stir for 2 h . At the end of the reaction, the reaction was quenched with 15 mL NH 44 Cl solution before being diluted with EtOAc. The layers were separated and the aqueous layer was extracted twice with 10 mL EtOAc. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and purified by flash chromatography (40-50\% EtOAc:Hex) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4-hydroxy-5-methoxyphenyl)propanoate as a white solid (0.620 g, 98\%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{6 0 0} \mathbf{~ M H z} \mathbf{C D C l}_{3}$) $\mathbf{\delta} 6.64(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.07$ $(\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.79(\mathrm{~s}), 4.52(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.36(\mathrm{~s}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.11-2.96(\mathrm{~m}, 2 \mathrm{H})+$ rotamer at $2.87(\mathrm{~s}), 1.41(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 172.43,155.82(\mathrm{~d}, \mathrm{~J}=238.0 \mathrm{~Hz}), 155.20,145.66(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz})$, 142.96 (d, $J=2.6 \mathrm{~Hz}), 113.33(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}), 112.82(\mathrm{~d}, \mathrm{~J}=4.1 \mathrm{~Hz}), 102.74(\mathrm{~d}, \mathrm{~J}=28.2 \mathrm{~Hz})$, 80.05, 56.54, 54.02, 52.49, 31.61, 28.44.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-125.14(\mathrm{dd}, J=10.3,6.8 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{FNO}_{6}(\mathrm{M}+\mathrm{Na})^{+}: 366.13236$; found: 366.13142 .

Methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4-

(((trifluoromethyl)sulfonyl)oxy)phenyl)propanoate (36) To a dry, clean round bottomed flask equipped with a stir bar was added methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-4-hydroxy-5methoxyphenyl) propanoate ($0.570 \mathrm{~g}, 1.75 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and the solid was dissolved in 20 mL of DCM under N_{2}. The solution was cooled to $0^{\circ} \mathrm{C}$ before pyridine ($0.28 \mathrm{~mL}, 3.50 \mathrm{mmol}, 2.0$ eq.) was added to the solution. Trifluoromethanesulfonic anhydride ($0.36 \mathrm{~mL}, 2.10 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was then added to the reaction dropwise and the solution was stirred for 15 minutes before being warmed to room temperature. The reaction was then run for 2 h . before being quenched with DI water. The reaction was then diluted with DCM before the layers were separated. The aqueous layer was extracted once with DCM (10 mL) and the organic layers were combined, washed sequentially with 10 mL of dilute $\mathrm{HCl}(2.0 \mathrm{M})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified via flash chromatography (10% EtOAc) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4-(((trifluoromethyl)sulfonyl)oxy)phenyl)-propanoate as a white solid (720 mg , 90\%).
${ }^{\mathbf{1}}{ }^{\mathbf{H}}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.96(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H})+$ rotamer at $4.98(\mathrm{~s}), 4.58(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.41(\mathrm{~s}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.18 (dd, J = 14.1, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, J = 14.1, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$) + rotamer at 2.92 (s), 1.38 (s, 9H).
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 171.94,155.06,154.20(\mathrm{~d}, \mathrm{~J}=242.4 \mathrm{~Hz}), 147.87(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz})$, 137.02 (d, J = 11.0 Hz), 124.49 (d, J = 17.2 Hz), 118.76 ($q, J=320.4 \mathrm{~Hz}$), $115.26(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz})$, 110.50 (d, J = 28.1 Hz), 80.26, 56.73, 53.37, 52.61, 32.09, 28.30.
${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$) $\delta-73.59(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}),-123.68(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{NO}_{8} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 498.08164$; found: 498.08065 .

Methyl 2-amino-3-(2-fluoro-4-hydroxy-5-methoxyphenyl)propanoate (i-31) To a dry, clean round bottomed flask equipped with a stir bar was added methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxy-4-(((trifluoromethyl)sulfonyl)oxy)phenyl)propanoate ($0.300 \mathrm{~g}, 0.874 \mathrm{mmol}, 1.0$ eq.). The fluoroarene was then dissolved in 4 mL of DCM under N_{2} and the stirring solution was cooled
to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid (1 mL) was added dropwise to the reaction and substrate conversion was observed by TLC. Once the reaction was complete, the solution was concentrated under reduced pressure (to remove excess TFA) and reconstituted in 10 mL DCM. This new solution was then cooled to $0{ }^{\circ} \mathrm{C}$ before dropwise addition of triethylamine ($0.13 \mathrm{~mL}, 0.917 \mathrm{mmol}, 1.05 \mathrm{eq}$.). The reaction mixture was allowed to stir for 2 h . Once the reaction was complete, it was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and DCM $(10 \mathrm{~mL})$. The organic layers were combined, washed with an additional portion of water (10 mL), dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was used without further purification ($0.210 \mathrm{~g}, 99 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.60(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74$ $-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{bs}, 2 \mathrm{H}), 3.00(\mathrm{dd}, J=13.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=13.9,7.6$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (151 MHz, $\mathbf{C D C l}_{3}$) $\delta 175.23,155.62(\mathrm{~d}, \mathrm{~J}=237.7 \mathrm{~Hz}), 145.87(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}), 143.36(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}), 113.54(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 113.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 103.16(\mathrm{~d}, J=27.6 \mathrm{~Hz}), 56.37,54.67$, 52.22, 34.06.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-125.24$ (dd, $J=10.6,6.5 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 244.09796$; found: 244.09880

2-Amino-3-(2-fluoro-4-hydroxy-5-methoxyphenyl)propanoic acid (i-32) The title compound was prepared from methyl 2-amino-3-(2-fluoro-4-hydroxy-5-methoxyphenyl)propanoate according to a published procedure (74) for the non-fluorinated congener (methyl 2-amino-3-(4-hydroxy-5methoxyphenyl)propanoate); spectra data are in agreement with literature values. (75)

6-Fluoro-L-3,4-dihydroxyphenylalanine (37) The title compound was prepared according to a published procedure; spectral data are in agreement with literature values. (76)

Methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)acrylate (i-33) Methyl 2-((tert-butoxycarbonyl)amino)-2-(dimethoxyphosphoryl)acetate ($1.783 \mathrm{~g}, 6.00 \mathrm{mmol}, 1.2$ eq.) was added to a flame dried round bottomed flask equipped with a stir bar and dissolved in 15 mL of dry DCM under N_{2}. Then 1,8-diazabicyclo[5.4.0]undec-7-ene ($0.75 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added via syringe and the mixture was stirred at room temperature for 15 minutes. While the phosphonate ester solution was stirring, a solution of 2-fluoro-5-methoxybenzaldehyde (0.7707 g , $5.00 \mathrm{mmol}, 1.0$ eq.) in 15 mL DCM was prepared. This benzaldehyde solution was added to the phosphonate ester solution dropwise at room temperature. Reaction conversion was monitored via TLC (reaction takes approximately 4 h.) and at the end of the reaction, the solution was concentrated and loaded onto Celite. The crude reaction mixture was then purified via flash chromatography (20 to 30% EtOAc) to yield methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)acrylate as a white solid ($1.37 \mathrm{~g}, 84 \%$)
${ }^{1} \mathbf{H}$ NMR ($600 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.34$ (bs, 1 H), 7.25 (dd, $\left.J=9.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97$ (td, $\mathrm{J}=9.1,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83$ (dd, J = 9.1, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.46(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (151 MHz, CDCl $_{3}$) ठ $166.01,156.69(\mathrm{~d}, \mathrm{~J}=238.2 \mathrm{~Hz}), 153.51(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 152.43$, 125.76, $124.50(d, J=8.2 \mathrm{~Hz}), 122.44,116.48(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}), 115.80(\mathrm{~d}, \mathrm{~J}=24.3 \mathrm{~Hz}), 111.99(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}$), 81.05, 56.32, 52.72, 28.13.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-123.87$.
HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{FNO}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 348.12180$; found: 348.12177 .

Methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)propanoate (38)

To a dry, clean round bottomed flask equipped with a stir bar was added methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)acrylate ($1.37 \mathrm{~g}, 4.21 \mathrm{mmol}, 1.0 \mathrm{eq}$.), which was then dissolved in 20 mL of a THF:EtOH (2:1) solution. 10% Palladium on carbon ($89.6 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 0.10 \mathrm{eq}$.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude mixture was then purified by flash chromatography (10 to 20\% EtOAc:Hex) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5methoxyphenyl)propanoate ($1.34 \mathrm{~g}, 97 \%$) as a white solid.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90(\mathrm{td}, J=8.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}$, $J=9.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $5.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 4.51(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H})+$ rotamer at $4.33(\mathrm{bs}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=13.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, \mathrm{J}=$ $13.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 172.70,156.83(\mathrm{~d}, \mathrm{~J}=238.3 \mathrm{~Hz}), 155.26,153.88(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz})$, $126.46(d, J=7.3 \mathrm{~Hz}), 117.98(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}), 114.22(\mathrm{~d}, \mathrm{~J}=22.6 \mathrm{~Hz}), 111.18(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz})$, 79.83, 55.96, 53.77, 52.29, 32.99, 28.36.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) $\delta-124.13$ (td, $J=8.2,4.2 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{FNO}_{5}(\mathrm{M}+\mathrm{Na})^{+}: 350.13745$; found: 350.13731 .

2-((Tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)propanoic acid (i-34)
To a dry, clean round bottomed flask equipped with a stir bar was added methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)propanoate ($327.0 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The solid was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and a 2 N solution of sodium hydroxide ($2.0 \mathrm{~mL}, 4.00 \mathrm{mmol}$, 4.0 eq.) was slowly added to the methanol solution. The reaction was then stirred at room temperature until all of the starting material was consumed (monitored via TLC). Upon completion of hydrolysis, the reaction mixture was diluted with EtOAc (15 mL) and dilute HCl solution was added until solution $\mathrm{pH}<2.0$. The layers were then separated and the aq. layer was extracted with two additional portions of EtOAc $(2 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure to reveal 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5-methoxyphenyl)propanoic acid as a white solid. The isolated product was sufficiently pure to be used without further purification ($310 \mathrm{mg}, 99 \%$).
${ }^{1}{ }^{\mathbf{H}}$ NMR (600 MHz, Acetone-d $_{6}$) $\delta 11.11$ (bs, 1H), 7.02 (dd, J = 9.3, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.99 - $6.92(\mathrm{~m}$, $2 \mathrm{H}), 6.09(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $5.69(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 4.47(\mathrm{td}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at 4.39 (bs), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.27$ (dd, $J=13.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.6,9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.33 (s, 9H).
${ }^{13}$ C NMR (151 MHz, Acetone-d \mathbf{d}_{6}) $\delta 173.69,157.46(\mathrm{~d}, \mathrm{~J}=235.7 \mathrm{~Hz}$), 156.24, 155.07 ($\mathrm{d}, \mathrm{J}=2.1$ $\mathrm{Hz}), 128.57(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 118.51(\mathrm{~d}, J=23.5 \mathrm{~Hz}), 114.39(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 112.25(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz})$, 79.13, 56.33, 53.99, 33.19, 28.47.
${ }^{19}$ F NMR (376 MHz, Acetone-d $\mathbf{~}$) δ-126.24--126.44 (m).
HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FNO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$: 336.12180 ; found: 336.12168 .

2-Fluoro-5-methoxy-DL-phenylalanine trifluoroacetate salt (39) To a dry, clean round bottomed flask equipped with a stir bar was added 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5methoxyphenyl)propanoic acid ($235.0 \mathrm{mg}, 0.750 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The solid was dissolved in acetone $(10 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Trifluoroacetic acid (2 mL) was added dropwise to the reaction solution and after 10 minutes of stirring, was allowed to warm to room temperature. The reaction was allowed to stir for 3 hours and upon the completion of the reaction, the solvents were removed under reduced pressure. Excess trifluoroacetic acid was azeotropically removed with small amounts of toluene and diethyl ether. A brown crystalline solid (2-fluoro-5-methoxy-DL-phenylalanine trifluoroacetate salt) was isolated and was analyzed without further purification ($240.0 \mathrm{mg}, 98 \%$).
${ }^{\mathbf{1}} \mathrm{H}$ NMR (600 MHz, DMSO) $\delta 13.91$ (bs, 1 H$), 8.28$ (bs, 2H), 7.10 (td, J = 8.7, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.03 (dd, $J=9.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, \mathrm{J}=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{bs}, 1 \mathrm{H}), 4.09(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $3 \mathrm{H}), 3.14$ (dd, $J=13.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, J = 13.9, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C NMR (151 MHz, DMSO) $\delta 170.46,158.01(q, J=30.9 \mathrm{~Hz}), 155.96(\mathrm{~d}, \mathrm{~J}=235.6 \mathrm{~Hz}), 154.00(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}), 124.55(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}), 117.81(\mathrm{~d}, J=23.3 \mathrm{~Hz}), 117.28(\mathrm{q}, J=300.1 \mathrm{~Hz}), 114.63(\mathrm{~d}, J=$ 22.5 Hz), 111.97 (d, J = 8.4 Hz), 55.90, 51.78, 30.98.
${ }^{19}$ F NMR (376 MHz, DMSO) $\delta-73.51,-124.19$ (td, $J=8.7,4.6 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FNO}_{3}(\mathrm{M}+\mathrm{H})^{+}: 214.08739$; found: 214.08765 (only free amine mass detected).

41,99\%
i-36, 87\%

\mathbf{N}-Boc-4-(trifluoromethanesulfonyl)-L-phenylalanine methyl ester (i-35) The title compound was prepared according to a published procedure; spectra data are in agreement with literature values. (77)

Methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoate

 (40, a-F) To a clean, dry round bottomed flask equipped with a stir bar was added (4fluorophenyl)boronic acid ($276.4 \mathrm{mg}, 1.98 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and potassium carbonate ($546.1 \mathrm{mg}, 3.95$ mmol, 2.6 eq.). The flask containing the solids was then transferred into an N_{2} glovebox, where tetrakis(triphenylphos-phine)palladium(0) ($175.6 \mathrm{mg}, 0.152 \mathrm{mmol}, 0.10 \mathrm{eq}$.$) was added. The flask$ was then sealed with a rubber septum and subsequently removed from the glovebox. The flask was then placed under a positive N_{2} pressure and the solids in the flask were dissolved in a $10: 1$ PhMe:DMF mixture ($15.4 \mathrm{~mL}, 0.1 \mathrm{M}$). A prepared solution of N-Boc-4-(trifluoromethanesulfonyl)-Lphenylalanine methyl ester ($649.5 \mathrm{mg}, 1.52 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in PhMe ($\sim 0.4 \mathrm{M}$) was then added, and the reaction was stirred at $100^{\circ} \mathrm{C}$ overnight. Upon completion (confirmed by consumption of substrate by TLC), the reaction was filtered through Celite into a separatory funnel, and diluted with EtOAc (10 mL) and water (20 mL). The layers were separated and the aq. layer was extracted with one portion of EtOAc (10 mL). The organic layers were combined and washed with two portions of LiCl solution and one portion of brine before being dried over MgSO_{4} and concentrated. The crude mixture was then purified by column chromatography (10 to 30\% EtOAc:Hex) to yield methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoate as a white solid ($0.5430 \mathrm{~g}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.12(\mathrm{td}, \mathrm{J}=8.6,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $5.03(\mathrm{bs}), 4.66(\mathrm{q}, \mathrm{J}=6.7$ $\mathrm{Hz}, 1 \mathrm{H})+$ rotamer at $4.46(\mathrm{bs}), 3.20(\mathrm{dd}, J=13.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=13.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45$ (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 172.34,162.38(\mathrm{~d}, \mathrm{~J}=246.2 \mathrm{~Hz}), 155.16,138.82,136.82(\mathrm{~d}, \mathrm{~J}=3.2$ $\mathrm{Hz}), 135.16,129.78,128.50(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 127.05,115.59(\mathrm{~d}, \mathrm{~J}=21.3 \mathrm{~Hz}), 79.92,54.41,52.23$, 37.86, 28.27.
${ }^{19}$ F NMR (376 MHz, $\mathbf{C D C l}_{3}$) $\delta-115.54(\mathrm{td}, \mathrm{J}=8.7,8.2,4.6 \mathrm{~Hz})$.

HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 396.15818$; found: 396.15813 .

(S)-2-((Tert-butoxycarbonyl)amino)-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid (i-36) To a dry, clean round bottomed flask equipped with a stir bar was added methyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoate ($444.0 \mathrm{mg}, 1.19 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The solid was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and a 2 N solution of sodium hydroxide ($2.4 \mathrm{~mL}, 4.76 \mathrm{mmol}$, 4.0 eq.) was slowly added to the methanol solution. The reaction was then stirred at room temperature until all of the starting material was consumed (monitored via TLC). Upon completion of hydrolysis, the reaction mixture was diluted with EtOAc (15 mL) and dilute HCl solution was added until solution $\mathrm{pH}<2.0$. The layers were then separated and the aq. layer was extracted with two additional portions of EtOAc $(2 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure to reveal (S)-2-((tert-butoxycarbonyl)amino)-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid as a white solid. The isolated product was sufficiently pure to be used without further purification ($374.0 \mathrm{mg}, 87 \%$).
 $\mathrm{Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at 5.71 $(\mathrm{d}, J=7.0 \mathrm{~Hz}), 4.46(\mathrm{td}, J=8.7,4.9 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.37(\mathrm{bs}), 3.25(\mathrm{dd}, J=13.9,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.05 (dd, J = 13.9, $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.36 (s, 9H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, Acetone- \mathbf{d}_{6}) $\delta 173.57,163.29(\mathrm{~d}, \mathrm{~J}=244.3 \mathrm{~Hz}), 156.32,139.11,138.06$ (d, J $=3.2 \mathrm{~Hz}), 137.85,130.84,129.53(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 127.61,116.41(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 79.32,55.72$, 37.81, 28.55.
${ }^{19}$ F NMR (376 MHz, Acetone-d \mathbf{d}_{6}) $\delta-117.66(\mathrm{tt}, J=8.3,5.1 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 382.14253$; found: 382.14239 .

(S)-2-Amino-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid trifluoroacetate salt (41)

To a dry, clean round bottomed flask equipped with a stir bar was added (S)-2-((tert-
butoxycarbonyl)amino)-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid ($334.6 \mathrm{mg}, 0.931 \mathrm{mmol}, 1.0$ eq.). The solid was dissolved in acetone (10 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Trifluoroacetic acid (2 mL) was added dropwise to the reaction solution and after 10 minutes of stirring, was allowed to warm to room temperature. The reaction was allowed to stir for 3 hours and upon the completion of the reaction, the solvents were removed under reduced pressure. Excess trifluoroacetic acid was azeotropically removed with small amounts of toluene and diethyl ether. An off-white solid [(S)-2-amino-3-(4'-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid trifluoroacetate salt] was isolated and was analyzed without further purification ($345.7 \mathrm{mg}, 99 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=8.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, \mathrm{J}=14.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, \mathrm{J}$ $=14.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}) .\left(\mathrm{NH}_{3}\right.$ and COOH peaks not observed $)$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.27(\mathrm{dd}, \mathrm{J}=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, \mathrm{J}=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, \mathrm{J}=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H})$. (NH_{3} and COOH peaks not observed)
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 169.73,163.52(\mathrm{~d}, \mathrm{~J}=244.7 \mathrm{~Hz}), 159.11(\mathrm{q}, \mathrm{J}=39.5 \mathrm{~Hz}), 140.34$, $137.40(d, J=3.3 \mathrm{~Hz}), 133.97,131.18,129.69(d, J=8.3 \mathrm{~Hz}), 128.39,116.64(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz})$, $116.24(q, J=286.8 \mathrm{~Hz}), 55.28,35.74$.
${ }^{13}$ C NMR (151 MHz, MeOD) $\delta 171.35,164.00(d, J=245.1 \mathrm{~Hz}), 141.01,138.14(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz})$, $134.74,131.05,129.75(d, J=8.1 \mathrm{~Hz}), 128.60,116.62(d, J=21.5 \mathrm{~Hz}), 55.17,37.01$. (TFA peaks not observed)
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{C N}$) $\delta-76.76,-116.95-117.08$ (m).
${ }^{19}$ F NMR (376 MHz, MeOD) $\delta-77.09,-117.79$ (ddd, $J=14.1,9.5,5.4 \mathrm{~Hz}$).

HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FNO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 260.10813$; found: 260.10836 (only free amine mass detected).

2-Fluoro-4-formylphenyl trifluoromethanesulfonate (i-37) The title compound was prepared according to a published procedure (78); spectra data are provided herein.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 9.98(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=8.6,6.8$ $\mathrm{Hz}, 1 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z , ~ C D C l} 3$) $\delta 189.28(d, J=2.0 \mathrm{~Hz}), 154.28(\mathrm{~d}, \mathrm{~J}=257.4 \mathrm{~Hz}), 140.95(\mathrm{~d}, \mathrm{~J}=13.8$ $\mathrm{Hz}), 137.30(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}), 126.92(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 124.62,118.73(\mathrm{q}, \mathrm{J}=320.7 \mathrm{~Hz}), 117.67(\mathrm{~d}, \mathrm{~J}=$ 18.8 Hz).
${ }^{19}$ F NMR (376 MHz, CDCl $_{3}$) $\delta-72.79(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}),-124.44(\mathrm{dpd}, \mathrm{J}=10.0,4.9,2.3 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+\mathrm{Na})^{+}: 294.96588$; found: 294.96607.

2-Fluoro-[1,1'-biphenyl]-4-carbaldehyde (i-38) To a clean, dry round bottomed flask equipped with a stir bar was added phenylboronic acid ($949.0 \mathrm{mg}, 7.79 \mathrm{mmol}, 1.3 \mathrm{eq}$.) and potassium carbonate ($2.15 \mathrm{~g}, 15.6 \mathrm{mmol}, 2.6 \mathrm{eq}$.). The flask containing the solids was then transferred into an N_{2} glovebox, where tetrakis(triphenylphosphine)palladium(0) ($692 \mathrm{mg}, 0.599 \mathrm{mmol}, 0.10 \mathrm{eq}$.) was added. The flask was then sealed with a rubber septum and subsequently removed from the glovebox. The flask was then placed under a positive N_{2} pressure and the solids in the flask were dissolved in a 10:1 PhMe:DMF mixture ($55 \mathrm{~mL}, 0.1 \mathrm{M}$). A prepared solution of 2-fluoro-4-formylphenyl trifluoromethane-sulfonate ($1.63 \mathrm{~g}, 5.99 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $\mathrm{PhMe}(\sim 0.4 \mathrm{M}$) was then added, and the reaction was stirred at $100^{\circ} \mathrm{C}$ overnight. Upon completion (confirmed by consumption of substrate by TLC), the reaction was filtered through Celite into a separatory funnel, and diluted with EtOAc (10 mL) and water (20 mL). The layers were separated and the aq. layer was extracted with one portion of EtOAc (10 mL). The organic layers were combined and washed with two portions of LiCl solution and one portion of brine before being dried over MgSO_{4} and concentrated. The crude mixture was then purified by column chromatography (10 to 30% EtOAc:Hex) to yield 2-fluoro-[1,1'-biphenyl]-4carbaldehyde as a white solid ($1.05 \mathrm{~g}, 88 \%$).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.01(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=$ $10.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dt}, \mathrm{J}=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.46$ - 7.42 (m, 1H).
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 190.75(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}), 160.08(\mathrm{~d}, J=251.1 \mathrm{~Hz}), 137.14(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}), 135.37(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 134.57(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 131.57(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.15(\mathrm{~d}, J=3.1 \mathrm{~Hz})$, $128.84,128.78,126.18(d, J=3.4 \mathrm{~Hz}), 116.46(\mathrm{~d}, J=23.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-118.11$.
HRMS (ESI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{FO}(\mathrm{M}+\mathrm{H})^{+}$: 201.07102; found: 201.07122.

Methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-[1,1'-biphenyl]-4-yl)acrylate (i-39) Methyl 2-((tert-butoxycarbonyl)amino)-2-(dimethoxyphosphoryl)acetate ($0.884 \mathrm{~g}, 5.30 \mathrm{mmol}, 1.2$ eq.) was added to a flame dried round bottomed flask equipped with a stir bar and dissolved in 15 mL of dry DCM under N_{2}. Then 1,8-diazabicyclo[5.4.0]undec-7-ene ($0.67 \mathrm{~mL}, 4.42 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added via syringe and the mixture was stirred at room temperature for 15 minutes. While the phosphonate ester solution was stirring, a solution of 2-fluoro-[1,1'-biphenyl]-4-carbaldehyde (0.8840 $\mathrm{g}, 4.42 \mathrm{mmol}, 1.0$ eq.) in 12 mL DCM was prepared. This benzaldehyde solution was added to the phosphonate ester solution dropwise at room temperature. Reaction conversion was monitored via TLC (reaction takes approximately 4 h .) and at the end of the reaction, the solution was concentrated and loaded onto Celite. The crude reaction mixture was then purified via flash chromatography (20 to 30% EtOAc) to yield methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-[1,1'-biphenyl]-4-yl)acrylate as a white solid ($1.51 \mathrm{~g}, 92 \%$)
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{dt}, \mathrm{J}=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.34$ (m, 3H), 7.26 (bs, 1H), 6.41 (bs, 1H), 3.88 (s, 3H), 1.43 (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 165.97,159.60(\mathrm{~d}, \mathrm{~J}=247.7 \mathrm{~Hz}), 152.40,135.42,135.36,130.61$ (d , $J=3.9 \mathrm{~Hz}), 129.76(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}), 129.08(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 128.65,128.17(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 128.13$, $126.22(d, J=3.2 \mathrm{~Hz}), 124.88,116.91(d, J=24.4 \mathrm{~Hz}), 81.47,52.95,28.24$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-116.07(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 394.14253$; found: 394.14247 .

Methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (40, b-F)

To a dry, clean round bottomed flask equipped with a stir bar was added methyl (Z)-2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-[1,1'-biphenyl]-4-yl)acry-late ($1.51 \mathrm{~g}, 4.07 \mathrm{mmol}, 1.0 \mathrm{eq}$) , which was then dissolved in 27 mL of a THF:EtOH (2:1) solution. 10\% Palladium on carbon ($86.5 \mathrm{mg}, 0.20$ $\mathrm{mmol}, 0.10$ eq.) was added to the solution and the reaction was placed under N_{2}. The solution was purged and backfilled with H_{2} before being placed under a H_{2} atmosphere (1 atm) overnight (reaction is typically done in about 2-3 hours). Once the reaction was complete, the solution was run through a Celite plug and concentrated. The crude mixture was then purified by flash chromatography (10 to

30\% EtOAc:Hex) to yield methyl 2-((tert-butoxycarbonyl)amino)-3-(2-fluoro-5methoxyphenyl) propanoate ($1.43 \mathrm{~g}, 94 \%$) as a white solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.56(\mathrm{dt}, \mathrm{J}=8.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at 4.85 (bs), $4.66(\mathrm{dt}, \mathrm{J}=8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H})+$ rotamer at $4.47(\mathrm{bs}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, \mathrm{J}=13.9,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10$ (dd, J = 13.9, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.46 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 172.19,159.65(\mathrm{~d}, \mathrm{~J}=248.2 \mathrm{~Hz}), 155.16,137.67(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz})$, $135.59,130.85(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}), 129.04(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 128.75(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}), 128.56,127.76$, $125.44(\mathrm{~d}, \mathrm{~J}=3.4 \mathrm{~Hz}), 117.10(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}), 80.23,54.33,52.53,37.91$, 28.40.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta-118.03(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz})$.
HRMS (ESI): Calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 396.15818$; found: 396.15814 .

2-(3-(4-Fluorophenoxy)phenyl)propanoic acid (42)

To a dry, clean round bottomed flask equipped with a stir bar was added methyl 2-(3-(4-
fluorophenoxy)phenyl)propanoate ($256.0 \mathrm{mg}, 0.933 \mathrm{mmol}, 1.0 \mathrm{eq}$.). The solid was dissolved in MeOH (5 mL) and a 2 N solution of sodium hydroxide ($2.4 \mathrm{~mL}, 4.76 \mathrm{mmol}, 4.0 \mathrm{eq}$.) was slowly added to the methanol solution. The reaction was then stirred at room temperature until all of the starting material was consumed (monitored via TLC). Upon completion of hydrolysis, the reaction mixture was diluted with EtOAc (15 mL) and dilute HCl solution was added until solution $\mathrm{pH}<2.0$. The layers were then separated and the aq. layer was extracted with two additional portions of EtOAc $(2 \times 10 \mathrm{~mL})$. The organic layers were combined, washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure to reveal 2-(3-(4-fluorophenoxy)phenyl)propanoic acid as a white solid. The isolated product was sufficiently pure to be used without further purification ($220.0 \mathrm{mg}, 91 \%$).
${ }^{1}$ H NMR (600 MHz, CDCl $_{3}$) $\delta 11.15(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.00-$ $6.96(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{dd}, \mathrm{J}=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 5 1 ~ M H z}$, CDCl $_{3}$) $\delta 180.71,159.02(\mathrm{~d}, \mathrm{~J}=241.9 \mathrm{~Hz}), 158.06,152.64(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz})$, $141.82,130.07,122.40,120.81(d, J=8.2 \mathrm{~Hz}), 117.74,116.96,116.48(\mathrm{~d}, \mathrm{~J}=23.2 \mathrm{~Hz}), 45.33$, 18.15.
${ }^{19}$ F NMR (376 MHz, CDCl ${ }_{3}$) $\delta-119.75(\mathrm{dt}, \mathrm{J}=8.8,4.8 \mathrm{~Hz}$).
HRMS (ESI): Calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{FO}_{3}(\mathrm{M}+\mathrm{H})^{+}$: 261.09215 ; found: 261.09362 .

4. Synthesis and Analysis of Fluorinated HPLC Standards for Arene C-H Fluorination

4.1 General C-H fluorination procedure for CsF as the fluorine source

Photocatalyst S1 (1.4mg, $0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.$) , diphenyl ether (8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ $\mathrm{TBAHSO}_{4}(8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}),$. TEMPO $(3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.$) and CsF (76.0 \mathrm{mg}$, $0.5 \mathrm{mmol}, 10 \mathrm{eq}$) were weighed and added sequentially to a dried glass vial equipped with a stir bar. $225 \mu \mathrm{~L}$ DCE and $75 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ was added. The vial was then sealed with a Teflon-lined septum screw cap. The septum was then pierced with a disposable steel needle connected to an oxygen-filled balloon. A vent needle was inserted and the reaction medium was sparged for 1 minutes by bubbling oxygen through the mixture. Then the vent needle was removed, and the oxygen balloon was maintained, providing approximately 1 atm of oxygen to the vial headspace for the course of the reaction. The reaction flask was then placed on a stir plate and illuminated with blue LED lamps (455 nm). Analysis the reaction by HPLC at 2.5 h and 24 h .

4.2 General C-H fluorination procedure for TBAF as the fluorine source

Photocatalyst S1 (1.4mg, $0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.), diphenyl ether ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$) , TEMPO $(3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed and added sequentially to a dried glass vial equipped with a stir bar. $500 \mu \mathrm{~L}$ anhydrous TBAF (1M in THF) was added. The vial was then sealed with a Teflon-lined septum screw cap. The septum was then pierced with a disposable steel needle connected to an oxygen-filled balloon. A vent needle was inserted and the reaction medium was sparged for 1 minutes by bubbling oxygen through the mixture. Then the vent needle was removed, and the oxygen balloon was maintained, providing approximately 1 atm of oxygen to the vial headspace for the course of the reaction. The reaction flask was then placed on a stir plate and illuminated with blue LED lamps (455 nm). Analysis the reaction by HPLC at 2.5 h and 24 h .

4.3 General HPLC condition

Column: Phenomenex, Kinetex ${ }^{\circledR}$ Aeris PEPTIDE 3.6 u XB-C18, $250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A:
0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : 5% to 45% solvent B, 2 to 22 min : 45% to 50% solvent $B, 22$ to 28 min : 50% to 95% solvent $\mathrm{B}, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S2. Overlaid (A and B) or enlarged (C and D) UV-HPLC chromatograms (at 212 nm) for the crude reaction mixture of CsF or TBAF system at 2.5 h and 24 h

Fluorine source	Reaction time	Area ratio (2:a)
CsF	2.5 h	$1: 15.12$
	24 h	$1: 5.765$
TBAF	2.5 h	$1: 262.48$
	24 h	$1: 218.8$

Table S2. Time and ${ }^{19} \mathrm{~F}$-source dependent $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether

5. Experimental Procedures for Radiochemistry

5.1 Synthesis of [${ }^{18}$ F]TBAF, [${ }^{18}$ F]CsF, [$\left.{ }^{18} F\right] K F, K\left[{ }^{18} F\right] F-k r y p t o f i x$

5.1.1 General procedure for the preparation of [${ }^{18} \mathrm{~F}$]TBAF

[${ }^{18}$ F]TBAF was prepared on a TRACERLab FXFN (General Electric, GE) automated radiochemistry synthesis module. Before [${ }^{18}$ F]fluoride delivery, ports in the module were charged under ambient atmosphere as follows:

- Port 1: A combination of 70 ul tetrabutylammonium bicarbonate (TBAB) solution ($20 \%, \mathrm{w} / \mathrm{w}$), $53 \mu \mathrm{~L}$ $\mathrm{H}_{2} \mathrm{O}$, and $477 \mu \mathrm{~L}$ MeCN (Total volume: $600 \mu \mathrm{~L}$)
- Port 3: anhydrous MeCN (1 mL)
- Port 4: anhydrous MeCN (1 mL)
[$\left.{ }^{18} \mathrm{~F}\right]$ Fluoride was produced via the ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{n})^{18} \mathrm{~F}$ reaction by proton irradiation $(40 \mu \mathrm{~A}, 2-5 \mathrm{~min})$ of an $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ containing target in a GE PETTrace cyclotron. The [$\left.{ }^{18} \mathrm{~F}\right]$ fluoride (ca. $1.2-2.2 \mathrm{Ci}$) was delivered to the synthesis module in a bolus of $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ by stream of argon. The aqueous solution of [${ }^{18}$ F]fluoride was passed through a QMA cartridge (water preconditioning) to trap [${ }^{18} \mathrm{~F}$]fluoride before elution into the reactor vessel with a solution of TBAB (contents of Port 1). This solution was azeotropically dried by heating the reaction vessel to $100^{\circ} \mathrm{C}$ and drawing vacuum (ca. 1 kPa) for 5 min, followed by simultaneous vacuum draw and nitrogen stream for a further 6 minutes. The dried [${ }^{18} \mathrm{~F}$]TBAF was cooled to $50^{\circ} \mathrm{C}$ before addition of anhydrous MeCN (contents of Port 3). The mixture was transferred out of the reactor under N_{2} pressure into a sterile vial to yield a solution of [${ }^{18} \mathrm{~F}$]TBAF (1.1-1.8 Ci, average $=1.5 \mathrm{Ci}$) in MeCN. $10-100 \mu \mathrm{~L}$ aliquots of this solution were then used for manual methodology experiments.

5.1.2 General procedure for the preparation of [${ }^{18} \mathrm{~F}$]CsF solution

First Method: 0.9% cesium chloride as the eluent.
QMA-light Sep-Paks were preconditioned with 10 mL of 0.9% cesium chloride solution, followed by 10 mL of water before use. Target rinse (200 mCi) was then passed through the QMA-light Sep-Pak to trap the fluoride-18. The QMA cartridge was washed with additional 10 mL ultrapure water to remove any residual $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ and then eluted with 1 mL of 0.9% cesium chloride solution to yield an aqueous solution of [$\left.{ }^{18} \mathrm{~F}\right] \mathrm{CsF}$ ($\sim 150 \mathrm{mCi}$) into a 5 mL glass tube for use.
Second Method: 0.9% cesium carbonate as the eluent.
QMA cartridge were preconditioned with 10 mL of 0.9% cesium carbonate solution, followed by 10 mL of water before use. Target rinse (200 mCi) was then passed through the QMA-light Sep-Pak to trap the fluoride-18. The QMA cartridge was washed with additional 10 mL ultrapure water to remove any residual $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ and then eluted with 1 mL of 0.9% cesium carbonate solution to yield an aqueous solution of [$\left.{ }^{18} \mathrm{~F}\right] \mathrm{CsF}$ ($\sim 150 \mathrm{mCi}$) into a 5 mL glass tube for use.
Third Method: 0.9% cesium fluoride as the eluent.
QMA-light Sep-Paks were preconditioned with 10 mL of 0.9% cesium fluoride solution, followed by 10 mL of water before use. Target rinse (200 mCi) was then passed through the QMA cartridge to trap the fluoride-18. The QMA cartridge was washed with additional 10 mL ultrapure water to remove any residual $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ and then eluted with 1 mL of 0.9% cesium fluoride solution to yield an aqueous solution of $\left[{ }^{18} \mathrm{~F}\right] \mathrm{CsF}$ ($\sim 150 \mathrm{mCi}$) into a 5 mL glass tube for use.
Fourth Method: A mixture of $4.2 \mathrm{mg} \mathrm{CsCl}(0.025 \mathrm{mmol})$ and [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF ($10 \sim 20 \mathrm{mCi}$)
The $\mathbf{S 1}$ ($1.4 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.$) , diphenyl ether (8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathrm{CsCl}(4.2 \mathrm{mg}$, $0.025 \mathrm{mmol}, 0.5 \mathrm{eq}.), \mathrm{TBAHSO}_{4}(8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.$\left.) , TEMPO (3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}.\right)$ were weighed into a 2.5 mL dried glass vial equipped with a stir bar and dissolved in $175 \mu \mathrm{~L}$ DCE and $75 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. Then a $50 \mu \mathrm{~L}$ aliquot of [${ }^{18} \mathrm{~F}$]TBAF in DCE (typically $10-20 \mathrm{mCi}$, preparation method: MeCN in $\left[{ }^{18} \mathrm{~F}\right]$ TBAF was dried by heating to $100^{\circ} \mathrm{C}$ and argon stream for 5 min , then cooled to RT before addition of $200 \mu \mathrm{~L}$ anhydrous DCE) was added to the reaction vial via syringe.
Fifth Method: A mixture of $7.6 \mathrm{mg} \operatorname{CsF}(0.05 \mathrm{mmol})$ and $\left[{ }^{18} \mathrm{~F}\right] T B A F(10 \sim 20 \mathrm{mCi})$

The S1 ($1.4 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.), diphenyl ether ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , CsF (7.6 \mathrm{mg}$, $0.05 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathrm{TBAHSO}_{4}(8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.$) , TEMPO (3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial equipped with a stir bar and dissolved in $175 \mu \mathrm{~L}$ DCE and $75 \mu \mathrm{~L}$ $\mathrm{H}_{2} \mathrm{O}$. Then a $50 \mu \mathrm{~L}$ aliquot of $\left[{ }^{18} \mathrm{~F}\right]$ TBAF in DCE (typically $10-20 \mathrm{mCi}$) was added to the reaction vial via syringe.

5.1.3 General procedure for the preparation of [${ }^{18} \mathrm{~F}$] KF solution

QMA-light Sep-Paks were preconditioned with 10 mL of 0.9% potassium perchlorate solution, followed by 10 mL of water before use. Target rinse (200 mCi) was then passed through the QMA-light Sep-Pak to trap the fluoride-18. The QMA cartridge was washed with additional 10 mL ultrapure water to remove any residual $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ and then eluted with 1 mL of 0.9% potassium perchlorate solution to yield an aqueous solution of $\left[{ }^{18} \mathrm{~F}\right] \mathrm{KF}(\sim 150 \mathrm{mCi})$ into a 5 mL glass tube for use.

5.1.4 General procedure for the preparation of K[${ }^{18}$ F]F-kryptofix solution

K[$\left.{ }^{18} \mathrm{~F}\right] F$-kryptofix preparation was conducted on a TRACERLab FXFN (General Electric, GE) automated radiochemistry synthesis module which is same as [${ }^{18} \mathrm{~F}$]TBAF preparation procedure. The ${ }^{18} \mathrm{~F}$ was released from the QMA cartridge by passing $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution through the cartridge and allowed to enter into the reactor. Kryptofix K2.2.2 solution was added into the reactor and the whole mixture was dried at $95^{\circ} \mathrm{C}$ in combination of nitrogen flow and vacuum. Then 1 mL anhydrous MeCN was added to yield $\mathrm{K}\left[{ }^{18} \mathrm{~F}\right] \mathrm{F}$-kryptofix ($\sim 1.3 \mathrm{Ci}$) for use.

5.2 General HPLC Conditions

Four general sets of HPLC conditions were used. Conditions A, B, C were normally used for HPLC yield calculation of different substrates. Condition D were used for [${ }^{18} \mathrm{~F}$]labeled product purification.

HPLC Condition A:

Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ EVO $\mathrm{C} 18100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column.
Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;
Grad/isocrat: 0 to 2 min : 5% to 45% solvent $B, 2$ to $22 \mathrm{~min}: 45 \%$ to 50% solvent $B, 22$ to 28 min : 50% to 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B .
Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

HPLC Condition B:

Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column.
Solvent A: 0.1\%TFA water; Solvent B: 0.1% TFA acetonitrile;
Grad/isocrat: 0 to $2 \mathrm{~min}: 30 \%$ to 50% solvent $B, 2$ to 22 min : 50% to 50% solvent $B, 22$ to 28 min : 50% to 95% solvent $B, 28$ to 28.1 min : 95% to 30% solvent $B, 28.1$ to 30 min : isocratic elution at 30\% solvent B.
Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

HPLC Condition C:

Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column.
Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;
Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to $22 \mathrm{~min}: 5 \%$ to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B.
Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

HPLC Condition D:

Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column
Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;
Grad/isocrat: 0 to 2 min : 20% to 45% solvent $B, 2$ to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $B, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20\% solvent B.
Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

5.3 General procedure for the synthesis of ${ }^{\mathbf{1 8}} \mathrm{F}$-fluoroarenes

General procedure A: Photocatalyst 1 ($1.5 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.05$ to 0.01 eq.), substrate (0.05 to $0.25 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , TEMPO (3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5$ to 0.1 eq) were weighed into a 1.5 mL microcentrifuge tube and dissolved in $50-70 \mu \mathrm{~L}$ anhydrous MeCN and $400 \mu \mathrm{~L}$ t-BuOH. The resulting solution was transferred to a 5 mL v-vial via a pipette, and then a $30-50 \mu \mathrm{~L}$ aliquot of [${ }^{18} \mathrm{~F}$]TBAF in MeCN (typically $10-30 \mathrm{mCi}$) [total volume of MeCN is $100 \mu \mathrm{~L}$] was immediately added to the reaction vial via pipette. Decay in [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF activity was monitored upon addition of [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF to the substrate solution. The reaction v-vial was then fixed on an iron support and cooled to using an ice-acetone bath. A needle connected to an oxygen-filled balloon was inserted to the bottom of the v-vial and the reaction medium was continuously sparged with oxygen throughout the entire reaction time (30 min . to 1 h .). The reaction was then irradiated top-down with the optic fiber of an OEM blue diode laser (OEM-SD-450, $450 \mathrm{~nm}, 3.5 \mathrm{~W}$ after fiber coupling) for 30 min to 1 h . ${ }^{\mathbf{1 8} F}$ activity was recorded at the end of the reaction. The resulting solution was diluted with MeCN (0.3-0.5 mL). An aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis. The activity injected into HPLC was measured (this activity was denoted by a) and the time was recorded. The fraction corresponding to radiolabeled product was collected and the activity was measured (this activity was denoted by β). The radiochemical yields of all [${ }^{18}$ F]-labeled molecules were isolated via HPLC. The decay-corrected RCY were was calculated by dividing the decay-corrected β by a. All RCY were calculated with respect to the starting ${ }^{18} \mathrm{~F}$ activity of the eluted fluoride. [$\left.{ }^{18} \mathrm{~F}\right]$-Radiolabeled products were confirmed by the co-injection of commercial or synthesized ${ }^{19} \mathrm{~F}$ standards via HPLC. General Method A (Section 3-3) was used for the positive identification of desired fluorinated congener; mass detection of the desired ${ }^{19} \mathrm{~F}$-fluorination products indicates the compatibility of the arene for radiofluorination. Quality control (QC) was run separately to ensure the purity of isolated radiolabeled compounds.

Fig. S3. Reaction set-up for photoredox-catalyzed arene radiofluorination

5.4 Comparision of isolation, radio-TLC and radio-HPLC yields for the radiofluorination of

 diphenyl ether.A

B

Name	Start (mm)	End (mm)	Retention (RF)	Area (Counts)	\%ROI $(\%)$	\%Total $(\%)$
Region 1	1.8	4.3	0.032	878	0.37	0.35
FreeF	4.3	20.8	0.141	118960	50.16	46.87
Region 2	22.1	29.6	0.243	14111	5.95	5.56
Region 3	33.7	35.8	0.342	1503	0.63	0.59
Region 4	40.3	44.5	0.440	3668	1.55	1.44
Region 5	45.5	49.6	0.458	2620	1.10	1.03
F18 optical	57.5	80.5	0.687	95407	40.23	37.59
7Peaks				237146	100.00	93.43

C

Yield Analysis Method	Yield of 2 and a
HPLC isolation	$\mathbf{2 8 . 7 \%}$
Radio-HPLC	$\mathbf{> 8 0 \%}$
Radio-TLC	$\mathbf{4 0 . 2 3 \%}$

Fig. S4. Comparison of isolation, radio-HPLC (A) and radio-TLC (B) yields for the radio-fluorination of diphenyl ether with corresponding yields (C).

5.5 Summary of Reaction Optimization for Arene Radiofluorination

5.5.1 Evaluation of fluorine sources

5.5.1.1 ${ }^{18} \mathrm{~F}$-CsF as the fluorine source:

Method A:

Photocatalyst S1 ($1.5 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.$) , diphenyl ether (8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.), TBAHSO_{4} ($\left.8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}.\right)$, TEMPO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial equipped with a stir bar and dissolved in $225 \mu \mathrm{~L}$ DCE. The vial was then sealed with a Teflon-lined septum screw cap. The septum was then pierced with a disposable steel needle connected to an oxygen-filled balloon. A vent needle was inserted and the reaction medium was sparged for 1 min by bubbling oxygen through the mixture. Then the vent needle was removed, and the oxygen balloon was maintained, providing approximately 1 atm of oxygen to the vial headspace for the course of the reaction. Then a $75 \mu \mathrm{~L}$ aliquot of [$\left.{ }^{18} \mathrm{~F}\right] \mathrm{CsF}$ in $\mathrm{H}_{2} \mathrm{O}$ (typically $10-30 \mathrm{mCi}$, see section 5.1.2) was added to the reaction vial via syringe. The reaction flask was then placed on a stir plate and illuminated with blue LED lamps (450 nm). After 2.5 h , an aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis using HPLC condition B and the isolated and decay-corrected yield was calculated. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S3.

Method B:

Photocatalyst S1 (1.5mg, $0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.$) , diphenyl ether (8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ $\mathrm{TBAHSO}_{4}(8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}),$. TEMPO ($\left.3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}.\right), \mathrm{CsCl}(4.2 \mathrm{mg}$, $0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) or CsF ($7.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial equipped with a stir bar and dissolved in in $175 \mu \mathrm{~L}$ DCE and $75 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$. The vial was then sealed with a Teflon-lined septum screw cap. The septum was then pierced with a disposable steel needle connected to an oxygen-filled balloon. A vent needle was inserted and the reaction medium was sparged for 1 min by bubbling oxygen through the mixture. Then the vent needle was removed, and the oxygen balloon was maintained, providing approximately 1 atm of oxygen to the vial headspace for the course of the reaction. Then a $50 \mu \mathrm{~L}$ aliquot of $\left[{ }^{18} \mathrm{~F}\right]$ TBAF in DCE (typically $10-30 \mathrm{mCi}$, see section 5.1 .2) was added to the reaction vial via syringe. The reaction flask was then placed on a stir plate and illuminated with blue LED lamps (450 nm). After 2.5 h , an aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis using HPLC condition B and the isolated and decaycorrected yield was calculated. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S3.

5.5.1.2 ${ }^{18}$ F-TBAF as the fluorine source:

Photocatalyst S1 (1.5mg, $0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.), diphenyl ether ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ TBAHSO_{4} ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and TEMPO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial equipped with a stir bar and dissolved in $400 \mu \mathrm{~L}$ anhydrous MeCN. The vial was then sealed with a Teflon-lined septum screw cap. The septum was then pierced with a disposable steel needle connected to an oxygen-filled balloon. A vent needle was inserted and the reaction
medium was sparged for 1 min by bubbling oxygen through the mixture. Then the vent needle was removed, and the oxygen balloon was maintained, providing approximately 1 atm of oxygen to the vial headspace for the course of the reaction. Then a $100 \mu \mathrm{~L}$ aliquot of [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF in anhydrous MeCN (typically $10-30 \mathrm{mCi}$, see section 5.1 .2) was added to the reaction vial via syringe. The reaction flask was then placed on a stir plate and illuminated with blue LED lamps (450 nm). After 2.5 h , an aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis using HPLC condition B and the isolated and decay-corrected yield was calculated. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S3.

5.5.1.3 ${ }^{18} \mathrm{~F}-\mathrm{KF}$ as the fluorine source:

Photocatalyst S1 (1.5mg, 0.0025mmol, 0.05eq.), diphenyl ether ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.), TBAHSO_{4} ($\left.8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}.\right)$, TEMPO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial equipped with a stir bar and dissolved in $225 \mu \mathrm{~L}$ DCE. The vial was then sealed with a Teflon-lined septum screw cap. The septum was then pierced with a disposable steel needle connected to an oxygen-filled balloon. A vent needle was inserted and the reaction medium was sparged for 1 min by bubbling oxygen through the mixture. Then the vent needle was removed, and the oxygen balloon was maintained, providing approximately 1 atm of oxygen to the vial headspace for the course of the reaction. Then a $75 \mu \mathrm{~L}$ aliquot of $\left[{ }^{18} \mathrm{~F}\right] \mathrm{KF}$ in $\mathrm{H}_{2} \mathrm{O}$ (typically $10-30 \mathrm{mCi}$, see section 5.1.2, which was eluted from QMA with 0.9% potassium perchlorate) was added to the reaction vial via syringe. The reaction flask was then placed on a stir plate and illuminated with blue LED lamps (450 nm). After 2.5 h , an aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radioHPLC analysis using HPLC condition B and the isolated and decay-corrected yield was calculated. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S3.

5.5.1.4 K[$\left.{ }^{18} \mathrm{~F}\right] F$-kryptofix as the fluorine source:

Photocatalyst S1 ($1.5 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.), diphenyl ether ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.), TBAHSO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.), TEMPO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial equipped with a stir bar and dissolved in $400 \mu \mathrm{~L}$ anhydrous MeCN. The vial was then sealed with a Teflon-lined septum screw cap. The septum was then pierced with a disposable steel needle connected to an oxygen-filled balloon. A vent needle was inserted and the reaction medium was sparged for 1 min by bubbling oxygen through the mixture. Then the vent needle was removed, and the oxygen balloon was maintained, providing approximately 1 atm of oxygen to the vial headspace for the course of the reaction. Then a $100 \mu \mathrm{~L}$ aliquot of $\mathrm{K}\left[{ }^{18} \mathrm{~F}\right] F-k r y p t o f i x$ in anhydrous MeCN (typically $10-30 \mathrm{mCi}$, see section 5.1 .2) was added to the reaction vial via syringe. The reaction flask was then placed on a stir plate and illuminated with blue LED lamps (450 nm). After 2.5 h , an aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis using HPLC condition B and the isolated and decay-corrected yield was calculated. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S3.

Entry	${ }^{18}$ F-Fluoride	Isolated yield of 2*	Isolated yield of b*
1	${ }^{18}$ F-CsF (First Method: ${ }^{18} \mathrm{~F}$ on QMA was eluted with $0.9 \% \mathrm{CsCl}$)	Trace	nd
2	${ }^{18}$ F-CsF (Second Method: ${ }^{18} \mathrm{~F}$ on QMA was eluted with 0.9\% $\left.\mathrm{Cs}_{2} \mathrm{CO}_{3}\right)$	nd	nd
3	18F-CsF (Third Method: ${ }^{18} \mathrm{~F}$ on QMA was eluted with $0.9 \% \mathrm{CsF}$)	nd	nd
4	${ }^{18}$ F-CsF (Fourth Method: [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF mixed with CsCl)	nd	nd
5	${ }^{18}$ F-CsF (Fifth Method: [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF mixed with CsF)	nd	nd
6	${ }^{18} \mathrm{~F}-\mathrm{TBAF}$	0.572\%	trace
7	${ }^{18} \mathrm{~F}$-KF $\left({ }^{18} \mathrm{~F}\right.$ on QMA was eluted with $0.9 \% \mathrm{KClO}_{4}$)	nd	nd
8	K [${ }^{18} \mathrm{~F}$]F-kryptofix	0.39\%	trace

Table S3. Evaluation of ${ }^{18} \mathrm{~F}$-fluoride sources for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.2 Evaluation of Irradiation sources

5.5.2.1 Laser as the light source

Photocatalyst S1 (1.5mg, $0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.), diphenyl ether ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.), TEMPO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial and dissolved in $400 \mu \mathrm{~L}$ anhydrous MeCN. The resulting solution was transferred to a 5 mL v-vial sealed via a $200 \mu \mathrm{~L}$ pipette, and a $100 \mu \mathrm{~L}$ aliquot of [$\left.{ }^{18} \mathrm{~F}\right]$ TBAF in MeCN (typically $10-30 \mathrm{mCi}$, prepared as described above) was added to the reaction vial via pipette. After counting the activity added, the reaction v-vial was fixed on an iron support and cooled to $0^{\circ} \mathrm{C}$ by using ice-acetone bath. Then the surface of reaction medium was irradiated directly with a laser spot from the optic fiber of an OEM blue diode laser (OEM-SD-450, 450 nm , the power is 1.0 W after fiber coupling). Irradiation was carried out for 2.5 h . The resulting solution was diluted with $\mathrm{MeCN}(0.5 \mathrm{~mL})$. An aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis using HPLC condition B and the isolated and decay-corrected yield was calculated. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S4.

Entry	Light source	Isolated yield of 2	Isolated yield of b
1	455nm LEDs	0.572%	trace
2	450nm Laser	28.6%	1.33%

Table S4. Evaluation of irradiation sources for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.3 Evaluation of time-dependent laser power rating

The reaction was run under the same conditions as the procedure in 5.5.2.1 The laser power rating was set at 1.0 W and 3.5 W (maximum power of the laser) respectively and the reaction was analyzed by HPLC every 30 minutes. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S5.

Entry	Laser power rating	Reaction time	Isolated yield of 2	Isolated yield of b
1		30 min	2.67%	Trace
2	$\mathbf{1 . 0} \mathbf{~ W}$	60 min	7.68%	0.64%
3		90 min	11.98%	1.60%
4		120 min	19.38%	1.78%
5		150 min	25.74%	2.64%
6	30 min	8.23%	0.24%	
7	$3.5 \mathbf{W}$	$90 \min$	12.44%	0.90%
8		120 min	16.20%	1.39%
9		150 min	19.16%	1.70%
10		20.40%	2.04%	

Table S5. Evaluation of laser power rating for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.4 Evaluation of TEMPO loading

The reaction was run under the same conditions as the procedure in 5.5.2.1, with the laser power rating set at 3.5 W . TEMPO loadings from 3.9 mg ($0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) to 7.8 mg ($0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were analyzed. The reaction was analyzed by HPLC after 30 and 60 minutes of irradiation. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S6.

Entry	TEMPO Loading	Reaction time	Isolated yield of 2	Isolated yield of b
1	$3.9 \mathrm{mg}(0.5 \mathrm{eq})$	30 min	8.23%	0.24%
2		60 min	12.44%	0.90%
3	$3.8 \mathrm{mg}(1.0 \mathrm{eq})$	30 min	5.96%	0.13%
4		60 min	8.07%	0.62%

Table S6. Evaluation of TEMPO loading for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.5 Evaluation of catalyst loading

The reaction was run under the same conditions as the procedure in 5.5.2.1, with the laser power rating set at 3.5 W . Photocatalyst ($\mathbf{S 1}$) loadings from 3.9 mg ($0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) to 7.8 mg ($0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) were analyzed. The reaction was analyzed by HPLC after 30$ and 60 minutes of irradiation. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S7.

Entry	Catalyst Loading	Reaction time	Isolated yield of 2	Isolated yield of b
1	$\mathbf{1 . 5 m g}(\mathbf{0 . 0 5 e q})$	30 min	60 min	8.23%
2		30 min	12.44%	0.24%
3	$\mathbf{3 . 0 m g}(\mathbf{0 . 1 e q})$	60 min	8.78%	0.90%
4		15.60%	0.20%	

Table S7. Evaluation of photocatalyst loading for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.6 Evaluation of reaction atmosphere

The reaction was run under the same conditions as the procedure in 5.5.2.1, with the laser power rating set at 3.5 W . The reaction solution was either sparged with O_{2} or N_{2} for the entirety of the reaction. The reaction was analyzed by HPLC after 30 and 60 minutes of irradiation. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S8.

Entry	Atmosphere	Reaction time	Isolated yield of 2	Isolated yield of \mathbf{b}
1	Air (Stationary contact)	30 min	8.23%	0.24%
2	O_{2} (bubbling)	30 min	12.44%	0.90%
3	$\mathrm{~N}_{2}$ (bubbling)	30 min	25.84%	2.01%
4		2.79%	Trace	

Table S8. Evaluation of reaction atmosphere for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.8 Solvent Screening

The reaction was run under the same conditions as the procedure in 5.5.2.1, with the laser power rating set at 3.5 W . The reaction solution was sparged with O_{2} for the entirety of the reaction. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in Table S9.

Entry	Solvent	Isolated yield of 2*	Isolated yield of \mathbf{b}^{*}
1	MeCN	25.84%	2.01%
2	DCE \dagger	8.97%	0.27%
3	DMSO	nd	nd
4	DMF	nd	nd
5	THF	0.27%	nd
6	MeOH	nd	nd
7	MeCN:t-BuOH =1:4	$37.1 \pm 12 \%(n=5)$	$2 \pm 1 \%(\mathrm{n}=5)$
8	(Catalyst S1)		
9	MeCN:t-BuOH $=1: 4$	$38.2 \pm 10 \%(\mathrm{n}=5)$	$1.75 \pm 0.7 \%(\mathrm{n}=5)$
	(Catalyst 1)	1.95%	trace

* nd $=$ not detected; \dagger The reaction time is 25 min , because DCE volatilized completely.

Table S9. Evaluation of reaction solvent for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.9 Miscellaneous optimizations

The reactions below were run under these conditions unless specified otherwise:
The catalyst S1 ($1.5 \mathrm{mg}, 0.0025 \mathrm{mmol}, 0.05 \mathrm{eq}$.), diphenyl ether ($8.5 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0 \mathrm{eq}$) , TEMPO ($3.9 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were weighed into a 2.5 mL dried glass vial and dissolved in $500 \mu \mathrm{~L}$ MeCN:t-BuOH=1:4 The resulting solution was transferred to a 5 mL v-vial sealed via a $200 \mu \mathrm{~L}$ pipette, and a $100 \mu \mathrm{~L}$ aliquot of $\left[{ }^{18} \mathrm{~F}\right]$ TBAF in MeCN (typically $10-30 \mathrm{mCi}$, prepared as described above) was added to the reaction vial via pipette. After counting the activity added, the reaction v-vial was fixed on an iron support and cooled to $0^{\circ} \mathrm{C}$ by using ice-acetone bath. The reaction solution was then sparged with O_{2} before the surface of reaction medium was irradiated directly with a laser spot from the optic fiber of an OEM blue diode laser (OEM-SD-450, 450nm, the power is 3.5 W after fiber coupling). The reaction solution was kept under an O_{2} sparge for the remainder of reaction irradiation (30 mins). The resulting solution was diluted with $\mathrm{MeCN}(0.5 \mathrm{~mL}$). An aliquot of the reaction mixture (typically $400-800 \mu \mathrm{Ci}$) was taken for radio-HPLC analysis using HPLC condition B and the isolated and decay-corrected yield was calculated. The isolated yields of $\mathbf{2}$ and \mathbf{b} are listed in the corresponding tables.

5.5.9.1 Evaluation of substrate concentration

(A) S1 ($1.5 \mathrm{mg}, 2.5 \mu \mathrm{~mol}$), diphenyl ether ($8.5 \mathrm{mg}, 50 \mu \mathrm{~mol}$), TEMPO ($3.9 \mathrm{mg}, 25 \mu \mathrm{~mol}$)
(B) S1 $(1.5 \mathrm{mg}, 2.5 \mu \mathrm{~mol})$, diphenyl ether $(1.7 \mathrm{mg}, 10 \mu \mathrm{~mol})$, TEMPO $(3.9 \mathrm{mg}, 25 \mu \mathrm{~mol})$
(C) S1 $(0.3 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$, diphenyl ether $(1.7 \mathrm{mg}, 10 \mu \mathrm{~mol})$, TEMPO $(0.8 \mathrm{mg}, 5 \mu \mathrm{~mol})$

Entry	Condition	Isolated yield of 2	Isolated yield of b
1	\mathbf{A}	$37.1 \pm 12 \%(n=5)$	$2 \pm 1 \%(n=5)$
2	\mathbf{B}	7.88%	0.30%
3	\mathbf{C}	5.57%	0.24%

Table S10. Evaluation of substrate concentration for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.9.2 Reaction controls

Entry	Condition	Isolated yield of 2*	Isolated yield of b*
1	Model reaction	$37.1 \pm 12 \%(\mathrm{n}=5)$	$2 \pm 1 \%(\mathrm{n}=5)$
2	No TEMPO	3.04%	0.18%
3	No catalyst	nd	nd

* nd $=$ not detected

Table S11. Reaction controls for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.9.3 Evaluation of excess water

Entry	Condition	Isolated yield of 2	Isolated yield of b
1	Model reaction	$37.1 \pm 12 \%(n=5)$	$2 \pm 1 \%(n=5)$
2	With $5 \% \mathrm{H}_{2} \mathrm{O}$	4.83%	0.40%

Table S12. Impact of excess water on the direct $C-H$ fluorination of diphenyl ether.

5.5.9.4 Expansion of compatible [${ }^{18} \mathrm{~F}$] sources under optimized conditions

$\left[{ }^{18} \mathrm{~F}\right] \mathrm{CsF}$ and $\left[{ }^{18} \mathrm{~F}\right] \mathrm{K}_{222} \mathrm{~F}$ were generated according to the procedures in 5.5.1

Entry	Condition	Isolated yield of 2	Isolated yield of b
1	$\left[{ }^{18} \mathrm{~F}\right] \mathrm{CsF}$ as the fluorine source and t-BuOH as the solvent	21.2%	0.83%
2	$\left[{ }^{18} \mathrm{~F}\right] \mathrm{K}_{222} \mathrm{~F}$ as the fluorine source and $\mathrm{t}-\mathrm{BuOH} / \mathrm{MeCN}$ as the solvent	26.2%	

Table S13. Compatibility of $\left[{ }^{18} \mathrm{~F}\right] \mathrm{CsF}$ and $\left[{ }^{18} \mathrm{~F}\right] \mathrm{K}_{222} \mathrm{~F}$ for the direct $\mathrm{C}-\mathrm{H}$ fluorination of diphenyl ether.

5.5.10 Molar activity calculations

Molar activity (the measured radioactivity per mole of compound)was calculated using a standard curve of the corresponding fluorinated arene. An example for calculating molar activity is shown below. A ${ }^{19} \mathrm{~F}$ standard curve [Y axis $=$ UV area, X axis = mass $(\mu \mathrm{g})$] was created from the HPLC trace for a standard solution of 1-fluoro-4-phenoxybenzene. The radiolabeled product was collected and purified via HPLC; the UV area overlapping with radio peak was then recorded. The standard curve was used to calculate the mass and mole number. Dividing the product activity by the mole number gives the molar activity in $\mathrm{Ci} / \mu \mathrm{mol}$. In this example, $\left.{ }^{18} \mathrm{~F}\right]-1$-fluoro- 4 -phenoxybenzene isolated has a molar activity of $1.37 \mathrm{Ci} / \mu \mathrm{mol}$, which is decay corrected from the end of bombardment (EOB).

E

Trace	Injected dose (p- product)	Integral Area	Molar activity Decay corrected (EOB)
A	$115 \mu \mathrm{Ci}$	817897	$1.28 \mathrm{Ci} / \mu \mathrm{mol}$
B	$85 \mu \mathrm{Ci}$	627625	$1.48 \mathrm{Ci} / \mu \mathrm{mol}$
C	$63 \mu \mathrm{Ci}$	593897	$1.36 \mathrm{Ci} / \mu \mathrm{mol}$

Fig. S5. Radio-HPLC and UV traces for [$\left.{ }^{18} \mathrm{~F}\right]$-1-fluoro-4-phenoxybenzene ($\mathbf{A}, \mathbf{B}, \mathbf{C}$); standard curve generated from the UV traces (D); calculation of molar activity using the standard curve (E)

5.6 Radio-HPLC analysis and characterization for ${ }^{18} \mathrm{~F}$-radiolabeled arenes

5.6.1 General information: All the labelling reactions are carried out using general procedure A from the section 5.3 unless specified otherwise. The amounts of photocatalyst $\mathbf{1}$ (1.5mg.) and TEMPO $(3.9 \mathrm{mg})$ were kept consistent for all radiolabeling experiments. The respective molar equivalents of $\mathbf{1}$ and TEMPO (with respect to the arenes) are as follows: 1) Arene ($0.05 \mathrm{mmol} / 0.10 \mathrm{mmol} / 0.125$ $\mathrm{mmol} / 0.25 \mathrm{mmol}) ; 2$) Photocatalyst 1 ($0.05 \mathrm{eq} . / 0.025 \mathrm{eq} . / 0.02 \mathrm{eq} . / 0.01 \mathrm{eq}$.$) ; 3) TEMPO (0.5 \mathrm{eq}$. /0.25eq. /0.2eq. $/ 0.1 \mathrm{eq}$.) Three replicate experiments were used to calculate RCYs (five replicates were run for 2). The co-injection of the hot product and standard are offset by 0.04-0.06 min due to the distance of the UV and radio detector. The red HPLC traces in the following spectra were obtained with a UV signal at 212 nm . The black HPLC traces are the radio signal for the crude and isolated radiolabeled products. HPLC conditions for analysis and purification are listed for each radiolabeled product.
The following fluorination standards were obtained from commercial vendors and used as received: 4fluorophenoxybenzene (2), 4-fluorobiphenyl (3), 1-fluoronaphthalene (4), 2-bromo-4-fluoroanisole (5), 2-chloro-4-fluoroanisole (6), methyl 5-fluoro-2-methoxybenzoate (8), 1-(5-fluoro-2methoxyphenyl)ethenone (9), 5-fluoro-2-methoxybenzonitrile (10), 5-fluoro-2-methoxybenzaldehyde (11), 3-fluoro-4-methoxybenzaldehyde (15), 1-(3-fluoro-4-methoxyphenyl)ethenone (16), methyl 3-fluoro-4-methoxybenzoate (18), 1-(4-fluoro-3-methoxyphenyl)ethenone (20, [4-F]) and 2fluoromesitylene (25). The preparation of aromatic fluorinated standards (7, 12, 13, 14, 17, 19, 20 [2-F], 21-24, 26-42) are found in section 3.3.

5.6.2 Radio-HPLC traces for ${ }^{18}$ F-radiolabeled arenes, decay corrected isolated radiochemical yields (RCY), Radio-HPLC traces for quality control (QC) and co-injection, and HPLC conditions for isolating the corresponding ${ }^{18} F$-radiolabeled arenes.

Fig. S6 Radio-HPLC traces for 2
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 2	RCY(Decay corrected) \mathbf{b}
Run 1	32.0%	1.7%
Run 2	40.9%	1.9%
Run 3	49.6%	2.8%
Run 4	30.0%	1.2%
Run 5	38.7%	1.3%
Average	$\mathbf{3 8 . 2} \mathbf{1 0 \%}$	$\mathbf{1 . 8 \pm 1 \%}$

Table S14. Average radiochemical yields for 2 and b

Fig. S7. HPLC traces of QC (A) and co-injection (B) for 2
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;Grad/isocrat: 0 to $2 \mathrm{~min}: 20 \%$ to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $\mathrm{B}, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S8. Radio-HPLC traces of $\mathbf{3}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to $2 \mathrm{~min}: 20 \%$ to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $B, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 3
Run 1	30.6%
Run 2	50.6%
Run 3	36.7%
Average	$\mathbf{3 9 . 3} \pm \mathbf{1 0 \%}$

Table S15. Average radiochemical yields for 3

Fig. S9. Radio-HPLC trace of 3a (left peak) and 3 (right peak)

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S10. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{3}$
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;Grad/isocrat: 0 to 2 min : 20% to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $\mathrm{B}, 22$ to 28 min : 60% to 95% solvent $\mathrm{B}, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S11. Radio-HPLC traces of 4
HPLC condition: Column: Phenomenex, Kinetex $\circledR^{\circledR} 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5\% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{4}$
Run 1	20.3%
Run 2	20.1%
Run 3	22.2%
Average	$\mathbf{2 0 . 9 \pm 1 \%}$

Table S16. Average radiochemical yields for 4

Fig. S12. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{4}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m} F 5100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to $2 \mathrm{~min}: 20 \%$ to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $\mathrm{B}, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S13. Radio-HPLC traces of $\mathbf{5}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 5
Run 1	8.9%
Run 2	9.7%
Run 3	9.0%
Average	$\mathbf{9 . 2} \mathbf{2 0 . 5 \%}$

Table S17. Average radiochemical yields for 5

Fig. S14. HPLC traces of QC(A) and co-injection(B) for 5
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 55% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S15. Radio-HPLC traces of 6

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{6}$
Run 1	16.0%
Run 2	15.4%
Run 3	13.8%
Average	$\mathbf{1 5 . 1 \pm 1 \%}$

Table S18. Average radiochemical yields for 6

Fig. S16. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 6
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to $2 \mathrm{~min}: 20 \%$ to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $B, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S17. Radio-HPLC traces of 7

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{7}$
Run 1	32.5%
Run 2	23.1%
Run 3	$\mathbf{2 7 . 4 \%}$
Average	$\mathbf{2 7 . 7} \mathbf{5 \%}$

Table S19. Average radiochemical yields for 7

Fig. S18. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 7
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;Grad/isocrat: 0 to $2 \mathrm{~min}: 20 \%$ to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $B, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S19. Radio-HPLC traces of $\mathbf{8}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{8}$
Run 1	21.4%
Run 2	29.1%
Run 3	19.9%
Average	$\mathbf{2 3 . 5} \mathbf{5 \%}$

Table S20. Average radiochemical yields for 8

Fig. S20. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 8
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 35% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S21. Radio-HPLC traces of 9

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{9}$
Run 1	25.3%
Run 2	22.7%
Run 3	25.9%
Average	$\mathbf{2 4 . 6 \pm 2 \%}$

Table S21. Average radiochemical yields for 9

Fig. S22. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 9
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 40% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S23. Radio-HPLC traces of $\mathbf{1 0}$

HPLC condition: Column: Phenomenex, Kinetex $\circledR^{\circledR} 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 0}$
Run 1	12.9%
Run 2	8.9%
Run 3	11.5%
Average	$11.1 \pm 2 \%$

Table S22. Average radiochemical yields for $\mathbf{1 0}$

Fig. S24. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 0}$
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;Grad/isocrat: 0 to 2 min : 20% to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $B, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$

Fig. S25. Radio-HPLC traces of $\mathbf{1 1}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 11
Run 1	27.7%
Run 2	21.3%
Run 3	21.5%
Average	$\mathbf{2 3 . 5} \mathbf{4 \%} \%$

Table S23. Average radiochemical yields for 11

Fig. S26. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 1}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;Grad/isocrat: 0 to 2 min : 20% to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $\mathrm{B}, 28$ to 28.1 min : 95% to 20% solvent B, 28.1 to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S27. Radio-HPLC traces of $\mathbf{1 2}$
HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 2}$
Run 1	13.4%
Run 2	13.2%
Run 3	14.8%
Average	$\mathbf{1 3 . 8} \mathbf{1 3 \%}$

Table S24. Average radiochemical yields for 12

Fig. S28. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 2}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 40% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S29. Radio-HPLC traces of 13
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 3}$
Run 1	4.2%
Run 2	4.7%
Run 3	3.3%
Average	$\mathbf{4 . 1} \mathbf{0 . 6 \%}$

Table S25. Average radiochemical yields for 13

Fig. S30. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 3}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 55% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S31. Radio-HPLC traces of 14
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 4}$
Run 1	4.7%
Run 2	6.6%
Run 3	9.8%
Average	$\mathbf{7 . 0} \mathbf{3} \%$

Table S26. Average radiochemical yields for 14

Fig. S32. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 4}$
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to 35 min : 55% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S33. Radio-HPLC traces of $\mathbf{1 5}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR^{\circledR} 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 15
Run 1	4.3%
Run 2	5.2%
Run 3	$\mathbf{7 . 5} \%$
Average	$\mathbf{5 . 7} \mathbf{7 1 \%}$

Table S27. Average radiochemical yields for 15

Fig. S34. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 5}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR^{\circledR} 5 \mu \mathrm{~m} F 5100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 45% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S35. Radio-HPLC traces of $\mathbf{1 6}$
HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 6}$
Run 1	10.2%
Run 2	12.2%
Run 3	9.2%
Average	$\mathbf{1 0 . 5} \mathbf{1 0} \%$

Table S28. Average radiochemical yields for $\mathbf{1 6}$

Fig. S36. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 6}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 35% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S37. Radio-HPLC traces of $\mathbf{1 7}$
HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 7}$
Run 1	7.0%
Run 2	6.1%
Run 3	6.8%
Average	$\mathbf{6 . 6 \pm 0 . 5 \%}$

Table S29. Average radiochemical yields for 17

Fig. S38. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 7}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 50% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S39. Radio-HPLC traces of 18
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 8}$
Run 1	8.2%
Run 2	12.1%
Run 3	4.7%
Average	$\mathbf{8 . 3} \mathbf{3} \%$

Table S30. Average radiochemical yields for 18

Fig. S40. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{1 8}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 40% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S41. Radio-HPLC traces of 19

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{1 9}$
Run 1	4.8%
Run 2	3.2%
Run 3	3.6%
Average	$\mathbf{3 . 9} \mathbf{0 . 9 \%}$

Table S31. Average radiochemical yields for 19

Fig. S42. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 19
HPLC condition: Column: Phenomenex, Kinetex $\circledR^{\circledR} 5 \mu \mathrm{~m} F 5100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 40% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S43. Radio-HPLC traces of $\mathbf{2 0}$

HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 20(2-F)	RCY(Decay corrected) 20(4-F)
Run 1	15.4%	8.7%
Run 2	14.5%	7.3%
Run 3	14.6%	7.4%
Average	$\mathbf{1 4 . 8} \pm \mathbf{0 . 6 \%}$	$\mathbf{7 . 8} \pm \mathbf{0 . 9 \%}$

Table S32. Average radiochemical yields for 20(2-F) and 20(4-F)

Fig. S44. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 20(4-F)

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 55 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

20 (2-F)

Fig. S45. HPLC traces of $Q C(\mathbf{A})$ and co-injection(B) for 20(2-F)
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 35 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S46. Radio-HPLC traces of $\mathbf{2 1}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 21
Run 1	33.5%
Run 2	32.0%
Run 3	37.5%
Average	$\mathbf{3 4 . 3} \mathbf{3} \%$

Table S33. Average radiochemical yields for 21

Fig. S47. HPLC traces of QC(A) and co-injection(B) for $\mathbf{2 1}$
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 60 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S48. Radio-HPLC traces of $\mathbf{2 2}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{2 2}$
Run 1	11.6%
Run 2	16.5%
Run 3	10.9%
Average	$\mathbf{1 3} \pm \mathbf{3 \%}$

Table S34. Average radiochemical yields for 22

Fig. S49. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 22
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu$ m F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 60 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S50. Radio-HPLC traces of $\mathbf{2 3}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 23
Run 1	6.0%
Run 2	5.5%
Run 3	5.7%
Average	$\mathbf{5 . 7} \pm \mathbf{0 . 3} \%$

Table S35. Average radiochemical yields for 23

Fig. S51. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{2 3}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 65% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S52. Radio-HPLC traces of 24
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{2 4}$
Run 1	26.5%
Run 2	28.9%
Run 3	26.3%
Average	$\mathbf{2 7 . 2 \pm 2 \%}$

Table S36. Average radiochemical yields for 24

Fig. S53. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 24

HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 60% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S54. Radio-HPLC traces of $\mathbf{2 5}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 25
Run 1	48.2%
Run 2	40.2%
Run 3	61.5%
Average	$\mathbf{5 0 \pm 1 1 \%}$

Table S37. Average radiochemical yields for 25

Fig. S55. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{2 5}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;Grad/isocrat: 0 to 2 min : 20% to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $\mathrm{B}, 28$ to 28.1 min : 95% to 20% solvent $B, 28.1$ to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$

Fig. S56. Radio-HPLC traces of 26
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu m$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{2 6}$
Run 1	13.1%
Run 2	9.7%
Run 3	10.6%
Average	$\mathbf{1 1 . 1 \pm 2 \%}$

Table S38. Average radiochemical yields for 26

Fig. S57. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{2 6}$
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; isocrat: 0 to $35 \mathrm{~min}: 30 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S58. Radio-HPLC traces of $\mathbf{2 7}$
HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{2 7}$
Run 1	5.6%
Run 2	6.6%
Run 3	5.7%
Average	$\mathbf{6 . 0} \mathbf{0 . 6 \%}$

Table S39. Average radiochemical yields for 27

Fig. S59. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 27
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 45 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S60. Radio-HPLC traces of $\mathbf{2 8}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) $\mathbf{2 8}$
Run 1	16.1%
Run 2	19.4%
Run 3	18.3%
Average	$\mathbf{1 7 . 9} \pm \mathbf{2 \%}$

Table S40. Average radiochemical yields for $\mathbf{2 8}$

Fig. S61. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{2 8}$
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to 35 min : 70% solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S62. Radio-HPLC traces of 29
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 29
Run 1	13.1%
Run 2	17.2%
Run 3	13.0%
Average	$\mathbf{1 4 . 4} \mathbf{0 . 3} \%$

Table S41. Average radiochemical yields for 29

Fig. S63. HPLC traces of QC(A) and co-injection(B) for 29

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S64. Radio-HPLC traces of $\mathbf{3 0}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$

Run number	RCY(Decay corrected) 30
Run 1	7.6%
Run 2	6.7%
Run 3	7.0%
Average	$\mathbf{7 . 1} \mathbf{1 0 . 5 \%}$

Table S42. Average radiochemical yields for $\mathbf{3 0}$

Fig. S65. HPLC traces of QC(A) and co-injection(B) for $\mathbf{3 0}$
HPLC condition: Column: Phenomenex, Kinetex® ${ }^{\circledR} 5 \mu \mathrm{~m}$ EVO C18 $100 \AA$, $250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 35 \%$ solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S66. Radio-HPLC traces of $\mathbf{3 1}$
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ EVO C18 $100 \AA$, $250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent B, 2 to 22 min : 5% to 95% solvent B, 22 to 28 min : isocratic elution at 95% solvent B, 28 to 28.1 min : 95% to 5% solvent B, 28.1 to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 31
Run 1	10.1%
Run 2	12%
Run 3	10.8%
Average	$\mathbf{1 1 . 1 \pm 1 \%}$

Table S43. Average radiochemical yields for 31

Fig. S67. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{3 1}$
HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; isocrat: 0 to $35 \mathrm{~min}: 30 \%$ solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S68. Radio-HPLC traces of $\mathbf{3 2}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 32
Run 1	38.8%
Run 2	40.4%
Run 3	39.6%
Average	$\mathbf{3 9 . 6 \pm 1 \%}$

Table S44. Average radiochemical yields for 32

Fig. S69. HPLC traces of QC(A) and co-injection(B) for $\mathbf{3 2}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S70. Radio-HPLC traces of $\mathbf{3 3}$

HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;Grad/isocrat: 0 to 2 min : 20% to 45% solvent B, 2 to $22 \mathrm{~min}: 45 \%$ to 60% solvent $B, 22$ to 28 min : 60% to 95% solvent $\mathrm{B}, 28$ to 28.1 min : 95% to 20% solvent B, 28.1 to 30 min : isocratic elution at 20% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 33
Run 1	43%
Run 2	32.9%
Run 3	34.4%
Average	$\mathbf{3 6 . 8} \mathbf{4 6 \%}$

Table S45. Average radiochemical yields for $\mathbf{3 3}$

Fig. S71. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 33
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 55 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S72. Radio-HPLC traces of $\mathbf{3 4}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 34
Run 1	4.0%
Run 2	3.7%
Run 3	3.5%
Average	$\mathbf{3 . 7} \mathbf{0 . 3} \%$

Table S46. Average radiochemical yields for 34

Fig. S73. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 34
HPLC condition: Column: Phenomenex, Kinetex $\circledR 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; isocrat: 0 to $35 \mathrm{~min}: 55 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S74. Radio-HPLC traces of $\mathbf{3 5}$

HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 35
Run 1	6.0%
Run 2	5.2%
Run 3	5.5%
Average	$\mathbf{5 . 6} \mathbf{0 . 4 \%}$

Table S47. Average radiochemical yields for 35

Fig. S75. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 35
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 65 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S76. Radio-HPLC traces of $\mathbf{3 6}$

HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR}$ $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 36
Run 1	8.0%
Run 2	8.3%
Run 3	9.8%
Average	$\mathbf{8 . 7 \pm 1 \%}$

Table S48. Average radiochemical yields for 36

Fig. S77. Radio-HPLC traces of $\mathbf{3 6}$
HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent $B, 2$ to 22 min : 5% to 95% solvent $B, 22$ to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 36
Run 1	21.4%
Run 2	20.6%
Run 3	21.7%
Average	$\mathbf{2 1 . 2} \mathbf{+ 0 . 5 \%}$

Table S49. Average radiochemical yields for 36

Fig. S78. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 36
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 60 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

5.6.3 Synthesis of [${ }^{18}$ F]DOPA (37):

5.6.3.1 Synthesis of i-32 and 37:

Compound $\mathbf{3 6}$ was obtained using the procedure described above with 0.07 mmol of the nonfluorinated congener ($13.6 \pm 0.5 \%(n=3)$ isolated RCY). The purified compound 36 was collected in a 5 ml V-Vial, to which $200 \mu \mathrm{~L}$ of 4 N NaOH solution was added. The V-vial was sealed with a Teflon-lined septum screw cap equipped with a vent needle. The solution was heated at $80^{\circ} \mathrm{C}$ with a positive N_{2} flow for 5 min . The N_{2} flow was then stopped and the vent needle removed before $300 \mu \mathrm{~L}$ of concentrated HCl was added to quench the reaction. $200 \mu \mathrm{~L}$ of saturated NaHCO_{3} solution was subsequently added to the vial and the solution was diluted with DI $\mathrm{H}_{2} \mathrm{O}$ to about 1 mL of reaction volume before being analyzed and purified on HPLC to obtain the isolated intermediate $\mathbf{i - 3 2}$ in $13.2 \pm 0.6 \%$ ($n=3$) RCY.
Intermediate $\mathbf{i - 3 2}$ was then placed in a 5 mL V-Vial, to which was added $100 \mu \mathrm{~L}$ of HI . The reaction vessel was then sealed with a Teflon-lined septum screw cap and heated for 5 min at $160^{\circ} \mathrm{C}$ in a preheated heating block. The V-Vial was then removed from the heating bath and cooled to room temperature with an ice bath. $100 \mu \mathrm{~L}$ of saturated NaHCO 3 was added to quench the reaction and the resulting solution was diluted to 1 mL with DI $\mathrm{H}_{2} \mathrm{O}$ before being analyzed and purified on HPLC to yield isolated ${ }^{18}$ F-DOPA (37) in $12.3 \pm 1 \%(n=3)$ RCY. $\left[{ }^{18} \mathrm{~F}\right]$ DOPA RCY was calculated as the products of each decay corrected deprotection RCY of each deprotection step and the initial isolated decay corrected RCY of $\mathbf{3 6}$. Column conditions for the purification are listed below.

Fig. S79. Radio-HPLC traces of $\mathbf{3 6}$
HPLC condition: Column: Gemini $5 \mu \mathrm{~m}$ EVO C18 $110 \AA, 250 \times 10.0 \mathrm{~mm}$ LC Column. Solvent A:
0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to 35 min : 60% solvent B. Flow rate: $5 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 36
Run 1	14.1%
Run 2	13.1%
Run 3	13.5%
Average	$\mathbf{1 3 . 6} \pm \mathbf{0 . 5} \%$

Table S50. Average radiochemical yields for 36

Fig. S80. Radio-HPLC traces of i-32
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu m$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 3 \%$ solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	Deprotection RCY (Decay corrected) i-32	Actual RCY(Decay corrected) i-32
Run 1	98.1%	13.8%
Run 2	97.1%	12.7%
Run 3	96.0%	13.0%
Average	$\mathbf{9 7 . 1 \pm 1 \%}$	$\mathbf{1 3 . 2 \pm 0 . 6 \%}$

Table S51. Average deprotection and actual radiochemical yields for i-32

Fig. $\mathbf{S 8 1}$ HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for i-32
HPLC condition: Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ EVO C18 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; isocrat: 0 to $35 \mathrm{~min}: 3 \%$ solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S82. Radio-HPLC traces of $\mathbf{3 7}$
HPLC condition: Column: Phenomenex ${ }^{\circledR} 4 \mu \mathrm{~m}$ Hydro-RP $80 \AA, 150 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: $70 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$ in water isocrat: 0 to 35 min : 100% solvent A. Flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	Deprotection RCY (Decay corrected) 37	Actual RCY(Decay corrected) $\mathbf{3 7}$
Run 1	96.7%	13.4%
Run 2	91.6%	11.7%
Run 3	90.0%	11.7%
Average	$\mathbf{9 2 . 8} \pm \mathbf{4 \%}$	$\mathbf{1 2 . 2} \pm \mathbf{1 \%}$

Table S52. Average deprotection and actual radiochemical yields for $\mathbf{3 7}$
Average RCY (Decay corrected) of [${ }^{18}$ F]-DOPA after deprotection: $12.2 \pm 1.0 \%$

Fig. S83. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 37
HPLC condition: Column: Phenomenex ${ }^{\circledR} 4 \mu \mathrm{~m}$ Hydro-RP $80 \AA, 150 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: $70 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$ in water isocrat: 0 to 35 min : 100% solvent A. Flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

5.6.4 Synthesis of [$\left.{ }^{18} \mathrm{~F}\right] 2$-methoxy-5-fluoro-phenylalanine (39)

Compound $\mathbf{3 8}$ was obtained following a modified version of procedure A, using 0.125 mmol of substrate in a 4:1 DCE:MeCN solution under an anaerobic atmosphere (N_{2} sparge) with 0.8 equiv of TEMPO ($5.0 \pm 0.5 \%(n=3)$ isolated RCY). The product 38 was collected in a 5 ml V-Vial without further purification, to which $200 \mu \mathrm{~L}$ of 4 N NaOH solution was added. The V -vial was sealed with a Teflon-lined septum screw cap equipped with a vent needle. The solution was heated at $80^{\circ} \mathrm{C}$ with a positive N_{2} flow for 5 min . The N_{2} flow was then stopped and the vent needle removed before $300 \mu \mathrm{~L}$ of concentrated HCl was added to quench the reaction. The solution was diluted with DI $\mathrm{H}_{2} \mathrm{O}$ before being analyzed and purified on HPLC to obtain [${ }^{18}$ F]2-Methoxy-5-fluoro-phenylalanine (39) in $4.9 \pm 0.5 \%,(n=2)$ RCY. Collected product 39 was then dried under reduced pressure rotary evaporator to remove excess MeCN from the solution. The solution of $\mathbf{3 9}$ was then neutralized to pH 7 by adding $\mathrm{NaOH}(1 \mathrm{~N})$ and phosphate-buffered saline (PBS, 10X). 39 was reformulated in a 1X PBS solution for use in PET imaging studies.

Fig. $\mathbf{S 8 4}$ Radio-HPLC traces of $\mathbf{3 8}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ EVO C18 $100 \AA$, $250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; Grad/isocrat: 0 to 2 min : isocratic elution at 5% solvent B, 2 to 22 min : 5% to 95% solvent B, 22 to 28 min : isocratic elution at 95% solvent $B, 28$ to 28.1 min : 95% to 5% solvent $B, 28.1$ to 30 min : isocratic elution at 5% solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 38
Run 1	5.5%
Run 2	4.6%
Run 3	5.0%
Average	$\mathbf{5 . 0} \mathbf{0 . 5 \%}$
Run4	$8.4 \%($ from 50 min reaction)

Table S53. Average radiochemical yields for $\mathbf{3 8}$

Fig. S85. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{3 8}$
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 50 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S86. Radio-HPLC traces of $\mathbf{3 9}$
HPLC condition for (A): Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 15 \%$ solvent B. Flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.
HPLC condition for (B): Column: Phenomenex, Kinetex® ${ }^{\circledR} \mu \mathrm{m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1\%TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 15 \%$ solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	Deprotection RCY(Decay corrected) 39	Actual RCY(Decay corrected) 39
Run 1	97.6%	5.4%
Run 2	96.9%	4.5%
Average	$\mathbf{9 7 . 3} \mathbf{3 0 . 4 \%}$	$\mathbf{4 . 9} \mathbf{0 . 5 \%}$

Table S54. Average radiochemical yields for $\mathbf{3 9}$

Fig. S87. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for $\mathbf{3 9}$
HPLC condition: Column: Phenomenex, Kinetex $\circledR^{\circledR} 5 \mu \mathrm{~m} F 5100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile; isocrat: 0 to $35 \mathrm{~min}: 15 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

5.6.5 Synthesis of [$\left.{ }^{18} \mathrm{~F}\right] 4$-(4'-fluorophenyl)phenylalanine (41)

Compounds 40a and 40b was obtained using procedure A with 0.125 mmol of the nonfluorinated congener ($21.5 \pm 2 \%$ and $11.3 \pm 1 \%(n=3)$ isolated RCYs respectively). The product 40a was collected in a 5 ml V-Vial without further purification, to which $200 \mu \mathrm{~L}$ of 4 N NaOH solution was added. The V-vial was sealed with a Teflon-lined septum screw cap equipped with a vent needle. The solution was heated at $80^{\circ} \mathrm{C}$ with a positive N_{2} flow for 5 min . The N_{2} flow was then stopped and the vent needle removed before $300 \mu \mathrm{~L}$ of concentrated HCl was added to quench the reaction. The solution was diluted with DI $\mathrm{H}_{2} \mathrm{O}$ and MeCN before being analyzed and purified on HPLC to obtain [${ }^{\mathbf{1 8}} \mathbf{F}$]4-(4'-fluorophenyl)phenylalanine (41) in $20.5 \%(n=1) R C Y$. The collected product was then put on the rotary evaporator to remove excess MeCN from the solution. The solution of $\mathbf{4 1}$ was then neutralized to $\mathbf{p H} 7$ by adding $\mathrm{NaOH}(1 \mathrm{~N})$ and PBS (10X). 41 was reformulated in a 1 X PBS solution for use in PET imaging studies.

0.125 mmol

Fig. S88. Radio-HPLC traces of 40 (40a and 40b)
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA$, $250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 55 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	RCY(Decay corrected) 40a	RCY(Decay corrected) 40b
Run 1	23.6%	11.5%
Run 2	21.1%	10.0%
Run 3	19.8%	12.3%
Average	$\mathbf{2 1 . 5} 5 \mathbf{2 \%}$	$\mathbf{1 1 . 3} \mathbf{1 1 \%}$

Table S55. Average radiochemical yields for 40a and 40b

Fig. S89. HPLC traces of QC(A) and co-injection(B) for 40a
HPLC condition for (A): Column: Phenomenex, Kinetex® $5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 55 \%$ solvent B. Flow rate: $0.8-1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.
HPLC condition for (B): Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA$, $250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 55 \%$ solvent B. Flow rate: $1 \mathrm{~mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S90. HPLC traces of QC(A) and co-injection(B) for 40b
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1\%TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 55 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Run number	Deprotection RCY(Decay corrected)	Actual RCY(Decay corrected)
Run 1	93.2%	20.5%

Table S56. Radiochemical yield for 41

Fig. S91. Radio-HPLC trace of 41

HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 30 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

5.6.6 Synthesis of [${ }^{18}$ F]Fenoprofen (42):

[${ }^{18}$ F]Fenoprofen
Compound 32 was obtained as detailed in section 5.6.2. The product $\mathbf{3 2}$ was collected in a 5 ml V-Vial without further purification, to which $300 \mu \mathrm{~L}$ of 4 N NaOH solution was added. The V-vial was sealed with a Teflon-lined septum screw cap equipped with a vent needle. The solution was heated at $80^{\circ} \mathrm{C}$ with a positive N_{2} flow for 5 min . The N_{2} flow was then stopped and the vent needle removed before $150 \mu \mathrm{~L}$ of concentrated HCl was added to quench the reaction. The solution was diluted with DI $\mathrm{H}_{2} \mathrm{O}$ and MeCN before being analyzed and purified on HPLC to obtain [${ }^{\mathbf{1 8}}$ F]Fenoprofen (42) in 35.8% ($\mathrm{n}=1$) RCY. The collected product was then put on the rotary evaporator to remove excess MeCN from the solution. The solution of 42 was then neutralized to pH 7 by adding $\mathrm{NaOH}(1 \mathrm{~N})$ and PBS (10X). 42 was reformulated in a 1X PBS solution for use in PET imaging studies.

Run number	Deprotection RCY (Decay corrected)	Actual RCY (Decay corrected)
Run 1	93.1%	35.8%

Table S57. Radiochemical yield for 42

Fig. S92. Radio-HPLC trace of 42
HPLC condition: Column: Phenomenex, Kinetex $® 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 50 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

Fig. S93. HPLC traces of $\mathrm{QC}(\mathbf{A})$ and co-injection(B) for 42
HPLC condition: Column: Phenomenex, Kinetex ${ }^{\circledR} 5 \mu \mathrm{~m}$ F5 $100 \AA, 250 \times 4.6 \mathrm{~mm}$ LC Column. Solvent A: 0.1% TFA water; Solvent B: 0.1% TFA acetonitrile;isocrat: 0 to $35 \mathrm{~min}: 50 \%$ solvent B. Flow rate: 1 $\mathrm{mL} / \mathrm{min}$, column temperature: 19 to $21^{\circ} \mathrm{C}$.

6. Positron Emission Tomography (PET) and Computed Tomography (CT) Imaging Studies

6.1 Ex vivo PET/CT Imaging of Mouse Ear Inflammation Models

Materials and Methods

All animal studies conformed to protocol approved by the University of North Carolina Institutional Animal Care and Use Committee. Female 10-12-week-old nude mice (Division of Comparative Medicine, University of North Carolina at Chapel Hill) were housed at constant temperature $\left(23^{\circ} \mathrm{C}\right)$ and relative humidity (60%) with a fixed 12 h light: 12 h dark cycle and had free access to food and water. Acute inflammation was induced by topical application of $10 \mu \mathrm{~L}$ 12-o-tetradecanoylphorbol-13acetate (TPA) acetone solution $(125 \mu \mathrm{~g} / \mathrm{ml})$ to the inner and outer surface of the right ear of each mouse as previously described $(79,80)$. Six hours after TPA exposure, mice received an intravenous bolus injection of $\left[{ }^{18} \mathrm{~F}\right]$ Fenoprofen (-5.8 MBq). At 1 h post-injection (p.i.), the animals were euthanized and the ears were harvested and subjected to a $10-$ min static PET scan (SuperArgus 4R, SEDECAL, Madrid, Spain). After PET scans, the ears were wet-weighed and counted in a gamma counter. The percentage-injected dose per gram ($\% \mathrm{ID} / \mathrm{g}$) was determined and the results were reported as mean \pm SD. To investigate the pharmacokinetics of [$\left.{ }^{18} \mathrm{~F}\right]$ Fenoprofen, dynamic PET acquisitions was started and $\left[{ }^{18} \mathrm{~F}\right]$ Fenoprofen was administered in a rapid bolus through the tail vein catheter. Thirty minutes of dynamic PET data were acquired following [${ }^{18} \mathrm{~F}$]Fenoprofen administration. Dynamic PET data were binned into 14 frames (3×20 s, 4×60 s, $4 \times 120 \mathrm{~s}, 3 \times 300$ s) and frames were reconstructed using non-scatter-corrected 3D ordered-subset expectation maximization (OSEM3D). Static PET data were reconstruction into a single frame by OSEM 3D.

Results of Inflammation Experiments

Rapid [${ }^{18} \mathrm{~F}$]Fenoprofen accumulation in the heart and liver were observed in nude mouse ($\mathrm{N}=1$) following a rapid intravenous bolus injection. PET time-activity curve (TAC) is shown in Fig. S94-G, and tabulated data is listed in table. Following initial distribution ($<1 \mathrm{~min}$), uptake was observed to be stable over 30 minutes of PET imaging. Six hours after TPA application, the treated ears exhibited edema. Accumulation of $\left[{ }^{18} \mathrm{~F}\right]$ Fenoprofen in TPA-treated ear and normal ear was measured using PET imaging. Quantitative analysis showed significant higher uptake of [${ }^{18} \mathrm{~F}$]Fenoprofen in TPA-treated inflamed ear $(1.48 \pm 0.57, N=3)$ as compared with normal ear $(0.64 \pm 0.10, N=4)(P<0.05)$. Ex vivo gamma counting validated PET quantification result, with (4.82 ± 0.58) \% ID/g ($\mathrm{N}=4$) in TPA treated ear and $(3.08 \pm 1.03) \% \mathrm{ID} / \mathrm{g}(\mathrm{N}=12)$ in normal ear, respectively $(\mathrm{p}<0.05)$. The relatively higher value obtained from gamma counting is probably due to the thin thickness of ear, which make positron annihilation less efficient. The coronal slices, maximum intensity projection (MIP) static PET image, and CT image of a representative TPA-treated ear (S94-A, S94-C and S94-E) or normal ear (S94-B, S94-D and S94-F) were shown in Fig. S94.

Fig. S94: Ex vivo [$\left.{ }^{18} \mathrm{~F}\right]$ Fenoprofen PET imaging. Coronal slice, maximum intensity projection (MIP) static PET image, and CT image of representative TPA-treated ear (A, C and E) or normal ear (B, D and F) harvested from the mice injected intravenously with [${ }^{18}$ F]Fenoprofen. (G) Dynamic PET timeactivity curve (tac) of organ ROIs in nude mice injected with a rapid intravenous bolus of [${ }^{18}$ F]Fenoprofen, imaged for 30 minutes post-injection. (H) Uptake of [${ }^{18} \mathrm{~F}$]Fenoprofen in TPA-treated or normal ear measured by ROIs hand-drawn on static ex vivo PET images. (I) Uptake of [${ }^{18} \mathrm{~F}$]Fenoprofen in TPA-treated or normal ear measured by gamma counting.

Sample	\mathbf{N}	\%ID/g(mean \pm SD $)$
TPA treated ear	4	4.82 ± 0.58
Normal ear	12	3.08 ± 1.3

 counting.

6.2 In vivo PET/CT Imaging of Mouse Tumor Models

Materials and Methods

All animal studies conformed to protocol approved by the University of North Carolina Institutional Animal Care and Use Committee. Human breast cancer cell line MCF-7 and human glioblastoma cell line U87MG were obtained from American Type Culture (Manassas, VA, USA) and cultured in Eagle's Minimum Essential Medium (EMEM) (Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) (Omega Scientific, Tarzana, CA, USA) at $37{ }^{\circ} \mathrm{C}$ in an atmosphere containing 5% CO_{2}. Tumor model was established in 4- to 6- week old female nude mice (Division of Comparative Medicine, the University of North Carolina at Chapel Hill). For U87MG tumor model, the tumor cells were suspended in PBS $(2 \times 107 / \mathrm{ml})$ and mixed with $1: 1$ Matrigel ($v: v)$. Then a $100 \mu \mathrm{~L}$ cell suspension was inoculated subcutaneously at the flank. For MCF-7 tumor model, a slow-release 17- β-estradiol ($7.5 \mathrm{mg} /$ pellet, 60-day slow release; $125 \mu \mathrm{~g} /$ day) was implanted. In brief, the mouse was anesthetized under 2% isoflurane. The skin on the lateral side of the neck of the mouse was lifted, then a 3-5 mm incision was made. With a pair of forceps, a small pocket beyond the incision site was
created, and the pellet was introduced. The incision site was closed with a 5-0 silk suture. Four days later, MCF-7 cells were harvested, resuspended in PBS ($2 \times 107 / \mathrm{ml}$) and mixed 1:1 Matrigel ($v: v$). Then a $100 \mu \mathrm{~L}$ cell suspension was inoculated subcutaneously at the flank.

Results of in vivo PET/CT Imaging (MCF7 and U87MG Tumors)

The MCF7 or U87MG tumor bearing mice received an intravenous injection of ${ }^{18} \mathrm{~F}$-PET agents (-5.5 MBq). At $1 \mathrm{~h}, 3 \mathrm{~h}$ and 4.5 h post-injection (p.i.), the animals were anesthetized under 2% isoflurane and subjected to $10-\mathrm{min}$ static PET scan (SuperArgus 4R, SEDECAL, Madrid, Spain). The percentageinjected dose per gram (\% ID/g) of major organs were calculated and reported as mean \pm SD. PET data were reconstruction into a single frame by OSEM 3D.
[${ }^{18}$ F]4-(4'-fluoro-phenyl)phenylalanine (41) showed relatively high background level in MCF7 tumor models at all time points (Fig. S95). The tumor uptake of 41 was $4.11 \pm 0.36 \% \mathrm{ID} / \mathrm{g}, 3.69 \pm 0.66$ $\%$ ID/g and $3.19 \pm 0.64 \%$ ID/g at $1 \mathrm{~h}, 3 \mathrm{~h}$ and 4.5 h respectively post-injection (p.i.). [$\left.{ }^{18} \mathrm{~F}\right] 2-\mathrm{Methoxy}-$ 5-fluoro-phenylalanine (39) had tumor uptake of $8.24 \pm 0.90 \% \mathrm{ID} / \mathrm{g}, 5.94 \pm 1.34 \% \mathrm{ID} / \mathrm{g}$ and $4.13 \pm$ 1.88% ID/g at $1 \mathrm{~h}, 3 \mathrm{~h}$ and 4.5 h respectively post-injection (p.i.). High liver uptake was observed for 41 with tumor to liver uptake ratio of $0.36 \pm 0.01,0.45 \pm 0.02$ and 0.55 ± 0.01 at $1 \mathrm{~h}, 3 \mathrm{~h}$ and 4.5 h . 39 displayed significantly lower tumor to liver uptake ratio [3.63 $\pm 0.29,4.88 \pm 0.45$ and 4.06 ± 0.65 at the respective time points]. 39 also demonstrated prominent uptake in the U87MG xenografts. The tumor uptake was $5.64 \pm 0.60 \% \mathrm{ID} / \mathrm{g}, 4.64 \pm 0.47 \% \mathrm{ID} / \mathrm{g}$ and $2.93 \pm 1.07 \% \mathrm{ID} / \mathrm{g}$ at $1 \mathrm{~h}, 3 \mathrm{~h}$ and 4.5 h respectively p.i. The coronal slices of static PET images are shown in Fig. S95.

Fig. S95 Representative PET/CT images of MCF7 model at 1, 3 and 4.5 h post injection of 41 and the quantitative uptake of major organs derived from PET images (first panel), MCF7 model after injection of 39 (second panel) and U87MG model after injection of 39 (third panel).

7. Mechanism Proposal and Computational Data

All computations were carried out in the Gaussian 09 program suite (81) at the B3LYP/6-31G+(d,p) level of theory. Natural population analyses (NPA atomic charges and molecular orbital populations) were performed using the NBO formalism and the NPA values were calculated in 1,2-dicholorethane according to a prior procedure from our laboratory (25).

Fig. S96. (A) Mechanistic Proposal for Oxidative $\mathrm{C}-\mathrm{H}^{18} \mathrm{~F}$-Fluorination of Aromatics. (B) LUMO charge density maps calculated at the B3LYP/6-31G+(d,p) level correspond to the cation radicals of the starting arenes for 21, $\mathbf{3 0}$ and 33. The darkest blue carbon atoms on the arenes indicate the most likely reactivity sites (See figs. S100 and S101 for more details).

I. 2-substituted methoxyarenes

Arene

Ground state

1. -1.174
2. 0.507
3. -0.301
4. -0.025
5. -0.598
6. 1.116

Ground state

1. -1.008
2. 0.416
3. -0.292
4. -0.053
5. -0.922
6. 1.365

Ground state

1. -0.853
2. 0.440
3. -0.309
4. 0.050
5. -1.145
6. 1.490

Radical cation

1. -1.008
2. 0.507
3. -0.248
4. 0.067
5. -0.598
6. 1.116

Radical cation

1. -0.595
2. 0.564
3. -0.396
4. 0.137
5. -0.654
6. 0.693

Radical cation

1. -0.491
2. 0.705
3. -0.461
4. 0.264
5. -1.384
6. 1.351

Difference

1. 0.166
2. -0.379
3. 0.053
4. 0.092
5. 0.436
6. 0.342

Difference

1. 0.413
2. -0.148
3. -0.204
4. 0.190
5. 0.268
6. -0.672

Difference

1. 0.362
2. 0.265
3. -0.152
4. 0.214
5. -0.239
6. -0.139

Fig. S97. Natural population analyses for the ground state and radical cation of selected 2substituted methoxyarenes

II. 4-substituted methoxyarenes

Arene	Ground state	Radical cation	Difference
OMe	1. -0.356	1. -0.446	1. -0.090
	2. 0.580	2. 0.720	2. 0.140
2	3. -0.501	3. -0.583	3. -0.082
-	4. -0.019	4. 0.264	4. 0.283
	5. -0.359	5. -0.341	5. 0.018
$\mathrm{CO}_{2} \mathrm{Me}$	6. 0.021	6. 0.142	6. 0.121

Arene

Arene

Ground state

1. -0.371
2. 0.566
3. -1.584
4. 0.794
5. 0.191
6. -0.024

Ground state

1. -0.349
2. 0.792
3. -1.368
4. 0.560
5. 0.126
6. -0.036

Radical cation
Difference

1. -0.452
2. 0.772
3. -0.081
4. 0.206
5. -1.553
6. 0.031
7. 0.849
8. 0.055
9. 0.227
10. 0.036
11. 0.099
12. 0.123

Arene	Ground state	Radical cation	Difference
OMe	1. -0.571	1. -0.451	1. 0.080
1) 6 OTf	2. 0.192	2. -0.372	2. -0.564
+	3. 0.324	3. 0.155	3. -0.169
$1-5$	4. -0.772	4. -0.594	4. 0.178
21	5. 0.674	5. 0.598	5. -0.076
	6. -0.092	6. 0.589	6. 0.687
Arene	Ground state	Radical cation	Difference
	1. -0.626	1. -0.594	1. 0.032
	2. -0.244	2. -0.083	2. 0.161
2	3. -0.197	3. -0.184	3. 0.013
${ }_{3}$	4. -0.872	4. -0.627	4. 0.245
45	5. 0.759	5. 0.638	5. -0.121
	6. 0.505	6. 0.685	6. 0.180
30	7. 0.611	7. 0.437	7. -0.174
Arene	Ground state	Radical cation	Difference
	1. -0.333	1. -0.475	1. -0.142
	2. -0.264	2. -0.176	2. 0.088
	3. 0.538	3. 0.077	3. -0.461
OOMe	4. -0.270	4. 0.114	4. 0.384
	5. -0.259	5. -0.328	5. -0.069
$8 \overbrace{}^{12}$	6. 0.009	6. 0.097	6. 0.088
1 -	7. -0.393	7. -0.263	7. 0.130
${ }_{9} 11 \text { F }$	8. -0.171	8. -0.365	8. -0.194
1033	9. -0.178	9. -0.084	9. 0.094
	10. -0.035	10. -0.368	10. -0.333
	11. -0.064	11. -0.018	11. 0.046
	12. 0.453	12. 1.359	12. 0.906

Fig. S100. Natural population analyses for the ground state and radical cation of methoxyarenes listed in Fig. S96 (21, 30, 33)

Electrostatic potential maps

LUMO charge density

Fig. S101. A comparison of electrostatic potentials (left) and LUMO charge density (right) maps for the methoxyarenes listed in Fig. S96. Red arrows indicate the reactive arene C-H site (21, 30, 33)

8. Spectra data for new compounds (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and ${ }^{19} \mathrm{~F}$ NMR; IR)

Paqe $1 / 1$

NT-05-268-19F.1.fid
F19 CDCI3 \{C: \data ntay nmrsu 11

major

minor

210	190	170	150	130	110 $\mathrm{f} 1(\mathrm{ppm})$	70	50	30	10	-10


```
NT-04-249-1H.1.fid NT-04-249-1H
```


NT-04-249-19F.1.fid F19 CDCI3 \{C:\data\ntay\} nmrsu 7

NT-WC-2-92 3.1.fid
F19 CDCI3 \{C: \data $\backslash n t a y\}$ nmrsu 51

9. Movie Captions

Movie S1: In vivo composite PET/CT scans of a MCF-7 xenograft mouse model injected with radiotracer 39. PET radiotracer 39 is predominantly localized in the MCF-7 tumor, pancreas and bladder (cf. Figures 3 and S95).

Movie S2: In vivo composite PET/CT scans of a MCF-7 xenograft mouse model injected with radiotracer 41. PET radiotracer 41 is predominantly localized in the heart, liver and bladder, with minimal uptake in the MCF-7 tumor (cf. Figures 3 and S95).

Movie S3: In vivo composite PET/CT scans of a U-87 MG xenograft mouse model injected with radiotracer 39. PET radiotracer 39 is predominantly localized in the U-87 MG tumor, pancreas and bladder (cf. Figure S95).

10. References and Notes

1. S. Preshlock, M. Tredwell, V. Gouverneur, ${ }^{18}$ F-Labeling of arenes and heteroarenes for applications in positron emission tomography. Chem. Rev. 116, 719-766 (2016). doi:10.1021/acs.chemrev.5b00493 Medline
2. G. J. Kelloff, J. M. Hoffman, B. Johnson, H. I. Scher, B. A. Siegel, E. Y. Cheng, B. D. Cheson, J. O'shaughnessy, K. Z. Guyton, D. A. Mankoff, L. Shankar, S. M. Larson, C. C. Sigman, R. L. Schilsky, D. C. Sullivan, Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785-2808 (2005). doi:10.1158/1078-0432.CCR-04-2626 Medline
3. H. H. Coenen, P. H. Elsinga, R. Iwata, M. R. Kilbourn, M. R. A. Pillai, M. G. R. Rajan, H. N. Wagner Jr., J. J. Zaknun, Fluorine-18 radiopharmaceuticals beyond $\left[{ }^{18} \mathrm{~F}\right] F D G$ for use in oncology and neurosciences. Nucl. Med. Biol. 37, 727-740 (2010). doi:10.1016/j.nucmedbio.2010.04.185 Medline
4. E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315-8359 (2015). doi:10.1021/acs.jmedchem. 5 b00258 Medline
5. N. A. Meanwell, Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 61, 5822-5880 (2018). doi:10.1021/acs.jmedchem. 7 b 01788 Medline
6. R. J. Nickles, M. E. Daube, T. J. Ruth, $\mathrm{An}{ }^{18} \mathrm{O}_{2}$ target for the production of $\left[{ }^{18} \mathrm{~F}\right] \mathrm{F}$ 2. Int. J. Appl. Radiat. Isot. 35, 117-122 (1984). doi:10.1016/0020-708X(84)90194-7
7. A. Krzyczmonik, T. Keller, A. K. Kirjavainen, S. Forsback, O. Solin, Vacuum ultraviolet photon-mediated production of [$\left.{ }^{18} \mathrm{~F}\right] \mathrm{F}_{2}$. J. Labelled Comp. Radiopharm. 60, 186-193 (2017). doi:10.1002/jlcr. 3489 Medline
8. H. H. Coenen, A. D. Gee, M. Adam, G. Antoni, C. S. Cutler, Y. Fujibayashi, J. M. Jeong, R. H. Mach, T. L. Mindt, V. W. Pike, A. D. Windhorst, Consensus nomenclature rules for radiopharmaceutical chemistry - Setting the record straight. Nucl. Med. Biol. 55, v-xi (2017). doi:10.1016/j.nucmedbio.2017.09.004 Medline
9. H. Teare, E. G. Robins, A. Kirjavainen, S. Forsback, G. Sandford, O. Solin, S. K. Luthra, V. Gouverneur, Radiosynthesis and evaluation of $\left[{ }^{18} \mathrm{~F}\right] S e l e c t f l u o r ~ b i s(t r i f l a t e) . ~ A n g e w . ~$ Chem. Int. Ed. 49, 6821-6824 (2010). doi:10.1002/anie. 201002310 Medline
10. N. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M. Tredwell, S. Verhoog, J. Mercier, C. Genicot, V. Gouverneur, Derisking the Cu-mediated ${ }^{18} \mathrm{~F}$-fluorination of heterocyclic positron emission tomography radioligands. J. Am. Chem. Soc. 139, 8267-8276 (2017). doi:10.1021/jacs. 7 b 03131 Medline
11. C. N. Neumann, J. M. Hooker, T. Ritter, Concerted nucleophilic aromatic substitution with ${ }^{19} \mathrm{~F}^{-}$and ${ }^{18} \mathrm{~F}^{-}$. Nature 534, 369-373 (2016). doi:10.1038/nature 17667
12. M. K. Narayanam, G. Ma, P. A. Champagne, K. N. Houk, J. M. Murphy, Synthesis of [$\left.{ }^{18} \mathrm{~F}\right]$ fluoroarenes by nucleophilic radiofluorination of N -arylsydnones. Angew. Chem. Int. Ed. 56, 13006-13010 (2017). doi:10.1002/anie. 201707274 Medline
13. T. Gendron, K. Sander, K. Cybulska, L. Benhamou, P. K. B. Sin, A. Khan, M. Wood, M. J. Porter, E. Årstad, Ring-closing synthesis of dibenzothiophene sulfonium salts and their use as leaving groups for aromatic ${ }^{18} \mathrm{~F}$-fluorination. J. Am. Chem. Soc. 140, 11125-11132 (2018). doi:10.1021/jacs.8b06730 Medline
14. E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334, 639-642 (2011). doi:10.1126/science. 1212625 Medline
15. E. Lee, J. M. Hooker, T. Ritter, Nickel-mediated oxidative fluorination for PET with aqueous $\left[{ }^{18}\right.$ F] fluoride. J. Am. Chem. Soc. 134, 17456-17458 (2012). doi:10.1021/ja3084797 Medline
16. N. Ichiishi, A. F. Brooks, J. J. Topczewski, M. E. Rodnick, M. S. Sanford, P. J. H. Scott, Copper-catalyzed $\left[{ }^{18} \mathrm{~F}\right] f l u o r i n a t i o n ~ o f ~(m e s i t y l)(a r y l) i o d o n i u m ~ s a l t s . ~ O r g . ~ L e t t . ~ 16, ~ 3224-~$ 3227 (2014). doi:10.1021/ol501243g Medline
17. M. S. McCammant, S. Thompson, A. F. Brooks, S. W. Krska, P. J. H. Scott, M. S. Sanford, Cu -Mediated C-H ${ }^{18} \mathrm{~F}$-fluorination of electron-rich (hetero)arenes. Org. Lett. 19, 39393942 (2017). doi:10.1021/acs.orglett.7b01902 Medline
18. A. V. Mossine, A. F. Brooks, K. J. Makaravage, J. M. Miller, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Synthesis of $\left[{ }^{18} \mathrm{~F}\right]$ arenes via the copper-mediated $\left[{ }^{18} \mathrm{~F}\right]$ fluorination of boronic acids. Org. Lett. 17, 5780-5783 (2015). doi:10.1021/acs.orglett.5b02875 Medline
19. M. Tredwell, S. M. Preshlock, N. J. Taylor, S. Gruber, M. Huiban, J. Passchier, J. Mercier, C. Génicot, V. Gouverneur, A general copper-mediated nucleophilic ${ }^{18} \mathrm{~F}$ fluorination of arenes. Angew. Chem. Int. Ed. 53, 7751-7755 (2014). doi:10.1002/anie. 201404436 Medline
20. K. J. Makaravage, A. F. Brooks, A. V. Mossine, M. S. Sanford, P. J. H. Scott, Coppermediated radiofluorination of arylstannanes with [${ }^{18}$ F]KF. Org. Lett. 18, 5440-5443 (2016). doi:10.1021/acs.orglett.6b02911 Medline
21. Y. Sasson, N. Mushkin, E. Abu, S. Negussie, S. Dermeik, A. Zoran, Fluoride anion as a base and a nucleophile in phase-transfer catalysis of uncharged species. ACS Symp. Ser. 659, 148-162 (1997). doi:10.1021/bk-1997-0659.ch012
22. K. C. Harper, E. G. Moschetta, S. V. Bordawekar, S. J. Wittenberger, A laser driven flow chemistry platform for scaling photochemical reactions with visible light. ACS Cent. Sci. 5, 109-115 (2019). doi:10.1021/acscentsci.8b00728 Medline
23. N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Site-selective arene C-H amination via photoredox catalysis. Science 349, 1326-1330 (2015). doi:10.1126/science.aac9895 Medline
24. J. B. McManus, D. A. Nicewicz, Direct C-H cyanation of arenes via organic photoredox catalysis. J. Am. Chem. Soc. 139, 2880-2883 (2017). doi:10.1021/jacs.6b12708 Medline
25. K. A. Margrey, J. B. McManus, S. Bonazzi, F. Zecri, D. A. Nicewicz, Predictive model for site-selective aryl and heteroaryl C-H functionalization via organic photoredox catalysis. J. Am. Chem. Soc. 139, 11288-11299 (2017). doi:10.1021/jacs.7b06715 Medline
26. E. Vitaku, D. T. Smith, J. T. Njardarson, Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257-10274 (2014). doi:10.1021/jm501100b Medline
27. M. Laube, T. Kniess, J. Pietzsch, Radiolabeled COX-2 inhibitors for non-invasive visualization of COX-2 expression and activity-A critical update. Molecules 18, 63116355 (2013). doi:10.3390/molecules18066311 Medline
28. X. Deng, J. Rong, L. Wang, N. Vasdev, L. Zhang, L. Josephson, S. H. Liang, Chemistry for positron emission tomography: Recent advances in ${ }^{11} \mathrm{C}$-, ${ }^{18} \mathrm{~F}$-, ${ }^{13} \mathrm{~N}$-, and ${ }^{15} \mathrm{O}$-labeling reactions. Angew. Chem. Int. Ed. 58, 2580-2605 (2019). doi:10.1002/anie. 201805501 Medline
29. B. K. Park, N. R. Kitteringham, P. M. O’Neill, Metabolism of fluorine-containing drugs. Annu. Rev. Pharmacol. Toxicol. 41, 443-470 (2001). doi:10.1146/annurev.pharmtox.41.1.443 Medline
30. J. Koerts, A. E. M. F. Soffers, J. Vervoort, A. De Jager, I. M. C. M. Rietjens, Occurrence of the NIH shift upon the cytochrome P450-catalyzed in vivo and in vitro aromatic ring hydroxylation of fluorobenzenes. Chem. Res. Toxicol. 11, 503-512 (1998). doi:10.1021/tx980053i Medline
31. P. Shah, A. D. Westwell, The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem. 22, 527-540 (2007). doi:10.1080/14756360701425014 Medline
32. T. D. Penning, J. J. Talley, S. R. Bertenshaw, J. S. Carter, P. W. Collins, S. Docter, M. J. Graneto, L. F. Lee, J. W. Malecha, J. M. Miyashiro, R. S. Rogers, D. J. Rogier, S. S. Yu, AndersonGD, E. G. Burton, J. N. Cogburn, S. A. Gregory, C. M. Koboldt, W. E. Perkins, K. Seibert, A. W. Veenhuizen, Y. Y. Zhang, P. C. Isakson, Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC58635, celecoxib). J. Med. Chem. 40, 1347-1365 (1997). doi:10.1021/jm960803q Medline
33. A. Lebedev, J. Jiao, J. Lee, F. Yang, N. Allison, H. Herschman, S. Sadeghi, Radiochemistry on electrodes: Synthesis of an ${ }^{18} \mathrm{~F}$-labelled and in vivo stable COX-2 inhibitor. PLOS ONE 12, e0176606 (2017). doi:10.1371/journal.pone. 0176606 Medline
34. B. Cryer, M. Feldman, Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am. J. Med. 104, 413-421 (1998). doi:10.1016/S0002-9343(98)00091-6 Medline
35. E. M. Isin, C. S. Elmore, G. N. Nilsson, R. A. Thompson, L. Weidolf, Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem. Res. Toxicol. 25, 532-542 (2012). doi:10.1021/tx2005212 Medline
36. M. Pretze, D. Franck, F. Kunkel, E. Foßhag, C. Wängler, B. Wängler, Evaluation of two nucleophilic syntheses routes for the automated synthesis of 6-[${ }^{18}$ F]fluoro-l-DOPA. Nucl. Med. Biol. 45, 35-42 (2017). doi:10.1016/j.nucmedbio.2016.10.007 Medline
37. M. Pretze, C. Wängler, B. Wängler, 6- $\left[{ }^{18}\right.$ F]fluoro-L-DOPA: A well-established neurotracer with expanding application spectrum and strongly improved radiosyntheses. BioMed Res. Int. 2014, 674063 (2014). doi:10.1155/2014/674063 Medline
38. R. N. Brogden, R. M. Finder, T. M. Speight, G. S. Avery, Fenoprofen: A review of its pharmacological properties and therapeutic efficacy in rheumatic diseases. Drugs 13, 241-265 (1977). doi:10.2165/00003495-197713040-00001 Medline
39. M. Madsen, P. R. Hansen, L. B. Nielsen, K. Hartvigsen, A. E. Pedersen, J. P. Christensen, A. Aarup, T. X. Pedersen, Effect of 12-O-tetradecanoylphorbol-13-acetate-induced psoriasis-like skin lesions on systemic inflammation and atherosclerosis in hypercholesterolaemic apolipoprotein E deficient mice. BMC Dermatol. 16, 9 (2016). doi:10.1186/s12895-016-0046-1 Medline
40. A. Zhu, H. Shim, Current molecular imaging positron emitting radiotracers in oncology. Nucl. Med. Mol. Imaging 45, 1-14 (2011). doi:10.1007/s13139-011-0075-y Medline
41. Y. Qi, X. Liu, J. Li, H. Yao, S. Yuan, Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 8, 60581-60588 (2017). doi:10.18632/oncotarget. 19943 Medline
42. A. Sun, X. Liu, G. Tang, Carbon-11 and fluorine-18 labeled amino acid tracers for positron emission tomography imaging of tumors. Front Chem. 5, 124 (2018). doi:10.3389/fchem.2017.00124 Medline
43. W. Chen, Z. Huang, N. Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. Nicewicz, Z. Li, \#39 in MCF-7 and U87MG tumor models at different time points, Zenodo (2019); https://doi.org/10.5281/zenodo. 3228508.
44. W. Chen, Z. Huang, N. Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. Nicewicz, Z. Li, \#41 in MCF-7 tumor model at different time points, Zenodo (2019); https://doi.org/10.5281/zenodo. 3228551 .
45. W. Chen, Z. Huang, N. Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. Nicewicz, Z. Li, \#42 in ear inflammation model, Zenodo (2019); https://doi.org/10.5281/zenodo. 3228546.
46. W. Chen, Z. Huang, N. Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. Nicewicz, Z. Li, \#42 dynamic PET scan, Zenodo (2019); https://doi.org/10.5281/zenodo. 3228534.
47. W. Chen, Z. Huang, N. Tay, B. Giglio, M. Wang, H. Wang, Z. Wu, D. Nicewicz, Z. Li, File index, Zenodo (2019); https://doi.org/10.5281/zenodo. 3228554.
48. C. P. Rosenau, B. J. Jelier, A. D. Gossert, A. Togni, Exposing the origins of irreproducibility in fluorine NMR spectroscopy. Angew. Chem. Int. Ed. 57, 9528-9533 (2018). doi:10.1002/anie. 201802620 Medline
49. K.-F. Zhang, F. Christoffel, O. Baudoin, Barbier-Negishi coupling of secondary alkyl bromides with aryl and alkenyl triflates and nonaflates. Angew. Chem. Int. Ed. 57, 19821986 (2018). doi:10.1002/anie. 201711990 Medline
50. B. S. Bodnar, P. F. Vogt, An improved Bouveault-Blanc ester reduction with stabilized alkali metals. J. Org. Chem. 74, 2598-2600 (2009). doi:10.1021/jo802778z Medline
51. B. A. Egan, M. Paradowski, L. H. Thomas, R. Marquez, Regiocontrolled rearrangement of isobenzofurans. Org. Lett. 13, 2086-2089 (2011). doi:10.1021/ol200498k Medline
52. J. M. Miguez, L. A. Adrio, A. Sousa-Pedrares, J. M. Vila, K. K. M. Hii, A practical and general synthesis of unsymmetrical terphenyls. J. Org. Chem. 72, 7771-7774 (2007). doi:10.1021/jo701308b Medline
53. X. Wang, P. Hu, F. Xue, Y. Wei, Cellulose-supported N-heterocyclic carbene-palladium catalyst: Synthesis and its applications in the Suzuki cross-coupling reaction. Carbohydr. Polym. 114, 476-483 (2014). doi:10.1016/j.carbpol.2014.08.030 Medline
54. T. W. Greulich, C. G. Daniliuc, A. Studer, N-aminopyridinium salts as precursors for Ncentered radicals-Direct amidation of arenes and heteroarenes. Org. Lett. 17, 254-257 (2015). doi:10.1021/ol503338b Medline
55. N. K. Brennan, D. J. Donnelly, M. R. Detty, Selenoxanthones via directed metalations in 2arylselenobenzamide derivatives. J. Org. Chem. 68, 3344-3347 (2003). doi:10.1021/jo026635t Medline
56. J. Lee, J. Lee, M.-S. Kang, K.-P. Kim, S.-J. Chung, P. M. Blumberg, J.-B. Yi, Y. H. Park, Phenolic modification as an approach to improve the pharmacology of the 3-acyloxy-2benzylpropyl homovanillic amides and thioureas, a promising class of vanilloid receptor agonists and analgesics. Bioorg. Med. Chem. 10, 1171-1179 (2002). doi:10.1016/S0968-0896(01)00387-X Medline
57. D. Zornik, R. M. Meudtner, T. El Malah, C. M. Thiele, S. Hecht, Designing structural motifs for clickamers: Exploiting the 1,2,3-triazole moiety to generate conformationally restricted molecular architectures. Chemistry 17, 1473-1484 (2011). doi:10.1002/chem. 201002491 Medline
58. M. A. Windsor, D. J. Hermanson, P. J. Kingsley, S. Xu, B. C. Crews, W. Ho, C. M. Keenan, S. Banerjee, K. A. Sharkey, L. J. Marnett, Substrate-selective inhibition of cyclooxygenase-2: Development and evaluation of achiral profen probes. ACS Med. Chem. Lett. 3, 759-763 (2012). doi:10.1021/ml3001616 Medline
59. Y. Chen, J. Sun, Z. Huang, H. Liao, S. Peng, J. Lehmann, Y. Zhang, NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity. Bioorg. Med. Chem. Lett. 23, 3162-3165 (2013). doi:10.1016/j.bmcl.2013.04.008 Medline
60. C. Visintin, A. E. Aliev, D. Riddall, D. Baker, M. Okuyama, P. M. Hoi, R. Hiley, D. L. Selwood, Membrane receptor probes: Solid-phase synthesis of biotin-Asp-PEG-arvanil derivatives. Org. Lett. 7, 1699-1702 (2005). doi:10.1021/ol0502578 Medline
61. A. J. Ross, H. L. Lang, R. F. W. Jackson, Much improved conditions for the Negishi crosscoupling of iodoalanine derived zinc reagents with aryl halides. J. Org. Chem. 75, 245248 (2010). doi:10.1021/jo902238n Medline
62. Z.-T. He, Y.-S. Zhao, P. Tian, C.-C. Wang, H.-Q. Dong, G.-Q. Lin, Copper-catalyzed asymmetric hydroboration of α-dehydroamino acid derivatives: Facile synthesis of chiral β-hydroxy- α-amino acids. Org. Lett. 16, 1426-1429 (2014). doi:10.1021/ol500219e Medline
63. N. Drinkwater, N. B. Vinh, S. N. Mistry, R. S. Bamert, C. Ruggeri, J. P. Holleran, S. Loganathan, A. Paiardini, S. A. Charman, A. K. Powell, V. M. Avery, S. McGowan, P. J. Scammells, Potent dual inhibitors of Plasmodium falciparum M1 and M17
aminopeptidases through optimization of S1 pocket interactions. Eur. J. Med. Chem. 110, 43-64 (2016). doi:10.1016/j.ejmech.2016.01.015 Medline
64. K. Uehara, C. B. Wagner, T. Vogler, H. Luftmann, A. Studer, Poly(vinyl ketone)s by controlled boron group transfer polymerization (BGTP). Angew. Chem. Int. Ed. 49, 3073-3076 (2010). doi:10.1002/anie. 200907163 Medline
65. Y. Nishimoto, S. A. Babu, M. Yasuda, A. Baba, Esters as acylating reagent in a FriedelCrafts reaction: Indium tribromide catalyzed acylation of arenes using dimethylchlorosilane. J. Org. Chem. 73, 9465-9468 (2008). doi:10.1021/jo801914x Medline
66. C. R. Creveling, E. T. McNeal, D. Cantacuzene, K. L. Kirk, Influence of fluorine substitution on the site of enzymatic O-methylation of fluorinated norepinephrines. J. Med. Chem. 24, 1395-1399 (1981). doi:10.1021/jm00144a005 Medline
67. X. Zhou, G. Zhang, B. Gao, H. Huang, Palladium-catalyzed hydrocarbonylative C-N coupling of alkenes with amides. Org. Lett. 20, 2208-2212 (2018). doi:10.1021/acs.orglett.8b00538 Medline
68. X. Yuan, J.-F. Yao, Z.-Y. Tang, Decarboxylative fluorination of electron-rich heteroaromatic carboxylic acids with selectfluor. Org. Lett. 19, 1410-1413 (2017). doi:10.1021/acs.orglett.7b00335 Medline
69. N. Said, Patent WO2008040994 (A2), April 10, 2008.
70. T. Fujimoto, T. Ritter, PhenoFluorMix: Practical chemoselective deoxyfluorination of phenols. Org. Lett. 17, 544-547 (2015). doi:10.1021/ol5035518 Medline
71. J. B. Ernst, N. E. S. Tay, N. T. Jui, S. L. Buchwald, Regioselective synthesis of benzimidazolones via cascade C-N coupling of monosubstituted ureas. Org. Lett. 16, 3844-3846 (2014). doi:10.1021/ol501531q Medline
72. T. Lehmann-Lintz, A. Heckel, L. Thomas, M. Mark, Patent US2003166637 (A1), September 4, 2003.
73. M. Keenan, M. J. Abbott, P. W. Alexander, T. Armstrong, W. M. Best, B. Berven, A. Botero, J. H. Chaplin, S. A. Charman, E. Chatelain, T. W. von Geldern, M. Kerfoot, A. Khong, T. Nguyen, J. D. McManus, J. Morizzi, E. Ryan, I. Scandale, R. A. Thompson, S. Z. Wang, K. L. White, Analogues of fenarimol are potent inhibitors of Trypanosoma cruzi and are efficacious in a murine model of Chagas disease. J. Med. Chem. 55, 4189-4204 (2012). doi:10.1021/jm2015809 Medline
74. Y.-L. Song, M. L. Peach, P. P. Roller, S. Qiu, S. Wang, Y.-Q. Long, Discovery of a novel nonphosphorylated pentapeptide motif displaying high affinity for Grb2-SH2 domain by the utilization of 3'-substituted tyrosine derivatives. J. Med. Chem. 49, 1585-1596 (2006). doi:10.1021/jm050910x Medline
75. J. Nie, K. L. Kirk, Synthesis of metabolites of 6-fluoro-DOPA. J. Fluor. Chem. 55, 259-269 (1991). doi:10.1016/S0022-1139(00)82354-4
76. W.-P. Deng, K. A. Wong, K. L. Kirk, Convenient syntheses of 2-, 5- and 6-fluoro- and 2,6-difluoro-l-DOPA. Tetrahedron Asymmetry 13, 1135-1140 (2002). doi:10.1016/S0957-4166(02)00321-X
77. T. Furuya, A. E. Strom, T. Ritter, Silver-mediated fluorination of functionalized aryl stannanes. J. Am. Chem. Soc. 131, 1662-1663 (2009). doi:10.1021/ja8086664 Medline
78. C. Yang, R. Edsall Jr., H. A. Harris, X. Zhang, E. S. Manas, R. E. Mewshaw, ERbeta ligands. Part 2: Synthesis and structure-activity relationships of a series of 4-hydroxy-biphenylcarbaldehyde oxime derivatives. Bioorg. Med. Chem. 12, 2553-2570 (2004). doi:10.1016/j.bmc.2004.03.028 Medline
79. Q. Cao, W. Cai, Z.-B. Li, K. Chen, L. He, H.-C. Li, M. Hui, X. Chen, PET imaging of acute and chronic inflammation in living mice. Eur. J. Nucl. Med. Mol. Imaging 34, 1832-1842 (2007). doi:10.1007/s00259-007-0451-0 Medline
80. E. H. Ahn, D. W. Kim, H. W. Kang, M. J. Shin, M. H. Won, J. Kim, D. J. Kim, O.-S. Kwon, T.-C. Kang, K. H. Han, J. Park, W. S. Eum, S. Y. Choi, Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Toxicology 276, 192-197 (2010). doi:10.1016/j.tox.2010.08.004 Medline
81. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Revision B. 01 (Gaussian, Inc., 2009).

[^0]: ${ }^{1}$ H NMR (600 MHz, Acetone-d \mathbf{d}_{6}) $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.61$ - $7.56(\mathrm{~m}, 3 \mathrm{H}), 7.53$ (ddd, J = 8.3, 2.1, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.14(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$.
 $12.9 \mathrm{~Hz}), 138.60,137.50,132.10,130.26(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}), 129.49,128.74(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 118.49(\mathrm{~d}$, $J=19.3 \mathrm{~Hz}), 118.29(\mathrm{~d}, J=2.8 \mathrm{~Hz})$.
 ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Acetone- \boldsymbol{d}_{6}) $\delta-137.61$ (dd, $J=11.7,8.5 \mathrm{~Hz}$).

