Acta Crystallogr Sect E Struct Rep OnlineActa Cryst. EActa Crystallographica Section E: Structure Reports Online1600-5368International Union of Crystallography224125113297321ds217110.1107/S1600536812003194ACSEBHS1600536812003194Organic Papers4,4′-Bipyridine–2-meth­oxy­benzoic acid (1/2)C10H8N2·2C8H8O3QianXiao-Yana*LiuFeng-ZhiaSuzhou Industrial Park Centers for Disease Control and Prevention, Institute of Health Inspection and Supervision, 215021 Suzhou, Jiangsu, People’s Republic of ChinaCorrespondence e-mail: xiaoyan.qian@live.cn01320120422012042201268Pt 3e120300o597o59712120122512012© Qian and Liu 20122012This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.A full version of this article is available from Crystallography Journals Online.

The asymmetric unit of the title compound, C10H8N2·2C8H8O3, contains two 2-meth­oxy­benzoic acid mol­ecules and one 4,4′-bipyridine mol­ecule. The 4,4′-bipyridine mol­ecule is disordered over two positions in a 1:1 ratio. In the crystal, the 2-meth­oxy­benzoic acid and 4,4′-bipyridine mol­ecules are connected by inter­molecular O—H⋯N hydrogen bonds. The dihedral angle between the carboxy group and its attached ring is 26.823 (2)°.

Related literature  

For the use and related structures of 2-meth­oxy­benzoic acid in coordination chemistry, see: Vollano et al. (1984); Smith et al. (1986); Li (2005); Andrews et al. (2006); Ren et al. (2006); Zhao et al. (2008); Sharma et al. (2009).

Experimental   <sec id="sec2.1.1"><title>Crystal data  

C10H8N2·2C8H8O3

M r = 460.47

Monoclinic,

a = 7.7090 (15) Å

b = 25.620 (5) Å

c = 6.3624 (13) Å

β = 112.08 (3)°

V = 1164.4 (4) Å3

Z = 2

Mo Kα radiation

μ = 0.09 mm−1

T = 298 K

0.30 × 0.28 × 0.25 mm

Data collection  

Bruker SMART APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.972, T max = 0.977

5991 measured reflections

2060 independent reflections

1540 reflections with I > 2σ(I)

R int = 0.088

Refinement  

R[F 2 > 2σ(F 2)] = 0.052

wR(F 2) = 0.154

S = 1.06

2060 reflections

172 parameters

9 restraints

H-atom parameters constrained

Δρmax = 0.15 e Å−3

Δρmin = −0.16 e Å−3

<p>Data collection: <italic>APEX2</italic> (Bruker, 2005<xref ref-type="bibr" rid="bb2"> ▶</xref>); cell refinement: <italic>APEX2</italic>; data reduction: <italic>SAINT</italic> (Bruker, 2005<xref ref-type="bibr" rid="bb2"> ▶</xref>); program(s) used to solve structure: <italic>SHELXTL</italic> (Sheldrick, 2008<xref ref-type="bibr" rid="bb6"> ▶</xref>); program(s) used to refine structure: <italic>SHELXTL</italic>; molecular graphics: <italic>SHELXTL</italic>; software used to prepare material for publication: <italic>SHELXTL</italic>.</p></sec></sec><sec sec-type="supplementary-material"><title>Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812003194/ds2171sup1.cif

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812003194/ds2171Isup2.hkl

Supplementary material file. DOI: 10.1107/S1600536812003194/ds2171Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2171).

supplementary crystallographic information Comment

Bipyridine is a well known molecule often used as a linker in polymeric coordination complexes. 2-Methoxybenzoic acid is also sometimes used as a common ligand in coordination polymers (Vollano et al., 1984; Smith et al., 1986; Li, 2005; Andrews et al., 2006; Ren et al., 2006; Zhao et al., 2008; Sharma et al., 2009.). The title compound, (I), is a 1:2 cocrystal of the aforementioned linkers. Herewith we present its crystal structure. The asymmetric unit of the title compound (Fig. 1) contains two 2-methoxybenzoic acid molecules and one 4,4'-bipyridine molecule. The dihedral angle of carboxy group to its ring is 26.823 (2)°. The 4,4'-bipyridine molecule is disordered over two positions in a 1:1 ratio. In the crystal structure, the 2-methoxybenzoic acid and 4,4'-bipyridine are held together by intermolecular O—H···N hydrogen bonds.

Experimental

An ethanol solution (20 ml) of 2-methoxybenzoic acid (0.1 mmol) and 4,4'-bipyridine (0.1 mmol) was heated at 333 K for 2 h. Then the mixture was cooled to room temperature. After two weeks colorless crystals were obtained that were suitable for X-ray diffraction study.

Refinement

Four C atoms of bipyridyl group are disordered over two sites. The occupancy factors refined to 0.761 (2) and 0.239 (2). H atoms were positioned geometrically and refined as riding groups, with O—H = 0.82 Å, Caromatic—H = 0.93 Å and Cmethyl—H = 0.96 Å and with Uiso(H) = 1.2Ueq(Cmethyl,O) and Uiso(H) = 1.5Ueq(aromatic), respectively.

Figures

View of the title compound showing the atomic labeling and 30% probability displacement ellipsoids.

The O—H···N hydrogen bonds of (I). All H atoms have been omitted for clarity. The dashed lines indicate the O—H···N hydrogen bonds.

Crystal data
C10H8N2·2C8H8O3F(000) = 484
Mr = 460.47Dx = 1.313 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2567 reflections
a = 7.7090 (15) Åθ = 2.4–23.4°
b = 25.620 (5) ŵ = 0.09 mm1
c = 6.3624 (13) ÅT = 298 K
β = 112.08 (3)°Block, colourless
V = 1164.4 (4) Å30.30 × 0.28 × 0.25 mm
Z = 2
Data collection
Bruker SMART APEXII CCD diffractometer2060 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 25.1°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −6→9
Tmin = 0.972, Tmax = 0.977k = −30→29
5991 measured reflectionsl = −7→7
Refinement
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0805P)2 + 0.1072P] where P = (Fo2 + 2Fc2)/3
2060 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.15 e Å3
9 restraintsΔρmin = −0.16 e Å3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>)
xyzUiso*/UeqOcc. (<1)
O10.4229 (2)0.58341 (6)0.9083 (3)0.0771 (5)
H10.36450.57150.98160.116*
C10.4341 (3)0.65024 (7)0.6614 (3)0.0525 (5)
O20.1962 (2)0.64201 (7)0.8143 (3)0.0791 (5)
C20.3393 (3)0.68089 (7)0.4708 (3)0.0562 (5)
O30.1512 (2)0.68604 (6)0.4068 (2)0.0717 (5)
C30.4378 (4)0.70402 (9)0.3514 (4)0.0751 (7)
H30.37470.72420.22410.090*
C40.6271 (4)0.69715 (11)0.4209 (5)0.0877 (8)
H40.69160.71310.34080.105*
C50.7227 (3)0.66730 (11)0.6053 (6)0.0875 (8)
H50.85130.66270.65050.105*
C60.6260 (3)0.64391 (9)0.7248 (4)0.0702 (6)
H60.69120.62350.85050.084*
C70.3370 (3)0.62529 (8)0.7980 (3)0.0545 (5)
C80.0540 (4)0.71555 (13)0.2045 (4)0.0945 (9)
H8A0.09820.75090.22560.142*
H8B−0.07790.71510.17340.142*
H8C0.07670.70040.07930.142*
N10.2439 (3)0.54252 (7)0.1570 (3)0.0661 (5)
C110.0512 (3)0.50894 (7)0.4279 (3)0.0556 (5)
C90.3203 (7)0.5048 (2)0.3112 (9)0.0635 (12)0.50
H90.43620.49100.32770.076*0.50
C100.2284 (7)0.48633 (19)0.4455 (9)0.0616 (11)0.50
H100.28040.45930.54740.074*0.50
C12−0.0112 (8)0.5490 (2)0.2734 (9)0.0581 (18)*0.50
H12−0.12250.56580.25680.070*0.50
C130.0872 (8)0.5649 (3)0.1426 (10)0.063 (2)*0.50
H130.04060.59230.04110.075*0.50
C9'0.2515 (7)0.49348 (19)0.2343 (9)0.0625 (16)*0.50
H9'0.32800.46980.19900.075*0.50
C10'0.1531 (8)0.4757 (2)0.3634 (9)0.0645 (16)*0.50
H10'0.15870.44070.40430.077*0.50
C12'0.0289 (8)0.55892 (18)0.3415 (9)0.0554 (13)0.50
H12'−0.05160.58230.37100.066*0.50
C13'0.1266 (8)0.57342 (19)0.2127 (10)0.0599 (14)0.50
H13'0.11120.60750.15850.072*0.50
Atomic displacement parameters (Å<sup>2</sup>)
U11U22U33U12U13U23
O10.0796 (11)0.0708 (10)0.0986 (12)0.0224 (8)0.0536 (9)0.0295 (9)
C10.0532 (11)0.0469 (10)0.0603 (11)−0.0023 (8)0.0247 (9)−0.0035 (9)
O20.0730 (10)0.0971 (12)0.0823 (11)0.0283 (8)0.0465 (8)0.0295 (9)
C20.0632 (12)0.0525 (10)0.0581 (11)0.0013 (9)0.0287 (9)−0.0044 (9)
O30.0667 (9)0.0895 (11)0.0631 (9)0.0218 (7)0.0292 (7)0.0171 (8)
C30.0904 (17)0.0689 (14)0.0751 (14)−0.0069 (12)0.0413 (13)0.0071 (11)
C40.0878 (19)0.0886 (17)0.103 (2)−0.0228 (14)0.0550 (16)0.0040 (15)
C50.0574 (13)0.0915 (18)0.121 (2)−0.0166 (12)0.0426 (14)−0.0042 (17)
C60.0533 (12)0.0671 (13)0.0882 (15)−0.0044 (10)0.0244 (11)0.0036 (11)
C70.0532 (11)0.0563 (11)0.0562 (11)0.0063 (9)0.0231 (9)0.0015 (9)
C80.0963 (18)0.126 (2)0.0663 (14)0.0422 (16)0.0362 (13)0.0282 (15)
N10.0785 (12)0.0605 (10)0.0678 (11)−0.0008 (9)0.0373 (9)0.0010 (9)
C110.0683 (12)0.0470 (10)0.0550 (11)−0.0013 (9)0.0272 (9)−0.0049 (8)
C90.054 (3)0.076 (3)0.060 (3)0.003 (2)0.022 (2)−0.001 (2)
C100.059 (3)0.067 (3)0.059 (3)0.013 (2)0.022 (2)0.018 (2)
C12'0.072 (3)0.042 (2)0.055 (3)−0.005 (2)0.028 (2)−0.010 (2)
C13'0.083 (3)0.043 (2)0.054 (3)−0.012 (2)0.026 (3)−0.002 (2)
Geometric parameters (Å, º)
O1—C71.316 (2)N1—C9'1.343 (5)
O1—H10.8200N1—C91.345 (4)
C1—C61.389 (3)N1—C13'1.346 (5)
C1—C21.398 (3)C11—C10'1.325 (6)
C1—C71.488 (3)C11—C121.377 (6)
O2—C71.207 (2)C11—C12'1.378 (5)
C2—O31.357 (2)C11—C101.448 (4)
C2—C31.392 (3)C11—C11i1.490 (4)
O3—C81.437 (3)C9—C101.382 (5)
C3—C41.368 (3)C9—H90.9300
C3—H30.9300C10—H100.9300
C4—C51.362 (4)C12—C131.381 (7)
C4—H40.9300C12—H120.9300
C5—C61.385 (4)C13—H130.9300
C5—H50.9300C9'—C10'1.388 (6)
C6—H60.9300C9'—H9'0.9300
C8—H8A0.9600C10'—H10'0.9300
C8—H8B0.9600C12'—C13'1.357 (6)
C8—H8C0.9600C12'—H12'0.9300
N1—C131.309 (6)C13'—H13'0.9300
C7—O1—H1109.5C10'—C11—C12110.4 (4)
C6—C1—C2118.00 (18)C10'—C11—C12'118.3 (3)
C6—C1—C7119.65 (19)C12—C11—C10114.8 (3)
C2—C1—C7122.34 (17)C12'—C11—C10112.0 (3)
O3—C2—C3122.4 (2)C10'—C11—C11i120.4 (3)
O3—C2—C1117.74 (17)C12—C11—C11i123.0 (3)
C3—C2—C1119.9 (2)C12'—C11—C11i121.0 (3)
C2—O3—C8117.29 (17)C10—C11—C11i122.1 (3)
C4—C3—C2120.2 (2)N1—C9—C10120.8 (4)
C4—C3—H3119.9N1—C9—H9119.6
C2—C3—H3119.9C10—C9—H9119.6
C5—C4—C3121.1 (2)C9—C10—C11120.2 (4)
C5—C4—H4119.4C9—C10—H10119.9
C3—C4—H4119.4C11—C10—H10119.9
C4—C5—C6119.1 (2)C11—C12—C13121.7 (5)
C4—C5—H5120.4C11—C12—H12119.1
C6—C5—H5120.4C13—C12—H12119.1
C5—C6—C1121.6 (2)N1—C13—C12122.0 (6)
C5—C6—H6119.2N1—C13—H13119.0
C1—C6—H6119.2C12—C13—H13119.0
O2—C7—O1122.15 (18)N1—C9'—C10'124.5 (5)
O2—C7—C1124.29 (18)N1—C9'—H9'117.7
O1—C7—C1113.52 (17)C10'—C9'—H9'117.7
O3—C8—H8A109.5C11—C10'—C9'119.4 (5)
O3—C8—H8B109.5C11—C10'—H10'120.3
H8A—C8—H8B109.5C9'—C10'—H10'120.3
O3—C8—H8C109.5C13'—C12'—C11118.7 (4)
H8A—C8—H8C109.5C13'—C12'—H12'120.6
H8B—C8—H8C109.5C11—C12'—H12'120.6
C13—N1—C9'110.4 (4)N1—C13'—C12'125.4 (4)
C13—N1—C9120.3 (4)N1—C13'—H13'117.3
C9'—N1—C13'113.3 (3)C12'—C13'—H13'117.3
C9—N1—C13'112.6 (3)
C6—C1—C2—O3178.65 (17)C10'—C11—C12—C13−28.0 (6)
C7—C1—C2—O3−2.3 (3)C12'—C11—C12—C1388.6 (12)
C6—C1—C2—C3−0.2 (3)C10—C11—C12—C131.7 (7)
C7—C1—C2—C3178.92 (18)C11i—C11—C12—C13179.7 (4)
C3—C2—O3—C81.7 (3)C9'—N1—C13—C1224.7 (7)
C1—C2—O3—C8−177.1 (2)C9—N1—C13—C12−3.9 (8)
O3—C2—C3—C4−179.2 (2)C13'—N1—C13—C12−77.4 (12)
C1—C2—C3—C4−0.4 (3)C11—C12—C13—N10.5 (9)
C2—C3—C4—C50.7 (4)C13—N1—C9'—C10'−23.9 (7)
C3—C4—C5—C6−0.5 (4)C9—N1—C9'—C10'93.1 (9)
C4—C5—C6—C1−0.1 (4)C13'—N1—C9'—C10'−1.4 (7)
C2—C1—C6—C50.4 (3)C12—C11—C10'—C9'28.7 (6)
C7—C1—C6—C5−178.7 (2)C12'—C11—C10'—C9'7.6 (7)
C6—C1—C7—O2151.7 (2)C10—C11—C10'—C9'−76.1 (7)
C2—C1—C7—O2−27.4 (3)C11i—C11—C10'—C9'−178.2 (4)
C6—C1—C7—O1−26.2 (3)N1—C9'—C10'—C11−3.8 (8)
C2—C1—C7—O1154.75 (18)C10'—C11—C12'—C13'−6.4 (7)
C13—N1—C9—C104.8 (8)C12—C11—C12'—C13'−78.6 (12)
C9'—N1—C9—C10−70.7 (8)C10—C11—C12'—C13'23.5 (7)
C13'—N1—C9—C1026.7 (7)C11i—C11—C12'—C13'179.4 (5)
N1—C9—C10—C11−2.5 (9)C13—N1—C13'—C12'89.0 (13)
C10'—C11—C10—C986.1 (8)C9'—N1—C13'—C12'2.6 (8)
C12—C11—C10—C9−0.7 (7)C9—N1—C13'—C12'−27.3 (8)
C12'—C11—C10—C9−23.2 (7)C11—C12'—C13'—N11.2 (10)
C11i—C11—C10—C9−178.8 (4)

Symmetry code: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.821.852.673 (2)177

Symmetry code: (ii) x, y, z+1.

ReferencesAndrews, P. C., Deacon, G. B., Junk, P. C., Kumar, I. & Silberstein, M. (2006). Dalton Trans. pp. 4852–4858.Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.Li, X. (2005). Z. Kristallogr. New Cryst. Struct. 220, 407–408.Ren, N., Zhang, J. J., Xu, S. L., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2006). Chin. J. Inorg. Chem. 22, 1905–1907.Sharma, R. P., Singh, S., Singh, A. & Ferretti, V. (2009). J. Mol. Struct. 918, 188–193.Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.Smith, P. J., Day, R. O., Chandrasekhar, V. M., Holmes, J. & Holmes, R. R. (1986). Inorg. Chem. 25, 2495–2499.Vollano, J. F., Day, R. O., Rau, D. N., Chandrasekhar, V. & Holmes, R. R. (1984). Inorg. Chem. 23, 3153–3160.Zhao, N., Wang, S. P., Ma, R. X., Gao, Z. H., Wang, R. F. & Zhang, J. J. (2008). J. Alloys Compd, 463, 338–342.
Hydrogen-bond geometry (Å, °)
D—H⋯AD—HH⋯ADAD—H⋯A
O1—H1⋯N1i0.821.852.673 (2)177

Symmetry code: (i) .