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Abstract

The current study tests whether accuracy and reaction time (RT) on the Hearts and Flowers (HF) 

task, a common assessment tool used across wide age ranges, can be leveraged as joint indicators 

of child executive function (EF) ability. While previous studies have tended to use accuracy or RT, 

either alone or as separate indicators, one open question is whether these two metrics can be yoked 

together to enhance our measurement of EF ability. We test this question using HF data collected 

from first-grade children who participated in the Family Life Project. Specifically, we model the 

independent and interactive effects of HF accuracy and RT on several criterion outcomes 

representing child academic and behavioral competence. Our findings indicate that among early 

elementary-aged children, accuracy and RT interact in the prediction of child outcomes, with RT 

being a more informative index of EF ability for children who perform at high levels of accuracy. 

The main effect of accuracy remained significant in the presence of these interactive effects. This 

pattern of findings was similar for different task blocks (i.e., mixed, flower-only) and for different 

child outcome domains (i.e., academic, behavioral). Our finding of an interaction between 

accuracy and RT contributes to a growing literature that attempts to jointly consider accuracy and 

RT as indicators of underlying ability, which has important implications for how EF task scores 

are constructed and interpreted.
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In recent years, there has been increased scientific interest in the construct of executive 

function (EF). EF is a multifaceted construct that encapsulates the set of higher-order 

cognitive abilities that support planful, goal-directed behavior (Blair & Ursache, 2011). In 

children, EF is thought to be comprised of three related, yet separable abilities: working 

memory, inhibitory control, and cognitive flexibility (Miyake et al., 2000). Researchers 

across psychological disciplines are interested in measuring EF because it predicts a wide 
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variety of outcomes, including school readiness (e.g., Blair & Razza, 2007), risk of 

psychopathology (for a review, see Snyder, Miyake, & Hankin, 2015), occupational 

functioning (e.g., Miller, Nevado-Montenegro, & Hinshaw, 2012), and quality of life (e.g., 

Davis, Marra, Najafzadeh, & Liu-Ambrose, 2010). Put another way, EF seems necessary for 

humans to flourish in all stages of life. Despite this, longitudinal studies examining the 

development of EF across the lifespan are relatively rare.

One reason for this is the lack of performance-based measures that can be used across 

different age groups. Even with adaptations, tasks developed for use with children are too 

easy for adults, and tasks developed for adults are too difficult for children. A second 

limitation is that, even among the relatively small number of tasks that can be used across 

wide age ranges, there is disagreement regarding optimal measures of performance for 

different age groups. For example, while there is a precedent for relying on accuracy of 

performance for younger children (Diamond, Barnett, Thomas, & Munro, 2007), reaction 

time is more often used for older children and adults (Diamond & Kirkham, 2007). 

However, there is little empirical guidance regarding when to make the switch from accuracy 

to RT as an index of performance. To complicate matters even further, stimulus presentation 

rate is adjusted downward to make a given task more difficult for older children and adults 

(Davidson, Amso, Anderson, & Diamond, 2006). This change means that it can again be 

difficult, if not impossible, to model performance on a given task across time.

The Hearts and Flowers (HF) task is one example of a task that has been used in early 

childhood, middle childhood, and adolescence. An adaptation of the Dots task originally 

developed by Davidson and colleagues (2006), the HF task requires participants to respond 

to one rule (press a key on the same side of the screen) when presented with a heart 

stimulus, and to respond to a different rule (press a button on the opposite side of the screen) 

when presented with a flower stimulus. The task consists of three blocks containing either 

congruent (hearts only), incongruent (flowers only), or mixed (both hearts and flowers) 

trials. Because there are no executive demands inherent in the hearts block, it is often used as 

a control block from which to compare performance on the flower and mixed blocks. 

Commonly, performance on the flower block is used as an index of inhibitory control 

(Wright & Diamond, 2014), because it requires inhibiting a prepotent response (i.e., pressing 

the spatially-congruent key). Performance on the mixed block is used as an index of 

cognitive flexibility, as it requires flexibly selecting between the two rules, depending on the 

stimulus. Although the task more intentionally taxes inhibitory control and cognitive 

flexibility, others have argued that working memory is inherently involved in all trials, 

because of the need to hold two rules in mind throughout the different blocks of the task 

(Diamond, 2013).

The HF task has been shown to be appropriate for ages 4 through adulthood, although, as 

noted above, a downward adjustment to the stimulus presentation time is needed to keep the 

task challenging for older children and adults (Davidson et al., 2006). Specifically, the 

recommended length of time for stimulus presentation is 2500msec for children 6 years and 

younger while 750msec is recommended for older children and adults. The HF task has been 

shown to demonstrate age-related shifts in accuracy and reaction time (Davidson et al., 

2006), discriminative validity to distinguish between typically- and atypically-developing 
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children (Edgin et al., 2010), and sensitivity to various types of educational and physical 

activity intervention programs (Diamond et al., 2007; Lakes et al., 2013; Schonert-Reichl et 

al., 2015).

Despite its many favorable properties, one difficulty of using this task, and others like it, is 

that there are multiple ways performance can be summarized. Some studies focus on 

performance within each of the three task blocks (e.g., hearts, flowers, and mixed). Others 

examine performance on all congruent (i.e., hearts) and incongruent (i.e., flowers) trials, 

regardless of task block. In addition to these different ways to group trials, there are at least 

three different indicators of performance: accuracy (i.e., percent correct), RT (i.e., mean RT 

in msec), and reaction time difference scores (e.g., mean RT on mixed trials – mean RT on 

hearts trials, mean RT on incongruent trials – mean RT on congruent trials). Thus, with five 

ways to group trials and three performance indicators, there are many choices for 

summarizing performance on the HF task. In the absence of clear guidance regarding the 

choice of developmentally-appropriate measures, studies seem to arbitrarily choose some 

subset of accuracy, RT, and/or RT difference scores.

Some studies solely report findings pertaining to accuracy. For example, Diamond and 

colleagues found that preschool children who were randomly assigned to an EF-training 

curriculum (Tools of the Mind) exhibited greater gains in accuracy on the incongruent (e.g., 

flowers) block of the HF task, compared to peers who participated in a literacy-based 

curriculum (Diamond et al., 2007). Citing concerns over the young age of the children, RT 

differences were not assessed. On the other hand, some studies with older children report 

findings solely pertaining to RT. One study found that higher levels of state anxiety in 

elementary-aged children was related to poorer EF ability, as indexed by larger RT 

difference scores on the mixed trials (Ursache & Raver, 2015). The authors report that RT 

difference scores were used for all analyses because mean accuracy in the sample was high 

(M = 85%) and lacked adequate variability (SD = .16). Finally, some studies report findings 

for accuracy and RT together. For example, Davidson and others (2006) observed that 

among 4- to 13-year-olds, children were both slower and less accurate on incongruent (e.g., 

flowers) trials than on congruent (e.g., hearts) trials, likely due to the inhibitory demand of 

incongruent trials. They also observed that the differences in RT and accuracy among these 

two types of trials diminished with age, as inhibitory control ability increased.

Clearly, there are differences in the metrics that different studies use and report, even when 

using the same task. These differences make it difficult to compare findings across studies. 

Practically, the use of different metrics among different age groups of children (i.e., accuracy 

with younger children, RT or RT difference with older children) also makes it difficult to 

model change in EF ability across time. Among the few studies that have examined both 

accuracy and RT, these metrics have tended to be analyzed independently as predictors or 

outcomes (e.g., Davidson et al., 2006; Lakes et al., 2013; Wright & Diamond, 2014). One 

question that remains is whether accuracy and RT can be yoked together in a way that would 

yield additional information about child EF ability. This question is particularly interesting 

in the case of young children, where accuracy seems to be the preferred metric. The question 

of whether accuracy and RT on the HF task can be jointly used as indices of EF ability in 

young children constitutes the primary motivation for the current investigation.
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Research using other task batteries has attempted to integrate accuracy and RT into single 

scores. For example, the NIH Toolbox consists of two EF tasks, the Dimensional Change 

Cart Sort (DCCS) and Flanker tasks. Motivated by their desire to create task scores that 

capture meaningful variability in performance for individuals from age 3 through adulthood, 

a two-vector scoring approach was proposed (Zelazo et al., 2013). Specifically, individuals 

receive separate scores for accuracy and RT, which are transformed from their raw form such 

that they are both measured on a 0 to 5 scale. For participants who are highly accurate (i.e., 

80% accuracy or higher), the RT score is added to the accuracy score, yielding a possible 

score that ranges from 0 to 10. For individuals who do not score at 80% accuracy or higher, 

their score is solely determined by their accuracy, and ranges from 0 to 5. More 

sophisticated, model-based approaches have also been proposed for integrating accuracy and 

RT (Magnus, Willoughby, Blair, & Kuhn, 2017; Molenaar, Tuerlinckx, & van der Maas, 

2015). These approaches use factor analytic and item-response theory approaches to 

estimate the joint contributions of accuracy and RT to cognitive ability. Although these 

models are general enough to be of use to a wide audience, practically, they are beyond the 

analytic grasp of most substantive researchers.

The current study tests a simpler approach, which can be implemented in a traditional linear 

regression framework. Rather than making a-priori task scoring decisions that delineate the 

conditions under which RT becomes an informative measure of EF ability (i.e., at a specific 

child age or past a set level of accuracy), we test a series of models that empirically address 

this question. Using data from a sample of first-grade children, we model the independent 

and interactive effects of HF accuracy and RT on several criterion outcomes. Main effects of 

accuracy and RT are tested to determine whether accuracy and RT independently account for 

variance in outcomes, which would indicate that both metrics provide unique information 

about child EF ability. We also test interactive effects of accuracy and RT, to determine 

whether the utility of RT as an index of EF ability depends upon the child’s overall level of 

accuracy. In this way, we are able to empirically demonstrate whether there is a certain 

threshold of accuracy that must be reached before RT becomes informative.

In order to test these models, we first needed to identify criterion measures that we expected 

to be robustly related to EF ability in childhood. Studies have consistently indicated that 

among preschool and early elementary-aged children, better EF is implicated in school 

readiness (e.g., Blair, 2002), prosocial behavior (Bierman, Torres, Domitrovich, Welsh, & 

Gest, 2009; Smith-Donald, Raver, Hayes, & Richardson, 2007), and academic achievement 

(Brock, Rimm-Kaufman, Nathanson, & Grimm, 2009; Bull & Scerif, 2001; Willoughby, 

Kupersmidt, Voegler-Lee, & Bryant, 2011), with evidence these links are stronger for math 

than for reading ability (Blair & Razza, 2007; Espy et al., 2004). On the other hand, EF 

deficits are commonly reported in children with different classes of behavior problems, 

including Attention-Deficit/Hyperactivity Disorder (ADHD), and other externalizing 

disorders (Pauli-Pott & Becker, 2011; Séguin, 2004; Willcutt et al., 2005). Therefore, we 

selected three scales of academic achievement and three scales of behavioral functioning as 

outcome measures for the current investigation, given their expected relationship to EF task 

performance. Although these outcomes are not of substantive interest to the current 

investigation, they serve as important benchmarks for evaluating the independent and 

interactive efficacy of accuracy and RT as indicators of child EF ability.
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In the absence of previous studies that have made joint use of HF accuracy and RT scores in 

elementary-aged children, we refrain from making strong directional hypotheses about how 

these metrics will independently and interactively relate to child outcomes. However, given 

the implicit assumption in the EF literature that RT is more informative at higher levels of 

accuracy (e.g., Zelazo et al., 2013), we predict that accuracy and RT may interact in the 

prediction of child outcomes, such that RT may be a stronger predictor of child outcomes for 

individuals who perform at higher levels of accuracy. We do not have explicit hypotheses 

about differences in these models based on task block (i.e., flowers, mixed) or outcome 

domain (i.e., academic, behavioral outcomes).

Methods

Participants

The Family Life Project (FLP) is a longitudinal study of children and families residing in 

two regions of high rural poverty in North Carolina (NC) and Pennsylvania (PA). Families 

living in target counties were recruited using a stratified random sampling approach that 

yielded a representative sample of 1,292 families recruited over a one-year period 

(September 2003 through September 2004). Low-income families in both states and 

African-American families in NC were oversampled to ensure adequate power to test central 

research questions. Additional details about FLP sampling and recruitment procedures can 

be found in (Vernon-Feagans, Cox, & FLP Key Investigators, 2013).

The current analyses include a subsample of children drawn from the larger FLP study. To 

be included in these analyses, we first considered any child who had HF data and first-grade 

outcome data (N = 1020). We excluded an additional 60 children whose HF data were 

deemed invalid (criteria described below, in Measures). Thus, the final analysis sample 

contained 960 children (Mage = 87.3 months, SD = 3.8 months). In this subsample, 50% of 

children were male, 43% were African-American, and 78% of families were considered poor 

(< 200% of the poverty level) at recruitment. This subsample does not differ from the full 

FLP sample in terms of child race, gender, research site (NC or PA), or poverty status at 

recruitment. The relevant institutional review boards approved all data collection activities, 

including informed consent.

All analyses accounted for the complex sampling design and clustered school-based data by 

incorporating appropriate stratification weight and cluster variables.

Measures

Data for these analyses are drawn from one school visit and one home visit conducted when 

children were in their second year of formal schooling. For the majority (93%) of children in 

this study, their second year of school corresponded to the first grade. However, a small 

number of children were in kindergarten (7%) or second grade (< 1%), due to grade 

retention or acceleration, respectively. For ease of interpretation, we refer to this data 

collection time point as the first-grade visit throughout the manuscript. In the spring of the 

school year, children completed a number of tasks, including assessments of math and 

reading ability. The target child’s lead/primary teacher completed questionnaires regarding 
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the child’s behavior, including ratings of children’s social skills and behavior problems. At 

the home visit, parents and children completed individual and dyadic activities, including an 

assessment of child EF ability.

Executive Function—Executive function was measured using the Hearts and Flowers 

task (Davidson et al., 2006). On each trial, children were presented with a picture of a heart 

or a flower on one side of a laptop screen. They were instructed to press the keyboard button 

on the same side as the picture when the picture was a heart (congruent), but to press the 

keyboard button on the opposite side as the picture when the picture was a flower 

(incongruent). Children completed instructional and practice trials, which were repeatable 

up to three times, until children understood task demands. These practice trials were 

followed by 12 hearts-only trials, 12 flower-only trials, and 33 mixed trials. Stimuli were 

presented for up to 2500 ms (depending on whether a response was made) and advanced to 

the next trial following an interstimulus interval of 1000 ms. Accuracy and RT were 

measured for each individual trial. Anticipatory responses (RT < 200 ms) were set to 

missing for both accuracy and RT metrics, as these responses occurred too fast to be in 

response to the stimulus. Consistent with previous studies (e.g., Ursache & Raver, 2015), 

only children who responded to at least 75% of trials were considered to have valid HF data. 

Additionally, the current analyses excluded HF data from children who performed below 

chance levels (i.e., overall task accuracy < 50%). As mentioned above, applying these 

criteria led us to exclude data from 60 (out of 1020; 6%) children.

Accuracy scores were calculated for each block and represented the proportion of correct 

responses (e.g., correct responses divided by sum of correct and incorrect responses). 

Similarly, the mean reaction time (RT) of correct responses was calculated for each block. 

Subsequently, we calculated two RT difference scores (ΔRT) by subtracting individuals’ 

mean RT on the heart-only block from their mean RT on the flower-only block (i.e., RTflower 

– RTheart) and mixed block (i.e., RTmixed – RTheart). These ΔRT scores represented the 

slowing due to increased inhibitory control and shifting demands, respectively. Four 

measures (accuracy and ΔRT for flower-only and mixed blocks) were retained as focal 

predictor variables.

Academic Outcomes—Academic outcomes included child math and reading ability, 

assessed using the Woodcock-Johnson III (WJ III) Tests of Achievement. The WJ III 

consists of a normed set of tests measuring cognitive abilities, scholastic aptitude, and 

academic achievement. Math ability was indexed using the Applied Problems (AP) subtest 

in which children are asked to solve mathematical word problems. Reading ability was 

assessed using the Letter–Word Identification (LW) and Picture Vocabulary (PV) subtests of 

the WJ III. In the LW subtest, children are asked to identify letters and read words of 

increasing difficulty. In the PV subtest, children are asked to name pictures. We used 

standard scores for each subtest as outcome measures. All tests within the WJ III Tests of 

Achievement have been shown to demonstrate high levels of reliability and validity 

(Woodcock, McGrews, & Mather, 2001).

Behavioral Outcomes—Behavioral outcomes included teachers ratings of children’s 

social skills and behavior problems using the Strengths and Difficulties Questionnaire (SDQ; 
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Goodman, 2001), a 25-item screener appropriate for children ages 3–16 years. Teachers 

rated a series of items on a 3-point Likert scale (0=not true, 1=somewhat true, 2=certainly 

true). We use three subscales in these analyses. The Conduct Problems subscale contains 

five items (a = .80) that measure child problem behaviors (Sample item: “Often lies or 

cheats”). The Hyperactivity subscale contains five items (a = .90) that measure child 

inattention and hyperactivity (Sample item: “Easily distracted, concentration wanders”). The 

Prosocial subscale contains five items (a = .86) that measure children’s prosocial behavior 

and social skills (Sample item: “Considerate of other people’s feelings”). Mean scores were 

calculated for each subscale (range = 0 to 2).

Analytic Plan

Substantive questions were tested using a series of regression models predicting our six 

outcome measures (i.e., three WJ III and three SDQ scores). Our first test was whether 

mixed block accuracy and ΔRT predicted our criterion outcomes. This test investigated the 

contribution of cognitive flexibility trials, specifically, to child outcomes. The second test 

was whether flower-only block accuracy and ΔRT predicted these same outcomes. This test 

investigated the contribution of inhibitory control to our criterion measures. Finally, we 

tested whether mixed and flower-only accuracy and ΔRT jointly predicted child outcomes. 

Although the current investigation is not specifically concerned with the independent 

influence of cognitive flexibility and inhibitory control on child outcomes, we include these 

models because we acknowledge that substantive researchers may be interested in using 

these variables in this way.

For each condition (i.e., mixed block, flower-only block, both mixed and flower-only block), 

we estimated six models that included the direct effects of accuracy and ΔRT, as well as their 

interaction, in the prediction of child academic and behavioral outcomes. Raw accuracy and 

ΔRT variables were centered using weighted means prior to creating interaction terms. 

Weighted means were used for centering in order to account for the complex sampling 

design.

For models where the interaction between accuracy and ΔRT is significant, we probe these 

interactions using regions of significance and simple slopes analyses. Simple slopes were 

calculated for low (25th percentile) and high (75th percentile) values of accuracy, to 

demonstrate the expected relationship between ΔRT and child outcomes at varying levels of 

task performance. Results from regions of significance analyses tell us at what level of 

accuracy ΔRT becomes a significant predictor of child outcomes. In cases where the 

interaction between accuracy and ΔRT is not significant, we trim interaction terms prior to 

interpreting model coefficients. Trimming interaction terms in this way did not change the 

substantive model results. However, the results from models including the full set of 

predictor variables are available by request.

All analyses were conducted using PROC SURVEYREG in SAS 9.4. Robust standard errors 

for model coefficients were obtained using the CLUSTER command, to account for nesting 

of kids in classrooms (Huber, 1967). Missing data were handled using full-information 

maximum likelihood. The majority of cases (n = 828; 86%) had full data for all variables. Of 

those with missing data (n = 132; 14%), the mean number of missing variables was 3.1 (SD 
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= 0.68) out of the 10 analysis variables. The majority of missingness was accounted for by 

123 children who were missing SDQ ratings. Children with missing data did not differ from 

children without missing data on the basis of child race, gender, research site (NC or PA), or 

poverty status at recruitment.

Results

Descriptive Statistics

Unweighted means, standard deviations, and correlations for all study variables are 

presented in Table 1. Children demonstrated higher mean accuracy on flower-only trials (M 
= .89, SD = .17) as compared to mixed trials (M = .81, SD = .16). Children also slowed their 

responding to a greater degree on mixed trials (M = 547.42, SD = 224.23) as compared to 

flower-only trials (M = 244.68, SD = 206.09), indicating that mixed trials were more 

challenging than flower-only trials. Accuracy and ΔRT were positively correlated for both 

flower-only (r = .16, p < .001) and mixed trials (r = .21, p < .001), indicating that children 

who were more accurate also tended to slow down more. There was also a negative 

correlation between children’s reaction time on heart-only trials and their ΔRT on both 

flower-only (r = −.28, p < .001) and mixed trials (r = −.10, p = .002), indicating that children 

who responded faster in the heart-only block tended to slow down more on the flower-only 

and mixed blocks.

As expected, accuracy on flower-only trials was positively related to academic ability (r = .

18 – .30, all p < .001) and prosocial behavior (r = .11, p < .001), and negatively related to 

conduct problems (r = −.09, p < .01) and hyperactivity (r = −.20, p < .001). Similarly, 

accuracy on mixed trials was positively related to academic ability (r = .25 – .38, all p < .

001) and prosocial behavior (r = .19, p < .001), and negatively related to conduct problems (r 
= −.18, p < .001) and hyperactivity (r = −.26, p < .001).

ΔRT for flower-only trials was negatively related to all academic outcomes (r = −.06 – −.15, 

all p < .05), but was not significantly related to any behavioral outcome. ΔRT for mixed 

trials was not significantly correlated with any academic or behavioral outcomes.

Regression Models

Next, we present results from regression models predicting child academic and behavioral 

outcomes from mixed trial accuracy and RT, flower-only trial accuracy and RT, and the 

combination of the two trial types.

Mixed Block—Results from the six mixed trial models, including F-statistics, coefficients, 

and R2 values, are presented in Table 2. Overall, mixed trial accuracy and ΔRT explained 

between 7% and 15% of the variance in academic outcomes, and between 2% and 7% of the 

variance in behavioral outcomes.

Academic outcomes.: Accuracy on mixed trials was positively associated with all three 

academic outcomes (β = .23 – .36, p < .001), whereas ΔRT was negatively associated with 

all three outcomes (β = −.09 – −.13, p < .05). In other words, faster and more accurate 

children also had higher scores on all measures of academic ability.
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In addition to these main effects, mixed trial accuracy and ΔRT interacted to predict the 

Applied Problems (β = −.11, p < .01) and Picture Vocabulary subscales (β = −.10, p < .01). 

This significant interaction means that the effect of RT on these two outcomes depends on 

the level of accuracy. Probing these interactions revealed that ΔRT became more predictive 

of child math and reading ability as accuracy increased (see Figure 1). For Applied 

Problems, the simple slope of ΔRT was two times greater when accuracy was high (75th 

percentile or 93% accuracy; b = – .012, p < .001), compared to when accuracy was low (25th 

percentile or 75% accuracy; b = −.006, p = .004). Regions of significance analyses revealed 

that the relationship between ΔRT and Applied Problems scores became significant when 

child accuracy was above 70%.

Similar results were found in the prediction of reading ability (e.g., Picture Vocabulary). The 

simple slope of ΔRT was two times greater when accuracy was high (75th percentile or 93% 

accuracy; b = −.008, p = .003) as opposed to when accuracy was low (25th percentile or 75% 

accuracy; b = −.004, p = .04). The relationship between ΔRT and PV scores became 

significant when child accuracy on mixed trials was above 74%.

It is important to note that, among these models with significant interaction terms, the main 

effect of accuracy also remains significant. That is, at each value of ΔRT, higher accuracy is 

associated with higher math and reading ability.

Behavioral outcomes.: Accuracy on mixed trials was associated in the expected direction 

with conduct problems (β = −.16, p < .001), hyperactivity (β = −.27, p < .001), and 

prosocial behavior (β = .19, p < .001). On the other hand, mixed ΔRT only predicted 

hyperactivity (β = .10, p < .01) above and beyond accuracy. There were no interactive 

effects of mixed trial accuracy and ΔRT. Thus, as opposed to academic outcomes, mixed 

trial ΔRT was not as predictive of behavioral outcomes, and there was no evidence that ΔRT 

became more predictive at high levels of accuracy.

Flower-Only Block—Results from the six flower-only trial models, F-statistics, 

coefficients, and R2 values, are presented in Table 3. Overall, accuracy and ΔRT on flower-

only trials explained between 3% and 9% of the variance in academic outcomes, and only 

between 1% and 4% of the variance in behavioral outcomes.

Academic Outcomes.: Accuracy on flower-only trials was positively associated with all 

three academic outcomes (β = .15 – .27, p < .001), whereas ΔRT was negatively associated 

with scores on the Applied Problems subscale (β = −.13, p < .01). Thus, more accurate 

children had higher scores on math and reading ability, whereas faster children only showed 

higher scores on math ability. Accuracy and ΔRT also interacted to predict Applied 

Problems (β = −.11, p < .01). Similar to the findings for mixed trials, ΔRT on flower-only 

trials was more predictive of child math ability as accuracy increased (Figure 2a). Regions of 

significance analyses showed that the relationship between ΔRT and Applied Problems 

scores became significant when accuracy on flower-only trials was above 74%. The main 

effect of accuracy remained significant, meaning that higher accuracy was associated with 

better math ability, regardless of ΔRT.
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Behavioral Outcomes.: Accuracy on flower-only trials was negatively associated with 

conduct problems (β = −.09, p < .05) and hyperactivity (β = −.17, p < .001), and positively 

associated with prosocial behavior (β = .10, p < .05). There were no main effects of ΔRT on 

any behavioral outcome. However, flower-only accuracy and ΔRT did interact to predict 

hyperactivity (β = .08, p < .05). Probing this interaction revealed that the relationship 

between ΔRT and hyperactivity became stronger as accuracy increased (Figure 2b). For 

example, ΔRT did not significantly predict hyperactivity when children were low (25th 

percentile or 82%; b = .0002, p = .15) or average on accuracy (90%; b = .0003, p = .05), but 

it did predict hyperactivity when children were high on accuracy (75th percentile or 96%; b 
= .0003, p = .03). The relationship between ΔRT and hyperactivity became significant when 

flower-only accuracy was above 91%. The main effect of accuracy remained significant, 

meaning that higher accuracy was associated with less hyperactivity, regardless of ΔRT.

Mixed and Flower-Only Blocks—Our final six models simultaneously estimated the 

relationships between mixed and flower-only trial accuracy and ΔRT and child outcome 

measures. These findings are presented in Table 4. Accuracy and ΔRT on these two trial 

types jointly explained between 7 and 16% of the variance in academic outcomes, and 

between 3 and 8% of the variance in behavioral outcomes.

Academic Outcomes.: When mixed and flower-only scores were jointly included as 

predictors, mixed accuracy (β = .21 – .30, p < .001) and ΔRT (β = −.11 – −.13, p < .01) 

remained significant predictors of all three academic outcomes. The magnitude of effects 

and model R2 values did not differ dramatically from the models that solely included mixed 

trials (Table 2). In addition, the significant interactions between mixed accuracy and ΔRT 

predicting Applied Problems (β = −.08, p < .05) and Picture Vocabulary (β = −.09, p < .05) 

remained significant, though slightly reduced in magnitude.

Accounting for mixed trial performance, accuracy on flower-only trials only remained a 

significant predictor of Applied Problems scores (β = .12, p < .05). There was no longer a 

significant relationship between flower-only ΔRT and Applied Problems. The interaction of 

flower-only accuracy and ΔRT predicting AP was also no longer significant and was 

therefore trimmed from the model.

Behavioral Outcomes.: Similar to what we observed for academic outcomes, the 

significance and magnitude of effects for mixed accuracy and ΔRT predicting behavioral 

outcomes was largely unchanged compared to the mixed-only models. One exception is that 

mixed ΔRT significantly predicted prosocial behavior in this model (β = −.12, p < .01).

Accuracy on flower-only trials no longer predicted conduct problems and prosocial behavior 

in the joint model. The magnitude of the relationship between flower-only accuracy and 

hyperactivity also became smaller (β = −.10, p < .05). Whereas the direct effect of ΔRT 

remained nonsignificant for all behavioral outcomes, the interaction between flower-only 

accuracy and ΔRT predicting hyperactivity became insignificant in this joint model.
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Discussion

The current study aimed to test whether accuracy and RT on the Hearts and Flowers task, a 

common assessment tool used across wide age ranges, could be leveraged as joint indicators 

of child EF ability. We tested this question by modeling direct and interactive effects of 

accuracy and RT as predictors of six commonly studied outcome measures representing two 

broad domains of child development. Our findings indicate that even among early 

elementary-aged children, accuracy and RT interact in the prediction of child outcomes, with 

RT being a more informative index of EF ability for children who perform at high levels of 

accuracy. This pattern of findings remained significant in different task blocks (i.e., mixed, 

flower-only) and for different child outcome domains (i.e., academic, behavioral). Our 

finding of an interaction between these two metrics adds a layer of nuance to the existing EF 

assessment literature, which has so far tended to examine either accuracy or RT individually, 

rather than yoking them together.

Among preschool and young school-aged children, accuracy has been used as the primary 

metric of EF task performance, both in studies using the HF task (Blankson & Blair, 2016; 

Diamond et al., 2007) and other EF task batteries (e.g., Camerota, Willoughby, Kuhn, & 

Blair, 2016; Willoughby & Blair, 2016). In line with this, we found that HF accuracy had a 

direct effect on academic and behavioral outcomes in our sample of first-grade students. 

Therefore, there is support for the notion that accuracy is an informative index of EF ability 

among young children. Regarding reaction time, our data confirm that on average, children 

do slow down when completing flower-only and mixed trials, compared to heart-only trials. 

In some cases, this change in RT also had a direct effect on child outcomes, indicating that 

faster responding is informative above and beyond the contribution of accuracy. The weak 

correlation we observed between accuracy and RT on both task blocks further suggests that 

these two metrics represent different sources of information about child EF ability.

However, our finding of a significant interaction between accuracy and RT suggests that 

considering these two metrics in tandem may be more appropriate than considering them 

independently. Rather than operating as two independent indicators of EF ability, our 

findings indicate that the degree to which RT is an informative metric of EF performance 

depends on the child’s accuracy. Specifically, at higher levels of accuracy, RT may be a more 

informative metric of child EF ability than at lower levels of accuracy. One way to interpret 

this finding is that if we were to consider two children with the same, high level of accuracy, 

the child who responds more quickly would be expected to demonstrate greater EF ability 

than the child who responds more slowly. However, RT may not play the same 

discriminatory role for two children who have the same, low level of accuracy. At low levels 

of accuracy, RT does not significantly predict child outcomes. On the other hand, the main 

effect of accuracy remained significant in all models, including those with significant 

interaction terms. This finding suggests that, across the board, higher accuracy on the HF 

task indicates greater EF ability among first-graders.

Our finding that accuracy and RT interactively serve as an indication of child EF ability is 

noteworthy for several reasons. For one, the majority of studies using the HF task have not 

combined participant accuracy and RT in the same substantive models. In some cases (e.g., 
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Diamond et al., 2007; Ursache & Raver, 2015), only RT or accuracy are considered, justified 

by the age group or mean level of performance of the study participants. That is, studies 

focused on young children or samples where mean accuracy is relatively low tend to use 

accuracy scores, whereas studies with older children or samples where mean accuracy is 

high tend to use RT scores. In other cases (e.g., Schonert-Reichl et al., 2015), both accuracy 

and RT are considered, but in separate models. By using both accuracy and RT in the same 

model, researchers can avoid making a priori or post-hoc decisions about which measures 

are the best indicators of EF ability in a given sample. Additionally, they can more 

accurately model the performance of individuals within a sample who perform on the higher 

and lower ends of the spectrum.

For example, our findings suggested that RT became a meaningful predictor of academic 

outcomes when accuracy was around 75% or higher. These findings provide an empirically-

derived threshold that can be used to inform when RT might be a preferred metric over 

accuracy. However, even in a sample where mean accuracy is above 75%, there may be a 

certain proportion of individuals scoring below that threshold. Therefore, adopting RT as the 

sole index of EF performance may misconstrue the EF ability of individuals scoring at lower 

levels of accuracy. Instead, incorporating accuracy and RT as independent and interactive 

predictors circumvents this problem by allowing for differential estimates of the effects of 

RT on substantive outcomes, based on each individual’s observed accuracy.

As described above, interpreting the regions of significance of the interactions in this study 

allows us to provide meaningful guidance about HF task scoring. Interestingly, our finding 

that RT becomes predictive when accuracy is above 75% is consistent with some efforts in 

the literature to combine accuracy and RT into single scores. For example, the two-vector 

scoring method for EF tasks in the NIH Toolbox (Zelazo et al., 2013) involves transforming 

accuracy and mean RT so that they are on the same scale (i.e., scores range from 0 to 5), and 

then adding these together in cases where accuracy exceeds a threshold (i.e., 80%). In this 

case, accuracy and reaction time are treated as independent indices of EF performance, but 

only for individuals who achieve a high level of accuracy. While it is unclear how the 80% 

threshold was chosen, the current findings suggest that there is some empirical grounding to 

the general approach of combining accuracy and RT, given a certain level of performance. 

However, simply re-scaling accuracy and RT such that they are on the same scale and adding 

them together implies that accuracy and RT are equally informative, which has yet to be 

empirically demonstrated.

Other approaches for combining accuracy and RT into single scores have been proposed, 

many of which stem from the speed-accuracy tradeoff literature. According to this approach, 

individuals have control over the speed at which they complete a task, with the caveat that 

performing at faster speeds often sacrifices accuracy. Scoring methods that stem from the 

literature include the inverse efficiency score (IES), which is equal to the mean RT of correct 

responses divided by the percent of correct responses (Townsend & Ashby, 1978, 1983). 

While this approach may be more parsimonious than using accuracy and RT as separate 

variables, some evidence suggests that the IES is not an ideal index of performance when 

accuracy is below 90% (Bruyer & Brysbaert, 2011), a criterion which is unlikely to be met 

in samples of young children. The drift diffusion model (Ratcliff & Rouder, 1998) uses 
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correct and incorrect RT in an iterative distribution fitting approach, which results in the 

estimation of several parameters such as drift rate, boundary separation, and non-decision 

time. Particularly relevant here, boundary separation can best be thought of as an index of 

individuals’ speed-accuracy tradeoff ‘setting’ (i.e., how “certain” a person must be before 

responding). While this modeling technique jointly considers accuracy and RT, and has been 

applied to describe performance on EF tasks in children (e.g., Karalunas & Huang-Pollock, 

2013), the substantive meaning of diffusion model parameters and their relation to child EF 

ability remains unclear. Therefore, while researchers are increasingly considering ways to 

combine accuracy and RT metrics in the scoring of EF tasks, there is not a single agreed-

upon strategy about how to do so. Simpler methods, such as the two-vector scoring 

suggested by Zelazo and others (2013), may oversimplify the contributions of accuracy and 

RT, whereas more complicated methods, such as IES and drift diffusion models, may be 

difficult to implement and interpret, given that they stem from diverse disciplines (e.g., 

psychometrics, cognitive psychology) and in some cases, require the use of specialized 

analytic models (e.g., diffusion models).

The current approach, which uses accuracy and RT as interactive predictors of outcomes, is 

both intuitive and accessible to substantive researchers. First, it makes use of raw scores that 

are automatically generated from the HF task, without the need to apply complicated 

transformations or analytic models. Second, the approach can be implemented in a linear 

regression framework, which is analytically accessible to researchers in diverse fields. Third, 

it can be used flexibly with scores derived from different blocks of the HF task, which are 

hypothesized to represent different facets of EF ability (i.e., flower-only block as an index of 

inhibitory control, mixed block as an index of cognitive flexibility; Davidson et al., 2006). 

Finally, as demonstrated in the current manuscript, we find that there are significant 

interactions between accuracy and RT in the prediction of a wide range of outcomes, and 

these interactions can be meaningfully interpreted.

Despite its strengths, a limitation of the current approach is that it is unknown how our 

conclusions would generalize to participants of different ages, or in the prediction of 

different outcome measures. For example, if all participants in a study scored at a high level 

of accuracy, with little variability in observed accuracy scores, the interaction between 

accuracy and RT may not have the same magnitude or level of significance as observed here. 

We may similarly fail to find a significant interaction between accuracy and RT in cases 

where all participants scored at a low level of accuracy (i.e., below 75%), suggesting that in 

certain situations, retaining individual scores may prove more useful than considering their 

joint contributions. However, this remains to be empirically tested. Additionally, although 

we selected six outcomes as exemplars of constructs that are common in developmental 

research, additional research is needed to determine whether these results generalize to other 

outcome measures. While the current study tested concurrent criterion measures, another 

important next step may be to test how well these interactive models predict children’s 

longer-term outcomes. This type of examination may reveal whether children with slower 

RT and/or processing speed inevitably ‘catch up’ to their faster peers. Finally, while the 

current study uses the HF task as one exemplar of a popular EF assessment, it is unclear 

whether our results would replicate with other widely used EF tasks (e.g., the Dimensional 

Change Card Sort [DCCS] task).
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Another open question is how this approach (i.e., using accuracy and RT as joint indicators 

of EF performance) could be adapted when EF is the outcome, rather than the predictor of 

interest. Recently, psychometricians using factor analytic and item response theory (IRT) 

techniques have proposed the use of a generalized linear modeling approach that makes use 

of item-level response and response time data as joint indicators of latent traits (Molenaar et 

al., 2015). In this approach, two latent variables are estimated to represent ability and speed. 

Whereas accuracy items load solely onto the ability factor, RT items load onto both factors, 

allowing for the parsing of RT variance into that which is indicative of ability, and that 

which is indicative of speed. A recent paper applied this approach to a variety of inhibitory 

control tasks administered with preschoolers, and found that the joint use of accuracy and 

RT improved the precision of measurement of inhibitory control, compared to a model that 

solely made use of accuracy (Magnus et al., 2017). It remains to be seen whether this type of 

approach could be used more widely, with children of different ages, and with tasks 

representing all three facets of EF ability.

In sum, the current study presents empirical support for using accuracy and RT measures in 

tandem, as joint indicators of EF ability. We demonstrate that, even among young children, 

accuracy and RT on an EF task are both predictive of substantive outcomes, with RT being a 

stronger predictor for children who perform at a high level of accuracy. This intuitive, 

accessible approach represents one way to make use of the multiple indices of performance 

that result from a popular EF task, and represents an advancement in the current landscape 

of EF assessment, where researchers tend to choose individual variables or groups of 

variables as indicators of performance, often lacking a clear theoretical rationale for these 

choices. It behooves other substantive researchers to investigate whether a similar approach 

could be applied to other EF tasks, to the prediction of other child outcomes, and among 

other age groups.
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Public Significance Statement:

This study finds that accuracy and reaction time on executive function (EF) tasks may 

both provide useful information about a child’s EF ability. In addition, reaction time may 

be a more informative indicator of EF ability for children who perform at high levels of 

accuracy.
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Figure 1. 
Interaction between mixed trial accuracy and reaction time (ΔRT) predicting (a) Applied 

Problems and (b) Picture Vocabulary subtests. Values for low and high ΔRT represent the 

10th and 90th percentiles, respectively. *p < .05, **p < .01, ***p < .001
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Figure 2. 
Interaction between flower-only trial accuracy and reaction time (ΔRT) predicting (a) 

Applied Problems and (b) hyperactivity. Values for low and high ΔRT represent the 10th and 

90th percentiles, respectively. *p < .05, **p < .01, ***p < .001
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