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Abstract

Background—Several candidate genes and genome wide association studies have reported
significant associations between vitamin D metabolism genes and 25-hydroxyvitamin D. Few
studies have examined these relationships in pregnancy.

Objective—We evaluated the relationship between maternal allelic variants in three vitamin D
metabolism genes and 25-hydroxyvitamin D (25(OH)D) concentration in pregnancy.

Study design—In two case-control studies, samples were drawn from women who delivered at
Magee Womens Hospital in Pittsburgh, PA from 1999 to 2010 and twelve recruiting sites across
the United States from 1959 to 65. For 882 Black and 1796 White pregnant women from these
studies, 25(OH)D concentration was measured and single nucleotide polymorphisms (SNPs) were
genotyped 50 kilobases up- and down-stream in three genes (VDR, GC, and CYP27B1). Using
multivariable linear regression, we estimated the associations between allelic variation of each
locus and log-transformed 25(OH)D concentration separately by race and study group. Meta-
analysis was used to estimate the association across the four groups for each SNP.
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Results—Muinor alleles of several variants in VDR, GC, and CYPZ27B1 were associated with
differences in log-transformed 25(OH)D concentration compared to the corresponding major
alleles [beta, 95% confidence intervals (CI)]. The meta-analysis confirmed the associations for
differences in log-transformed 25(OH)D by allelic loci for one intron VDR variant [rs2853559
0.08 (0.02, 0.13), p < 0.01] and a variant in the GC flanking region [rs13150174: 0.04 (0.02, 0.07),
p <0.01], and a GC missense mutation [rs7041 0.05 (0.01, 0.09), p < 0.01]. The meta-analysis
also revealed possible associations for SNPs in linkage disequilibrium with variants in the VDR 3-
prime untranslated region, another GC missense variant (rs4588), and a variant of the 3-prime
untranslated region of CYP27B1.

Conclusion—We observed associations between VDR, GC, and CYP27B1 variants and
maternal 25-hydroxyvitamin D concentration. Our results provide additional support for a possible
role of genetic variation in vitamin D metabolism genes on vitamin D status during pregnancy.
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Introduction

One in four pregnant women in the U.S. has suboptimal vitamin D status [1-3], as defined
by serum 25-hydroxyvitamin D (25(OH) D) concentrations <50 nmol/L [4]. Non-Hispanic
Black women are 3-5 times as likely as non-Hispanic White women to be deficient in
vitamin [5,6]. The widespread deficiency and racial/ethnic gap in its prevalence is
concerning because of the associations between low 25(OH)D and the increase risk of
offspring rickets [7], preterm birth [8], preeclampsia [9], small-for-gestational age birth [10],
childhood asthma [11], and type 1 diabetes mellitus [12]. Therefore, understanding factors
that influence vitamin D status is of clinical and public health importance.

Single nucleotide polymorphisms (SNPs) in several genes in the vitamin D metabolic
pathway contribute to circulating 25(OH)D concentration [13]. These genes include the
vitamin D binding (GC), cytochrome p450 27B1 (CYP27B1), and the vitamin D receptor
genes (VDR). While there have been many studies exploring the contribution of genetic
variation in these genes to vitamin D status among non-pregnant adults [13-15], there is a
paucity of data among pregnant women and particularly among racially/ethnically diverse
women.

Pregnancy is accompanied by important alterations in vitamin D metabolism, including
increasing circulation of DBP [16], enhanced hydroxylation of 25(OH)D to 1,25(0OH),D in
kidneys and other cells and organs [17], and transportation of 25(OH)D into the placenta
[18]. Therefore, determining whether genetic variation of key vitamin D metabolism genes
is associated with 25(OH) D concentration in pregnancy is important. Thus, our objective
was to evaluate the relationship between common SNPs in the GC, CYP27B1, and VDR
genes and maternal serum 25(OH)D concentrations in two large pregnancy study groups of
Black and White mothers.
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Materials and methods

For this study, we used data and stored samples from two pregnancy case-control studies on
vitamin D and adverse birth outcomes: Epidemiology of Vitamin D Study (EVITA) and
Collaborative Perinatal Project (CPP). Both studies were approved by the University of
Pittsburgh Institutional Review Board. Both studies have been described in detail elsewhere
[19,20]. In brief, eligibility criteria for EVITA included singleton pregnancies with an
available banked serum sample from aneuploidy screening at <20 weeks at the hospital’s
Center for Medical Genetics and Genomics, and delivered at Magee-Womens Hospital of
University of Pittsburgh Medical Center in Pittsburgh, Pennsylvania (total of 12,861 eligible
pregnancies). We selected a randomly-sampled set of controls of 2327 eligible women for
25(0OH)D assessment in the case-control study, and from this group all term pregnancies
without preeclampsia of non-Hispanic White (n = 1394) and non-Hispanic Black (n = 353)
women were used in the current analysis.

In CPP, more than 55,000 women at 12 U.S medical centers in 1959-65 were enrolled. The
cohort of eligible women for the parent study included women with singleton pregnancies,
no preexisting conditions (pregestational diabetes, hypertension, or cardiovascular disease),
and a banked serum sample at <26 week (n = 28,429). We then randomly selected a
subcohort of 2986 eligible women. From this group, we selected 1076 White and 882 Black
women with non-preeclamptic term deliveries for serum 25(0OH)D assay. In both studies,
racial/ethnic groups other than White and Black were excluded from genotyping because of
small samples.

Maternal serum samples in CPP were collected at <26 weeks of gestation and stored for 40
years at =20 °C with no recorded thaws. EVITA samples were collected at <20 weeks of
gestation and were stored at —80 °C for 2—-12 years. 25(OH)D has been proven to be highly
stable. No loss of 25(OH)D has been noted after leaving uncentrifuged blood up to 72 h at
24 °C, after storage of serum for years at 20 °C, after exposure to ultraviolet light, or after up
to 11 freeze-thaw cycles [21]. A pilot study in the CPP samples compared 25(OH)D in these
serum with serum frozen for <2 years and found that 25(OH)D is unlikely to show
significant degradation [22].

Sera from both study groups were sent to the same Vitamin D External Quality Assessment
Scheme certified laboratory. Samples were assayed for total 25-hydroxyvitamin D
(25(CH)D) [25(0OH) D, + 25(0H)D4] using liquid-chromatography-tandem mass
spectrometry based on National Institute of Standards and Technology standards [23]. Intra-
and the inter-assay variations were <9.6% and <10.9%, respectively. Vitamin D deficiency
was defined as 25 (OH)D <50 nmol/L.

Using the International HapMap database (Phase 3) [24], tagging SNPs with minor allele
frequency of 10% or more were identified for a region spanning 50 kilobases up- and
downstream of each candidate gene. The tagging SNPs were selected based on a reference
population of the HapMap “Utah residents with Northern and Western European ancestry”
(CEU), and then supplemented with additional SNPs from the HapMap “Americans of
African Ancestry in Southwest USA” (ASW) population to adequately capture variation
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across the candidate genes within our diverse study samples. In total, 499 SNPs were
selected: 39 for CYP27B1, 126 for GC, 206 for VDR. We also genotyped 128 ancestry
informative markers (AlIMs) in both Black and White women, which is a validated set of
markers to identify common populations in America that can be determined using analysis
in STRUCTURE 2.3.4 (Stanford, CA) [25-29].

Serum was thawed, and potential contaminants and inhibitors were removed using Qiagen
kits (QIAGEN, Valencia, CA). The resulting serum product was whole genome amplified
using REPL.i-g midi kit (QIAGEN, Valencia, CA). The QuantStudio 12 K Flex platform
(Life Technologies, Carlsbad, CA) was used to genotype the selected SNPs. Genotypes were
called using the TagMan Genotyper software (Version 1.3.1, Grand Island, NY) and visual
assessment of the data was used for confirmation.

Potential confounding variables came from the perinatal database in EVITA and in-person
interviews for CPP. Both studies included data on pre-pregnancy body mass index (<18.5,
18.5-24.9, 25-29.9, >30), preexisting diabetes (yes, no), maternal education (<12 years, 12
years, and >12 years), marital status (single, married), maternal age (<20, 20-29, =30),
parity, and season of blood draw (winter (December—February), spring (March-May),
summer (June—August), or fall (September—November)). Season of sampling was considered
a potential confounder due to the seasonal effects of UVB radiation on the vitamin D
endocrine system [30]. Gestational age was based on best obstetric estimate comparing
menstrual dating and ultrasound estimates in EVITA and on the mother’s report of the first
day of her last menstrual period in CPP since ultrasound was not available in the 1960s. Data
on provider type were available for women in EVITA. A composite socioeconomic status
score was available for CPP, which combines education, occupation, and family income data
[31].

To minimize confounding due to population substructure, genetic ancestry and self-reported
race were used to categorize mothers as Black or White [29]. First, individual ancestral
proportions were calculated using an analysis of AIMs in STRUCTURE 2.3.4 (Stanford,
CA) [25-28]. An ad hoc statistic based on the rate change in the log probability of data
between clusters was used to identify two subgroups in each study [32]. Individuals who
self-identified as White but had a >50% probability of belonging to ASW were reassigned to
Black race. However, all self-reported Black mothers were assigned to Black race unless
they had a 100% probability of being CEU.

Data-quality control steps were performed using PLINK software (Version 1.07; Boston,
MA) [33,34]. Samples and markers with call rates <80% were omitted from further
analyses. All SNPs included in the analysis had a call rate >80%, minor allele frequency
>0.05 and were in Hardy—Weinberg equilibrium (P > 0.00001) (Supplementary Fig. 1). For
SNPs that passed quality control, a test of variance was conducted to determine if genotype
missingness was significantly different among the four study groups (White mothers in
EVITA, Black mothers in EVITA, White mothers in CPP, White mothers in CPP) or by race,
study, or chromosome.
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Analyses were completed separately by study (CPP and EVITA) and race/ethnicity (Black or
White) groups. For each race-study group, we calculated the geometric mean of 25(OH)D
(nmol/L) by allele and tested for differences using nonparametric trend tests. Associations
between minor allele and log-transformed 25(OH)D concentration (to reduce skewness of
the data which resulted in normally distributed residuals) were further examined in
univariable and multivariable linear regression models. We first modeled functional SNPs in
parsimonious models by removing potential confounders from the model if their exclusion
did not change the main exposure point estimate by =10%. Using these methods, we
adjusted for batch number (in EVITA only), year drawn (in EVITA only), site (CPP), season
of blood draw, sample age, and maternal age. All models for Black mothers were adjusted
for percent African ancestry. Other variables did not change the estimate >10% (BMl,
education, insurance, smoking status, diabetes status, and parity). The final model satisfied
the ANOVA goodness of fit test compared to other models. For comparability, we used the
same model for tagging SNPs. All associations were adjusted for multiple comparisons and
linkage disequilibrium (LD) using ‘LD adjusted’ Bonferroni corrected p-value thresholds
[35]. LD of two SNPs characterized dependent heritability which was measured using
PLINK software. The resulting associations were weighted by the inverse of their variances
to summarize across studies and race in a meta-analysis. Lastly, HaploReg software (version
4.1) was used to find if these studied SNPs were in LD with functional SNPs [36]. A
sensitivity analysis on the ancestry informative markers was conducted by rerunning
analysis on only self-reported race.

Supplemental Fig. 1 flowchart summarizes the final sample sizes, and final number of SNPs
for each candidate gene after data quality control. Missingness did not differ by chromosome
(p > 0.05) or the two study samples (p > 0.05). However, SNPs for Black mothers were more
likely to be missing than SNPs in White mothers (p < 0.05). More specifically, SNPs in
Black mothers in CPP were more likely to be missing and SNPs in White mothers in EVITA
were less likely to be missing compared to other race-study groups.

Compared with mothers from EVITA, mothers from CPP completed less education (83% vs.
48% with high school education or less), had a higher prevalence of smoking (66% vs.
12%), and lower prevalence of obesity (4% vs. 23% BMI = 30). On average, women in CPP
were younger (24 * 5.6 years) than women in EVITA (29 + 6.3 years). Blood samples in
EVITA were collected earlier in gestation than CPP (15 weeks versus 19 weeks). Black
mothers in CPP completed fewer years of education and were leaner, multiparous, and were
more likely to smoke compared with Black mothers in EVITA. Similarly, White mothers in
CPP also completed fewer years of education, were more likely to have normal BMI,
multiparous, and smoke compared with White mothers in EVITA (Table 1).

The prevalence of vitamin D deficiency was higher in Black mothers than White mothers in
both study populations (68% in CPP and 53% in EVITA vs. 38% in CPP and 9% in EVITA,
respectively). The geometric means and 95% confidence intervals of 25(OH)D were 36.6
nmol/L (35, 38 nmol/L) and 45 nmol/L (42, 48 nmol/L) among Black mothers in CPP and
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EVITA, respectively, and 54 nmol/L (52, 56 nmol/L) and 73 nmol/L (72, 74 nmol/L) among
White mothers in CPP and EVITA, respectively.

Several intron variants of VDR were associated with significant differences in log-25(OH)D
concentrations in the univariate and multivariable analysis (Table 2; Data Brief article). An
intron variant of the 5-prime untranslated region (rs11168293) was associated with increased
log-25(0OH)D compared with the major allele among Black mothers in EVITA (beta 0.22
95%CIl 0.10, 0.35 p < 0.001). This association remained significant after Bonferroni
adjustment. For other SNPs, the associations in the multivariable analyses attenuated in
significance after adjustment for multiple comparisons. However, one variant (rs2853559)
had a trend of increased log-25(OH)D concentration in the multivariable analysis and
showed a significant difference in log-25(OH)D by allelic loci in the meta-analysis (Fig. 1).
Although not significant in the multivariable analysis, the meta-analysis revealed
associations for four intron variants (rs7971418, rs11574114, rs2408876 and rs4760650).
Variants rs7971418 (rs2853562, rs9729, rs78783628, rs739837) and rs11574114
(rs11574139, rs2853563, rs3858733, rs11574119) had strong LD (R? >0.90) with variants in
the VDR 3-prime untranslated region.

Several SNPs in the non-coding and flanking regions of GC were associated with significant
differences in log-25(OH)D concentrations in the univariate and multivariable analysis
(Table 3; Data Brief article). A minor allele of the flanking region (rs13150174) and a
missense mutation (rs7041) were associated with increased log-25(OH)D compared with the
major allele only among White mothers in EVITA (p <0.001), however significance of the
associations attenuated after Bonferroni adjustment. The metaanalysis showed an overall
significant trend of increased log-25 (OH)D concentration for the minor alleles of
rs13150174 and rs7041 across the four study-race groups (Fig. 1). Additionally, several
minor alleles in GC were associated with a difference in log-25(OH)D in the meta-analysis,
including the following: a missense variant (rs4588), three intron variants (rs705120,
rs72860546, and rs1526692) and two variants of the flanking region (rs56003670 and
rs842877). Variants rs13150174, rs7041, rs4588, and rs72860546 were in LD with several
intron variants of GC, while rs1526692 and rs56003670 were in LD with variants of the
flanking regions, and rs705120 was in LD with a missense mutation (rs7041).

One intron variant in the flanking region of CYP27B1 (rs10877011) was associated with
increased log-25(0OH)D concentration among Black mothers in EVITA in the multivariable
analysis but significance was lost after Bonferroni adjustment (beta 0.15 95%CI 0.04, 0.26 p
<0.01) (Table 4; Data Brief article). The meta-analysis showed a variant of the 3-prime
untranslated region (rsl2318065) and two intron variants (rsl2582311 and rs701007) were
associated with differences in log-25(OH)D (Fig. 1). These variants were not in LD with
functional variants in CYP27B1.

The sensitivity analysis showed no differences in the results for VDR, GC, and CYP27B1
variants (data not shown) when using just self-reported maternal race.
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Maternal genotype of seven SNPs in VDR, three SNPs in GC, and one SNP in the flanking
region of CYP27B1 were associated with differences in log-25(OH)D concentration during
pregnancy. Of these associations, one SNP in VDR remained significant after adjustment for
LD and multiple comparisons (rs11168293). The meta-analytic approach confirmed the
associations for one SNP in VDR (rs2853559) and two SNPs in GC (rs13150174 and
rs7041). The meta-analytic approach also revealed possible relationships for each of the
three genes. Variants in VDR were in LD with variants in the 3-prime untranslated region of
VDR.

SNPs in VDR may influence serum 25(OH)D by changing the rate at which 25(OH)D is
hydroxylated [37] either directly or via a negative feedback loop. In a study of 354 White
pregnant women, maternal 25(OH)D did not vary by VDR genotype. However, this study
included only four SNPs—three of which were included in our analysis [38]. These variants,
rs7975232, rs1544410, and rs731236, were not associated with 25(OH)D concentration in
our study. However, one SNP, rs7971418, had strong LD (R2 > 0.90) with 4 functional
variants in the VDR 3-prime untranslated region in our study. Variants in this region may be
regulating mRNA stability [39], thereby the variant may be modulating VDR expression.
Additionally, our study measured associations between log-25 (OH)D and several minor
alleles of intronic variants in VDR that are in LD with variants in the VDR 3-prime
untranslated region. These findings support a possible role of VDR with 25(0OH)D
concentration in pregnancy.

We genotyped common SNPs across the GC region that encodes DBP which is a protein that
controls the bioavailability of free 25 (OH)D [40], and therefore may be a surrogate marker
for 25(OH)D status. The minor allele for rs7041 was associated with increased 25(OH)D
and rs4588 was associated with decreased 25(OH)D in our study. We are not aware of
published reports examining allelic variation within GC and serum 25(OH)D concentrations
among pregnant women. Our results for rs7041 do contrast with literature that show
25(0OH)D concentrations are reduced with the rs7041 minor allele among ethnically diverse
samples of non-pregnant adults; while our finding on rs4588 is consistent with this literature
[41-46]. It is possible that changes that occur in pregnancy, including increased circulation
of DBP from 7% to 152% [16] and enhanced hydroxylation of 25(OH)D to 1,25(0OH),D
[17], may explain these differences in study results. It is also possible that our results for
rs7041 may be influenced by the heterogeneity measured between the race-study groups.

The CYP27B1 gene encodes an enzyme called 1-alpha-hydroxylase (1a-hydroxylase),
which converts 25(0OH)D from diet and sunlight to its active form, 1,25-dihydroxyvitamin
D3. Variations in this gene is shown to be associated with lower 25(OH)D [47], perhaps due
to changes in enzymatic activity [48]. In a cohort of 222 White, diabetic pregnant women,
the minor genotype of rs10877012 was more common in women with 25(OH)D > 50
nmol/L at 24 weeks of gestation compared to the major genotype (p = 0.01) [37]. Our study
did not confirm their results in the univariable, multivariable, or meta-analysis.
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By setting thresholds for missing data by SNP and by samples in the quality control steps,
we reduced the likelihood of spurious data due to failed assays and poor-quality samples,
respectively. If these quality control steps were avoided, differences in DNA quality could
have biased towards one genotype or another [49]. After quality control steps, there were
differences in missingness of SNP data by race and study-race group, but it did not differ by
chromosome. Since samples were randomly distributed on each genotyping array the
chances of systemic bias were minimized. The differences in missingness may indicate that
there were differences in DNA quality between studies. It is possible that we may not have
detected all associations due to the loss of some SNPs. However, it seems unlikely that SNP
missingness yielded false-positive associations. Nonetheless, future genome wide
association studies are needed to identify additional genes and alleles for 25(OH)D
concentrations in pregnant women. Furthermore, since we only studied two ancestral groups,
our findings may not be generalizable to other ancestral groups. Despite a proportion of
women being recategorized into the Black ancestry group, our sensitivity analysis showed
no significant difference in findings if we only used self-reported race in our study. There
were non-genetic factors that may have also affected serum 25(OH)D concentration during
pregnancy, such as supplement use, that were not measured and adjusted for in the analysis.
If factors differed by vitamin D metabolic loci, it is possible the observed results could have
been biased but this seems unlikely. Our study also has notable strengths including the large
sample of Black and White pregnancies and utilization of ancestry informative markers
rather than sole reliance on self-reported race. In comparison to previous studies, our
approach of genotyping multiple tagging SNPs in two large and diverse samples had greater
power to more comprehensively assess candidate gene variation.

If our results linking SNPs in VDR, GC, or CYP27B1 with 25(0OH)D concentration among
pregnant women are confirmed, then genotyping of common allelic variants may play an
important role in vitamin D metabolism in pregnancy. This knowledge may ultimately help
us to better understand how the vitamin D endocrine system may contribute to vitamin D
deficiency in pregnancy by identifying functional variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GC vitamin D binding protein
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chr chromosome

SNP single nucleotide polymorphisms

25(0OH)D 25-hydroxyvitamin D

BMI body-mass index

ICD-9 International Classification of Diseases

OR odds ratio

Cl confidence interval

ASW Americans of African Ancestry in Southwest USA

CEU Utah residents with Northern and Western European ancestry
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Fig. 1.

Meta-analysis for associations between minor alleles of SNPs in VDR, GC, and CYP27B1
and log-25(OH)D across CPP and EVITA studies and maternal race groups.
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