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Abstract

Background—Several candidate genes and genome wide association studies have reported 

significant associations between vitamin D metabolism genes and 25-hydroxyvitamin D. Few 

studies have examined these relationships in pregnancy.

Objective—We evaluated the relationship between maternal allelic variants in three vitamin D 

metabolism genes and 25-hydroxyvitamin D (25(OH)D) concentration in pregnancy.

Study design—In two case-control studies, samples were drawn from women who delivered at 

Magee Womens Hospital in Pittsburgh, PA from 1999 to 2010 and twelve recruiting sites across 

the United States from 1959 to 65. For 882 Black and 1796 White pregnant women from these 

studies, 25(OH)D concentration was measured and single nucleotide polymorphisms (SNPs) were 

genotyped 50 kilobases up- and down-stream in three genes (VDR, GC, and CYP27B1). Using 

multivariable linear regression, we estimated the associations between allelic variation of each 

locus and log-transformed 25(OH)D concentration separately by race and study group. Meta-

analysis was used to estimate the association across the four groups for each SNP.
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Results—Minor alleles of several variants in VDR, GC, and CYP27B1 were associated with 

differences in log-transformed 25(OH)D concentration compared to the corresponding major 

alleles [beta, 95% confidence intervals (CI)]. The meta-analysis confirmed the associations for 

differences in log-transformed 25(OH)D by allelic loci for one intron VDR variant [rs2853559 

0.08 (0.02, 0.13), p < 0.01] and a variant in the GC flanking region [rs13150174: 0.04 (0.02, 0.07), 

p < 0.01], and a GC missense mutation [rs7041 0.05 (0.01, 0.09), p < 0.01]. The meta-analysis 

also revealed possible associations for SNPs in linkage disequilibrium with variants in the VDR 3-

prime untranslated region, another GC missense variant (rs4588), and a variant of the 3-prime 

untranslated region of CYP27B1.

Conclusion—We observed associations between VDR, GC, and CYP27B1 variants and 

maternal 25-hydroxyvitamin D concentration. Our results provide additional support for a possible 

role of genetic variation in vitamin D metabolism genes on vitamin D status during pregnancy.
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Introduction

One in four pregnant women in the U.S. has suboptimal vitamin D status [1–3], as defined 

by serum 25-hydroxyvitamin D (25(OH) D) concentrations <50 nmol/L [4]. Non-Hispanic 

Black women are 3–5 times as likely as non-Hispanic White women to be deficient in 

vitamin [5,6]. The widespread deficiency and racial/ethnic gap in its prevalence is 

concerning because of the associations between low 25(OH)D and the increase risk of 

offspring rickets [7], preterm birth [8], preeclampsia [9], small-for-gestational age birth [10], 

childhood asthma [11], and type 1 diabetes mellitus [12]. Therefore, understanding factors 

that influence vitamin D status is of clinical and public health importance.

Single nucleotide polymorphisms (SNPs) in several genes in the vitamin D metabolic 

pathway contribute to circulating 25(OH)D concentration [13]. These genes include the 

vitamin D binding (GC), cytochrome p450 27B1 (CYP27B1), and the vitamin D receptor 

genes (VDR). While there have been many studies exploring the contribution of genetic 

variation in these genes to vitamin D status among non-pregnant adults [13–15], there is a 

paucity of data among pregnant women and particularly among racially/ethnically diverse 

women.

Pregnancy is accompanied by important alterations in vitamin D metabolism, including 

increasing circulation of DBP [16], enhanced hydroxylation of 25(OH)D to 1,25(OH)2D in 

kidneys and other cells and organs [17], and transportation of 25(OH)D into the placenta 

[18]. Therefore, determining whether genetic variation of key vitamin D metabolism genes 

is associated with 25(OH) D concentration in pregnancy is important. Thus, our objective 

was to evaluate the relationship between common SNPs in the GC, CYP27B1, and VDR 
genes and maternal serum 25(OH)D concentrations in two large pregnancy study groups of 

Black and White mothers.
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Materials and methods

For this study, we used data and stored samples from two pregnancy case-control studies on 

vitamin D and adverse birth outcomes: Epidemiology of Vitamin D Study (EVITA) and 

Collaborative Perinatal Project (CPP). Both studies were approved by the University of 

Pittsburgh Institutional Review Board. Both studies have been described in detail elsewhere 

[19,20]. In brief, eligibility criteria for EVITA included singleton pregnancies with an 

available banked serum sample from aneuploidy screening at ≤20 weeks at the hospital’s 

Center for Medical Genetics and Genomics, and delivered at Magee-Womens Hospital of 

University of Pittsburgh Medical Center in Pittsburgh, Pennsylvania (total of 12,861 eligible 

pregnancies). We selected a randomly-sampled set of controls of 2327 eligible women for 

25(OH)D assessment in the case-control study, and from this group all term pregnancies 

without preeclampsia of non-Hispanic White (n = 1394) and non-Hispanic Black (n = 353) 

women were used in the current analysis.

In CPP, more than 55,000 women at 12 U.S medical centers in 1959–65 were enrolled. The 

cohort of eligible women for the parent study included women with singleton pregnancies, 

no preexisting conditions (pregestational diabetes, hypertension, or cardiovascular disease), 

and a banked serum sample at <26 week (n = 28,429). We then randomly selected a 

subcohort of 2986 eligible women. From this group, we selected 1076 White and 882 Black 

women with non-preeclamptic term deliveries for serum 25(OH)D assay. In both studies, 

racial/ethnic groups other than White and Black were excluded from genotyping because of 

small samples.

Maternal serum samples in CPP were collected at ≤26 weeks of gestation and stored for 40 

years at −20 °C with no recorded thaws. EVITA samples were collected at ≤20 weeks of 

gestation and were stored at −80 °C for 2–12 years. 25(OH)D has been proven to be highly 

stable. No loss of 25(OH)D has been noted after leaving uncentrifuged blood up to 72 h at 

24 °C, after storage of serum for years at 20 °C, after exposure to ultraviolet light, or after up 

to 11 freeze-thaw cycles [21]. A pilot study in the CPP samples compared 25(OH)D in these 

serum with serum frozen for ≤2 years and found that 25(OH)D is unlikely to show 

significant degradation [22].

Sera from both study groups were sent to the same Vitamin D External Quality Assessment 

Scheme certified laboratory. Samples were assayed for total 25-hydroxyvitamin D 

(25(OH)D) [25(OH) D2 + 25(OH)D3] using liquid-chromatography-tandem mass 

spectrometry based on National Institute of Standards and Technology standards [23]. Intra- 

and the inter-assay variations were ≤9.6% and ≤10.9%, respectively. Vitamin D deficiency 

was defined as 25 (OH)D <50 nmol/L.

Using the International HapMap database (Phase 3) [24], tagging SNPs with minor allele 

frequency of 10% or more were identified for a region spanning 50 kilobases up- and 

downstream of each candidate gene. The tagging SNPs were selected based on a reference 

population of the HapMap “Utah residents with Northern and Western European ancestry” 

(CEU), and then supplemented with additional SNPs from the HapMap “Americans of 

African Ancestry in Southwest USA” (ASW) population to adequately capture variation 
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across the candidate genes within our diverse study samples. In total, 499 SNPs were 

selected: 39 for CYP27B1, 126 for GC, 206 for VDR. We also genotyped 128 ancestry 

informative markers (AIMs) in both Black and White women, which is a validated set of 

markers to identify common populations in America that can be determined using analysis 

in STRUCTURE 2.3.4 (Stanford, CA) [25–29].

Serum was thawed, and potential contaminants and inhibitors were removed using Qiagen 

kits (QIAGEN, Valencia, CA). The resulting serum product was whole genome amplified 

using REPLi-g midi kit (QIAGEN, Valencia, CA). The QuantStudio 12 K Flex platform 

(Life Technologies, Carlsbad, CA) was used to genotype the selected SNPs. Genotypes were 

called using the TaqMan Genotyper software (Version 1.3.1, Grand Island, NY) and visual 

assessment of the data was used for confirmation.

Potential confounding variables came from the perinatal database in EVITA and in-person 

interviews for CPP. Both studies included data on pre-pregnancy body mass index (<18.5, 

18.5–24.9, 25–29.9, ≥30), preexisting diabetes (yes, no), maternal education (<12 years, 12 

years, and >12 years), marital status (single, married), maternal age (<20, 20–29, ≥30), 

parity, and season of blood draw (winter (December–February), spring (March–May), 

summer (June–August), or fall (September–November)). Season of sampling was considered 

a potential confounder due to the seasonal effects of UVB radiation on the vitamin D 

endocrine system [30]. Gestational age was based on best obstetric estimate comparing 

menstrual dating and ultrasound estimates in EVITA and on the mother’s report of the first 

day of her last menstrual period in CPP since ultrasound was not available in the 1960s. Data 

on provider type were available for women in EVITA. A composite socioeconomic status 

score was available for CPP, which combines education, occupation, and family income data 

[31].

Statistics

To minimize confounding due to population substructure, genetic ancestry and self-reported 

race were used to categorize mothers as Black or White [29]. First, individual ancestral 

proportions were calculated using an analysis of AIMs in STRUCTURE 2.3.4 (Stanford, 

CA) [25–28]. An ad hoc statistic based on the rate change in the log probability of data 

between clusters was used to identify two subgroups in each study [32]. Individuals who 

self-identified as White but had a >50% probability of belonging to ASW were reassigned to 

Black race. However, all self-reported Black mothers were assigned to Black race unless 

they had a 100% probability of being CEU.

Data-quality control steps were performed using PLINK software (Version 1.07; Boston, 

MA) [33,34]. Samples and markers with call rates <80% were omitted from further 

analyses. All SNPs included in the analysis had a call rate >80%, minor allele frequency 

>0.05 and were in Hardy–Weinberg equilibrium (P > 0.00001) (Supplementary Fig. 1). For 

SNPs that passed quality control, a test of variance was conducted to determine if genotype 

missingness was significantly different among the four study groups (White mothers in 

EVITA, Black mothers in EVITA, White mothers in CPP, White mothers in CPP) or by race, 

study, or chromosome.
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Analyses were completed separately by study (CPP and EVITA) and race/ethnicity (Black or 

White) groups. For each race-study group, we calculated the geometric mean of 25(OH)D 

(nmol/L) by allele and tested for differences using nonparametric trend tests. Associations 

between minor allele and log-transformed 25(OH)D concentration (to reduce skewness of 

the data which resulted in normally distributed residuals) were further examined in 

univariable and multivariable linear regression models. We first modeled functional SNPs in 

parsimonious models by removing potential confounders from the model if their exclusion 

did not change the main exposure point estimate by ≥10%. Using these methods, we 

adjusted for batch number (in EVITA only), year drawn (in EVITA only), site (CPP), season 

of blood draw, sample age, and maternal age. All models for Black mothers were adjusted 

for percent African ancestry. Other variables did not change the estimate >10% (BMI, 

education, insurance, smoking status, diabetes status, and parity). The final model satisfied 

the ANOVA goodness of fit test compared to other models. For comparability, we used the 

same model for tagging SNPs. All associations were adjusted for multiple comparisons and 

linkage disequilibrium (LD) using ‘LD adjusted’ Bonferroni corrected p-value thresholds 

[35]. LD of two SNPs characterized dependent heritability which was measured using 

PLINK software. The resulting associations were weighted by the inverse of their variances 

to summarize across studies and race in a meta-analysis. Lastly, HaploReg software (version 

4.1) was used to find if these studied SNPs were in LD with functional SNPs [36]. A 

sensitivity analysis on the ancestry informative markers was conducted by rerunning 

analysis on only self-reported race.

Results

Supplemental Fig. 1 flowchart summarizes the final sample sizes, and final number of SNPs 

for each candidate gene after data quality control. Missingness did not differ by chromosome 

(p > 0.05) or the two study samples (p > 0.05). However, SNPs for Black mothers were more 

likely to be missing than SNPs in White mothers (p < 0.05). More specifically, SNPs in 

Black mothers in CPP were more likely to be missing and SNPs in White mothers in EVITA 

were less likely to be missing compared to other race-study groups.

Compared with mothers from EVITA, mothers from CPP completed less education (83% vs. 

48% with high school education or less), had a higher prevalence of smoking (66% vs. 

12%), and lower prevalence of obesity (4% vs. 23% BMI ≥ 30). On average, women in CPP 

were younger (24 ± 5.6 years) than women in EVITA (29 ± 6.3 years). Blood samples in 

EVITA were collected earlier in gestation than CPP (15 weeks versus 19 weeks). Black 

mothers in CPP completed fewer years of education and were leaner, multiparous, and were 

more likely to smoke compared with Black mothers in EVITA. Similarly, White mothers in 

CPP also completed fewer years of education, were more likely to have normal BMI, 

multiparous, and smoke compared with White mothers in EVITA (Table 1).

The prevalence of vitamin D deficiency was higher in Black mothers than White mothers in 

both study populations (68% in CPP and 53% in EVITA vs. 38% in CPP and 9% in EVITA, 

respectively). The geometric means and 95% confidence intervals of 25(OH)D were 36.6 

nmol/L (35, 38 nmol/L) and 45 nmol/L (42, 48 nmol/L) among Black mothers in CPP and 
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EVITA, respectively, and 54 nmol/L (52, 56 nmol/L) and 73 nmol/L (72, 74 nmol/L) among 

White mothers in CPP and EVITA, respectively.

Several intron variants of VDR were associated with significant differences in log-25(OH)D 

concentrations in the univariate and multivariable analysis (Table 2; Data Brief article). An 

intron variant of the 5-prime untranslated region (rs11168293) was associated with increased 

log-25(OH)D compared with the major allele among Black mothers in EVITA (beta 0.22 

95%CI 0.10, 0.35 p < 0.001). This association remained significant after Bonferroni 

adjustment. For other SNPs, the associations in the multivariable analyses attenuated in 

significance after adjustment for multiple comparisons. However, one variant (rs2853559) 

had a trend of increased log-25(OH)D concentration in the multivariable analysis and 

showed a significant difference in log-25(OH)D by allelic loci in the meta-analysis (Fig. 1). 

Although not significant in the multivariable analysis, the meta-analysis revealed 

associations for four intron variants (rs7971418, rs11574114, rs2408876 and rs4760650). 

Variants rs7971418 (rs2853562, rs9729, rs78783628, rs739837) and rs11574114 

(rs11574139, rs2853563, rs3858733, rs11574119) had strong LD (R2 >0.90) with variants in 

the VDR 3-prime untranslated region.

Several SNPs in the non-coding and flanking regions of GC were associated with significant 

differences in log-25(OH)D concentrations in the univariate and multivariable analysis 

(Table 3; Data Brief article). A minor allele of the flanking region (rs13150174) and a 

missense mutation (rs7041) were associated with increased log-25(OH)D compared with the 

major allele only among White mothers in EVITA (p <0.001), however significance of the 

associations attenuated after Bonferroni adjustment. The metaanalysis showed an overall 

significant trend of increased log-25 (OH)D concentration for the minor alleles of 

rs13150174 and rs7041 across the four study-race groups (Fig. 1). Additionally, several 

minor alleles in GC were associated with a difference in log-25(OH)D in the meta-analysis, 

including the following: a missense variant (rs4588), three intron variants (rs705120, 

rs72860546, and rs1526692) and two variants of the flanking region (rs56003670 and 

rs842877). Variants rs13150174, rs7041, rs4588, and rs72860546 were in LD with several 

intron variants of GC, while rs1526692 and rs56003670 were in LD with variants of the 

flanking regions, and rs705120 was in LD with a missense mutation (rs7041).

One intron variant in the flanking region of CYP27B1 (rs10877011) was associated with 

increased log-25(OH)D concentration among Black mothers in EVITA in the multivariable 

analysis but significance was lost after Bonferroni adjustment (beta 0.15 95%CI 0.04, 0.26 p 

<0.01) (Table 4; Data Brief article). The meta-analysis showed a variant of the 3-prime 

untranslated region (rsl2318065) and two intron variants (rsl2582311 and rs701007) were 

associated with differences in log-25(OH)D (Fig. 1). These variants were not in LD with 

functional variants in CYP27B1.

The sensitivity analysis showed no differences in the results for VDR, GC, and CYP27B1 
variants (data not shown) when using just self-reported maternal race.
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Comment

Maternal genotype of seven SNPs in VDR, three SNPs in GC, and one SNP in the flanking 

region of CYP27B1 were associated with differences in log-25(OH)D concentration during 

pregnancy. Of these associations, one SNP in VDR remained significant after adjustment for 

LD and multiple comparisons (rs11168293). The meta-analytic approach confirmed the 

associations for one SNP in VDR (rs2853559) and two SNPs in GC (rs13150174 and 

rs7041). The meta-analytic approach also revealed possible relationships for each of the 

three genes. Variants in VDR were in LD with variants in the 3-prime untranslated region of 

VDR.

SNPs in VDR may influence serum 25(OH)D by changing the rate at which 25(OH)D is 

hydroxylated [37] either directly or via a negative feedback loop. In a study of 354 White 

pregnant women, maternal 25(OH)D did not vary by VDR genotype. However, this study 

included only four SNPs–three of which were included in our analysis [38]. These variants, 

rs7975232, rs1544410, and rs731236, were not associated with 25(OH)D concentration in 

our study. However, one SNP, rs7971418, had strong LD (R2 > 0.90) with 4 functional 

variants in the VDR 3-prime untranslated region in our study. Variants in this region may be 

regulating mRNA stability [39], thereby the variant may be modulating VDR expression. 

Additionally, our study measured associations between log-25 (OH)D and several minor 

alleles of intronic variants in VDR that are in LD with variants in the VDR 3-prime 

untranslated region. These findings support a possible role of VDR with 25(OH)D 

concentration in pregnancy.

We genotyped common SNPs across the GC region that encodes DBP which is a protein that 

controls the bioavailability of free 25 (OH)D [40], and therefore may be a surrogate marker 

for 25(OH)D status. The minor allele for rs7041 was associated with increased 25(OH)D 

and rs4588 was associated with decreased 25(OH)D in our study. We are not aware of 

published reports examining allelic variation within GC and serum 25(OH)D concentrations 

among pregnant women. Our results for rs7041 do contrast with literature that show 

25(OH)D concentrations are reduced with the rs7041 minor allele among ethnically diverse 

samples of non-pregnant adults; while our finding on rs4588 is consistent with this literature 

[41–46]. It is possible that changes that occur in pregnancy, including increased circulation 

of DBP from 7% to 152% [16] and enhanced hydroxylation of 25(OH)D to 1,25(OH)2D 

[17], may explain these differences in study results. It is also possible that our results for 

rs7041 may be influenced by the heterogeneity measured between the race-study groups.

The CYP27B1 gene encodes an enzyme called 1-alpha-hydroxylase (1α-hydroxylase), 

which converts 25(OH)D from diet and sunlight to its active form, 1,25-dihydroxyvitamin 

D3. Variations in this gene is shown to be associated with lower 25(OH)D [47], perhaps due 

to changes in enzymatic activity [48]. In a cohort of 222 White, diabetic pregnant women, 

the minor genotype of rs10877012 was more common in women with 25(OH)D > 50 

nmol/L at 24 weeks of gestation compared to the major genotype (p = 0.01) [37]. Our study 

did not confirm their results in the univariable, multivariable, or meta-analysis.
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By setting thresholds for missing data by SNP and by samples in the quality control steps, 

we reduced the likelihood of spurious data due to failed assays and poor-quality samples, 

respectively. If these quality control steps were avoided, differences in DNA quality could 

have biased towards one genotype or another [49]. After quality control steps, there were 

differences in missingness of SNP data by race and study-race group, but it did not differ by 

chromosome. Since samples were randomly distributed on each genotyping array the 

chances of systemic bias were minimized. The differences in missingness may indicate that 

there were differences in DNA quality between studies. It is possible that we may not have 

detected all associations due to the loss of some SNPs. However, it seems unlikely that SNP 

missingness yielded false-positive associations. Nonetheless, future genome wide 

association studies are needed to identify additional genes and alleles for 25(OH)D 

concentrations in pregnant women. Furthermore, since we only studied two ancestral groups, 

our findings may not be generalizable to other ancestral groups. Despite a proportion of 

women being recategorized into the Black ancestry group, our sensitivity analysis showed 

no significant difference in findings if we only used self-reported race in our study. There 

were non-genetic factors that may have also affected serum 25(OH)D concentration during 

pregnancy, such as supplement use, that were not measured and adjusted for in the analysis. 

If factors differed by vitamin D metabolic loci, it is possible the observed results could have 

been biased but this seems unlikely. Our study also has notable strengths including the large 

sample of Black and White pregnancies and utilization of ancestry informative markers 

rather than sole reliance on self-reported race. In comparison to previous studies, our 

approach of genotyping multiple tagging SNPs in two large and diverse samples had greater 

power to more comprehensively assess candidate gene variation.

If our results linking SNPs in VDR, GC, or CYP27B1 with 25(OH)D concentration among 

pregnant women are confirmed, then genotyping of common allelic variants may play an 

important role in vitamin D metabolism in pregnancy. This knowledge may ultimately help 

us to better understand how the vitamin D endocrine system may contribute to vitamin D 

deficiency in pregnancy by identifying functional variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CYP27B1 1 alpha-hydroxylase

GC vitamin D binding protein

VDR vitamin D receptor
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chr chromosome

SNP single nucleotide polymorphisms

25(OH)D 25-hydroxyvitamin D

BMI body-mass index

ICD-9 International Classification of Diseases

OR odds ratio

CI confidence interval

ASW Americans of African Ancestry in Southwest USA

CEU Utah residents with Northern and Western European ancestry

References

[1]. Looker AC, Johnson CL, Lacher DA, Pfeiffer CM, Schleicher RL, Sempos CT. Vitamin D status: 
United States, 2001–2006. NCHS Data Brief 2011;59:1–8.

[2]. Bodnar LM, Simhan HN, Powers RW, Frank MP, Cooperstein E, Roberts JM. High prevalence of 
vitamin D insufficiency in black and white pregnant women residing in the northern United 
States and their neonates. J Nutr 2007;137 (2):447–52. [PubMed: 17237325] 

[3]. Johnson DD, Wagner CL, Hulsey TC, McNeil RB, Ebeling M, Hollis BW. Vitamin D deficiency 
and insufficiency is common during pregnancy. Am J Perinatol 2011;28(1):7–12. [PubMed: 
20640974] 

[4]. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. 
Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical 
practice guideline. J Clin Endocrinol Metabo 2011;96 (7):1911–30.

[5]. Forrest KY, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. Nutr 
Res (New York, NY) 2011;31(1):48–54.

[6]. Taksler GB, Cutler DM, Giovannucci E, Keating NL. Vitamin D deficiency in minority 
populations. Public Health Nutr 2015;18(03):379–91. [PubMed: 25112179] 

[7]. Elder CJ, Bishop NJ. Rickets. Lancet 2014;383(9929):1665–76. [PubMed: 24412049] 

[8]. Wei SQ. Vitamin D and pregnancy outcomes. Curr Opin Obstetrics Gynecol 2014;26(6):438–47.

[9]. Hypponen E, Cavadino A, Williams D, Fraser A, Vereczkey A, Fraser WD, et al. Vitamin D and 
pre-eclampsia: original data, systematic review and metaanalysis. Ann Nutrit Metab 2013;63(4):
331–40. [PubMed: 24603503] 

[10]. Wei SQ, Qi HP, Luo ZC, Fraser WD. Maternal vitamin D status and adverse pregnancy 
outcomes: a systematic review and meta-analysis. J Mater-Fetal Neonatal Med 2013;26(9):889–
99.

[11]. Pojsupap S, Iliriani K, Sampaio TZ, O’Hearn K, Kovesi T, Menon K, et al. Efficacy of high-dose 
vitamin D in pediatric asthma: a systematic review and meta-analysis. J Asthma 2015;52(4):382–
90. [PubMed: 25365192] 

[12]. Chakhtoura M, Azar ST. The role of vitamin D deficiency in the incidence, progression, and 
complications of type 1 diabetes mellitus. Int J Endocrinol 2013;2013:148673. [PubMed: 
23573085] 

[13]. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic 
determinants of vitamin D insufficiency: a genome-wide association study. Lancet 
2010;376(9736):180–8. [PubMed: 20541252] 

[14]. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-
wide association study of circulating vitamin D levels. Hum Mol Genet 2010.

Baca et al. Page 9

Eur J Obstet Gynecol Reprod Biol. Author manuscript; available in PMC 2019 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[15]. Signorello LB, Shi J, Cai Q, Zheng W, Williams SM, Long J, et al. Common variation in vitamin 
D pathway genes predicts circulating 25-hydroxyvitamin D levels among African Americans. 
PLoS One 2011;6(12):e28623. [PubMed: 22205958] 

[16]. Brannon PM, Picciano MF. Vitamin D in pregnancy and lactation in humans. Annu Rev Nutr 
2011;31:89–115. [PubMed: 21756132] 

[17]. Evans KN, Bulmer JN, Kilby MD, Hewison M. Vitamin D and placental-decidual function. J Soc 
Gynecol Invest 2004;11(5):263–71.

[18]. Shin JS, Choi MY, Longtine MS, Nelson DM. Vitamin D effects on pregnancy and the placenta. 
Placenta 2010;31(12):1027–34. [PubMed: 20863562] 

[19]. Bodnar LM, Platt RW, Simhan HN. Early-pregnancy vitamin D deficiency and risk of preterm 
birth subtypes. Obstet Gynecol 2015;125(2):439–47. [PubMed: 25569002] 

[20]. Bodnar LM, Simhan HN, Catov JM, Roberts JM, Platt RW, Diesel JC, et al. Maternal vitamin D 
status and the risk of mild and severe preeclampsia. Epidemiology 2014;25(2):207–14. [PubMed: 
24457526] 

[21]. Zerwekh JE. The measurement of vitamin D: analytical aspects. Ann Clin Biochem 2004;41(Pt 
4):272–81. [PubMed: 15298739] 

[22]. Bodnar LM, Catov JM, Wisner KL, Klebanoff MA. Racial and seasonal differences in 25-
hydroxyvitamin D detected in maternal sera frozen for over 40 years. Br J Nutr 2009;101(2):278–
84. [PubMed: 18430263] 

[23]. Holick M, Siris E, Binkley N, Beard M, Khan A, Katzer J, et al. Prevalence of vitamin D 
inadequacy among postmenopausal North American women receiving osteoporosis therapy. J 
Clin Endocrinol Metab 2005;90:3215–24. [PubMed: 15797954] 

[24]. The international HapMap project. Nature 2003;426(6968):789–96. [PubMed: 14685227] 

[25]. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus 
genotype data. Genetics 2000;155(2):945–59. [PubMed: 10835412] 

[26]. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype 
data: linked loci and correlated allele frequencies. Genetics 2003;164(4):1567–8. [PubMed: 
12930761] 

[27]. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype 
data: dominant markers and null alleles. Mol Ecol Notes 2007;7(4):574–8. [PubMed: 18784791] 

[28]. Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the 
assistance of sample group information. Mol Ecol Res 2009;9(5):1322–32.

[29]. Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G, et al. Ancestry informative marker 
sets for determining continental origin and admixture proportions in common populations in 
America. Hum Mutat 2009;30(1):69–78. [PubMed: 18683858] 

[30]. Hayes CE, Nashold FE, Spach KM, Pedersen LB. The immunological functions of the vitamin D 
endocrine system. Cell Mol Biol (Noisy-le-Grand, France) 2003;49(2):277–300.

[31]. Niswander K, Gordon M. The Collaborative Perinatal Study of the National Institute of 
Neurological Diseases and Stroke: The Women and Their Pregnancies. Philadelphia, PA: WB 
Saunders; 1972.

[32]. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the 
software STRUCTURE: a simulation study. Mol Ecol 2005;14 (8):2611–20. [PubMed: 
15969739] 

[33]. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality 
control in genetic case-control association studies. Nat Protocols 2010;5(9):1564–73. [PubMed: 
21085122] 

[34]. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a toolset 
for whole-genome association and population-based linkage analysis. Am J Hum Genet 2007;81.

[35]. Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE. Establishing an adjusted p-value 
threshold to control the family-wide type 1 error in genome wide association studies. BMC 
Genomics 20089: 516–516.

[36]. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and 
regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2011 
40(Database issue) D930–4. [PubMed: 22064851] 

Baca et al. Page 10

Eur J Obstet Gynecol Reprod Biol. Author manuscript; available in PMC 2019 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[37]. Wu S, Ren S, Nguyen L, Adams JS, Hewison M. Splice variants of the CYP27b1 gene and the 
regulation of 1,25-dihydroxyvitamin D3 production. Endocrinology 2007;148(7):3410–8. 
[PubMed: 17395703] 

[38]. Morley R, Carlin JB, Pasco JA, Wark JD, Ponsonby AL. Maternal 25-hydroxyvitamin D 
concentration and offspring birth size: effect modification by infant VDR genotype. Eur J Clin 
Nutr 2009;63(6):802–4. [PubMed: 19018272] 

[39]. Fang Y, van Meurs Joyce BJ, d’Alesio A, Jhamai M, Zhao H, Rivadeneira F, et al. Promoter and 
3′-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic 
fracture: the rotterdam study. Am J Hum Genet 2005;77(5):807–23. [PubMed: 16252240] 

[40]. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, et al. Vitamin D-binding 
protein and vitamin D status of black americans and white americans. New Engl J Med 
2013;369(21):1991–2000. [PubMed: 24256378] 

[41]. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-
wide association study of circulating vitamin D levels. Hum Mol Genet 2010;19(13):2739–45. 
[PubMed: 20418485] 

[42]. Sinotte M, Diorio C, Bérubé S, Pollak M, Brisson J. Genetic polymorphisms of the vitamin D 
binding protein and plasma concentrations of 25-hydroxyvi- tamin D in premenopausal women. 
Am J Clin Nutr 2009;89(2):634–40. [PubMed: 19116321] 

[43]. Engelman CD, Meyers KJ, Ziegler JT, Taylor KD, Palmer ND, Haffner SM, et al. Genome-wide 
association study of vitamin D concentrations in Hispanic Americans: the IRAS family study. J 
Steroid Biochem Mol Biol 2010;122 (4):186–92. [PubMed: 20600896] 

[44]. Fu L, Yun F, Oczak M, Wong BY, Vieth R, Cole DE. Common genetic variants of the vitamin D 
binding protein (DBP) predict differences in response of serum 25-hydroxyvitamin D [25(OH)D] 
to vitamin D supplementation. Clin Biochem 2009;42(10–11):1174–7. [PubMed: 19302999] 

[45]. Fang Y, van Meurs JB, Arp P, van Leeuwen JP, Hofman A, Pols HA, et al. Vitamin D binding 
protein genotype and osteoporosis. Calcif Tissue Int 2009;85(2):85–93. [PubMed: 19488670] 

[46]. Jorde RSH, Wilsgaard T, Joakimsen RM, Mathiesen EB, Njølstad I, Løchen ML, et al. 
Polymorphisms related to the serum 25-hydroxyvitamin D level and risk of myocardial 
infarction, diabetes, cancer and mortality. The Tromsø Study. PLoS One 20127(5).

[47]. Orton SM, Morris AP, Herrera BM, Ramagopalan SV, Lincoln MR, Chao MJ, et al. Evidence for 
genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr 
2008;88(2):441–7. [PubMed: 18689381] 

[48]. Jacobs ET, Van Pelt C, Forster RE, Zaidi W, Hibler EA, Galligan MA, et al. CYP24A1 and 
CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells. Cancer Res 
2013;73(8):2563–73. [PubMed: 23423976] 

[49]. Wellcome: genome-wide association study of 14,000 cases of seven common diseases and 3,000 
shared controls. Nature 2007;447(7145):661–78. [PubMed: 17554300] 

Baca et al. Page 11

Eur J Obstet Gynecol Reprod Biol. Author manuscript; available in PMC 2019 July 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Meta-analysis for associations between minor alleles of SNPs in VDR, GC, and CYP27B1 
and log-25(OH)D across CPP and EVITA studies and maternal race groups.
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