A unique insight into the MiRNA profile during genital chlamydial infection

Supplementary Results

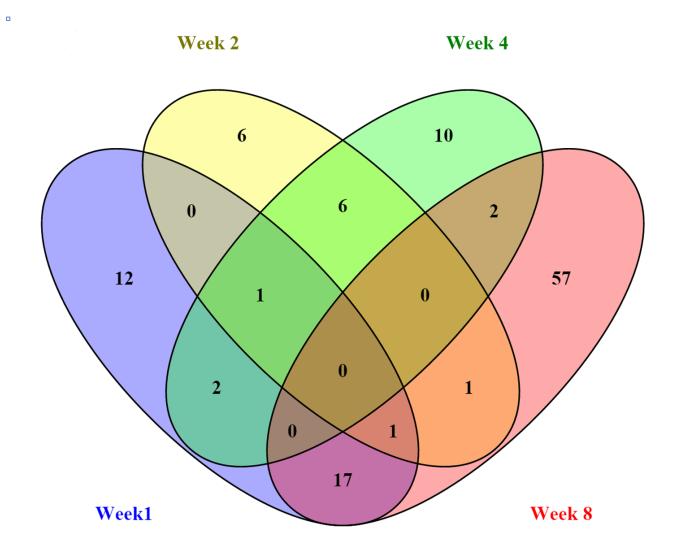


Figure S1: Venn diagram of differentially expressed miRNAs after chlamydia infection. Figure compares the differentially expressed microRNAs 1, 2, 4 and 8 weeks after infection. The numbers in the Venn diagram represents the number of distinct and common microRNAs in the different weeks of infection. There were no common microRNAs expressed in all weeks of infection. p-values here were not adjusted or controlled by false discovery rate.

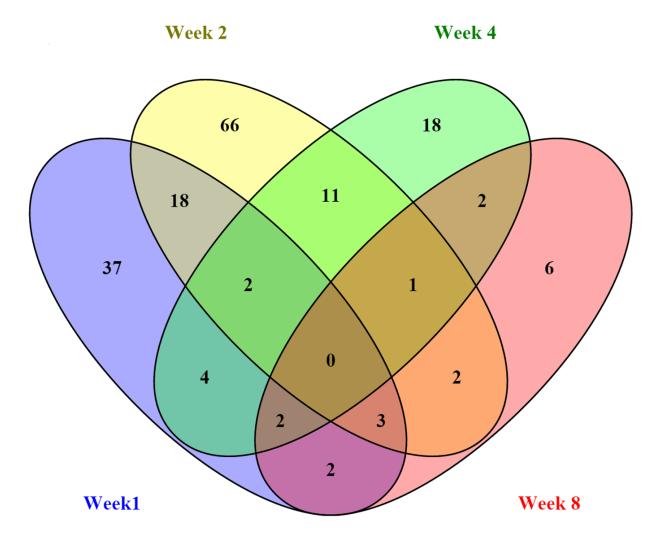


Figure S2: Venn diagram of differentially expressed miRNAs after chlamydia reinfection. Figure compares the differentially expressed microRNAs 1, 2, 4 and 8 weeks after infection. The numbers in the Venn diagram represents the number of distinct and common microRNAs in the different weeks of infection. There were no common microRNAs expressed in all weeks of infection. p-values here were not adjusted or controlled by false discovery rate.

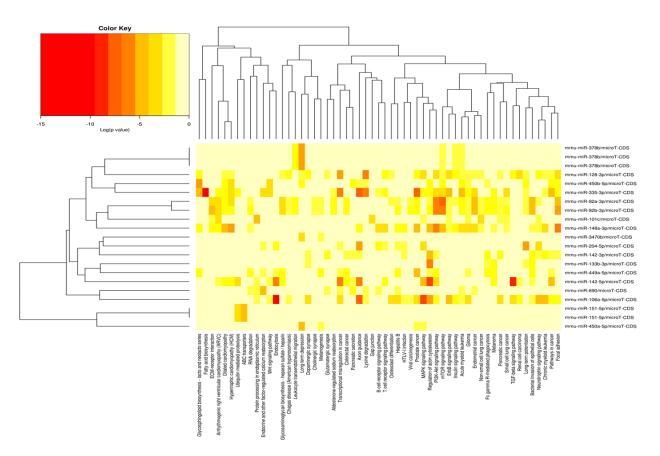


Figure S3: Pathways predicted to be regulated by miRNAs differentially expressed in mice after chlamydia infection. Pathways predicted by differentially expressed miRNAs after chlamydia infection. This analysis was determined using DIANA miRPath v.2.0 program. miRNAs used in the analysis were from the list derived after FDR correction.



Figure S4: Pathways predicted to be regulated by miRNAs differentially expressed in mice after chlamydia reinfection. Pathways predicted by differentially expressed miRNAs after chlamydia reinfection. This analysis was determined using DIANA miRPath v.2.0 program. miRNAs used in the analysis were from the list derived after FDR correction.

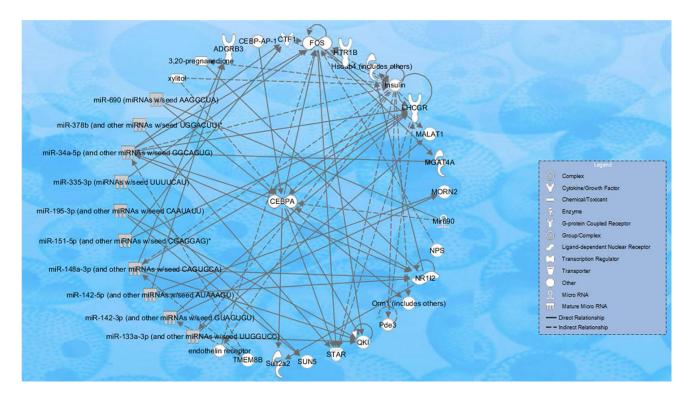


Figure S5A: Network One for *Chlamydia* infection shows CEBPA a transcription regulator as the focus molecule with associated miRNAs.

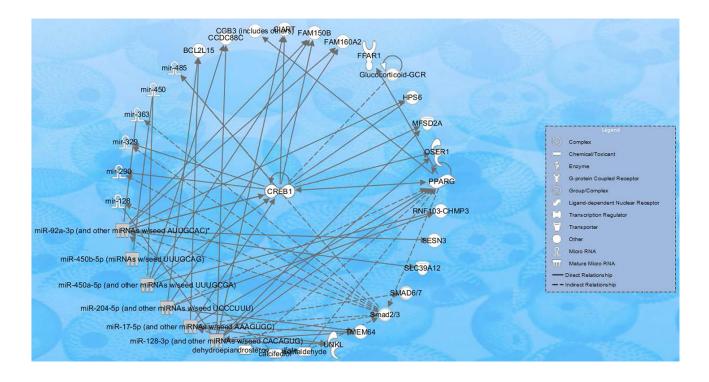


Figure S5B: Network Two for *Chlamydia* infection shows CREB1 a transcription regulator as the focus molecule with associated miRNAs.

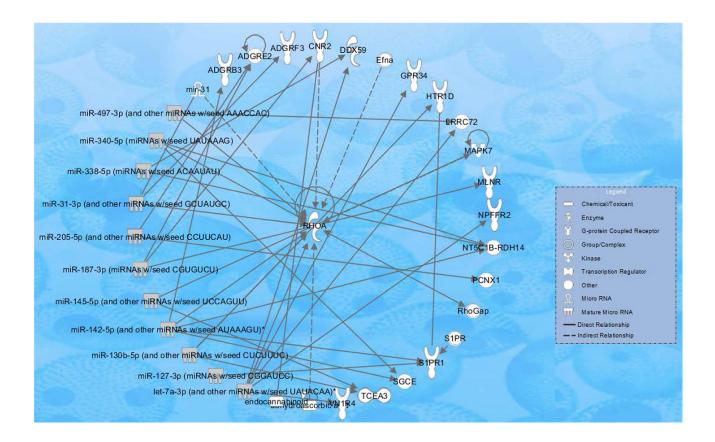


Figure S5C: Network One for *Chlamydia* reinfection shows RHOA an enzyme as the focus molecule with associated miRNAs and other molecules

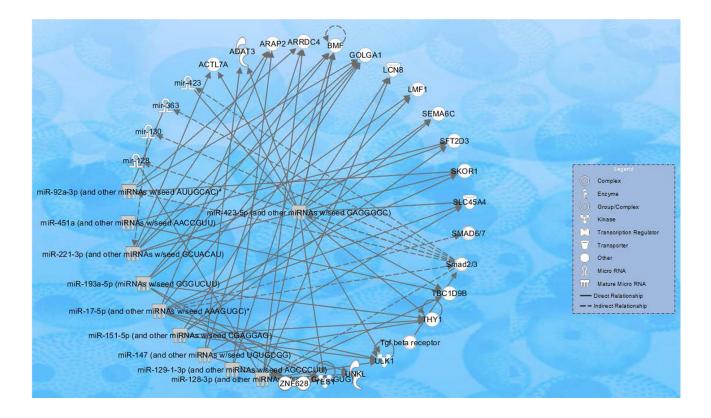


Figure S5D: Network Two for *Chlamydia* reinfection shows mir-423-5p as the focus molecule with associated miRNAs and other molecules

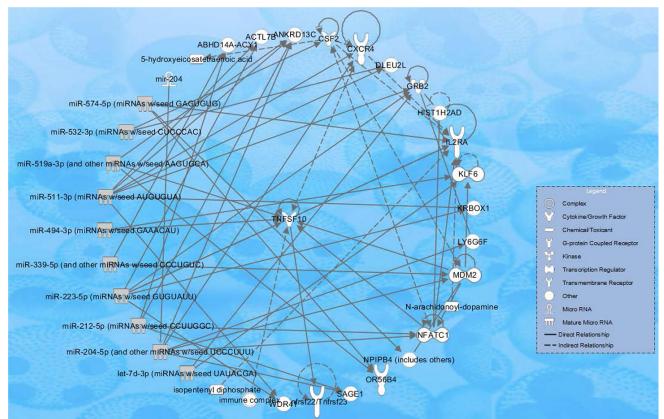


Figure S5E: Network Three for Chlamydia reinfection shows TNFSF10 as the focus molecule with

associated miRNAs and other molecules

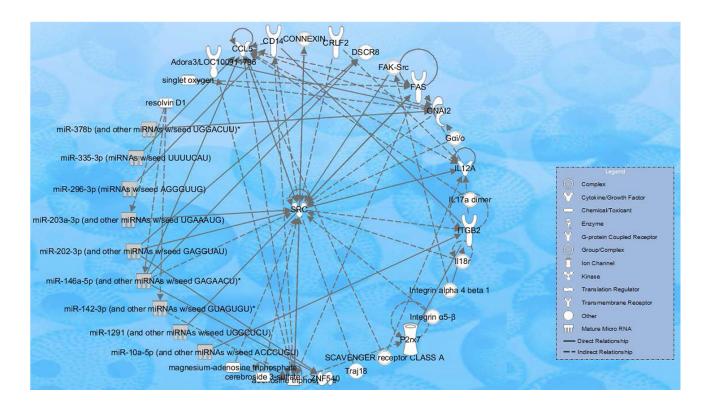


Figure S5F: Network Four for *Chlamydia* reinfection shows the kinase SRC as the focus molecule with associated miRNAs and other molecules

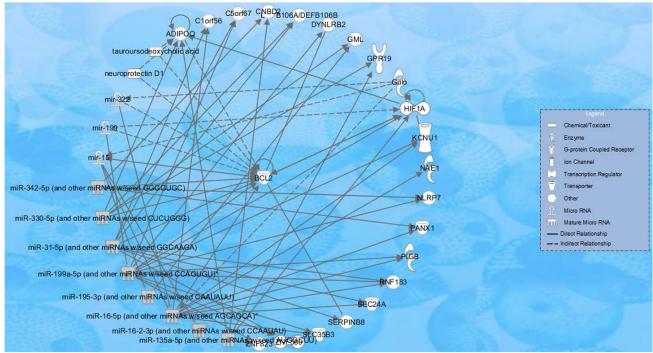


Figure S5G: Network Five for Chlamydia reinfection shows the transporter BCL2 as the focus molecule

with associated miRNAs and other molecules

 Table S1: Summary Analysis of Top Diseases and Biological Functions of miRNA expressed in the

 Chlamydia Infection and Re-Infection

	Chlamydia Infection		Chlamydia Re-Infection	
Diseases and Disorders	p-value range	# of MiRNAs	p-value range	# of MiRNAs
Cancer	4.96E-02 – 5.34E-12	12	4.92E-02 – 3.51E-22	33
Organismal Injuries and Abnormalities	4.96E-02 – 5.34E-12	12	4.92E-02 – 3.51E-22	39
Reproductive system disease	3.08E-02 – 5.34E-12	12	3.60E-02 – 3.51E-22	31
Connective Tissue Disorder	0	0	7.70E-03 – 2.64E-11	15
Molecular and Cellular Functions	p-value range	# of MiRNAs	p-value range	# of MiRNAs
Cellular Development	4.44E-02 – 4.13E-07	7	4.90E-02 – 3.67E-07	17
Cell Cycle	2.82E-02 - 1.81E-04	4	4.16E-02 - 3.50E-05	9
Cell-To-Cell Signaling and Interaction	1.40E-02 – 1.22E-03	4	0	0
Cellular Movement	2.54E-02 – 1.59E-03	4	4.25E-02 – 5.45E-04	10
Cell Morphology	1.83E-03 – 1.83E-03	1	0	0
Cellular Growth and Proliferation	0	0	4.90E-02 – 8.95E-05	16
Cell Death and Survival	0	0	4.35E-02 – 1.24E-03	9
Physiological System Development and Function	p-value range	# of MiRNAs	p-value range	# of MiRNAs
Organismal Development	4.38E-02 – 4.68E-05	3		
Connective Tissue Development and Function	2.22E-04 - 1.81E-04	5	4.90E-02 - 3.50E-05	5
Tissue Development	4.38E-02 - 1.22E-03	4	0	0
Embryonic Development	4.38E-02 – 1.89E-03	3	0	0
Organ Development	0	0	4.67E-02 – 4.08E-06	6

Network	Network Top Diseases and Functions		#Focus
#			Molecules
1	Organismal injury and abnormalities, Reproductive System	23	11
	Disease and Cancer		
2	Organismal injury and abnormalities, Reproductive System	20	10
	Disease and Connective Tissue Disorders		
3	Cell-To-Cell Signaling and Interaction, and Organismal injury	20	10
	and abnormalities		
4	Cellular Function and Maintenance, Cell-To-Cell Signaling and	18	9
	Interaction, Inflammatory Response		
5	Cancer, Organismal injury and abnormalities and Reproductive	15	8
	System Disease		

Table S2: Networks for the Top Diseases and Biological Function Category of miRNA expressed in the *Chlamydia* Reinfection

Sequencing and Bioinformatics Information

An average Phred of 35 per base was used to assess sequencing quality, which is about one base error in about 2,500,000 reads.

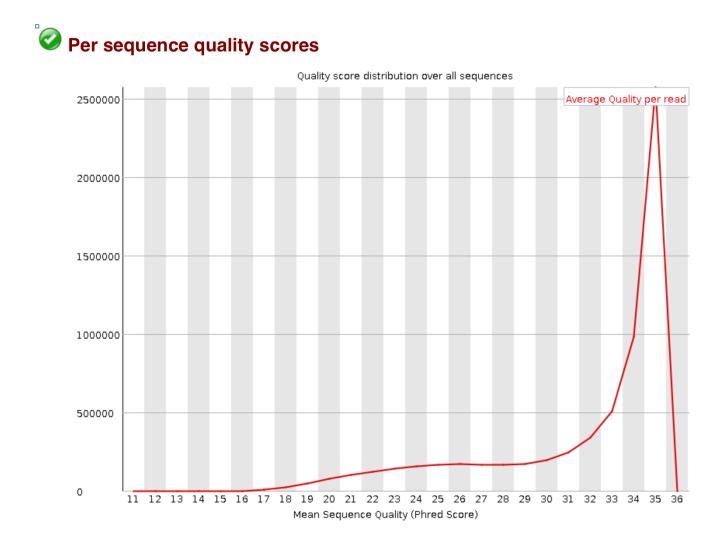


Figure S6: Example of quality scoring for miRNA sequencing in this study.

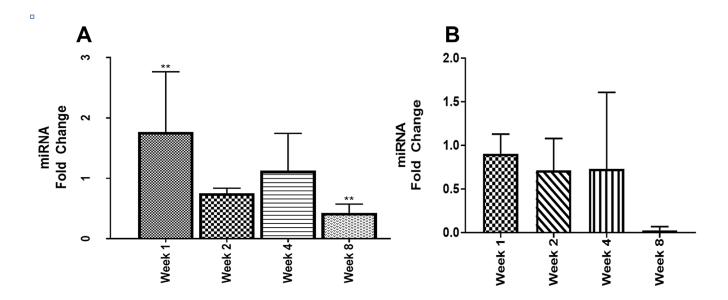


Figure S7: (A) Validation of miRNA 378b expression after single infection using qPCR, (B) Validation of miRNA 142-5p expression after single infection using qPCR.

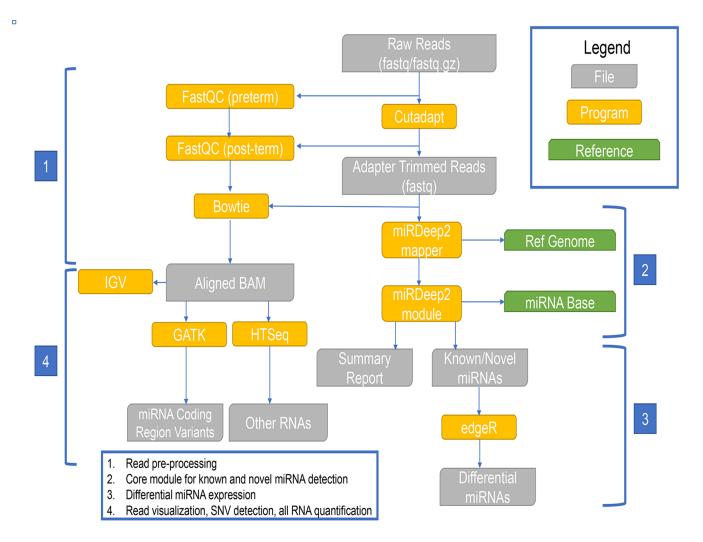


Figure S8: Comprehensive Analysis Pipeline for miRNA-seq data (CAP-miRSeq), adapted from Sun et al., 2014 (35).

Software tools

Tool Paths

SCRIPT PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/scripts MIRDEEP2 PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin BOWTIE PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin RANDFOLD PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin SQUID PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin VIENNA PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin PDFAPI2 PM PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/lib/perl5 JAVA PATH=/usr/local/java/jdk6u3/jdk7/bin NGS PORTAL PATH=/projects/bsi/bictools/apps/misc/ngs dashboard/2.0 PICARD PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin FASTQC PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin CUTADAPT PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin SAMTOOLS PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin BEDTOOLS PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin GATK JAR=/usr/local/gatk/3.2.2/GenomeAnalysisTK.jar VCFTOOLS PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin VCFTOOLS PERLLIB=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/lib/perl5/site perl HTSEQ PATH=/panfs/pstor.storage/rcclocal/zcluster/cap-mirseq/012014/bin HTSEQ LIB PATH=/usr/local/htseq/0.5.4p5/lib/python/HTSeq-0.5.4p5-py2.7-linux-x86 64.egg PYTHON PATH=/usr/local/python/2.7.2/bin

Tool Parameters

CUTADAPT_PARAMS=-b AATCTCGTATGCCGTCTTCTGCTTGC -b AGATCGGAAGAGCACACGTCTG -0 3 -m 17 -f fastq

MAPPER_PARAMS=-e -h -q -m -r 5 -u -v -o 4

MIRDEEP2_PARAMS=-P -t Mouse

MIRDEEP2_CLOSE_SPECIES=none

QUANTIFIER_PARAMS=-P -W

BOWTIE_PARAMS=-p 4 -S -q -n 1 -e 80 -l 30 -a -m 5 --best --strata

ADDORREPLACEREADGROUPS_PARAMS=MAX_RECORDS_IN_RAM=100000 VALIDATION_STRINGENCY=SILENT RGLB=mm10 RGCN=UGA RGPL=Illumina

SORTSAM_PARAMS=MAX_RECORDS_IN_RAM=1800000 VALIDATION_STRINGENCY=SILENT

PRINTREADS_PARAMS=-rf ReassignOneMappingQuality -RMQF 255 -RMQT 60

UNIFIEDGENOTYPER_PARAMS=-glm SNP -dcov 1000

HTSEQ_PARAMS=-m intersection-nonempty -q -t exon -s no

QUEUE=rcc-m128-30d

Reference Files

REF_GENOME=/home/qbcglab/qbcg/CAP_miR_files/mm10.fa

BOWTIE_REF=/home/qbcglab/qbcg/CAP_miR_files/mm10

MIRBASE_HAIRPIN=/home/qbcglab/qbcg/CAP_miR_files/hairpin.mmu.dna.fa

MIRBASE_MATURE=/home/qbcglab/qbcg/CAP_miR_files/mature.mmu.dna.fa

MIRBASE_GFF=/home/qbcglab/qbcg/CAP_miR_files/mmu.gff3

 $GENCODE_GTF = /home/qbcglab/qbcg/CAP_miR_files/gencode.vM2.annotation.gtf$

Memory Parameters

QSUB

REFERENCE_INDEXES_MEM=-1 h_vmem=10G -1 h_stack=10M

CUTADAPT_MEM=-1 h_vmem=10G -1 h_stack=10M

FASTQC_MEM=-1 h_vmem=10G -1 h_stack=10M

BAMS_MEM=-1 h_vmem=10G -1 h_stack=10M

MIRDEEP2_MAPPER_MEM=-1 h_vmem=10G -1 h_stack=10M

MIRDEEP2_MEM=-1 h_vmem=10G -1 h_stack=10M

VARIANTS_MEM=-1 h_vmem=10G -1 h_stack=10M

EXPRESSION_REPORTS_MEM=-1 h_vmem=5G -1 h_stack=10M

DIFF EXPRESSION MEM=-1 h vmem=10G -1 h stack=10M

GENCODE_CLASSIFICATION_MEM=-1 h_vmem=20G -1 h_stack=10M

SAMPLE_SUMMARY_MEM=-1 h_vmem=10G -1 h_stack=10M

MAIN_DOC_MEM=-1 h_vmem=5G -1 h_stack=10M

JVM

CREATEDICTIONARY_JVM_MEM=-Xmx5g -Xms1g

ADDORREPLACEREADGROUPS_JVM_MEM=-Xmx5g -Xms1g

SORTSAM_JVM_MEM=-Xmx5g -Xms1g

UNIFIEDGENOTYPER_JVM_MEM=-Xmx5g -Xms1g