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1 Web Appendix A

Main proofs to Theorems 1-3.

Proof of Theorem 1. Our estimator for ﬁ? by the one-time SPARE is
2 1 Ty1 y=1y1 Ty
B = {(x, " x3,) XY (A1)

Here D; = (X', Y'!) with sample size |n/2], for notational simplicity, we denote m = [n/2|
within this proof.

By (A3), with probability at least 1 — o(m~271), the selection S D Sy,,. Since the two
halves of data D; and Dy are mutually exclusive, (X', ¥Y') L S. Thus given S D Sy, and



X', the OLS estimator 3! = (XéUjTXéuj)’1X§ujTYl is unbiased,
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In addition, Var <B~1

S, X1> = JQZgéj/m, which is bounded by assumption (Al). Thus,

V(B! = B3,,)[ 8, X1 % N(0,075g). (A.3)

Furthermore,

Vim(B; - 89)S. X" 5 N(0,5), (A4)

where 537 = o? (ESSJj)jj.
Next we show the uniform convergence of \/m(Bj — ﬁ?) /& with respect to j, S and X*.

From the partial regression formulation of Bj, it § D Son,

T T
B-—BO— le (Im—Hé\j)el B m X]1 (Im—Hé\j)sl (A5)
J T T - T . .
TX (I Hg )X;  Xj (Im — Hg ;)X m
By Lemma (1),
o~ (B, o (5)
= (23 ) — (23t (A.6)
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and V7, S, ‘XIT T -1 < 2/cmin. Moreover, the second term of the right hand side in
j o Um=Hg\;)X;
(A.5) is the mean of iid. Z}el’s, where (7);)iz1,..m = X (I — Hg,;). Since Elei|* < py

and X} (I, — Hy, ;) is the projection vector of X7,

BIX} (T~ 1) < BIXE, < o1 (A7)



By the Berry-Esseen Theorem, Vj, X and S D S,
2 \* Cpopr _ 8ctaxCpopr
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where F),(z) is the CDF of \/E(BJ —B?)/@- and ®(x) is the CDF of standard normal. Thus
as m — oo, with probability at least 1 — o(m=71),

vm(B; = 5])/5; — N(0,1). (A.9)
O

Proof of Theorem 2. We first introduce the oracle SPARE estimators of ﬁ?’s, i.e. the ones
we would compute if we knew the true active set Sy,

(A.8)
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B = {(XSO,ntTXSO,vLUj)71XSO,nUJ'TY}. (A.10)
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.?730,11 = {(Xgo,nuj Xgo,nt> 1X~bq0,nt Yb},7 (A'11>

J
which are estimations on the original data (X,Y) and the bootstrap half data D}, respec-
tively. Since 530 is the least square corresponding to X; when regressing Y on Xg,  ;, we
have for each j

5 d
WP =v/n(B3) = B))/o; = N(0,1) as n— oo, (A.12)
where 0]2- = o2 (Zgol,nt)jj that corresponds to subscript j. By Cauchy’s interlacing theorem

(Proposition 3), 0% /cymax < 07 < 0% /Ciin, and thus it is bounded away from zero and infinity.

Now we consider the behavior of the selections S*’s from DY’s. For each b= 1,2, ..., B,
the subsample D} consists of m, > n/2 distinct observations from the original data that
are not drawn in the bootstrap half dataset D%. In other words, D} can be regarded as a
sample of my i.i.d. observations from the population distribution. In addition, since m,, is
independent of the observations, with a conditional argument on my, the following holds
for each b by (B3),

P(S* = Sy,)

_/p(sb — Sonlmy = m)dP(m)

> / {1 —o(m—ca—l)}dp(m) (A.13)
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Next, we decompose Bj into two parts:
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To show A; = 0,(1), we write
1B
=D US £ Soa)Va (B - B, )
B3

a1 25,,7 5= 15" # So,) Vi (3 - B, ).
By Corollary (2),
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Similarly,
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:0<n_02_140§n201+1>
:0(n762+261)
—0 as n — oo.
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Thus 6, = 0,(1) for all b € [B]. Furthermore, since EA; = Ed, and VarA; < Vard,, we
have A; = 0,(1).
Next we show the convergence of Z]Q. Notice that

B
1 . A )
2oy =W)+/n (E > Bl — 5?) Jo; =W) +TF/o;. (A.20)
b=1

By (A.12), we are only left to show % = 0,(1). Define t,;, = /n(5" S0 ﬁo) then

TP = n($ S B?,So,n — B?) =< S°P tns. Recall that ng,so,n is the bootstrap statistic

of BQ, so its conditional mean is B;) and conditional variance is &2{(X§O Ui XS0 nuj)*l} =
’ : Jj

A2<Esolnuj> /n =67 /n, where 6% = H(I — HSM)YH2/n (Freedman et al. (1981)). Thus,

IS

B (| (X, Y0)) =0, Var(t, (X, ™) =62 = 5*(55) ) (A.21)
23

We now argue that with probability going to 1, &f’s, 7 =1,2,..,p, are bounded. First,
P(6% < 20%) — 1 as n — oo. Then,

<25'01nUJ>” < )\max( Sl Ug) - 1/)\m1n(230 nU]) (A22)

whenever )\min(igoynuj) > 0. Assumption (B3) implies |Sp,|/n < 7. By Lemma (4) from
Vershynin (2010) and Lemma (5), letting € = ¢in/2 and t* = ¢2; n/C for some constant C
only depending on the sub-Gaussian norm ||x;||,, we have that with probability at least
1 = 2exp(—cgnm™/C)

/\min(isomuj) 2 )\min(ESO,nt) - Cmin/2 Z )\min(z) - Cmin/2 2 Cmin/2a (A23)

where the second inequality follows the interlacing property of the eigenvalues. Combining
(A.22) and (A.23), (Esl u;) < 2/emin With probability going to 1 exponentially fast in

n, and consequently o6 0 < 402 / Cmin- INOw define

Q= {(X",Y™) = (x4, yi)ic12. 07 < 407 /o, Vj = 1,2, ..., p}. (A.24)



Since p = O(n™) for some v, > 1, P{(X™ Y™) ¢ Q,} — 1 as n — oo. Thus
V(XM ym) eq,, Var{tmb](X(”), Y("))} < 40?/cmin. Furthermore,

4 2
B n n n n
Var{T?|(X™,y")} = e ZVar{tnb| (XM ym)l < Boo (A.25)
Thus, Vo, > 0, ANy, By > 0 such that Vn > Ny, B > By,
P(IT;7| > 0)
g/ P{|ITP| > ¢|(X™, Y™} dP(X™, Y™ + P {(X™ Y™M) ¢ Q,}
Qp
Var {TP|(X™,y™)}
< n i dP(X™ y ™)y + P {(X™ y™) ¢ Qq,
<[ = (X, ™) + P (X, ") ¢ 0,} A2
<L2/ dP(X™,Y™) 4 P {(X™,Y™) ¢ 0}
_Bo(szcmin . ) ) n
<¢/2+¢/2
<¢.
Finally, combining this with (A.12), we have
Z)o; =W2+TPJo; % N(0,1) as B,n — oo (A.27)
O

Proof of Theorem 3. Follow the previous proof, we replace the arguments in j with those
in S, The oracle estimators are

o
Bsa) = ((XSOnUS(l) X50,,050) " Xy Jus Y) 0

_ T
Borso, = ((XG, s X uso) " XE s Y?) (A.29)

(A.28)

Notice that [SW| = p; = O(1), as n — o0, [So,, USW| = O(|So,4|) = o(n), so that the
above quantities are well-defined. Next

W = /{8 (B0 — B3%0) S N(0,I,) as n — oo, (A.30)



where Y1) = 42 (2;1 )SU)' Similar to (A.15), we decompose /n(Bga) — Bow) into

0,nUS<1)
three parts:

Vn(Bsw — Baw)
=70 4+ AV 4+ AW,
For the sake of space, we prefer not to write out these quantities, but it is straightforward
analog that A = AlY =0, (1,,) and SO 2 WO = ,(1,,) as well, which completes
the proof. n

(A.31)

2 Web Appendix B

Technical details on useful definitions, lemmas and related proofs.
Lemma 1. Assume X = (X1,...,X,) = (z],...,2})" where z;’s are i.i.d. copies of a sub-

Gaussian random vector in R? with covariance matrix X,,, with

0 < Cmin < )\min(2> S )\max(z) S Cmax < OQ.

For any subset S C {1,2,..,p} with |[S| <nn, 0 <n < 1, and Vj € S, with probability at

least 1 — 2exp(—§—;n),

Cmin 1 T 1 + Cmin
9 S EXJ (In - HS\j)Xj S Cmax + T

where ¢ = min(%, @in) and Ck is the constant depends only on the sub-Gaussian norm

K = |2l

Corollary 2. Given model (1) and assumptions (A1,A2), consider the partial regression

estimator on (X,Y") given subset S. If |S| < nn, 0 < n < 1, then with probability at least

1-— Qexp(—i—;n),

(B.1)

A

B; < Cgn, (B.2)
where C'3 depends on Cpin, Cmax, C3-

Proposition 3 (Cauchy interlacing theorem). Let A be a symmetric nxn matrix. The mxm
matrix B, where m < n, is called a compression of A if there exists an orthogonal projection
P onto a subspace of dimension m such that PT AP = B. The Cauchy interlacing theorem
states:
if the eigenvalues of A are A\; < ... < \,, and those of B are v; < ... < v,,, then for all
J<m+1,

>‘j < Vj < >\n—m+j

7



Proposition 4 (Corollary 5.50 in Vershynin (2010)). Consider a n x ¢ matrix X whose rows
x;’s are 1.i.d. samples from a sub-Gaussian distribution in R? with covariance matrix X,
and let € € (0,1),¢ > 1. Denote the sample covariance matrix as 3,, = X X/n Then with
probability at least 1 — 2 exp(—t%q) one has

If n>C(t/e)2q then |S,—3| <e. (B.3)

Here C' = Ck depends only on the sub-Gaussian norm K = ||x;[|y, of a random vector
taken from this distribution.

Definition 1. The sub-Gaussian norm of a random variable V is defined as

IV, = sup b 2(B[V 1) (B.4)

then the sub-Gaussian norm of a random vector V in R? is defined as

Vily, = sup [V, (B.5)

€SI~

Remark 1. Assume Vy = (v, 02, ...,v,) is a sub-Gaussian random vector in RY, and V; =
(v1,v2, ...,v,),7 < q is the sub-vector of V. By taking z = (z1,..,2,,0,..,0) € ST we
have [[Villy, < [[Volly,-

Corollary 5. For two n x n positive definite matrices ¥; and X, if ||£; — 3s|| <€, then

)\min(EQ) Z Amin(zl) — €

B.6
)\max(ZQ) S /\max<21) + €. ( )
Proof. On one hand, Yn—vector X with || X||s = 1,
€ >[|X1 — X
>[(21 — 22) X2 (B.7)
>[|Z1 X |2 — [[Z2X |2
then take X to be the eigenvector for Ay, (2X2), we have
)\min(22) :HE2X||2
>[E1 X2 — € (B.8)

Z)\min(zl) — €.
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On the other hand,
Amax(2) =(|Za|
<|IZ1]| + |22 — X4|
§H21H + €
=Amax(21) + €

(B.9)

Proof of lemma (1). Note that
n

X (In = Hs\j) X;

is the (j, 7)™ entry of f]gl, where S = (XTXg)/n is the sample covariance matrix corre-
sponds to subset S. Therefore

1 1
n — (B.10)

< — <
)\max<25) Xj ([” - HS\j)Xj )\min(ZS)

Refer to Corollary 5.50 in Vershynin (2010) and choose ¢ = min(3, %), Then with

probability at least 1 — 2 exp(—?—gn),
IS5 — S|l <e. (B.11)
By Corollary (5) and Cauchy interlacing theorem,
)\min(i\:S) Z Amin(ZS) — & Z Amin(z) — & Z Cmin/27 (B12)

and
)\max(iS) < )\maX(ZS) +e< )\max(z) +e< Cmax T (1 + Cmin)/Q' (B13>

Thus, with high probability,

1 + Cmin
2

Cmin 1
S EX]T(In - HS\])X] S Cmax +

(B.14)



Proof of Corollary (2). From Lemma (1), we can bound j; as below:

. XU = Hsy)Y
T X[ (I - Hs\y)X;
B n Xj (I = Hs\j) X005,
C XTI - Hs\j)X; n
L2 D keson | Xj (I — He\g) Xil
Cmin n

c (C + 1+ Cmin
Cmin P max 2

< )ncl.

Let Cg = f&(cmax + 1“%), we complete the proof.
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Web Table 1: Comparisons of SPARES and one-time SPARE based on 200 replications.
Bias (SE) is displayed in each cell. LSE refers to least square estimation as if Sy, were
known.

Index B;»J SPARES One-time SPARE LSE
199  1.00 0.03(0.16) -0.02(0.26) 0.03(0.16)
243 -1.00  -0.02(0.16) 0.03(0.26)  -0.02(0.16)
256 1.00 -0.002(0.16) -0.007(0.26) -0.002(0.16)
0’s  0.00 0.000(0.16) -0.001(0.26)

Web Figure 1: Performance of SPARES under simulation example 2.1. X-axis is the
variable index. Topleft: Average estimates and average Cls V.S. true signals. Topright:
Bias of SPARES estimates for each j, red dots are non-zero signals, dashed lines indicate
blocks of the predictors. Bottomleft: Coverage probability of 5% for each j w.r.t. 0.95
norminal level. Bottomright: Empirical probability of not rejecting Hy : 5;-) = 0.
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Performance of SPARES under simulation examples 2.2.

Web Figure 2
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Web Figure 3: Comparisons of SPARES with LASSO-Pro and SSLASSO under simulation
example 4. Left panels: Mean estimates from each method and the true signals. Right
panels: Coverage probabilities for each j € Sy, and 20 representatives of j & S ..
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Web Figure 4: Correlation among predictors: left panel - riboflavin data; right panel -
multiple myeloma data.
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Web Figure 5: Results of the riboflavin genomic data analysis.

Left panel: selection

frequency of each gene; Right panel: confidence intervals of the top five most significant

genes.
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Web Figure 6: Results of the Multiple Myeloma genomic data analysis. Left panel: selection
frequency of each gene; Right panel: confidence intervals of the top two most significant

genes.

Selection frequency

0.3 0.4
|

freq

0.2
|

0.1

. LL_-. J.lli

1 51

0.0

119 188

215645_at

.L.‘“.,..mm. .

401 472 542 613 684 795

T

260 331

15

est

01

0.0

-0.1

-0.2

-0.3

Confidence intervals

204171 _at

200 400 600 800



	Web Appendix A
	Web Appendix B

