Rabies viruses circulating in Ceará, Brazil, were identified by molecular analysis to be related to variants maintained by dogs, bats, and other wildlife. Most of these viruses are associated with human rabies cases. We document the emergence of a rabies virus variant responsible for an independent epidemic cycle in the crab-eating fox (
After dog rabies control programs were implemented in Ceará State, Brazil, a the number of human cases decreased (
In 1996, because of this new epidemiologic situation, public health authorities launched an educational program, and no human cases due to wildlife were recorded in 1999, despite 84 cases in wildlife registered that year (
We studied 22 samples, from dogs, cattle, wildlife, and humans in Ceará, obtained from 1997 to 2003 (
| Identification | Animal species | Year of isolation | Origin | Antigenic variant | Genetic variant | Group | GenBank accession no. |
|---|---|---|---|---|---|---|---|
| Brhm4531 | Human | 1997 | Fortaleza | AgV2 | Dog | B | DQ447947 |
| Brcth4122 | 1998 | - | AgV2 | Dog | B | DQ447948 | |
| Brhm5325 | Human | 2000 | Caucaia | AgV2 | Dog | C | DQ447949 |
| Brdg5360 | Dog | 2000 | Caucaia | All+ | Dog | C | DQ447950 |
| Brcth5361 | 2000 | Paracuru | AgV2 | Dog | B | DQ447951 | |
| Brbv5339 | Bovine | 2000 | Antonina do Norte | AgV3 | Vampire bat | D | DQ447952 |
| Brbv5374 | Bovine | 2000 | Quixere | AgV3 | Vampire bat | D | DQ447953 |
| Brhm5691 | Human | 2001 | Caucaia | AgV2 | Dog | C | DQ447954 |
| Brdg5693 | Dog | 2001 | Maranguape | AgV2 | Dog | A | DQ447955 |
| Brcth5695 | 2001 | Barroquinha | AgV2 | Dog | B | DQ447956 | |
| Brcth5697 | 2001 | Caninde | AgV2 | Dog | B | DQ447957 | |
| Brcth5692 | 2001 | Maranguape | AgV2 | Dog | B | DQ447958 | |
| Brpcr5698 | 2001 | Maranguape | AgV2 | Dog | B | DQ447959 | |
| Brbv5694 | Bovine | 2001 | Aquiraz | AgV3 | Vampire bat | D | DQ447960 |
| Brsg5696 | 2001 | Caucaia | AgV new* | Marmoset | E | DQ447961 | |
| Brhmu138 | Human | 2002 | Fortaleza | AgV2 | Dog | C | DQ447962 |
| Brhmu142 | Human | 2003 | Fortaleza | AgV2 | Dog | C | DQ447963 |
| Brhmu130 | Human | 2003 | Umirim | AgV2 | Dog | C | DQ447964 |
| Brhmu146 | Human | 2003 | Fortaleza | AgV2 | Dog | C | DQ447965 |
| Brhmu145 | Human | 2003 | Tururu | AgV2 | Dog | C | DQ447966 |
| Brhmu129 | Human | 2003 | Fortaleza | AgV2 | Dog | C | DQ447967 |
| Brhmu131 | Human | 2003 | Maracanau | AgV2 | Dog | C | DQ447968 |
*Pattern related to isolates from marmosets.
The Ceará viruses were analyzed genetically through a comparative phylogenetic study based on a 320-bp fragment of the nucleoprotein gene, from position 1157 to 1476, as compared with SADB19 (
Rabies virus isolates by geographic localization and neighbor-joining tree showing a comparison of the groups formed by Ceará State, Brazil, samples isolated from 1997 to 2003. Bootstrap values of >50% obtained from 100 resamplings of the data using distance matrix methods are shown in the nods.
Lineage A was represented by a sample from a dog from Maranguape, which was obtained in 2001. This virus showed its closest genetic relationship with lineage B (identity 92.4%–94.2%). Lineage B was formed by all the C. thous isolates, a sample from a human bitten by a P. cancrivorous raccoon in Fortaleza in 1997, and a virus from a P. crancrivorous raccoon collected in Maranguape during 2001 (intrinsic identity 96.5%–100%). This lineage showed its highest percentage of identity with lineage C (intrinsic identity 90.6%–92.8%). Lineage C consisted of 9 human samples collected in 5 different counties from 2000 to 2003 and an isolate obtained from a dog in 2000. The samples were highly homologous (intrinsic identity 99.1%–100%). Lineage D included 3 bovines collected in 3 geographically distant counties during 2000 and 2001 (intrinsic identity 97.5%–98.4%). Lineage E was represented by the only sample collected from a C. j jacchus marmoset, These last 2 lineages were related distantly to all the others.
When compared with representatives of rabies variants maintained by terrestrial and bat species in the Americas (
Neighbor-joining tree showing a comparison of Ceará samples (groups A, B, C, D, E) with isolates obtained from the Americas. Bootstrap values of >50% obtained from 100 resamplings of the data using distance matrix methods are shown in the nods. The sequences from Latin America used in the comparison were identified as as follows: group I, dogs and terrestrial wildlife from Mexico, Venezuela, Colombia, Dominican Republic, and Peru (mxsk, skunk from Mexico; mxdg and mxmx, dog from Mexico; vedg, dog from Venezuela; codg, dog from Colombia; drmg, mongoose from Dominican Republic; mxgm, bobcat from Mexico; pefx, fox from Peru) and terrestrial wildlife from the United States (caussk, skunk from California; txuscy, coyote from Texas; wiussk, striped skunk from Wisconsin; arussk, striped skunk from Arkansas; azusfox, gray fox from Arizona; txusfx, gray fox from Texas); and group II, terrestrial wildlife from the United States (flrac, raccoon from Florida; parac, raccoon from Philadelphia; ksussk, striped skunk from Kansas; arussk, striped skunk from Arkansas). The antigenic variant and endemic cycle to which it belongs are shown in the tree. (GenBank accession no. AB201803 is a vampire bat from Brazil and nos. AY654585, AY654587, AY654586 are humans and a marmoset from Brazil). EC, endemic cycle.
The only sample representative of lineage E segregated with 2 isolates from humans bitten by C. j. jacchus and a sample collected from a marmoset kept as a pet (
A thorough description of rabies epidemiology depends on a comprehensive surveillance program and application of accurate molecular methods to discriminate among different variants and the emergence of new foci. Antigenic and limited sequencing analyses were used to better understand the emergent epidemiologic events in wildlife in Ceará, Brazil. These analyses allowed identification of 5 potential cycles in this region, despite antigenic homogeneity.
Lack of antigenic and genetic relationships of sample brdg5693, representing lineage A, with the rest of the isolates from Ceará and the known terrestrial rabies vectors from the Americas shows that this virus is a variant not previously described. This virus was geographically and temporarily associated with samples brpcr5698 and brcth5692, obtained in Maranguape during 2001. These circumstances demonstrated the existence of at least 2 overlapping endemic cycles in this area. Lineage B was formed mainly by isolates from C. thous, which indicates the existence of an emerging rabies cycle in this species.
The epidemiologic situation in Ceará was complicated because of overlapping distributions of dog and C. thous rabies cases (
Inclusion in lineage B of an isolate obtained from a human bitten by a P. cancrivorous raccoon and another sample collected from this species suggested the risk of establishing C. thous variant in P. cancrivorous. The niches of these 2 species overlap, which facilitates their encounters. Additional surveillance is necessary to clarify this situation.
Epidemiologic data which indicates that humans had been exposed to dog bites, results of molecular characterization, and inclusion of a dog isolate in the C lineage strongly incriminate the dog as the reservoir of this variant. Identification of the source of infection by using classic surveillance alone is complicated by the presence of multiple cycles of transmission. Genetic comparison of samples from lineage D with viruses representing bats viruses from the Americas helped to identify D. rotundus as the source of livestock infection.
The close genetic relationship of sample brsg5696 with rabies isolates obtained from C. j. jacchus and human cases bitten by marmosets further supported C. j. jaccuss as the most important vector of this variant. This finding indicates that this species plays an important role for disease maintenance in nature.
Methods for antigenic and genetic identification of rabies samples isolated in the Americas have contributed effectively to the development of health programs, as well as recognition of possible wild reservoirs of urban rabies. The emergence of new cycles in Latin American wildlife indicates the need to strengthen surveillance programs in these species and research development for the evaluation of the feasibility of oral vaccination interventions.
We thank Débora R. V. Sacramento for her technical collaboration, Fabiana L. A. da Silveira Lebrun for structural support, Maria das Graças Silva for help with the bibliography and illustrations, and all staff at Instituto Pasteur of São Paulo, Brazil, and Laboratory of Rabies Diagnosis of Ceará, Brazil, for collaboration and incalculable incentives.
Dr Favoretto is a scientific researcher and specialist in public health at the Instituto Pasteur of São Paulo. Her research interests include diagnosis and molecular epidemiology of rabies virus.