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Abstract

Background: Penta-brominated diphenyl ethers (PentaBDEs) are endocrine disrupting 

chemicals that structurally resemble thyroid hormones and were widely used as flame retardants in 

household consumer products from 1975–2004. Polybrominated diphenyl ethers (PBDEs) cross 

the placenta and evidence suggests that for many children, body burdens may peak during toddler 

years. We aimed to understand the impact of exposure timing by examining both pre- and 

postnatal exposure to BDE-47, the predominant PentaBDE congener detected in humans, in 

relation to thyroid hormone parameters measured during early childhood.
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Methods: The Columbia Center for Children’s Environmental Health Mothers and Newborns 

Study is a prospective birth cohort of African American and Dominican maternal-child pairs. 

Pregnant women were recruited from two prenatal clinics in Northern Manhattan and the South 

Bronx between 1998 and 2006. Participants included 158 children with 1) plasma PBDE 

concentrations measured at birth and toddler years (age 2-3), and 2) serum thyroid parameters 

measured at 3 and/or 5 years. Outcomes included concentrations of serum thyroid stimulating 

hormone (TSH), free thyroxine (fT4) and total thyroxine (T4).

Results: Children with high exposure to BDE-47 during the prenatal period (−17%, 95% CI 

− 29, −2) or toddler age (-19%, 95% CI: −31, −5) had significantly lower geometric mean TSH 

levels compared to children with low BDE-47 exposure throughout early life. Associations with T4 

were also inverse, however, they did not reach statistical significance at the p=0.05 level. Sex-

stratified models suggest associations with postnatal exposure may be stronger among boys 

compared to girls.

Conclusions: The thyroid regulatory system may be sensitive to BDE-47 during prenatal and 

postnatal periods.
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Introduction

Endocrine disrupting chemicals (EDCs) contribute substantially to human morbidity and are 

estimated to result in hundreds of billions in costs per year (1). EDCs are defined by their 

ability to cause changes in endocrine function and consist of several classes of chemicals 

with varying structures, actions and endocrine targets (2). Many EDCs were introduced into 

United States commerce beginning in the 1970s to augment food packaging, personal care 

products and other household items (3). For example, following reports indicating 

improperly extinguished cigarettes were the leading cause of household fires (4), 

polybrominated diphenyl ethers (PBDEs) began to be used as flame retardants in electronics 

and household furnishings in 1975 (5). PBDEs were used as three technical mixtures known 

as PentaBDE, OctaBDE, and DecaBDE, each of which is comprised of several congeners. 

PentaBDE, which is estimated to make up 90% of the human body burden, was primarily 

applied to products containing polyurethane foam, including couches, car seats, carpet 

padding and other upholstered items (6). PentaBDE was often used in large volumes; for 

example, reports indicate it comprised up to 3% by weight of the polyurethane foam 

contained within a couch (7). During manufacturing, PBDEs are not chemically bonded to 

base polymers and thus have a propensity to migrate into the indoor environment and settle 

in house dust (8). Human exposure occurs primarily through incidental ingestion of dust, 

placing young children at risk for elevated exposure due to their frequent hand to mouth 

behavior and often close proximity to the floor (5, 9–11). Owing to their lipophilic 

properties, PBDEs have long half-lives (PentaBDE congeners: 1.6- 6.5 years) (12) and are 

known to penetrate the fat-soluble placenta, as well as partition into breastmilk (13, 14). It is 

estimated that over 46,000 tons of PentaBDE were used in North America until its phase-out 

in 2004, leading to nearly ubiquitous exposure and body burdens that are the highest in the 
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world (15, 16). Despite their phase-out, PBDE exposure continues owing to their resistance 

to environmental degradation and ongoing release from consumer products that are 

infrequently replaced (15).

PBDE congeners consist of a diphenyl ether backbone around which varying numbers of 

bromine atoms are attached (5). This molecular structure closely resembles that of the 

halogenated (iodine) thyroid hormones triiodothyronine (T3) and thyroxine (T4) (17), 

supporting the putative interaction of PBDEs with thyroid hormone transport proteins, 

receptors and/or degradation enzymes (18). Thyroid hormones bind to receptors in nearly 

every organ in the human body and play critical roles in the regulation of growth, 

metabolism and brain development (19). In vitro research indicates hydroxylated metabolites 

of BDE-47, the predominant congener detected in humans, markedly inhibit the capacity of 

T3 to bind with receptors (20) and evidence from animal research suggests PBDE exposure 

alters thyroid hormone homeostasis (18), as well as other thyroid- dependent processes. For 

example, research conducted in Xenopus laevis has demonstrated BDE-47 exposure arrests 

thyroid-dependent metamorphosis of tadpole into froglet and disrupts thyroid hormone-

related gene expression in the brain (21, 22). Likewise, research conducted in avian and 

murine models has consistently demonstrated associations between prenatal exposure to 

PentaBDE congeners, including BDE-47, with reductions in circulating levels of T4 

(reviewed by: (18, 23)).

Widespread research supports classification of PBDEs as developmental neurotoxicants (24–

27) (11, 24–26), with disruption of thyroid hormones as a leading putative mechanism 

underlying observed relationships (18, 28). However, despite convincing evidence from in 
vitro and animal research, results from studies investigating PBDEs in relation to thyroid 

hormone function in humans include a mix of negative, positive and null associations (29–

34). Notably, previous studies have measured thyroid hormone parameters in maternal blood 

(29, 30, 34) collected during pregnancy or parturition, cord blood (29, 32, 34), or infant 

blood (31, 32) collected within hours to weeks of birth; periods when transient, yet 

substantial endocrine system changes occur, including profound alterations to the thyroid 

regulatory system (35). It is plausible that inconsistencies across previous human studies are 

partially attributable to misclassification introduced by the timing of thyroid hormone 

measurement. In the present study, we addressed this limitation by examining plasma PBDE 

concentrations in samples collected at birth and during toddler years (age 2-3) in relation to 

TSH, free T4 and total T4 levels measured in serum samples collected during early 

childhood (3-5 years). Based on results from animal research, we hypothesized prenatal 

exposure to BDE-47 would be associated with lower T4 levels at birth (reviewed by: (18, 

23)). We further hypothesize these associations will act through a programming pathway, 

leading to effects that persist throughout childhood. Owing to the typically higher exposure 

of young children compared to fetuses (via direct interaction with the external environment), 

we also hypothesize that children with low prenatal exposure, but high postnatal exposure 

will show evidence of a dysregulated thyroid regulatory system during childhood. This is the 

largest prospective study to examine both pre- and postnatal exposure to PBDEs in relation 

to thyroid endpoints.
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Subjects and Methods

Study Sample

The sample includes a subset of participants enrolled in the Columbia Center for Children’s 

Environmental Health (CCCEH) Mothers and Newborns birth cohort, which recruited 

African American and Dominican women from New York City between 1998 and 2006. 

Women were ineligible for study participation if they were outside the ages of 18-35 years, 

initiated prenatal care after the 20th week of pregnancy, had a multiple pregnancy, used 

tobacco products or illicit drugs, had diabetes, had hypertension, or were HIV positive. 

Women were considered fully enrolled if a maternal or umbilical cord blood sample was 

collected at the child’s delivery. During pregnancy and at each postnatal study visit a 

bilingual research worker conducted a structured interview to collect information about 

sociodemographic and lifestyle factors. At delivery, study staff collected umbilical cord 

blood; at ages 2, 3, and 5-year follow-up visits a pediatric phlebotomist collected child 

venous blood. All samples were transported to the CCCEH laboratory immediately 

following collection, where the buffy coat, packed red blood cells, and plasma were 

separated and frozen at −70°C. Additional details describing the cohort design, recruitment 

and follow-up have been previously published (36–38).

At delivery, 727 mothers remained eligible and were fully enrolled in the cohort; at 2-year, 

3-year and 5-year follow-up visits, 566 (78%), 562 (77%), and 551 (76%) maternal-child 

pairs remained in the study, respectively. At these postnatal follow-up visits, blood was 

collected from 92-98% of children. We measured PBDE concentrations in all available 

stored cord plasma samples and in early childhood samples among children with follow-up 

data (cord plasma n=327, 2-year n=43, 3-year n=102, 2-year and 3-year = 13). We measured 

thyroid hormone parameters in 185 of the 327 children with a measure of PBDE 

concentrations at age 3 years (n=112), 5 years (n=35) or both 3 and 5 years (n=38) (Figure 

1). The study protocol was approved by the Institutional Review Board of Columbia 

University Medical Center. It was determined at the Centers for Disease Control and 

Prevention (CDC) that the agency was not engaged in human subjects’ research. Before each 

study visit, mothers gave written informed consent for herself and for her child.

PBDE Analysis

The CDC’s Persistent Organic Pollutants Biomonitoring Laboratory measured PBDE 

concentrations in umbilical cord and venous plasma samples. Detailed analytic methods are 

available elsewhere (39, 40) and information pertaining to analysis of PBDEs in this cohort 

has been previously described (9, 41). Briefly, samples were fortified with internal standards 

followed by automated liquid-liquid extraction using a Gilson 215 liquid handler (Gilson 

Inc., Middleton, WI). Final analytical determinations were made by gas chromatography 

isotope dilution high-resolution mass spectrometry using a DFS instrument (Thermo Fisher 

Scientific, Bremen, Germany). Each analytical batch was comprised of method blanks 

(n=3), quality control samples (n=3) and study samples (n=26). All reported data were 

subtracted from the median concentration detected in method blank samples. Co-extracted 

lipids were removed using a silica: silica/sulfuric acid column with automation on a Rapid 

Trace SPE work station (Biotage, Uppsala, Sweden) and total cholesterol and triglycerides 
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were determined on a Roche Hitachi 912 Chemistry Analyzer (GMI Inc, Ramsey, MN). We 

estimated total cord blood lipid levels, including unmeasured free cholesterol and 

phospholipids, by summation of individual lipid components using an umbilical cord blood-

specific formula [total cord blood lipids = 2.657 × total cord blood cholesterol + cord blood 

triglycerides + 0.268, in g lipids/L plasma] (A Sjodin, personal communication, November 

2016). We estimated child total blood lipids using the short formula developed by Phillips et 

al. (42). We examined PBDEs as a lipid standardized variable in all models (ng/g lipid).

Thyroid Hormone Analysis

Thyroid stimulating hormone (TSH), freeT4 and total T4 were measured in child serum 

samples by the Clinical and Epidemiologic Research Laboratory at Boston Children’s 

Hospital. All analyses were performed by automated immunoassay using a competitive 

electrochemiluminescence detection system (Roche Diagnostics, Indianapolis, IN). The 

lowest detection limits were 0.005 µlU/mL, 0.26 pmol/L, and 5.4 nmol/L for TSH, free T4, 

and total T4, respectively. Day-to-day imprecision values ranged from 1.8%-5.4% for 0.09- 

3.96 µIU/mL of TSH, 3.5%-6.6% for 8.75-50.70 pmol/L of free T4, and 3.0%-6.9% for 

33.4- 237 nmol/L of total T4. We measured maternal iodide concentrations, which is an 

essential substrate for thyroid hormone biosynthesis (43), in maternal spot urine samples 

collected during the third trimester. Before performing statistical analyses, we adjusted 

iodide for specific gravity to control for variation in urinary dilution.

Statistical Analysis

We focused on BDE-47 (percent detect: 80%), which was the only congener for which cord 

plasma concentrations were detectable in more than 50% of samples; concentrations in child 

plasma (age 2-3 years) were detectable in 99% of samples. Consistent with other studies, in 

our samples cord plasma BDE-47 concentrations were moderately to highly correlated with 

the other primary congeners that comprise the Penta-BDE formulation (Spearman’s rho: 

BDE-99: 0.83, BDE-100: 0.76, BDE-153: 0.47; all p<0.01). As previously described (41), 

we used a distribution-based approach to multiply impute values for plasma BDE-47 

concentrations below the sample-specific limit of detection (LOD), which is determined by 

the sample’s volume and lipid content.

We performed latent class growth analysis (LCGA) using the SAS Proc Traj procedure (44) 

to estimate trajectories of BDE-47 concentration between birth and 3 years. LCGA is a 

group-based modeling technique that empirically clusters individuals with a shared temporal 

pattern of change for a given characteristic (i.e. change in PBDE concentration over early 

life) (45). Before estimating trajectories, we log10-transformed continuous BDE- 47 

concentrations (ng/g lipid) to better estimate a normal distribution and replaced non- 

detected concentrations with the sample-specific mean value across the 10 imputed datasets. 

We iteratively tested models with varying numbers of groups (2-5) and shapes (linear-cubic) 

and determined the optimal number of trajectories based on: 1) visual confirmation of 

distinct trajectories, each of which comprised >10% of the data, 2) evaluation of the 

Bayesian Information Criterion, and 3) evaluation of the average posterior probability of 

group membership. Additional details describing LCGA model fitting are provided in the 

Supplemental Material (Table S1).

Cowell et al. Page 5

Thyroid. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used multivariable linear regression to examine associations between trajectories of 

BDE-47, treated as a categorical variable, and thyroid hormone parameters collected 

between 3 years and 5 years. We used the generalized estimating equations (GEE) approach 

with an exchangeable working correlation to account for repeated thyroid measures within a 

child over time. We selected an exchangeable working correlation based on evaluation of the 

empirical correlation matrix, which did not indicate an autoregressive relationship, as well as 

evaluation of the quasi-likelihood information criterion (QIC). In all models, we expressed 

TSH, free T4, and total T4 as continuous variables and log10-transformed TSH to better 

approximate a normal distribution. Models including an interaction term between age and 

BDE-47 trajectory did not indicate that the association between PBDEs and thyroid 

parameters significantly varies by age at blood collection. We further examined separate 

models for thyroid hormone parameters measured at ages 3 and 5 years in sensitivity 

analyses.

Intra-individual thyroid hormone concentrations decrease with age (46); therefore, we a 
priori included exact age at blood draw as a time-varying covariate. We constructed Directed 

Acyclic Graphs (DAG) based on substantive knowledge and previously published research 

to identify the minimal set of covariates sufficient to estimate the unconfounded effect of 

PBDEs on thyroid hormone parameters, which included only race/ethnicity (Figure S2). The 

set of potential confounders we considered included: sex, race/ethnicity (African American/

Dominican), date of birth, gestational age (in weeks), birth weight (in grams), prenatal 

environmental tobacco smoke exposure (yes/no as previously described (47)), breastfeeding 

history (<12 weeks/≥ 12 weeks), parity (nulliparous/multiparous), relationship status 

(unmarried/married or with the same partner for 7 or more years), maternal age (in years), 

material hardship (none/unable to afford food, clothing or housing), maternal education (less 

than high school/high school or equivalent), and maternal employment (employed/not 

employed). All variables relating to the mother or household were collected during the 

prenatal period and variables relating to the delivery were extracted from hospital medical 

records. Information on breastfeeding history was collected at 3−, 6−, 12−, 24− and 36-

month follow-up visits. In sensitivity analyses, we further evaluated the influence of 

covariate selection by examining a priori (age at blood draw-only) and fully-adjusted 

models.

Given sex differences in the incidence of many thyroid-related diseases (48, 49), we 

explored potential effect modification by child sex using cross product terms and sex- 

stratified models. We examined the influence of maternal iodide status during pregnancy by 

stratifying participants by the pregnancy-specific threshold for population iodine sufficiency 

(≥150 µg/L) and examining models within each stratum (50). Finally, to compare the results 

with findings from other cohort studies, we used the GEE approach to examine associations 

between plasma BDE-47 concentrations treated as a continuous, log10-transformed variable 

measured in cord blood or age 3-year blood in relation to repeated thyroid hormone 

parameters. We performed statistical analyses using SAS v9.4 (SAS Institute) or RStudio 

v0.99.891 and constructed DAGs using DAGitty v2.3(51).
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Results

Table 1 presents characteristics of the study population. All maternal-child pairs are African 

American (45%) or Dominican (55%) and at delivery 37% of mothers had less than a high 

school education, 76% were not in a stable relationship, and 36% reported experiencing 

material hardship. Sociodemographic and lifestyle characteristics were similarly distributed 

between children included in the analysis and those excluded due to missing PBDE or 

thyroid hormone data, with the following exceptions: the excluded sample had a higher 

proportion of Dominican participants (68% versus 55%, p<0.01), fewer nulliparous mothers 

(42% versus 51%, p=0.04), and on average newborns had lower birthweights (mean 

difference: 119 grams, p<0.01). The difference in birthweight may reflect racial/ethnic 

variation between the included and excluded samples, as African American newborns 

weighed on average 148 grams less than Dominican infants (p<0.01). Among included 

children, BDE-47 concentrations (birth, age 2, age 3) and thyroid hormone parameters (age 

3, age 5) were not significantly associated with parity or birthweight. At ages 2 and 3 years, 

PBDE concentrations were significantly higher among children included in the analysis 

compared to children excluded (p=0.05), which likely reflects that included children were 

more likely to be born earlier during the enrollment period (i.e. prior to the 2004 phase-out 

of BDE-47) to allow time to age into later blood draws (9).

We detected BDE-47 in 80% of cord plasma samples and 99% of toddler plasma samples. 

The lower detection frequency in cord blood is consistent with results from an independent 

New York City-based cohort (BDE-47: 81%) and a Baltimore-based cohort (BDE-47: 90%), 

which both measured PBDE concentrations in cord blood (52, 53). As expected, plasma 

BDE-47 concentrations were significantly lower at birth (14.2±0.9, n=327) compared to 

toddler years (age 2: GM±GSE: 37.8±5.8, n=56, paired t-test using log10-transformed 

BDE-47 in ng/g lipids: t=−4.07, p=0.0002; age 3: GM±GSE: 32.0±3.1, n=115, paired t-test 

using log10-transformed BDE-47 in ng/g lipid: t=−6.90, p<0.0001). BDE- 47 in cord plasma 

correlated poorly with BDE-47 in child plasma measured at age 2 years (p=−0.03, p=0.82) 

or 3-years (p=0.09, p=0.36), however, BDE-47 measured at age 2 years was strongly 

correlated with BDE-47 measured at age 3 years (p=−0.79, p<0.01). Exposure percentiles 

for each group are provided in Table S3. As illustrated by Figure 2a, the best fitting LCGA 

model revealed three trajectories of BDE-47 exposure characterized by 1) “persistent low” 

(34%), 2) “high-decreasing” (28%), and 3) “low-increasing” (38%) plasma concentrations 

across early childhood.

In models examining BDE-47 trajectories in relation to serum thyroid parameters measured 

between 3 and 5 years, children assigned to the ‘high-decreasing’ or ‘low- increasing’ 

trajectory had 17% (95% CI −29, −2) and 19% (95% CI: −31, −5) lower geometric mean 

TSH levels compared to children assigned to the ‘persistent low’ trajectory, respectively. 

Associations between each of these trajectories and T4 levels (free and total) were also 

inverse, however, they did not reach statistical significance at the p=0.05 level (Table 2, 

which presents estimates from GEE models, and Figure 2b, which plots adjusted mean 

thyroid parameter concentrations stratified by BDE-47 trajectory). Results from fully- 

adjusted models, as well as models examining thyroid hormones at ages 3 and 5 years 

separately did not substantially deviate from these results (see Supplemental Material, 
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Tables S4 and S5). Models examining cord plasma BDE-47 as a continuous variable are 

presented in Figure 3 and Table S6.

We observed no significant sex differences in the proportion of children assigned to each 

trajectory. Likewise, thyroid hormone parameters did not significantly differ between girls 

and boys at age 3 or 5 years (Supplemental Material, Table S7). In sex-stratified models (see 

Supplemental Material, Figure S8 and Table S9), the inverse association observed between 

the ‘low-increasing’ BDE-47 trajectory (versus ‘persistent low’ trajectory) and childhood 

thyroid parameters (TSH and free T4) was augmented among boys (percent change TSH: 

−30, 95% CI: −45, −11, p−interaction: 0.12; unit change free T4: −1.18, 95% CI: − 2.18, 

−0.20, p-interaction: 0.21) and attenuated among girls (percent change TSH: −8, 95% CI: 

−26, 13.3; unit (nmol/L) change free T4: −0.19, 95% CI: −1.19, 0.82). While the interaction 

terms did not reach statistical significance at the p=0.05 level, these findings suggest sex 

may modify the association between postnatal BDE-47 exposure and thyroid hormone 

parameters. Given our relatively small sample size for investigating interactions, it will be 

important that these findings are replicated by other research groups.

Specific-gravity adjusted urinary iodide concentrations among the 115 mothers with an 

available urine sample ranged from 45.4 to 425.9 µg/L; 27% of mothers had a concentration 

below the pregnancy-specific threshold for population iodine sufficiency (150 µg/L). In age, 

ethnicity and specific-gravity adjusted models, we detected no significant interaction 

between BDE-47 and maternal urinary iodine status, treated as a continuous or categorical 

variable (<150 v.s ≥ 150 µg/L) for any thyroid hormone parameter.

Discussion

Compared to children with low cord plasma BDE-47 concentrations (GM±GSD: 5.8±0.4 

ng/g lipid) that remained low throughout early childhood (GM±GSD: 13.8±1.2 ng/g lipid), 

children with high prenatal exposure (GM±GSD: 66.6±6.1 ng/g lipid) that decreased after 

birth had significantly lower circulating TSH levels measured between the ages of 3 and 5 

years. TSH is a key effector and stimulus of the hypothalamic-pituitary-thyroid (HPT) axis, 

which maintains circulating thyroid hormone levels around an intra-individual set point. 

Briefly, low levels of circulating T3 and T4 stimulate the pituitary gland to release TSH, 

which in turn stimulates the thyroid gland to produce and secrete T3 and T4 (43, 54). 

Evidence from animal models and human clinical studies suggests the set point around 

which this negative feedback mechanism responds may be partially determined during 

gestation (55–58). Our findings suggest prenatal exposure to PBDEs may program a 

‘reactive HPT axis’ phenotype such that less TSH is required to stimulate production and 

release of adequate T4.

Children with low cord plasma BDE-47 concentrations (GM±GSD: 13.8±1.2 ng/g lipid) that 

increased during toddler years (GM±GSD: 106.9±9.2 ng/g lipid) also had significantly lower 

TSH concentrations between age 3-5 years compared to children with low cord plasma 

BDE-47 concentrations (GM±GSD: 5.8±0.4 ng/g lipid) that remained low during toddler 

years (GM±GSD: 13.8±1.3 ng/g lipid). Interestingly, the magnitude of this association was 

stronger among boys, despite our finding of no significant difference in BDE-47 
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concentrations or TSH levels between girls and boys. Boys with high exposure during 

toddler years also showed significantly lower free and total T4 levels compared to boys with 

persistent low BDE-47 exposure. Our finding of depressed T4 levels is consistent with 

research conducted on murine models, which have consistently found PBDE exposure to be 

associated with reduced serum T4 levels (59). Putative mechanisms underlying this finding 

include PBDE interference with thyroid hormone transport and metabolism. For example, 

research conducted in mice suggests PBDEs induce upregulation of thyroid hormone 

metabolizing enzymes, resulting in enhanced clearance of T4 (60) and both animal and in 
vitro studies suggest PBDEs or their hydroxylated metabolites may bind and displace T4 

from protein transporters thereby disrupting circulating levels (18).

Several birth cohort studies (n>100) have investigated cross sectional associations between 

prenatal exposure to PBDEs and thyroid hormone parameters measured in maternal or cord 

blood collected during pregnancy, delivery, or early postnatal life with a combination of 

positive, negative and null findings (Figure 3, Table S10) (29–34). Results from these studies 

are inconsistent and difficult to compare to our findings given variation in the measurement 

of thyroid hormones during developmental periods when normal fluctuations in HPT axis 

homeostasis occur. For example, an estrogen-induced elevation of thyroid binding globulin 

and placental production of chorionic gonadotrophin triggers maternal T4 levels to increase 

sharply and TSH levels to fall during the first trimester of pregnancy, and during delivery a 

stress and cold-evoked surge in TSH occurs in the newborn, followed by a reflexive increase 

in T4 over the next 24-48 hours (35, 43, 61).

Similar to studies focused on pregnancy and infancy, results from research investigating 

cross-sectional associations between PBDEs and thyroid dysregulation during childhood are 

inconsistent and difficult to compare due to differences in study design and variation in both 

the distribution of PBDE concentrations and congeners detected. Specifically, of the eight 

studies we identified examining postnatal exposure to PBDEs and thyroid parameters, three 

focused on special populations with unusually high exposure levels (i.e. children living and 

working near electronics recycling facilities in China) (62–64), two detected unusually low 

PBDE concentrations for unexplained reasons (65, 66), and one was conducted among a 

small sample (n<30) of older children (ages 14-18 years) (67). Among 80 children admitted 

to a hospital for a non-endocrine related disease between the ages of 1 and 5 years, Jacobson 

et al. detected a significant positive association between BDE-47 (ng/g lipid) and TSH, but 

no significant associations with total or free T4 or T3, reverse T3, or T3 uptake (68). A 

number of factors could underlie the differences in our findings, including study design 

(cross sectional versus prospective), variation in age at time of thyroid parameter 

measurement (1-5 years versus 3-5 years), or differences in the source populations (i.e. 

general population recruitment versus hospital-based recruitment).

Only one other study has prospectively examined associations between both prenatal and 

postnatal BDE-47 concentrations and thyroid hormone levels measured during early 

childhood. Using multiple informant models, Vuong et al. detected significant inverse 

associations between maternal log10-BDE-47 concentrations measured during pregnancy 

and ln-TSH measured at age 3 years (β: −0.20, 95% CI: −0.38, −0.03) among 158 maternal- 

child pairs living in Cincinnati, Ohio (69). Also consistent with our finding of a stronger 
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association between the early prenatal high BDE-47 trajectory and TSH among girls, in sex- 

stratified models, albeit not significantly different from boys, Vuong et al. found that inverse 

associations between prenatal BDE-47 and ln-TSH were only statistically significant among 

girls. While we did not detect evidence of a sex-specific effect between prenatal BDE-47 

and free T4, Vuong et al. found a significant inverse association only among boys (69). 

Additionally, in contrast to our observation of inverse associations between postnatal 

BDE-47 and ln-TSH, the researchers detected significant positive associations between 

serum BDE-47 measured at age 2 years (n=71) (but not 1 (n=77) or 3 (n=71) years), and 

both ln-TSH and total T4 measured at age 3 years (69); results of sex interactions with 

postnatal exposure were not reported.

Despite evidence indicating: 1) sex-specific associations between PBDEs and thyroid gland 

function in birds (70), 2), interactions with sex hormone receptors in fish and rodents (71–

73), and 3) altered sex hormone levels in children (74) and pregnant women (75), few 

studies have investigated sexually-dimorphic effects of PBDEs on thyroid hormone 

disruption. Specific mechanisms underlying our observation of stronger associations with 

postnatal exposure among boys compared to girls are unknown, however, the high degree of 

overlap between the HPT axis and the hypothalamic-pituitary-gonadal axis, which regulates 

circulating sex hormone levels, suggests disruption in one system may have downstream 

consequences for the other (76). For example, evidence suggests hypogonadism in 

hypothyroid men reflects a hypothyroidism-induced blunted pituitary response to 

gonadotropin-releasing hormone secreted by the hypothalamus (77). Further, male 

reproductive organs, including the pre-pubertal testis, are thyroid-responsive tissues (78) and 

animal studies have demonstrated that experimentally induced hypothyroidism results in 

testicular damage, decreased testosterone concentrations, and arrest of sexual maturity (79, 

80). Research designed to investigate the effect of PBDEs on overlapping pathways central 

to both thyroid and reproductive hormone homeostasis is needed to more fully understand 

the mechanisms underlying our sex-specific findings.

In addition to the longitudinal design, the present study has several strengths. First, PBDE 

concentrations were comparable to other geographically and temporally similar birth cohorts 

and reflect general population exposure (52, 53). Additionally, our relatively large sample 

size allowed us to examine many potential confounders, as well as explore effect 

modification by child sex and maternal iodide status during pregnancy. Unfortunately, we 

were not able to evaluate selenium, which is known to be an important determinant of 

thyroid status (81). Additional limitations include our lack of T3 levels, thyroid binding 

protein levels, and PBDE metabolite data, which structurally resemble endogenous thyroid 

hormones more closely than parent congeners (18). Finally, we analyzed thyroid parameters 

by immunoassay, which may be affected by variation in serum thyroid binding protein levels 

(43).

Overall, our findings suggest the thyroid regulatory system may be sensitive to disruption by 

PBDEs during both the prenatal and postnatal period. Pregnant women and young children 

should minimize exposure to these endocrine disrupting chemicals. While research on 

PBDE exposure intervention studies is limited, results from observational research suggest 

several behavioral modifications for reducing contact with dust may be effective in limiting 
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PBDE exposure, including wet or damp mopping the home (9, 41), wiping down plastic toys 

(82), vacuuming with a HEPA filter and/or wearing a dust mask while vacuuming, washing 

hands frequently (83), avoiding hand to mouth behaviors (82) (i.e. thumb sucking, nail 

biting), and purchasing flame retardant free furniture and furnishings, which can be readily 

identified in the United States by examining product tags.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow diagram of participant selection from the Columbia Center for Children’s 

Environmental Health Mothers and Newborns birth cohort study.
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Figure 2. 
A. Trajectories of BDE-47 concentration from birth through age 3-years. B. Age and 

ethnicity adjusted mean thyroid parameter levels by BDE-47 trajectory. *TSH is geometric 

mean.
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Figure 3. 
Results from multiple linear regression models examining associations between 

log10BDE-47 (ng/g lipid) and thyroid hormone parameters (log10TSH: µIU/mL; free T4: 

ng/dL, total T4: µg/dL) measured as continuous variables reported by 7 North American 

birth cohort studies.

Herbstman 2008 and Stapleton 2011 applied a natural-log transformation to BDE- 47 and 

TSH rather than a log10-transformation. Stapleton 2011 additionally natural-log transformed 

free T4. To facilitate comparison of our results to others, we re-analyzed final models 

expressing free T4 and total T4 in units of ng/dL and µg/dL, respectively. Abdelouahab 2013 

modeled free T4 measured in cord blood on a pmol/L basis, therefore, we excluded these 

results from the figure to accommodate the y-axis scale. Supplemental Material Table 8 

presents summary data for BDE-47 and thyroid hormone parameters measured by each 

study.
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Table 1.

Participant characteristics, BDE-47 concentrations and thyroid parameter levels among maternal-child pairs 

included in the analysis (n=185)

N (%) or mean±SD

Included N sample Excluded N sample

African American* 83 (45) 185 171 (32) 542

Dominican* 102 (55) 185 371 (68) 542

Nulliparous* 95 (51) 185 229 (42) 538

Maternal age (years) 24.9±4.8 185 25.3±5.0 542

< High school education 68 (37) 185 190 (36) 532

Stable relationship 44 (24) 185 150 (28) 538

Employed 117 (63) 185 282 (52) 539

Material hardship 66 (36) 185 220 (42) 530

Male 85 (46) 185 266 (49) 542

Prenatal ETS exposure 70 (38) 185 184 (34) 540

Gestational age (weeks) 39.3±1.2 185 38.5±6.3 542

Birthweight (kg)* 3.5±0.5 185 3.3±0.6 535

Breastfed ≥ 12 weeks 64 (35) 185 173 (34) 502

BDE-47 (ng/g lipid)
a

 Prenatal 14.2±1.2 185 14.1±1.2 142

 2 years* 43.9±7.4 45 20.4±6.2 11

 3 years* 38.0±5.3 60 26.6±3.6 55

TSH (µIU/mL)
a

 3 years 2.4±0.1 150 2.3±0.10 125

 5 years 2.1±0.1 73 2.3±0.2 36

Free T4 (pmol/L)

 3 years 18.3±2.2 150 18.3±2.5 125

 5 years 18.1±2.2 73 18.2±1.8 36

Total T4 (nmol/L)

 3 years 140.6±25.3 150 140.8±26.8 125

 5 years 146.4±31.8 73 148.9±31.3 36

Notes:

*
Included and excluded significantly different at p=0.05

Abbreviations: BDE, brominated diphenyl ether; ETS, environmental tobacco smoke; T4, thyroxine; TSH, thyroid stimulating hormone

a
geometric mean
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Table 2.

Age- and ethnicity-adjusted associations (β, 95% CI) between BDE-47 trajectories (ng/g lipid) and serum 

thyroid parameters; n=185 children and 223 observations.

BDE-47 trajectory Log10TSH (µIU/mL) Free T4 (pmol/L) Total T4 (nmol/L)

Persistent low (34%) Reference Reference Reference

High decreasing (28%) −0.08 (−0.15, −0.01) −0.20 (−0.92, 0.52) −0.61 (−10.66, 9.44)

Low increasing (38%) −0.09 (−0.16, −0.02) −0.65 (−1.37, 0.07) −4.80 (−13.11, 3.51)
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