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Abstract

Objectives: Laser Doppler blood flow measurements have been used for diagnosis or detection 

of peripheral vascular dysfunction. This study used a rat tail model of vibration-induced vascular 

injury to determine how laser Doppler measurements were affected by acute and repeated 

exposures to vibration, and to identify changes in the Doppler signal that were associated with the 

exposure.

Methods: Blood flow was measured immediately after a single exposure to vibration, or before 

vibration exposure on days 1, 5, 10, 15, and 20 of a 20 days exposure.

Results: After a single exposure to vibration, average tail blood flow was reduced. With 20 days 

of exposure, there was a reduction in the amplitude of the arterial pulse on days 10 to 20 in 

vibrated rats and days 15 to 20 in control rats.

Conclusions: More detailed statistical analyses of laser Doppler data may be needed to identify 

early changes in peripheral circulation after exposure to vibration.
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Workers who are regularly exposed to hand-transmitted vibration through the use of power 

or pneumatic hand tools, may develop disorders of the sensorineural and peripheral vascular 

systems commonly referred to as hand-arm vibration syndrome (HAVS).1,2 Workers with 

HAVS can experience cold-induced vasospasms, and blanching of the fingers and hands.1,3 

These symptoms are commonly referred to as vibration white finger (VWF)1,2,4; although 

the use of anti-vibration gloves and tool-handle wraps,5–8 along with job rotation9,10 can 

reduce transmission of vibration to the body, at present, there are still many workers that are 

exposed to significant levels of hand-transmitted vibration (HTV) at work every day. In 
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order to assess the health of the peripheral vascular system in workers exposed to vibration, 

and improve the diagnosis of HAVS, various methods for measuring peripheral vascular 

function are being assessed to determine which tests can be used to monitor changes in the 

vascular system that may lead to alterations in blood flow in workers. By identifying 

consistent changes blood flow in response to occupational vibration exposure, appropriate 

interventions can be implemented to prevent the development of VWF in workers.

A number of recent studies have used laser Doppler to measure vibration-induced changes in 

peripheral blood flow.3,11–13 Laser Doppler is a non-invasive, fairly inexpensive procedure 

that can be used to measure changes in blood flow that are a result of normal aging,14 

various diseases such as diabetes,15–17 or induced by occupational vibration exposure.12,18 

For example, studies have shown that workers diagnosed with VWF display a lower baseline 

blood flow when at rest, and a reduced recovery of blood flow in response to a temporary 

occlusion.12,18 Other studies have shown that workers with HAVS also display a reduced 

recovery of blood flow after exposure to cold.3,12,13 Finally, studies on subjects that have 

never been exposed to hand-transmitted vibration have demonstrated that acute exposures to 

vibration induce transient reductions in finger blood pressure.19,20 Together, the results of 

these studies support the idea that measuring peripheral blood flow by laser Doppler can be 

used for the diagnosis of VWF.

Although laser Doppler can measure changes in blood flow associated with various disease 

states such as VWF (secondary Raynaud), primary Raynaud, and diabetes,12 when the 

vascular system is challenged, it’s unclear if changes in resting blood flow can be used as an 

early indicator of peripheral vascular disease or dysfunction. Measuring blood flow by laser 

Doppler does not require implantation of any device or extensive patient preparation to 

perform. This measure also can be performed repeatedly at regular intervals to track changes 

in a subject’s, worker’s, or patient’s blood flow over time. Therefore, the goal of the current 

study was to use a well characterized rat-tail model of vibration-induced vascular and 

sensorineural dysfunction to determine if changes in peripheral blood flow could be detected 

using laser Doppler. The rat-tail serves as a good model for estimating the effects of 

vibration on the human fingers because the resonant frequency of the rat tail is in the same 

range as the resonant frequency of the human finger, and thus, the physical response of the 

tail and fingers to vibration are similar.21 The biological and physiological responses of the 

peripheral vascular and nervous systems to repetitive vibration exposure are also similar in 

humans22,23 and animals.24,25 Because of these similarities in the responsiveness to 

vibration, the rat tail model was used to examine both the acute, and longer-term effects of 

vibration on blood flow. The first experiment examined the direct, acute effects of vibration 

exposure on tail blood flow to determine if they were similar to those seen in humans. The 

second experiment used a repeated exposure to vibration to determine if there were changes 

in basal blood flow that could be used as a potential physiological marker for the 

development of peripheral vascular dysfunction.
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METHODS

Animals

Male Sprague Dawley rats (6 weeks age, from Hilltop Breeders, PA) were used for all 

experiments. Rats were housed on a 12:12 LD cycle (lights on 06:00 hour), with food and 

water available ad libitum, in an AAALAC International accredited animal facility. All 

procedures performed in the experiments were approved by the Animal Care and Use 

Committee at the National Institute for Occupational Safety and Health (NIOSH) prior to the 

beginning of the experiment. The temperature range of the animal housing and experimental 

room was 21.1 to 22.2°C during both experiments. Rats were acclimated to the facility for 1 

week prior to being included in an experiment. In Experiment 1, rats (n = 4/group) were 

acclimated to restraint by placing them into Broome style restrainers every day for a week. 

After acclimation, rats were assigned to one of three groups, a cage control (no exposure or 

restraint), restraint control (restrained and placed into vibration exposure chambers), or 

vibration-exposed group (restrained, placed into the exposure chamber, and their tail 

exposed to vibration). Animals were exposed to a single, 4 hours bout of tail vibration or 

restraint and blood flow was measured immediately following the exposure. In Experiment 

2, rats (n = 6/group) were acclimated to restraint and then assigned to one of two groups; a 

restraint control or vibrated group. Because there were no significant differences between 

the cage and restraint control groups in Experiment 1, a cage control group was not used in 

Experiment 2. In Experiment 2, rats were exposed to vibration or restraint control conditions 

for 4 h/d, 5 days a week (M-F) for 20 days.

Exposure

Vibrated and restraint control rats were placed into Broome style restrainers prior to each 

exposure. Vibrated rats had their tails secured to a platform attached to a shaker as 

previously described.21 The tails were secured with four, 1 cm wide elastic straps. These 

straps kept the tail in contact with the platform without applying too much pressure. 

Restraint control rats also had their tail secured to a platform in an identical manner, but the 

platform was secured to isolation blocks so the animals did not receive a vibration exposure. 

In Experiment 1, rats were exposed to a single 4 hours bout of cage control, restraint control, 

or vibration (frequency: 125 Hz, acceleration 49 m/s2, root mean squared). In Experiment 2, 

rats were exposed to restraint or vibration for 4 h/d, 5 days (M-F) per week for 20 days using 

an exposure with the same vibration frequency and acceleration as that used in Experiment 

1. This frequency was chosen for these experiments because it is within the resonant 

frequency range of the tail,21 and exposures at this frequency induce changes in peripheral 

vascular function and morphology.25–27

Laser Doppler Blood Flow and Skin Temperature Measurements

Laser Doppler measurements were made using a Peri-flux system 5000 and PF 450 

thermostatic small angle probe (Primed, Stockholm, Sweden). Prior to each reading the 

machine was calibrated by placing the probe into the calibration solution supplied by the 

manufacturer. Once calibrated, the probe was secured in a ring stand and positioned below 

the opening of a stainless steel, rectangular holder used to support the tail stable during 

recording. Measurements of blood flow were collectedat 30 Hz, inan isolationchamber to 
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prevent external noise or stimuli from affecting the measurements. In Experiment 1, blood 

flow (perfusionunits) and tail temperature (°C) were collected for 5 minutes immediately 

before and immediately following the exposure. A 5-minute collection period was chosen 

because studies in humans have demonstrated that blood flow returns to pre-exposure levels 

fairly quickly after an acute exposure to vibration.20,28 To collect the blood flow 

measurement, each animal was placed into an isolation chamber, and their tail was placed 

into a specialized holder with the laser Doppler probe attached. PF 450 thermostatic small 

angle probe measured blood flow in a 1 cm area between the 15th and 16th vertebrate of the 

tail. The temperature sensor surrounding the laser simultaneously measured the temperature 

of the tail. After the blood flow measurement was completed, animals were returned to their 

home cage. In Experiment 2, rats were restrained, placed into the isolation chamber, and 

blood flow and tail temperature were collected for 15 minutes prior to vibration exposure on 

day 1 (pre-exposure), 5, 10, 15, and 20 of the exposure. Measurements were made prior to 

the exposure to determine if there were any effects of vibration on blood flow that were 

maintained and may be indicative of a longer term problem in the functioning of the 

peripheral vascular system. Laser Doppler data were collected for 15 minutes because the 

goal of the study was to determine if there were vibration-induced changes in basal or 

resting blood flow. Collecting measurements for an extended period of time, provided more 

data that could be used to identify changes smaller changes that are associated with the 

exposure.13,14,17 Immediately following the blood flow measurements, rats were exposed to 

vibration or restraint conditions.

Statistical Analyses

To determine if vibration exposure had a significant effect on blood flow in Experiment 1, 

the average tail temperature and blood flow were calculated over the 5 minutes before and 

after the exposure and data were analyzed using 2-way mixed model analysis of variances 

(ANOVAs) (treatment [2] × pre vs post [2]) where animal served as a random factor. In 

Experiment 2, average blood flow was calculated for the 15 minutes collection period. Some 

animals moved during blood flow measurement, resulting in either very high readings of 

blood flow, or the inability to measure blood flow. The time over which these disruptions 

occurred was usually brief (usually less than 10 seconds), but the fluctuations in blood flow 

measurements during these periods greatly affected the average blood flow calculation. To 

reduce variability in the mean due to motion, limits were set (blood flow less than 2 or 

greater than 100 perfusion units) based on previous data collected in the laboratory, and 

these regions of the data were normalized by calculating running means. To calculate a 

running means the 20 measures prior to and the 20 measures following motion or loss of the 

blood flow reading were averaged, and this average (ie, the running mean) was used to 

replace data lost to movement during the measurement. Data were analyzed using a 2 

(treatment) × 5 (days) mixed model ANOVA where animal served as a random variable. In 

addition, the average blood flow over each 3-minute interval was calculated and analyzed 

using the mixed model ANOVAs to determine if there were differences in blood flow over 

the testing interval. Multiple pairwise comparisons were made using Tukey-HSD tests. Fast 

Fourier transform (FFT) analyses were also performed to identify peaks in the Doppler 

signal. To perform these analyses, the data were divided into 25 sampling boxes for 

analyses. Therefore, the window length for Experiment 1 was 12 s/box and the window 

Krajnak et al. Page 4

J Occup Environ Med. Author manuscript; available in PMC 2019 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



length for Experiment 2 was 36 s/box. Studies have shown that the higher frequency peak is 

representative of blood flow, and the lower frequency peak is usually indicative of the 

arterial pulsatile movement.13,17,29 Changes in the area of the curves obtained by FFT were 

analyzed using one way-ANOVAS to determine if these parameters changed as a result of 

vibration exposure. Statistical analyses were performed using Jmp 13.0.0 (SAS Institute, 

2016). Differences with P < 0.05 were considered statistically significant.

RESULTS

Experiment 1

Prior to the exposure, there were no significant differences in tail temperature between the 

three groups (Table 1). However, after the exposure tail temperature was significantly lower 

than pre-exposure temperature in all three groups of animals. When post-exposure tail 

temperature was compared, temperature in restraint controls and vibrated rats were 

significantly lower than the tail temperature in cage control rats (Table 1). Tail blood flow 

data are presented in Fig. 1. Prior to exposure, there were no significant differences in blood 

flow between the different groups of animals. However, there was a pre-post exposure 

difference in blood flow in vibrated rats, with blood flow being lower post- than pre-

exposure (A: *P < 0.05). In addition, when just the post-exposure data were analyzed, blood 

flow was significantly lower in vibrated than cage control rats (A: #P < 0.05). Restraint 

control rats did not display significant changes in blood flow as compared with the cage 

control animals. FFT analyses were also performed on the raw data from each animal, and 

these analyses identified two specific peaks in the data; one peak with a frequency of 

approximately 1 Hz and another with a peak frequency of approximately 0.4 Hz. There were 

no significant group or pre-post exposure differences in the peak height at either the 1 or 0.4 

Hz peaks (Fig. 1B and C).

Experiment 2

Tail temperature collected prior to restraint control or vibration exposure (during the pre-test 

[day 1], and on days 5, 10, 15, and 20 of the experiment) did not differ over the duration of 

the experiment, or between groups (Table 2). There also were no significant effects of 

restraint or vibration on average blood flow (perfusion units) on over the course of the 

experiment (Fig. 2). Averages calculated every 3 minutes during the recording period were 

also analyzed and there were no significant group differences in blood flow over any of these 

intervals. FFT analyses were also performed on the raw data from each animal. Analysis of 

the first peak (ie, 1 Hz) revealed that there was a significant reduction in the height of this 

peak in the control animals on day 5 (Fig. 3A *P < 0.05). Figure 3B and C shows the 

average peak heights of the lower frequency peak (0.4 Hz) over the exposure period. In 

restraint control rats, the amplitude of this peak was lower on days 15 and 20 of the 

experiment than it was pre-exposure (Fig. 3B). In the vibration exposed rats, there was a 

reduction in the amplitude of lower frequency peak on days 10 and 15 of the experiment as 

compared with the pre- and 5-day exposure measurements. Although the measure was also 

slightly reduced on day 20, this difference was not statistically significant (Fig. 3C: P < 

0.07).
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DISCUSSION

The goal of this study was determine if laser Doppler measurements could be used to 

identify changes in basal blood flow that could be used as a maker of vibration-induced 

vascular dysfunction. Previous studies from a number of laboratories have shown that the 

rat-tail model is a good surrogate for studying the effects of vibration on the human fingers.
8,21,24,25,30,31 In Experiment 1, the acute effect of vibration on blood flow was measured. 

Blood flow was reduced immediately following a single 4 hours exposure to vibration. 

These data are consistent with the results of other studies showing that an acute exposure to 

vibration results in a reduction in blood flow in a rat-tail model,32 and in human fingers.
33–35 However, based on the analyses of the laser Doppler measurements collected after 

repeated exposure to vibration in Experiment 2, a more detailed analyses of blood flow data 

might needed detect early changes, and monitor the progression of peripheral vascular 

dysfunction.

In the first experiment tail temperatures were lower in all animals after exposure than prior 

to exposure. These pre-post exposure changes in temperature are most likely the result of the 

time of day that the measurements were taken. The pre-exposure measure was collected at 

approximately 08:30 and the post-exposure measure was collected at approximately 13:00 

hours. In animals housed on a 12:12 LD cycle, the daily nadir in body temperature occurs 

approximately 6 hours after the lights on in the colony room.36 Thus, it is likely that pre-post 

exposure decrease in temperature seen in all the animals was the result of the circadian 

fluctuation in temperature. Analyses of tail temperature post-exposure found that 

temperature was significantly lower in restraint control and vibrated rats than in cage control 

rats. In restraint-control rats, this reduction in tail temperature may have been the result of 

inactivity, the fact that the tail was held in a static posture for 4 hours, or a combination of 

restraint and inactivity. The reduction in tail temperature was associated with a slight 

reduction in blood flow in restraint control rats. Tail temperature was also lower in vibration-

exposed than cage control rats following the exposure. This reduction in tail temperature 

was associated with a significant reduction in blood flow in vibration exposed rats. These 

results suggest that although restraint may have a small effect on blood flow and tail 

temperature, vibration exacerbates the effects of restraint, and further reduces blood flow to 

the exposed appendage. These data are consistent with ex vivo data showing that a single 

exposure to vibration, but not restraint, results in an increased sensitivity to vasoconstriction 

induced by a α2C- adrenoreceptor agonist, and a reduced sensitivity to acetylcholine-

induced vasodilation.10,26,37

In the second experiment, blood flow was measured prior to beginning the experiment (pre-

exposure or day 1) and on days 5, 10, 15, and 20 of exposure. Because the results of 

Experiment 1 demonstrated that the responses of animals and humans to vibration are 

similar, in that there are acute effects of vibration on blood flow, the goal of the second 

experiment was to determine whether there were changes in blood flow that developed and 

were maintained over repeated exposures. Prior to the beginning of the experiment, blood 

flow wasn’t different in restraint control (control) and vibration exposed rats. Average blood 

flow was not significantly affected by vibration or restraint over the course of the 

experiment, although there was a trend for it to be lower in vibrated rats on day 20 of the 
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exposure. These data suggest that it may be possible to detect a change in average basal 

blood flow with a longer exposure to vibration. There is some indication that basal laser 

Doppler measurements can be used to detect age and disease-related changes in peripheral 

blood flow.12,14,38 However, there are also studies showing that vibration- or disease-

induced changes in peripheral blood flow are only apparent after some type of vascular 

challenge, such as a cold exposure.11,13,17,18,39 In fact the International Standards 

Organization-recommended method for assessing vibration-induced vascular dysfunction 

uses cold exposure to induce a vasoconstriction and perform finger thermography or 

plethysmography to assess both the response to and recovery from the cold exposure.40 

However, exposure to cold can induce stress and is painful for workers or patients with 

peripheral vascular disorders.41–43 Therefore, the ability to detect alterations in blood flow 

without making a worker or patient uncomfortable would be preferable if a reliable change 

in either blood flow, or the pattern of the laser Doppler signal can be detected.

Recent studies using laser Doppler to assess changes in blood flow have performed time-

series analyses using a number of methods, including FFT’s to analyze changes in the 

frequency spectrum that may indicate early changes in blood flow.17,29,38 We performed a 

FFT on each data set (every recording from each animal) and identified two prominent peaks 

(1.0 Hz and between 0.4 Hz). The higher frequency peak (1 Hz) is an estimate of blood flow.
17,29 Blood flow was reduced on day 5 in restraint control animals, however, the reduction 

was only significant in control rats. It is unclear why there was a reduction in blood flow on 

this day. However, it’s possible that the animals were still adjusting to the exposure 

environment. Although animals were acclimated to restraint prior to the beginning of the 

experiment, once, the study begins, both restraint control and vibration-exposed animals are 

exposed to the noise generated by the shaker during the experiment. This noise produced by 

the shaker at 125 Hz is between 75 and 80 dB, and therefore may initially induce some 

stress in the animals. The peak of the 1 Hz signal seemed to go back to pre-exposure levels 

for the rest of the experiment, although there was a trend for a decrease in the peak of the 1 

Hz signal in vibration exposed rats (P < 0.06 from same day restraint control). It is possible 

that with longer exposures, this estimate of blood flow would show a significant decrease. In 

the current study, longer exposures were not performed because previous data suggested that 

morphological and biological changes indicative of vascular dysfunction are apparent after 

10 days of exposure.27 However, morphological and cellular changes seen after 10 days of 

exposure, may not be directly related to, or indicative of blood flow.

Analyses of the lower frequency peak (0.4 Hz) in the laser Doppler recording, which is 

indicative of arterial pulsation or motility,17,29 showed changes in response to both restraint 

control and vibration exposure. In restraint control rats, peak amplitudes were significantly 

reduced on days 15 and 20 of the experiment, where as in vibration-exposed rats, peak 

amplitudes were significantly reduced on days 10 and 15, and marginally reduced on day 20 

of the exposure (P < 0.07). Because both groups displayed changes in the amplitude of this 

peak, it is likely that restraint of the animal and the tail contributed to a reduction in the 

vascular pulse. Studies in both humans and animals have shown that maintaining a static 

position over a period of time can induce a thickening of the smooth muscle walls of larger 

arteries and a reduction in blood flow to the immobile area of the body.44–46 These data also 

are consistent with the findings of anatomical studies in both animals and humans showing 
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that there is a remodeling of the arterial wall with exposure to vibration22,27 and in people or 

animals with certain diseases such as diabetes.39,47,48 The arterial wall becomes thicker, and 

the internal wall of the blood vessel is reduced.27,31 These changes make the artery less 

pliable and could affect the measure or arterial pulsativity.25,27 Because the reduction in the 

amplitude of this peak occurred earlier in vibration-exposed than restraint-control rats, it is 

likely that vibration exposure exacerbates the effects of restraint. In fact, the histological and 

biological changes that occur as a result of repetitive vibration exposure show that exposure 

to vibration at the resonant frequency results in changes morphology, and the expression of 

reactive oxygen species, inflammatory factors and factors involved in remodeling, and these 

changes may result in a reduction in blood flow (because the lumen of the artery is 

narrowed) and an increase in vascular stiffness.27 However, longer exposures could be 

performed to determine if the reductions in these peaks is maintained and if these markers 

can be used to as a monitoring tool, to identify individuals at risk for developing vibration-

induced vascular disorders.

Laser Doppler is a fairly simple and non-invasive technology that could potentially be used 

to assess vascular health in workers regularly exposed to HTV. The results of this study 

suggest that average blood flow measurements can be used to detect changes immediately 

following an exposure to vibration. However, if basal blood flow is to be used to assess the 

more chronic effects of vibration exposure on the peripheral vascular system, more complex 

analysis methods that not only assess blood flow, but also the composition of the laser 

Doppler signal may be more sensitive, and better early indicators of changes in vascular 

health than average blood flow.
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FIGURE 1. 
Average blood flow over a 5-minute period was collected in cage control, restraint control, 

and vibrated rats before (pre) and after (post) exposure. Average blood flow was lower post-

exposure than pre-exposure in vibration exposed rats (A: *P < 0.05). Post-exposure blood 

flow in vibration exposed rats was also lower than blood flow in cage or restraint control rats 

(A: #P < 0.05). FFT analyses of the data revealed two prominent peaks in the laser Doppler 

signal, a 1 Hz peak indicative of blood flow and a 0.4 Hz peak that is associated with 

vascular pulsativity. A single exposure to vibration did not affect the peak amplitude of 

either 1.0 or 0.4 Hz peaks (B and C, respectively). FFT, Fast Fourier transform.
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FIGURE 2. 
Average blood flow on days 1 (pre-exposure), 5, 10, 15, and 20 during a 20 days exposure. 

Vibration exposure did not significantly alter average blood flow in the tail. The data 

represent total average blood flow during 15 minutes measurement.
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FIGURE 3. 
Two peak frequencies in the measured blood flow were identified. The first peak (1.0 Hz) 

represents blood flow (A), and the other peak (0.4 Hz) represents arterial pulse (B: control, 

C: vibrated). The amplitude of the 1.0 Hz peak was reduced on day 5 of the experiment, but 

the difference was only significant in control rats (*P < 0.05, different than pre-exposure). 

There was also a marginal reduction in the 1 Hz peak in vibrated rats on day 20 of the 

exposure (P < 0.06). The amplitude of the 0.4 Hz peak was significantly lower on days 15 

and 20 of the exposure than pre-exposure in restraint control rats (B). In vibrated rats (C), 

the amplitude of the 0.4 Hz peak was lower on days 10 and 15 (*P < 0.05 as compared with 

pre-exposure). On day 20 the peak amplitude in the vibrated animals was also lower but this 

reduction was not significant (P < 0.07).
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TABLE 1.

These Data are the Mean (±SEM) Tail Temperatures (°C) Pre- and Post-Exposure in Rats Exposed to Cage 

Control, Restraint Control, or Tail Vibration

Cage Control Restraint Control Vibrated

Pre-exposure 33.942 ± 0.005 33.952 ± 0.003 33.048 ± 0.003

Post-exposure 24.190 ± 0.25* 22.511 ± 0.110*# 22.462 ± 0.05*#

The post-exposure tail temperature in all groups of rats was lower than pre-exposure temperature (*P < 0.05). However, analyzing only post-

exposure temperature revealed that tail temperature was lower in restrain control and vibrated rats than in cage-control rats (#P < 0.05).
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