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Abstract

Objectives—The widespread application of nano-enabled products and the increasing likelihood
for workplace exposures make understanding engineered nanomaterial (ENM) effects in exposed
workers a public and occupational health priority. The aim of this study was to report on the
current state of knowledge on possible adverse effects induced by ENM in humans to determine
the toxicological profile of each type of ENM and potential biomarkers for early detection of such
effects in workers.

Methods—A systematic review of human studies and epidemiological investigations of exposed
workers relative to the possible adverse effects for the most widely used ENM was performed
through searches of major scientific databases including Web of Science, Scopus, and PubMed.

Results—Twenty-seven studies were identified. Most of the epidemiological investigations were
cross-sectional. The review found limited evidence of adverse effects in workers exposed to the
most commonly used ENM. However, some biological alterations are suggestive for possible
adverse impacts. The primary targets of some ENM exposures were the respiratory and
cardiovascular systems. Changes in biomarker levels compared with controls were also observed;
however, limited exposure data and the relatively short period since the first exposure may have
influenced the incidence of adverse effects found in epidemiological studies.

Conclusions—There is a need for longitudinal epidemiologic investigations with clear exposure
characterizations for various ENM to discover potential adverse health effects and identify
possible indicators of early biological alterations. In this state of uncertainty, precautionary
controls for each ENM are warranted while further study of potential health effects continues.
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Methods

After almost 20 years of engineered nanomaterials (ENM) use in commerce, it is time to
assess what is known about their health effects among workers. As the production of
nanomaterials has grown, so has the work-force handling them. Within this growing
workforce, the numbers of workers with adverse health effects from ENM exposure remains
relatively unknown (1). The following factors can affect the assessment of ENM health
effects: (i) the immense universe of potentially unique ENM and the great diversity in their
toxic potential requires a unique assessment for each type, making a single overarching
assessment of ENM health effects inappropriate; (ii) an assumed low extent of exposures
due to a global attempt to promote responsible development of nanotechnology through
preventive measures to control exposure to workers (2, 3); (iii) difficulty assembling study
cohorts of similarly exposed workers due to decentralized manufacture and use of ENM (4,
5); and (iv) a lack of clarity on appropriate early indicators or biomarkers of adverse health
effects.

A systematic review of the literature on the adverse effects of ENM in workers may be
helpful in determining if effects exist and how deeply they have been investigated.
Determination of the health effects and linkage to the exposure is a function of the extent to
which workers have been exposed and the duration of their exposure. Since it is relatively
early in the commercial history of ENM, the number of exposed workers, the extent of
exposure, and the time since first exposure are generally small, leading to a low probability
for adverse effects to have occurred, particularly chronic health effects. The ENM workforce
is also widely dispersed and generally not very large in any involved workplace.
Consequently, there have been few exposure assessment and epidemiological studies.
Moreover, the heterogeneity of ENM in terms of physico-chemical variables is large. More
precisely, the reactivity of tissues to ENM is highly dependent on particle morphology and
surface features, related to their chemical growth histories (6).

The aim of this review was to identify health effects or early biological alterations that have
occurred in the nanomaterial workforce. In the process, the review identifies the biomarkers
related to such effects. Ultimately, the review seeks to identify knowledge gaps that require
future investigation to help define strategies for suitable risk assessment and management
processes.

The state of knowledge about the health impact of ENM in occupationally exposed
populations was investigated through a systematic review of adverse effects reported in
human studies and epidemiological investigations. Human case studies may provide
preliminary information on possible adverse effects that have occurred in a single subject or
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a small group of subjects because of ordinary or accidental conditions of exposure.
Epidemiologic investigations, on the other hand, are more useful and informative, as they
can show possible relationships between ENM exposure and health effects.

Considering the multitude of ENM employed in workplace settings, and the early phase of
knowledge concerning their possible adverse impact on human health, this review was
primarily focused on the nine most widely used ENM identified in a recent WHO report and
is based on the tonnes (t) of nanomaterials produced annually and used worldwide (7). These
ENM include carbon black (9.6 million t); synthetic amorphous silica (1.5 million t);
aluminum oxide (200 000 t); barium titanate (15 000 t); titanium dioxide (10 000 t), cerium
dioxide (10 000 t); zinc oxide (8000 t); carbon nanotubes (CNT) and carbon nanofibers
(CNF), (100-3000 t); and silver nanoparticles (20 t). “The term ENM refers to materials that
have at least one dimension (height, width, length) that is smaller than 100 nanometers.” (7,

p6)

The systematic review followed the PRISMA (preferred reporting items for systematic
reviews and meta-analyses) guidelines for the period 2003-2018 (8). The year 2003 was
selected as the starting date because it predated authoritative warnings of potential hazards
of nanomaterials, such as those made by The Royal Society and Royal Academy of
Engineering (9). The search used general databases at the University of Cincinnati
(www.libraries.uc.edu), including the Web of Science, Scopus (Elsevier), PubMed,
Academic Search Complete, Summon, and ProQuest. The following terms were employed

to search for epidemiological studies: “epidemiological studies”, “human studies”,

LI TS 7 LT

“nanomaterial”, “nanoparticles”, “nanotubes”, “carbon black”, “carbon nanotubes”,

“titanium dioxide”, “silver nanoparticles”, “cerium oxide”, “zinc oxide”, “aluminum oxide”,
“synthetic amorphous silica”, and “barium titanate”.

A selection criterion for epidemiological studies included the use of a non-exposed or
comparison group in the study. From previous investigations (10, 11), it was expected there
would only be a small number of epidemiological biomarker studies. Most of the extant
epidemiological studies of nanomaterial workers met the inclusion criteria and were
included in the review, although some methodological criticisms emerged from previous
analyses of such investigations (10-12). The aim of this review was to consider the findings
in terms of commonality or divergence (10) between studies, pointing out coherent links
with supporting literature, involving both human and animal subjects. Based on the findings
of human and epidemiological studies, the scientific literature was further searched for
information on mechanisms identified in or inferred from the results.

An electronic search of library databases yielded 109 unique references for human studies of
which 27 were eligible to include in this review (figure 1). Of the 27 human studies, some
studies involved more than one type of ENM and some used the same groups of workers.
Table 1 describes principle findings from studies of nanomaterial workers, that is, workers
exposed to contemporary ENM. The following sections will summarize results obtained in
human case and epidemiologic studies by ENM category.
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Carbon black

Carbon black is a generic term for a high volume commercial material of many different
types of amorphous carbon with a wide range of particle sizes. Carbon black has been in
commerce for over a century (13). Particle size may vary with use. Primary particles range
from 1-500 nm; however, particles generally aggregate to sizes of 50-600 nm and, in turn,
aggregates agglomerate to micron sizes (14). Carbon black particles of nanoscale size are
manufactured by various vapor-phase processes, pyrolysis, and partial combustion or
thermal decomposition of gaseous or liquid hydrocarbons (14). Non-malignant respiratory
morbidity in terms of pulmonary function decrement and respiratory symptoms was seen in
carbon black workers and was strongly correlated with the levels of exposure (15-19). The
International Agency for Research on Cancer (IARC) deemed as inconsistent epidemiologic
data of carbon black workers, which show some indications of lung cancer (14). The IARC
did find a more consistent pattern of lung cancer in animal studies supported by mechanistic
investigations (14) and concluded there was sufficient evidence in experimental animals for
carcinogenicity. Consequently, carbon black was classified as a possible carcinogen to
humans (14). However, the studies generally did not identify particle size. It cannot be
excluded that some of the particles could be in the nanoscale range.

Although major concerns exist regarding the potential impact of human exposures to nano-
sized carbon black particles, limited human data are currently available. In relation to
clinical parameter alterations in a cross sectional epidemiological study on carbon black
workers, a significant reduction of lung functional parameters was evident compared to
unexposed controls (20). This reduction of lung functional parameters included the percent
predicted forced expiratory volume in 1 second (FEV1%), FEV1/forced vital capacity
(FVC), percent predicted maximal mid-expiratory flow curve (MMF%), and percent
predicted peak expiratory flow (PEF%). None of the exposed workers had pathologically
low values of these parameters (20). The mean concentration of carbon black in this study,
measured by personal samples was 14.90 mg/m3, which is 4.26 fold higher than the current
TLV of 3.5 mg/m3 (20).

In a subsequent investigation, the same group of researchers analyzed possible changes
exerted by carbon black ENM-occupational exposure on hematological indices (21). Their
results showed a significant increase in peripheral blood eosinophil count in exposed
workers as a sign of nanomaterial induced inflammation (20). These findings were
supported in the previous study of other possible pro-inflammatory biomarkers, which found
a significant increase in circulating pro-inflammatory cytokines, ie, interleukin (IL)-1p,
IL-6, IL-8, macrophage inflammatory protein (MIP)-1p, and tumor necrosis factor (TNF)-a
in exposed carbon black workers compared to controls (20). These results are in line with
those reported in animal investigations demonstrating pulmonary inflammation (19, 22-24)
associated with a severe tissue damage (25, 26) and a significant increase in serum
proinflammatory biomarkers, including pro-inflammatory cytokines in treated animals (20,
27-29).

Although further investigation seems necessary, such preliminary results can suggest that
carbon black nanomaterials may be responsible, at least in part, for the reduction of
pulmonary function and inflammatory response detected in exposed workers. Concerning a
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possible dose—response relationship, the limited available data on environmental exposure
concentrations, as well as the lack of biological monitoring information on occupational
exposure, prevent the achievement of definite conclusions in that regard. Pulmonary
functional alterations observed in workers exposed at concentrations greater than the
adopted TLV underlines the importance of investigating high levels of exposure. However,
from a precautionary perspective, preliminary knowledge regarding the toxicological
behavior of ENM also requires investigation of possible adverse effects on workers exposed
to low concentrations for long periods.

Synthetic amorphous silica (SAS)

Synthetic amorphous silica has been in commerce for >80 years. This silica polymorph is an
intentionally manufactured material that does not contain measurable levels of crystalline
silica (30, 31). It is a nanostructured material consisting of aggregates and agglomerates of
primary particles that are generally <100 nm (32). There are three categories of SAS based
on manufacturing: pyrogenic (7-50 nm); precipitated (5-100 nm), and gels (3—20 nm) (30).
A review of epidemiological studies and case reports of workers exposed to synthetic
amorphous silica going back to 1932 failed to show conclusive evidence of fibrosis, but the
data were limited (30, 33). The studies did not exclude the risk of chronic obstructive
pulmonary disease (COPD) and emphysema, and none are informative with regard to
carcinogenicity (30, 33).

For production workers exposed to nanoscale SAS, no explicit adverse effects have been
found in recent epidemiological cross-sectional studies. However, one case series, Song et al
(34), described seven female workers, employed in the same department of a print plant and
exposed to ~30-nm-sized silica ENM in a polyacrylic ester. The workers had no protective
measures for periods as long as 5-13 months. The workers developed shortness of breath
and pleural effusions. Pathological examinations of the patients’ lung tissue displayed
nonspecific pulmonary inflammation, pulmonary fibrosis and foreign-body granulomas of
the pleura (34). Electron microscopy and energy dispersive x-ray analysis identified and
characterized silica-ENM primarily in macrophages, pulmonary micro-vessels, and pleural
effusions. The findings suggest that these ENM may have contributed in part to the illness
reported by these workers, although it is not clear if these ENM were amorphous silica (35).
A cross-sectional study of SiO»-NP exposed workers had significantly greater cardiovascular
related biomarkers, heart rate variability, vascular cell adhesion molecule (VCAM), and
intercellular adhesion molecule (ICAM) than controls (36).

One hypothesis-generating study (37) demonstrated that workers employed in 14 factories in
Taiwan who handled multiple ENM, including nanoscale silica, had reduced serum levels of
antioxidant enzymes. Considering the key role of ENM induced reactive oxygen species
(ROS) in tissue toxicity, possible biomarkers of early oxidative stress were specifically
investigated in a subset of workers (N=37) using SiO,-ENM (12-200 nm) (38). In this
context, measurements of 8-hydroxydeoxyguanosine (8-OHdG) in urine (38, 39), plasma,
and white blood cells (39) and exhaled breath condensate levels of 8-isoprostane (38) were
significantly higher compared to the controls, while levels of anti-oxidant enzyme activities
were significantly decreased in the exposed group compared to controls (38). When two
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examinations were performed on workers handling SiO,-ENM at baseline and 6-month
follow up, the depression of serum antioxidant enzymes levels, ie, superoxide dismutase and
glutathione peroxidase, were significantly greater in exposed groups compared to controls
(36). As regards epigenetic alterations, which may affect genetic regulation and cellular
differentiation, a significantly lower global level of DNA methylation was observed in
peripheral white blood cells of workers handling SiO,-ENM compared to controls.
Interestingly, such alterations were inversely correlated with the urinary and white blood cell
8-OHdG concentrations (38).

These epidemiological findings (36—39) have been confirmed in animal models in which
exposure to nanoscale SAS particles was reported to induce low systemic and negligible
pulmonary toxicity (40-42). The particle’s ability to distribute in lungs, lymphatic tissues,
and major organs of excretion, such as the liver and kidneys, following inhalation exposure
was limited (43, 44). However, there is evidence from in vivo studies that one type of SAS,
fumed silica, has been shown to generate cytotoxicity and pro-inflammatory effects (31, 45—
47).

Overall, epidemiological findings may support that one of the principal mechanisms of
SiO,-ENM toxicity is the generation of reactive oxygen species and oxidative injury. This is
the major mechanism by which ENM may induce adverse health effects and, in such effects,
possible biomarkers may be found. Innovative effect biomarkers may be identified in
investigations focused on ENM-induced epigenetic effects. These may include not only
methylation changes at the global and repeated DNA level but also possible alterations in
response to ENM exposure at specific loci. Additionally, these investigations indicate that
oxidative DNA damage may have a role in inducing such phenomena. However, these latter
issues need to be clarified with further research. Finally, no data are currently available
concerning the exposure levels potentially responsible for such described alterations. The
pathological alterations that occurred in workers exposed to ENM who were not wearing
personal protective equipment (34, 35) suggest the need to verify the role of collective and
individual exposure controls in managing the risk of possible ENM-induced adverse health
effects.

Aluminum oxide

Aluminum oxide results from refined bauxite, which is subsequently reduced to aluminum
(48). There have been no epidemiological studies of intentionally manufactured aluminum
oxide nanomaterials. However, there have been occupational studies that have shown that
inhaled aluminum oxide particles (size unspecified) are linked to pulmonary fibrosis,
asthma, chronic obstructive lung diseases and possibly lung cancer (49-52). Ultrafine
particles have been identified in primary aluminum smelters and pot rooms (53). Concerning
animal data, pulmonary inflammation and cytotoxicity (54), an increase in the number of
immune cells in BAL fluid (55, 56) and levels of IL-6, MIP-1a, MCP-1a and GM-CSF
were reported after aluminum oxide ENM inhalation. Overall, the lack of epidemiological
studies on possible adverse health effects prevents definite conclusions on the impact that
aluminum oxide ENM may have on the health of exposed workers and possible markers
indicative for early detection of biological alterations.
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Barium titanate

Barium titanate (barium titanium trioxide) is a member of the large family of compounds
with the general formula ABO3, known as perovskites (57). Barium titanate is a widely used
electro-ceramic material that is increasingly used in biology and medicine. It is produced in
a variety of ways and with a broad range of particle sizes, including some <100 nm (57, 58).
There appears to be neither documentation of occupational exposures to barium titanate
nanomaterials nor animal inhalation studies. However, a study of mice injected with
hydroxyapatite-barium titanate composites (nano to submicron agglomerates) for implant
testing indicated an absence of any inflammatory or adverse reactions (59). Considering the
widespread application of this compound at the nanoscale, it seems important to plan future
studies investigating early biological alterations in occupationally exposed populations.

Titanium dioxide

There are four naturally occurring titanium dioxide polymorphs: rutile, anatase, brookite,
and titanium dioxide (B) (14). Particle size plays an important role in many TiO,
applications. The major use of TiO5 is in pigments where particles in the size range of 200—
300 nm are generally employed. Many other uses, eg, in the electronic field, involve
particles <100 nm (14). Epidemiological studies of TiO, production workers show limited
evidence of malignant or nonmalignant health effects, although the particle size was not
specified (14, 60, 61). In 2010, the IARC reviewed epidemiologic data and found inadequate
evidence to classify TiO, as a human carcinogen (12). However, lung tumors observed in
rats following chronic inhalation of nano-sized TiO, included squamous cell keratinizing
cysts, bronchoalveolar adenocarcinomas, and squamous cell carcinomas (62, 63). These
findings led the IARC to consider animal data sufficient for an evaluation of “possibly
carcinogenic to humans” (14).

Epidemiological studies performed on nano-TiO, production workers are generally cross-
sectional in nature. These studies have not shown a clear pattern of health effects, although
some biological alterations emerged as possible indicators of exposure and early effect.
Pelclova et al (64) demonstrated that particles of rutile and/or anatase could be detected in
the exhaled breath condensate (EBC) of exposed workers. The content of the metal in their
breath was significantly higher compared to controls, suggesting a method of measurement
to assess exposure to TiOo-ENM.

Zhao et al (65) recently investigated the pulmonary effects induced by TiO,-ENM in
workers exposed in a packaging workshop to identify possible functional alterations and
biomarkers associated with exposure (estimated mass concentration of 1.22 mg/m3). The
authors found that the observed and predicted values of FVC, FEV1, peak expiratory flow
(PEF), and forced expiratory flow (FEF) 25-75%, were significantly reduced in exposed
workers compared to the controls. In this study, pulmonary function test alterations were
also confirmed by the decrease in serum levels of surfactant protein-D levels, which may be
a preclinical lung damage biomarker caused by cell injury and/or decrease in number of type
Il alveolar epithelial cells. As a possible diagnostic test of airway inflammation, the
fractional exhaled nitric oxide measurement was significantly increased in workers exposed
to TiOo-ENM (66). Additionally, leukotriene levels were significantly elevated in the EBC
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of exposed workers relative to controls and well correlated with workplace Ti concentrations
(67). The possibility of using such biological alterations to monitor the early effects of nano-
TiO, exposures on workers deserves further investigation.

Regarding the cardiovascular effects, Ichihara et al (68) demonstrated that exposure to TiO5-
ENM was associated with heart rate variabilities in workers involved in processing and
handling such nanomaterials. Moreover, to support a possible role of TiO,-ENM in inducing
cardiovascular alterations, Liao et al (36) and Zhao et al (65) demonstrated increased levels
of VCAM-1, ICAM-1, and low-density lioprotein (LDL) as possible cardiovascular early
disease biomarkers.

Concerning the role that systemic inflammatory as well as oxidative stress responses may
have in determining possible adverse health effects, the concentrations of serum amyloid A
(SAA) and high sensitivity-C reactive protein (CRP) were not significantly different between
TiO,-ENM exposed and unexposed workers (65). Conversely, the serum levels of interleukin
(IL)-8, IL-6, IL-1B, TNF-a, and IL-10 as possible pro-inflammatory cytokines, as well as
superoxide dismutase (SOD) and malondialdehyde (MDA), as oxidative stress indicators
were demonstrated to be significantly associated with occupational exposure to TiOo-ENM
(65).

In this regard, a significant increase in markers of oxidative stress damage of nucleic acids
and proteins in the EBC was evident in the more exposed production workers, involved in
micronation, calcination and other TiO,-ENM production activities, than in the lower
exposed groups of research workers and controls (69). In another study, when a panel of
biomarkers of lipid oxidation was investigated in the EBC of workers exposed to TiO,-ENM
during production tasks as well as in office employees of the TiO, production plant,
significant dose-dependent increases were detected compared to unexposed controls (70,
71). In a recent investigation, occupational exposure to TiO,-ENM in manufacturing and/or
handling facilities resulted in significantly higher oxidative biomarkers, such as urinary 8-
OHdG and EBC 8-isoprostane (38).

Such epidemiological findings are supported by extensive animal evidence concerning the
deposition and bio persistence of TiO,-ENM in the pulmonary system (72-75) and the
consequent development of inflammatory reactions (72, 76-82) with possible increased
airway responsiveness (83) as well as acute or sub-acute airflow alterations (84). The
findings of markers indicative of reactive oxygen species (ROS) and pulmonary
inflammation (76, 78-80, 85), although reversible in some cases (86), make a suggestive
case for TiO, having pulmonary inflammogenic effects. Cardiovascular effects have been
also reported in animals in which the inhalation of TiO,-ENM enhanced the phosphorylation
levels of cardiac proteins (87) and impaired vasodilator response (88-91), which may be due
to an increase in microvascular oxidative stress (92).

Overall, these findings support the need for future investigations primarily focused on early
TiO,-ENM clinical effects on the respiratory and cardiovascular systems. Additionally,
inflammatory and oxidative stress early biomarkers should be explored in depth as early
biological indicators of the health impact of such xenobiotics, considering their possible
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predictive role of adverse outcomes. See, for example, the role of CRP as a major
cardiovascular risk factor (93).

A suitable dose-response relationship has not been definitively identified. Preliminary data
suggest positive relationships between levels of exposure, peculiar to job tasks in
nanoparticle settings and biological changes as demonstrated by higher levels of oxidative
stress biomarkers in more exposed production workers (0.13-0.76 mg/m3 particle total mass
concentration; mean particle number range 0.29-2.48 x 104/cm3), compared to lower
exposed research workers (0.16 mg/m?3 particle total mass concentration; mean particle
number 1.32 x 10%/cm3) (69). These findings may give stimulus to in-depth exploration of
dose—response relations with respect to biological markers of exposure such as the Ti
concentration in EBC.

Cerium dioxide

Zinc oxide

Cerium dioxide (CeO,) ENM are increasingly being used in industrial and commercial
applications (94, 95); however, there are no epidemiological studies of workers exposed to
CeO, ENM. Various animal inhalation and intratracheal studies show pulmonary
inflammation and fibrosis (96-100), from the accumulation of CeO, ENM in the lung tissue
(101), as well as surface functionalization of the particles (96, 102). Such inflammatory
responses were characterized by increased polymorphonuclear neutrophils (PMN) and
lactate dehydrogenase (LDH) levels, and augmented expression of CINC-1, CINC-2, and
HO-1 in bronchial lavage fluids (98, 101). Extra-pulmonary toxicity and tubular
degeneration leading to coagulative necrosis in the kidney were also observed (103).

Some workers exposed to (ZnO) fume in welding and metal working operations have been
shown to experience metal fume fever (104, 105). These ZnO fumes are comprised of a large
proportion of nanoparticles (106). While such nanoparticles are considered combustion-
derived, they may be considered “engineered” in the sense that, for welding to be effective,
the appropriate specified temperature range of the materials needs to be achieved.

A study of 118 shipyard workers involved with welding and a comparison group of 45 office
workers showed cardiovascular toxicity and alterations in various biomarkers [decreased cell
viability, increased levels of 8-OHdG, IL-6 and nitric oxide in human coronary artery
epithelial cells] (107). Exposures of the welders to particles were in the range of 5-160 nm
(107). These results obtained with ZnO at the nanoscale confirmed the higher incidence of
cardiovascular disease found in welders (108, 109).

Other than welding exposures, no epidemiological studies of occupational exposures to
ZnO-ENM have been identified. An experimental study of ZnO fumes (2.5 mg/m3 and 5
mg/m? for two hours) in 13 healthy non-smoking volunteers demonstrated the manifestation
of fever and symptoms at the higher dose, as well as fever alone at the lower dose (110).
Metal fumes generally contain nanoparticles. Exposure to ZnO at 5 mg/m3 (60 nm count
median diameter; 170 nm mass median diameter) resulted in elevated plasma levels of IL-6,
as well as myalgias, cough, and fatigue (110). Prior to this study, an earlier investigation of
Zn0O exposure in human subjects produced a metal fume fever in four human volunteers (2
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hours at 5 mg/m3) (110). More recently, a dose-dependent (0.5-2 mg/m?3) increase in
symptoms, ie, fever, throat irritation, cough, minor respiratory symptoms, as well as flu-like
symptoms, were determined after 24-hour post ZnO-ENM inhalation exposure (primary
particle size of ~10 nm for 4 hours) in healthy human volunteers (111). However, the most
sensitive outcomes were the concentration dependent increase in both CRP and SAA levels
determined in blood 24 hours after exposure, while all concentrations of ZnO-ENM elicited
significantly increases in neutrophils at the same time point (111).

In animals exposed to ZnO-ENM, in addition to pulmonary inflammation and lung injury
(110, 112), researchers have found degeneration and necrosis of the myocardia after sub-
chronic conditions of exposure (112). After acute and sub-chronic exposures, the following
biomarkers of inflammation were detected: increased white blood cell count in the
peripheral blood of exposed animals (113), transient increases in total cells and neutrophil
counts, and cytokine induced neutrophil chemoattractant (CINC-1, CINC-2) and heme
oxygenase-1 (HO-1) in bronchoalveolar lavage fluid (BALF) (114, 115). Co-exposure of
ZnO-ENM and toluene, at their respective permissible exposure level in the paint industry,
was reported to potentially produce a progressive inflammatory and fibrotic response in the
alveolar tissues of the lungs of co-exposed rats (116).

Overall, the effects observed in healthy human-volunteer investigations suggest the
occurrence of a systemic inflammation following ZnO-ENM exposure, which may be
explained by either primary local inflammation of the respiratory tract/lung and secondary
resorption of inflammatory markers or by primary systemic inflammation due to resorbed
zinc ions (111). The lack of occupational epidemiological data could be addressed in future
investigations aimed to define dose— response relationships, as well as possible biomarkers,
like acute phase proteins CRP and SAA, which could be easily employed in biological
occupational monitoring and may be indicative not only of inflammatory reactions but also
possible cardiovascular events.

Carbon nanotubes and carbon nanofibers

Carbon nanotubes (CNT) and carbon nanofibers (CNF) are relatively new commercial
materials. Recent epidemiological studies have specifically investigated occupational
populations exposed to CNT (117-120). It is important to note that there are many different
types of CNT in commerce, and these studies generally did not distinguish the specific types
of CNT, other than identifying multi-walled CNT (MWCNT). Additionally, some MWCNT
have residual impurities derived from the manufacturing process that can influence their
reactivity and, consequently, the induced biological alterations that may function as possible
biomarkers. In a pilot study, Lee et al (121) failed to find significant changes in the
pulmonary function, hematology, and blood chemistry in nine MWCNT manufacturing
workers compared to four office workers.

In another study to assess markers of lung inflammation, differences in fractional exhaled
nitric oxide (FENO) were observed between MWCNT-exposed workers and controls, but no
differences were evident in lung function or pneumo-proteins CC16, SP-A, and SP-D (122).
The reduction in FENO concentrations due to MWCNT exposure suggest that MWCNT
may have an inhibitory effect on nitric oxide synthase in the airways. Also, as further
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respiratory effect indicators, Fatkhutdinova et al (123), found that occupational exposure to
MWCNT was associated with changes in fibrotic markers. A biomarker for interstitial lung
disease, KL-6, was found in increased levels in collected sputum samples in exposed
workers manufacturing MWCNT compared to controls (123). Profibrotic inflammatory
biomarkers, such as the cytokines IL-1, IL-4, IL-5, IL-6, IL-8 and TNFa were significantly
higher in sputum of exposed workers than controls; and serum IL-1B, IL4 and TNFa were
also significantly elevated in the exposed group (123).

Concerning alterations in immunological and hematological parameters, the comparison
between MWCNT-exposed workers and age- and gender-matched controls showed
significant upward dose-dependent trends for blood concentrations of various
immunological indicators, including C-C motif ligand 20, basic fibroblast growth factor, and
soluble IL-1 receptors (122). Significant decrease in neutrophils and elevation in monocytes,
mean platelet volume, immature platelet fraction, and immature reticulocytes fraction were
evident with increasing exposure to MWCNT (122). Beard et al (124) investigated the
relationship between CNT and CNF exposure and biomarkers of fibrosis, inflammation, and
oxidative stress in workers employed in manufacturing, using or distributing CNT and CNF.
Variable percentages of the workforce employed in such facilities (up to 27%), had CNT and
CNF present in the sputum samples as internal dose indicators (2). CNT and CNF exposure
was more consistently associated with sputum fibrosis and oxidative stress biomarkers than
inflammation and cardiovascular biomarkers, ie, 8-OHdG, SOD, fibrinogen, and VCAM-1
(124). In blood, positive associations were observed between exposure and biomarkers from
all the above-mentioned domains, including KL-6, CRP, ICAM-1 and VCAM-1 (124).
Investigating the same workforce enrolled in the Beard study (124), Schubauer-Berigan et al
(117) found that the inhalable elemental carbon (EC) concentration and duration of work
with CNT and CNF were positively associated with the development of respiratory allergies.

As regards cardiovascular adverse effects, a recent study (125) investigated the associations
between MWCNT-exposure and biomarkers of cardiovascular risk. The authors found a
significant dose-dependent upward trend in the concentration of endothelial damage marker
ICAM-1 in 22 MWCNT-exposed workers, compared to age-/gender-matched unexposed
controls (125). This may indicate a MWCNT-induced endothelial activation and an
increased inflammatory state, which may be related to cardiovascular effects. Additionally,
in another study, resting heart rate was positively related to inhalable and respirable
elemental carbon concentrations (used to quantify CNT and CNF concentrations), while
hematocrit counts showed a positive relationship with CNT and CNF structure counts (117).

Concerning oxidative stress reactions, MWCNT manufacturing workers had significantly
higher levels of the MDA, 4-hydroxy-2-hexenal (4-HHE) and n-hexanal levels in EBC than
office workers (121). Low levels of residual metal catalyst were found in air and blood, and
blood molybdenum was well correlated with MDA and n-hexanal concentrations, suggesting
a possible role of such metal contamination in affecting the toxicological profile of MWCNT
(121). Although the study by Lee et al (121) failed to show adverse health effects, it
indicated that early biomarkers of effect can be determined in the collected biological
matrices. These markers were not necessary indicative of pathologic changes or early
adverse effects. The markers collected in the EBC are established indicators of oxidative
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stress, although they may not be specific for MWCNT exposure. The use of aldehydes as
dependent variables is based on their relationship with inflammation and ROS produced by
activated inflammatory cells. While ROS formation is a normal physiologic process that
occurs in every cell, increased levels of ROS can initiate harmful pathophysiological effects
(118). Additionally, there is increasing evidence that aldelydes generated during the process
of lipid peroxidation are also involved in many of the pathophysiological effects associated
with oxidative stress in cells and tissues (119). Lipid peroxidation is one of the major
mechanisms of ROS damage, and it occurs when oxidation of cell membranes initiates a
chain reaction, which leads to the formation of aldehydes such as MDA, 4-HHE and n-
hexanal such as observed in the Lee et al (121) study.

The case for risk of carcinogenicity is less clear, but may be a function of the type of CNT.
In this regard, the recent IARC evaluation for CNT found that there is inadequate evidence
in humans for the carcinogenicity of CNT, although there is sufficient evidence in
experimental animals for the carcinogenicity of MWCNT-7 (126). For this reason,
MWCNT-7 have been classified as possibly carcinogenic to humans (Group 2B), while
MWCNT other than MWCNT-7 and single-walled carbon nanotubes are not classifiable as
to their carcinogenicity to humans (Group 3) (126).

The whole blood gene expression profiling may also act as a tissue surrogate and may
provide a powerful and an informative approach to investigate various disease conditions
and identity biomarkers (127). Shvedova et al (127), in this regard, investigated the global
non-coding-RNA and microRNA expression profiles in blood of exposed workers, having
direct contact with MWCNT aerosol for =6 months and compared these profiles with those
of unexposed professional and/or technical staff. Interestingly, the identified pathways and
signaling networks revealed the potential for MWCNT to exert pulmonary and
cardiovascular adverse effects, as well as to trigger carcinogenic outcomes in humans.
Epigenetic alterations in blood cells, induced by occupational exposure to CNT, could
characterize another focus for biological monitoring research. In this perspective, Ghosh et
al (128) investigated whether exposure to MWCNT in the workplace may induce DNA
methylation changes at the global and/or gene-specific level in some functionally important
genes in peripheral blood cells. The authors identified alterations on CpG sites in the
promoter regions of functionally important genes in peripheral blood cells involved in the
epigenetic machinery (ie, DNMT1, HDAC4), in the DNA damage response and G1/S
transition in the cell cycle (ie, ATM), as well as in oncogenic activity (ie, SKI). The detected
methylation alterations might inhibit or promote the gene expression of the corresponding
genes.

The biomarker findings in studies of workers exposed to CNT are consistent with
pathological findings identified in studies of laboratory animals exposed via inhalation to
CNT that reported pulmonary inflammation, increased collagen thickness, and robust
inflammatory response with severe oxidative stress leading to fibrosis and formulation of
granulomatous lesions (120, 123, 129-140). In this scenario, T helper (Th) 2-dependent type
2 immune pathways have been recognized as important drivers for the development of CNT-
induced fibrosis (120). Upon stimulation, activated Th2 immune cells and type 2 cytokines
interact with inflammatory and tissue repair functions to stimulate an overzealous reparative
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response to tissue damage, leading to organ fibrosis. Some of the animal studies also showed
systemic inflammation (141), genotoxic effects (142) and an impairment in vascular smooth
muscle reactivity (143), but also an immunosuppressive role of CNT exposure (144) and a
carcinogenic potential due to interference with the mitotic spindle apparatus (145).

Overall, it can be concluded that at present there are no reported overt adverse effects in
workers exposed to CNT. There is a consistent pattern of findings indicating that pulmonary
inflammation and fibrosis could be potential outcomes in exposed populations, depending on
the exposure level and duration of exposure (117, 124). Some fibrosis, inflammatory and
oxidative stress biomarkers have been identified to be more strongly associated with CNT
and CNF exposure (117, 124); however, to date, the lack of environmental or internal dose—
exposure measurements prevents the identification of suitable dose—response relationships.
Future research should clarify biological changes with respect to different exposure metrics,
ie, environmental elemental carbon levels, count of CNT in sputum samples, as well as
possible confounding functions due to possible metal contaminations of CNT that may bias
the CNT health impact as well as biomonitoring results. Future research on global gene
expression profiles as well as epigenetic effects induced by CNT may provide information to
get molecular insights into the CNT-induced toxicity and pathogenesis in humans and to
verify in large-scale prospective studies their validity and potential applicability as exposure
and effect markers in occupationally exposed subjects (127).

Silver nanoparticles

Silver nanoparticles (AgENM) are the most common ENM in consumer products
(www.nanoproject.org). Demand is growing for a wide variety of silver nano-structures,
such as spheres and wires (146). A few health studies have focused on workers explicitly
exposed to AGENM (36, 147, 148). Two of the studies reported on the same sample of two
workers, employed for seven years in silver nanomaterial manufacturing, who were exposed
to 20-30-nm-sized AGENM at concentrations of 0.1 and 0.4 pg/m3 respectively, in their
facility (147, 148). The workers showed no significant adverse changes in their health status
(147, 148). In another study, nanomaterial handling workers in 14 manufacturing facilities in
Taiwan were stratified for Ag-ENM (N=6 workers); significant increases were detected in
cardiovascular disease biomarkers, VCAM and IL-6, and in reduction in heart rate frequency
(36).

Concerning animal investigations, toxicity in the lungs, including inflammatory reactions
and histopatho-logical alterations (149-158) were reported to be responsible for pulmonary
functionality alterations (155, 159) or allergic responses (160): however, other investigations
have failed to detect hematological effects, systemic alterations, and pulmonary function test
changes after Ag-ENM exposure (161, 162). Histopathological changes in the kidney and
liver (bile duct hyperplasia and necrosis) were identified after inhalation exposures, such as
extra-pulmonary effects (155, 158, 159). Researchers have also reported changes in the
expression of genes involved in xenobiotic metabolism and in the development and integrity
of motor neurons; intracellular molecular patterns that regulate diverse cellular processes,
including morphology, adhesion, matility; and apoptosis potentially related to neurotoxic
and immunotoxic effects (163, 164).
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The lack of human data relative to this widespread ENM requires further investigation on
potential health effects in exposed workers and on the selection of possible biomarkers.
Animal preliminary findings may be helpful to guide the verification of possible biological
changes in humans.

Discussion

Understanding the effects of ENM in exposed subjects is becoming a public and
occupational health priority due to the widespread application of nano-enabled products and
the increased likelihood for consumer and workplace exposures. Although the number of
currently available occupational field and epidemiological studies is quite limited,
preliminary considerations regarding the possible health impact of ENM and biomarkers of
effect can lead future investigations.

Summary of data and occupational health considerations

A summary of the findings for each of the nine high volume ENM is shown in table 2. The
third column shows pathological effects in workers in epidemiological studies. That is,
whether a study was identified that had significant pathologic effects related to exposure to
an ENM. The fourth column reports epidemiological studies that identified a change of
potential biomarkers of adverse effects.

Overall, to date there is limited evidence of adverse health effects in workers exposed to any
of the most used ENM. All of the substances in table 2 except CNT have had long periods of
use in some form (where the primary particle may have been <100 nm) and, hence long
periods of worker exposure. Much of that exposure was to agglomerates in the micron-size
range, and most of the studies did not clarify particle size, preventing the extrapolation of
suitable conclusions for the toxicological profile of the nanoscale size of the chemical
substances. The strongest historical findings are non-malignant respiratory disease in
workers exposed to carbon black and metal fume fever in workers exposed to zinc oxide.
Furthermore, explicit pathologies induced by ENM exposure have not yet been
demonstrated in studies of exposed workers. The respiratory system has been reported as the
primary target organ for the inflammogenic potential of both carbon-, and metal- or metal-
oxide-based ENM in workplace and experimental settings, although some conflicting
evidence in this regard may be due to the different physico-chemical characteristics of ENM,
in terms of particle size (149), surface functionalization/coating (56, 77, 96, 102), solubility
(40), particle dispersion (114), residual impurities (121) as well as level and duration of
exposures (129). This is important information considering that the respiratory tract is the
primary route of entry of ENM in occupational settings. Additionally, the relevance of the
physico-chemical characterization of ENM in affecting their toxicological profile raises
some concerns regarding the generalizability of findings obtained in occupational exposure
settings where multiple ENM co-exposures may occur or where too few individuals work
with a single agent preventing assessment of differences between chemicals in a meaningful
way (37, 165).

Although the mechanisms for ENM-induced health effects are not fully known, the
persistent inflammatory and related oxidative stress reactions induced by ENM may
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determine alterations in lung functionality, as reported in workers exposed to carbon black
(20) or to TiO,-ENM (65). In line with these results, inflammatory responses induced by
ENM exposure, and direct lung tissue damage exerted by nano-sized particle deposition and
biopersistence in alveoli and bronchial walls (25, 54, 72, 101), were reported to result in
fibrogenicity and increased airway hyperresponsiveness in laboratory animals (83, 97, 120,
129, 155, 159). The animal inhalation studies generally supported the human
epidemiological biomarker findings and showed further significant effects for endpoints not
yet seen in workers. In this regard, Th2-dependent type immune pathways have been
indicated as potential triggers for the development of CNT-induced fibrosis (120). The idea
that ENM may have a fibrogenic function in exposed workers may be confirmed by
epidemiological findings of increased levels of pro-fibrotic markers in serum and sputum of
MWCNT-handling workers (123, 124) and by RNA transcriptional analysis (127). Various
findings are highly suggestive of the potential for cardiovascular dysfunction resulting from
a systemic inflammatory status following pulmonary exposure (89, 90, 112, 117, 124, 125,
146, 166).

Biological monitoring implications

Overall, considering the central role of the respiratory system in the toxicokinetic and
toxicodynamic profile of ENM, the EBC, which needs further validation, has been proposed
as a possible biological matrix to detect biomarkers of exposure, ie, the titanium content (64)
and early effect, ie, alterations in pro-inflammatory, oxidative stress indicators (66, 67, 69—
71, 121, 122), as well as lung damage biomarkers (SP-D) (65). Additionally, nucleic acid,
and protein and lipid oxidation biomarkers have been proposed as possible indicators of the
oxidative stress reactions induced by ENM in the pulmonary system that can be assessed in
EBC (69-71, 121). Moreover, considering that the persistence of inflammation and oxidative
stress in the lungs may have a “systemic” impact on exposed organisms, biological
monitoring investigations should consider biomarkers of systemic inflammatory and
oxidative stress response in serum and changes in blood cell counts. This recommendation is
supported by preliminary results demonstrating a significant association between
occupational levels of exposure and increased serum concentrations of inflammatory
cytokines, alterations in oxidative stress indicators, including anti-oxidant enzymes, and
changes in blood cell count, ie, neutrophil reduction, and monocytes and reticulocyte
increase in workers (20, 36, 65, 122-124).

Early biological alterations of blood parameters correlated to the cardiovascular
functionality, ie, VCAM and ICAM concentrations as well as modifications in heart rate
variability have also been explored in early human investigations on ENM toxicity with
positive results for nano-silica, TiO, and CNT (20, 65, 68, 117, 125). In line with such
epidemiological data, an impaired vasodilator response due to an increase in microvascular
oxidative stress or altered circulations mediators was detected in experimental animals (88—
92, 167). Few human studies reported data concerning the effects of ENM exposure and
CRP, a well-known cardiovascular risk factor and an easy biomarker to measure in blood
samples. All these issues stress the need to examine the role of ENM exposure on the
cardiovascular system, considering the possible severe implications of such alterations on
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the health of exposed workers, and underline the need to focus additional investigations on
more easily applicable biological indicators.

Emerging scientific evidence demonstrates that environmentally-induced epigenetic
alterations may play a role in the manifestation of a number of human diseases, including
cancer, mental disorders, obesity, and other severe conditions (168). Although the
epidemiological data concerning epigenetic changes resulting from ENM exposure are
preliminary (38, 127, 128), future testing will be useful to help distinguish between adverse
health effects induced by ENM exposure compared to adaptive changes. However, to initiate
epigenetic toxicity monitoring for ENM exposure, it seems necessary to clarify ENM effects
on the epigenome and define robust causal links between exposure, epigenetic changes and
adverse phenotypic endpoints to develop improved assays to test such endpoints (169).

Additionally, considering the possible carcinogenic potential recognized for some types of
ENM, ie, MWCNT-7 (126) and TiO»-ENM (129), it may be important to define early ENM
biomarkers of genotoxicity. Testing this important toxicological aspect is crucial in safety
assessment of new ENM compounds and products and may influence an approach to define
suitable strategies for risk assessment and management in occupational settings.

Future research needs

This review revealed a need for robust longitudinal epidemiologic studies with clear
exposure characterization, including particle size, extent of agglomeration, and other
relevant physicochemical parameters. Of particular importance, studies that found strong
evidence of adverse effects in animals should be verified/clarified in occupational field
investigations. Also of concern, barium titanate, one of the ENM with significant
commercial tonnage, has not been investigated for exposures or health effects; both animal
and human studies should be conducted. Additionally, for cerium oxide, there is a need for
epidemiological studies.

Most of the epidemiological biomarker studies on workers handling ENM are cross-
sectional in nature. Among these studies, there were significant findings of biomarkers in
exposed workers when compared to controls. This was true for markers of oxidative-stress
with silica and TiO, and for pulmonary, immunological and cardiovascular markers with
CNT. Very few studies reported on dose—response gradients between workers in the same
job profile with different exposure levels. Unfortunately, the limited data on environmental
exposure levels of different ENM and biological information concerning internal doses,
prevents the extrapolation of suitable dose—response relationships and the ability to define
ranges of possible “dangerous exposure concentrations” (170). Having this information
would allow for a reasonably accurate quantitative estimate of the occupational risks at the
group and/or individual level. This seems an even more challenging issue, considering the
difficulties in establishing dose-metric parameters that can calculate an ENM biologically
effective dose due to the extremely variable physico-chemical characterizations of such
chemicals. Future investigations should be aimed at clarifying these aspects to achieve better
risk assessment and management strategies in workplaces.
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Concluding remarks

As an overall conclusion, this paper takes the approach that it is not appropriate to address
the question of whether there are adverse effects occurring in workers exposed in general to
ENM, rather, each ENM should be investigated separately. Significant adverse indicators for
specific ENM have been reported in epidemiologic and human case studies. Continuation of
the use of precautionary controls for each ENM is warranted while further study of potential
health effects proceeds.
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Total retrieved articles identified through bibliometric search (N=476)

According to the ENM investigated, articles were categorized as follows:
Carbon black (N=63)
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Titanium dioxide (N=61)
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Silver nanoparticles (N=48)
Various (N=110)

Articles removed based on title

— (N=367)

A

Records screened (N=109)

Excluded articles (N=82)
Systematic reviews
Meta-analysis Reports
Duplicates
In vivo and in vitro studies

v

¥

Full text articles assessed for eligibility
(N=27)

:

Studies included in this review (N=27)

Flow chart for inclusion of epidemiologic and human case studies.
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