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Abstract

Objectives—The widespread application of nano-enabled products and the increasing likelihood 

for workplace exposures make understanding engineered nanomaterial (ENM) effects in exposed 

workers a public and occupational health priority. The aim of this study was to report on the 

current state of knowledge on possible adverse effects induced by ENM in humans to determine 

the toxicological profile of each type of ENM and potential biomarkers for early detection of such 

effects in workers.

Methods—A systematic review of human studies and epidemiological investigations of exposed 

workers relative to the possible adverse effects for the most widely used ENM was performed 

through searches of major scientific databases including Web of Science, Scopus, and PubMed.

Results—Twenty-seven studies were identified. Most of the epidemiological investigations were 

cross-sectional. The review found limited evidence of adverse effects in workers exposed to the 

most commonly used ENM. However, some biological alterations are suggestive for possible 

adverse impacts. The primary targets of some ENM exposures were the respiratory and 

cardiovascular systems. Changes in biomarker levels compared with controls were also observed; 

however, limited exposure data and the relatively short period since the first exposure may have 

influenced the incidence of adverse effects found in epidemiological studies.

Conclusions—There is a need for longitudinal epidemiologic investigations with clear exposure 

characterizations for various ENM to discover potential adverse health effects and identify 

possible indicators of early biological alterations. In this state of uncertainty, precautionary 

controls for each ENM are warranted while further study of potential health effects continues.
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After almost 20 years of engineered nanomaterials (ENM) use in commerce, it is time to 

assess what is known about their health effects among workers. As the production of 

nanomaterials has grown, so has the work-force handling them. Within this growing 

workforce, the numbers of workers with adverse health effects from ENM exposure remains 

relatively unknown (1). The following factors can affect the assessment of ENM health 

effects: (i) the immense universe of potentially unique ENM and the great diversity in their 

toxic potential requires a unique assessment for each type, making a single overarching 

assessment of ENM health effects inappropriate; (ii) an assumed low extent of exposures 

due to a global attempt to promote responsible development of nanotechnology through 

preventive measures to control exposure to workers (2, 3); (iii) difficulty assembling study 

cohorts of similarly exposed workers due to decentralized manufacture and use of ENM (4, 

5); and (iv) a lack of clarity on appropriate early indicators or biomarkers of adverse health 

effects.

A systematic review of the literature on the adverse effects of ENM in workers may be 

helpful in determining if effects exist and how deeply they have been investigated. 

Determination of the health effects and linkage to the exposure is a function of the extent to 

which workers have been exposed and the duration of their exposure. Since it is relatively 

early in the commercial history of ENM, the number of exposed workers, the extent of 

exposure, and the time since first exposure are generally small, leading to a low probability 

for adverse effects to have occurred, particularly chronic health effects. The ENM workforce 

is also widely dispersed and generally not very large in any involved workplace. 

Consequently, there have been few exposure assessment and epidemiological studies. 

Moreover, the heterogeneity of ENM in terms of physico-chemical variables is large. More 

precisely, the reactivity of tissues to ENM is highly dependent on particle morphology and 

surface features, related to their chemical growth histories (6).

The aim of this review was to identify health effects or early biological alterations that have 

occurred in the nanomaterial workforce. In the process, the review identifies the biomarkers 

related to such effects. Ultimately, the review seeks to identify knowledge gaps that require 

future investigation to help define strategies for suitable risk assessment and management 

processes.

Methods

The state of knowledge about the health impact of ENM in occupationally exposed 

populations was investigated through a systematic review of adverse effects reported in 

human studies and epidemiological investigations. Human case studies may provide 

preliminary information on possible adverse effects that have occurred in a single subject or 
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a small group of subjects because of ordinary or accidental conditions of exposure. 

Epidemiologic investigations, on the other hand, are more useful and informative, as they 

can show possible relationships between ENM exposure and health effects.

Considering the multitude of ENM employed in workplace settings, and the early phase of 

knowledge concerning their possible adverse impact on human health, this review was 

primarily focused on the nine most widely used ENM identified in a recent WHO report and 

is based on the tonnes (t) of nanomaterials produced annually and used worldwide (7). These 

ENM include carbon black (9.6 million t); synthetic amorphous silica (1.5 million t); 

aluminum oxide (200 000 t); barium titanate (15 000 t); titanium dioxide (10 000 t), cerium 

dioxide (10 000 t); zinc oxide (8000 t); carbon nanotubes (CNT) and carbon nanofibers 

(CNF), (100–3000 t); and silver nanoparticles (20 t). “The term ENM refers to materials that 

have at least one dimension (height, width, length) that is smaller than 100 nanometers.” (7, 

p6)

The systematic review followed the PRISMA (preferred reporting items for systematic 

reviews and meta-analyses) guidelines for the period 2003–2018 (8). The year 2003 was 

selected as the starting date because it predated authoritative warnings of potential hazards 

of nanomaterials, such as those made by The Royal Society and Royal Academy of 

Engineering (9). The search used general databases at the University of Cincinnati 

(www.libraries.uc.edu), including the Web of Science, Scopus (Elsevier), PubMed, 

Academic Search Complete, Summon, and ProQuest. The following terms were employed 

to search for epidemiological studies: “epidemiological studies”, “human studies”, 

“nanomaterial”, “nanoparticles”, “nanotubes”, “carbon black”, “carbon nanotubes”, 

“titanium dioxide”, “silver nanoparticles”, “cerium oxide”, “zinc oxide”, “aluminum oxide”, 

“synthetic amorphous silica”, and “barium titanate”.

A selection criterion for epidemiological studies included the use of a non-exposed or 

comparison group in the study. From previous investigations (10, 11), it was expected there 

would only be a small number of epidemiological biomarker studies. Most of the extant 

epidemiological studies of nanomaterial workers met the inclusion criteria and were 

included in the review, although some methodological criticisms emerged from previous 

analyses of such investigations (10–12). The aim of this review was to consider the findings 

in terms of commonality or divergence (10) between studies, pointing out coherent links 

with supporting literature, involving both human and animal subjects. Based on the findings 

of human and epidemiological studies, the scientific literature was further searched for 

information on mechanisms identified in or inferred from the results.

Results

An electronic search of library databases yielded 109 unique references for human studies of 

which 27 were eligible to include in this review (figure 1). Of the 27 human studies, some 

studies involved more than one type of ENM and some used the same groups of workers. 

Table 1 describes principle findings from studies of nanomaterial workers, that is, workers 

exposed to contemporary ENM. The following sections will summarize results obtained in 

human case and epidemiologic studies by ENM category.
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Carbon black

Carbon black is a generic term for a high volume commercial material of many different 

types of amorphous carbon with a wide range of particle sizes. Carbon black has been in 

commerce for over a century (13). Particle size may vary with use. Primary particles range 

from 1–500 nm; however, particles generally aggregate to sizes of 50–600 nm and, in turn, 

aggregates agglomerate to micron sizes (14). Carbon black particles of nanoscale size are 

manufactured by various vapor-phase processes, pyrolysis, and partial combustion or 

thermal decomposition of gaseous or liquid hydrocarbons (14). Non-malignant respiratory 

morbidity in terms of pulmonary function decrement and respiratory symptoms was seen in 

carbon black workers and was strongly correlated with the levels of exposure (15–19). The 

International Agency for Research on Cancer (IARC) deemed as inconsistent epidemiologic 

data of carbon black workers, which show some indications of lung cancer (14). The IARC 

did find a more consistent pattern of lung cancer in animal studies supported by mechanistic 

investigations (14) and concluded there was sufficient evidence in experimental animals for 

carcinogenicity. Consequently, carbon black was classified as a possible carcinogen to 

humans (14). However, the studies generally did not identify particle size. It cannot be 

excluded that some of the particles could be in the nanoscale range.

Although major concerns exist regarding the potential impact of human exposures to nano-

sized carbon black particles, limited human data are currently available. In relation to 

clinical parameter alterations in a cross sectional epidemiological study on carbon black 

workers, a significant reduction of lung functional parameters was evident compared to 

unexposed controls (20). This reduction of lung functional parameters included the percent 

predicted forced expiratory volume in 1 second (FEV1%), FEV1/forced vital capacity 

(FVC), percent predicted maximal mid-expiratory flow curve (MMF%), and percent 

predicted peak expiratory flow (PEF%). None of the exposed workers had pathologically 

low values of these parameters (20). The mean concentration of carbon black in this study, 

measured by personal samples was 14.90 mg/m3, which is 4.26 fold higher than the current 

TLV of 3.5 mg/m3 (20).

In a subsequent investigation, the same group of researchers analyzed possible changes 

exerted by carbon black ENM-occupational exposure on hematological indices (21). Their 

results showed a significant increase in peripheral blood eosinophil count in exposed 

workers as a sign of nanomaterial induced inflammation (20). These findings were 

supported in the previous study of other possible pro-inflammatory biomarkers, which found 

a significant increase in circulating pro-inflammatory cytokines, ie, interleukin (IL)-1β, 

IL-6, IL-8, macrophage inflammatory protein (MIP)-1β, and tumor necrosis factor (TNF)-α 
in exposed carbon black workers compared to controls (20). These results are in line with 

those reported in animal investigations demonstrating pulmonary inflammation (19, 22–24) 

associated with a severe tissue damage (25, 26) and a significant increase in serum 

proinflammatory biomarkers, including pro-inflammatory cytokines in treated animals (20, 

27–29).

Although further investigation seems necessary, such preliminary results can suggest that 

carbon black nanomaterials may be responsible, at least in part, for the reduction of 

pulmonary function and inflammatory response detected in exposed workers. Concerning a 
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possible dose–response relationship, the limited available data on environmental exposure 

concentrations, as well as the lack of biological monitoring information on occupational 

exposure, prevent the achievement of definite conclusions in that regard. Pulmonary 

functional alterations observed in workers exposed at concentrations greater than the 

adopted TLV underlines the importance of investigating high levels of exposure. However, 

from a precautionary perspective, preliminary knowledge regarding the toxicological 

behavior of ENM also requires investigation of possible adverse effects on workers exposed 

to low concentrations for long periods.

Synthetic amorphous silica (SAS)

Synthetic amorphous silica has been in commerce for >80 years. This silica polymorph is an 

intentionally manufactured material that does not contain measurable levels of crystalline 

silica (30, 31). It is a nanostructured material consisting of aggregates and agglomerates of 

primary particles that are generally <100 nm (32). There are three categories of SAS based 

on manufacturing: pyrogenic (7–50 nm); precipitated (5–100 nm), and gels (3–20 nm) (30). 

A review of epidemiological studies and case reports of workers exposed to synthetic 

amorphous silica going back to 1932 failed to show conclusive evidence of fibrosis, but the 

data were limited (30, 33). The studies did not exclude the risk of chronic obstructive 

pulmonary disease (COPD) and emphysema, and none are informative with regard to 

carcinogenicity (30, 33).

For production workers exposed to nanoscale SAS, no explicit adverse effects have been 

found in recent epidemiological cross-sectional studies. However, one case series, Song et al 

(34), described seven female workers, employed in the same department of a print plant and 

exposed to ~30-nm-sized silica ENM in a polyacrylic ester. The workers had no protective 

measures for periods as long as 5–13 months. The workers developed shortness of breath 

and pleural effusions. Pathological examinations of the patients’ lung tissue displayed 

nonspecific pulmonary inflammation, pulmonary fibrosis and foreign-body granulomas of 

the pleura (34). Electron microscopy and energy dispersive x-ray analysis identified and 

characterized silica-ENM primarily in macrophages, pulmonary micro-vessels, and pleural 

effusions. The findings suggest that these ENM may have contributed in part to the illness 

reported by these workers, although it is not clear if these ENM were amorphous silica (35). 

A cross-sectional study of SiO2-NP exposed workers had significantly greater cardiovascular 

related biomarkers, heart rate variability, vascular cell adhesion molecule (VCAM), and 

intercellular adhesion molecule (ICAM) than controls (36).

One hypothesis-generating study (37) demonstrated that workers employed in 14 factories in 

Taiwan who handled multiple ENM, including nanoscale silica, had reduced serum levels of 

antioxidant enzymes. Considering the key role of ENM induced reactive oxygen species 

(ROS) in tissue toxicity, possible biomarkers of early oxidative stress were specifically 

investigated in a subset of workers (N=37) using SiO2-ENM (12–200 nm) (38). In this 

context, measurements of 8-hydroxydeoxyguanosine (8-OHdG) in urine (38, 39), plasma, 

and white blood cells (39) and exhaled breath condensate levels of 8-isoprostane (38) were 

significantly higher compared to the controls, while levels of anti-oxidant enzyme activities 

were significantly decreased in the exposed group compared to controls (38). When two 
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examinations were performed on workers handling SiO2-ENM at baseline and 6-month 

follow up, the depression of serum antioxidant enzymes levels, ie, superoxide dismutase and 

glutathione peroxidase, were significantly greater in exposed groups compared to controls 

(36). As regards epigenetic alterations, which may affect genetic regulation and cellular 

differentiation, a significantly lower global level of DNA methylation was observed in 

peripheral white blood cells of workers handling SiO2-ENM compared to controls. 

Interestingly, such alterations were inversely correlated with the urinary and white blood cell 

8-OHdG concentrations (38).

These epidemiological findings (36–39) have been confirmed in animal models in which 

exposure to nanoscale SAS particles was reported to induce low systemic and negligible 

pulmonary toxicity (40–42). The particle’s ability to distribute in lungs, lymphatic tissues, 

and major organs of excretion, such as the liver and kidneys, following inhalation exposure 

was limited (43, 44). However, there is evidence from in vivo studies that one type of SAS, 

fumed silica, has been shown to generate cytotoxicity and pro-inflammatory effects (31, 45–

47).

Overall, epidemiological findings may support that one of the principal mechanisms of 

SiO2-ENM toxicity is the generation of reactive oxygen species and oxidative injury. This is 

the major mechanism by which ENM may induce adverse health effects and, in such effects, 

possible biomarkers may be found. Innovative effect biomarkers may be identified in 

investigations focused on ENM-induced epigenetic effects. These may include not only 

methylation changes at the global and repeated DNA level but also possible alterations in 

response to ENM exposure at specific loci. Additionally, these investigations indicate that 

oxidative DNA damage may have a role in inducing such phenomena. However, these latter 

issues need to be clarified with further research. Finally, no data are currently available 

concerning the exposure levels potentially responsible for such described alterations. The 

pathological alterations that occurred in workers exposed to ENM who were not wearing 

personal protective equipment (34, 35) suggest the need to verify the role of collective and 

individual exposure controls in managing the risk of possible ENM-induced adverse health 

effects.

Aluminum oxide

Aluminum oxide results from refined bauxite, which is subsequently reduced to aluminum 

(48). There have been no epidemiological studies of intentionally manufactured aluminum 

oxide nanomaterials. However, there have been occupational studies that have shown that 

inhaled aluminum oxide particles (size unspecified) are linked to pulmonary fibrosis, 

asthma, chronic obstructive lung diseases and possibly lung cancer (49–52). Ultrafine 

particles have been identified in primary aluminum smelters and pot rooms (53). Concerning 

animal data, pulmonary inflammation and cytotoxicity (54), an increase in the number of 

immune cells in BAL fluid (55, 56) and levels of IL-6, MIP-1α, MCP-1α and GM-CSF 

were reported after aluminum oxide ENM inhalation. Overall, the lack of epidemiological 

studies on possible adverse health effects prevents definite conclusions on the impact that 

aluminum oxide ENM may have on the health of exposed workers and possible markers 

indicative for early detection of biological alterations.
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Barium titanate

Barium titanate (barium titanium trioxide) is a member of the large family of compounds 

with the general formula ABO3, known as perovskites (57). Barium titanate is a widely used 

electro-ceramic material that is increasingly used in biology and medicine. It is produced in 

a variety of ways and with a broad range of particle sizes, including some <100 nm (57, 58). 

There appears to be neither documentation of occupational exposures to barium titanate 

nanomaterials nor animal inhalation studies. However, a study of mice injected with 

hydroxyapatite-barium titanate composites (nano to submicron agglomerates) for implant 

testing indicated an absence of any inflammatory or adverse reactions (59). Considering the 

widespread application of this compound at the nanoscale, it seems important to plan future 

studies investigating early biological alterations in occupationally exposed populations.

Titanium dioxide

There are four naturally occurring titanium dioxide polymorphs: rutile, anatase, brookite, 

and titanium dioxide (B) (14). Particle size plays an important role in many TiO2 

applications. The major use of TiO2 is in pigments where particles in the size range of 200–

300 nm are generally employed. Many other uses, eg, in the electronic field, involve 

particles <100 nm (14). Epidemiological studies of TiO2 production workers show limited 

evidence of malignant or nonmalignant health effects, although the particle size was not 

specified (14, 60, 61). In 2010, the IARC reviewed epidemiologic data and found inadequate 

evidence to classify TiO2 as a human carcinogen (12). However, lung tumors observed in 

rats following chronic inhalation of nano-sized TiO2 included squamous cell keratinizing 

cysts, bronchoalveolar adenocarcinomas, and squamous cell carcinomas (62, 63). These 

findings led the IARC to consider animal data sufficient for an evaluation of “possibly 

carcinogenic to humans” (14).

Epidemiological studies performed on nano-TiO2 production workers are generally cross-

sectional in nature. These studies have not shown a clear pattern of health effects, although 

some biological alterations emerged as possible indicators of exposure and early effect. 

Pelclova et al (64) demonstrated that particles of rutile and/or anatase could be detected in 

the exhaled breath condensate (EBC) of exposed workers. The content of the metal in their 

breath was significantly higher compared to controls, suggesting a method of measurement 

to assess exposure to TiO2-ENM.

Zhao et al (65) recently investigated the pulmonary effects induced by TiO2-ENM in 

workers exposed in a packaging workshop to identify possible functional alterations and 

biomarkers associated with exposure (estimated mass concentration of 1.22 mg/m3). The 

authors found that the observed and predicted values of FVC, FEV1, peak expiratory flow 

(PEF), and forced expiratory flow (FEF) 25–75%, were significantly reduced in exposed 

workers compared to the controls. In this study, pulmonary function test alterations were 

also confirmed by the decrease in serum levels of surfactant protein-D levels, which may be 

a preclinical lung damage biomarker caused by cell injury and/or decrease in number of type 

II alveolar epithelial cells. As a possible diagnostic test of airway inflammation, the 

fractional exhaled nitric oxide measurement was significantly increased in workers exposed 

to TiO2-ENM (66). Additionally, leukotriene levels were significantly elevated in the EBC 
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of exposed workers relative to controls and well correlated with workplace Ti concentrations 

(67). The possibility of using such biological alterations to monitor the early effects of nano-

TiO2 exposures on workers deserves further investigation.

Regarding the cardiovascular effects, Ichihara et al (68) demonstrated that exposure to TiO2-

ENM was associated with heart rate variabilities in workers involved in processing and 

handling such nanomaterials. Moreover, to support a possible role of TiO2-ENM in inducing 

cardiovascular alterations, Liao et al (36) and Zhao et al (65) demonstrated increased levels 

of VCAM-1, ICAM-1, and low-density lioprotein (LDL) as possible cardiovascular early 

disease biomarkers.

Concerning the role that systemic inflammatory as well as oxidative stress responses may 

have in determining possible adverse health effects, the concentrations of serum amyloid A 

(SAA) and high sensitivity-C reactive protein (CRP) were not significantly different between 

TiO2-ENM exposed and unexposed workers (65). Conversely, the serum levels of interleukin 

(IL)-8, IL-6, IL-1β, TNF-a, and IL-10 as possible pro-inflammatory cytokines, as well as 

superoxide dismutase (SOD) and malondialdehyde (MDA), as oxidative stress indicators 

were demonstrated to be significantly associated with occupational exposure to TiO2-ENM 

(65).

In this regard, a significant increase in markers of oxidative stress damage of nucleic acids 

and proteins in the EBC was evident in the more exposed production workers, involved in 

micronation, calcination and other TiO2-ENM production activities, than in the lower 

exposed groups of research workers and controls (69). In another study, when a panel of 

biomarkers of lipid oxidation was investigated in the EBC of workers exposed to TiO2-ENM 

during production tasks as well as in office employees of the TiO2 production plant, 

significant dose-dependent increases were detected compared to unexposed controls (70, 

71). In a recent investigation, occupational exposure to TiO2-ENM in manufacturing and/or 

handling facilities resulted in significantly higher oxidative biomarkers, such as urinary 8-

OHdG and EBC 8-isoprostane (38).

Such epidemiological findings are supported by extensive animal evidence concerning the 

deposition and bio persistence of TiO2-ENM in the pulmonary system (72–75) and the 

consequent development of inflammatory reactions (72, 76–82) with possible increased 

airway responsiveness (83) as well as acute or sub-acute airflow alterations (84). The 

findings of markers indicative of reactive oxygen species (ROS) and pulmonary 

inflammation (76, 78–80, 85), although reversible in some cases (86), make a suggestive 

case for TiO2 having pulmonary inflammogenic effects. Cardiovascular effects have been 

also reported in animals in which the inhalation of TiO2-ENM enhanced the phosphorylation 

levels of cardiac proteins (87) and impaired vasodilator response (88–91), which may be due 

to an increase in microvascular oxidative stress (92).

Overall, these findings support the need for future investigations primarily focused on early 

TiO2-ENM clinical effects on the respiratory and cardiovascular systems. Additionally, 

inflammatory and oxidative stress early biomarkers should be explored in depth as early 

biological indicators of the health impact of such xenobiotics, considering their possible 
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predictive role of adverse outcomes. See, for example, the role of CRP as a major 

cardiovascular risk factor (93).

A suitable dose–response relationship has not been definitively identified. Preliminary data 

suggest positive relationships between levels of exposure, peculiar to job tasks in 

nanoparticle settings and biological changes as demonstrated by higher levels of oxidative 

stress biomarkers in more exposed production workers (0.13–0.76 mg/m3 particle total mass 

concentration; mean particle number range 0.29–2.48 × 104/cm3), compared to lower 

exposed research workers (0.16 mg/m3 particle total mass concentration; mean particle 

number 1.32 × 104/cm3) (69). These findings may give stimulus to in-depth exploration of 

dose–response relations with respect to biological markers of exposure such as the Ti 

concentration in EBC.

Cerium dioxide

Cerium dioxide (CeO2) ENM are increasingly being used in industrial and commercial 

applications (94, 95); however, there are no epidemiological studies of workers exposed to 

CeO2 ENM. Various animal inhalation and intratracheal studies show pulmonary 

inflammation and fibrosis (96–100), from the accumulation of CeO2 ENM in the lung tissue 

(101), as well as surface functionalization of the particles (96, 102). Such inflammatory 

responses were characterized by increased polymorphonuclear neutrophils (PMN) and 

lactate dehydrogenase (LDH) levels, and augmented expression of CINC-1, CINC-2, and 

HO-1 in bronchial lavage fluids (98, 101). Extra-pulmonary toxicity and tubular 

degeneration leading to coagulative necrosis in the kidney were also observed (103).

Zinc oxide

Some workers exposed to (ZnO) fume in welding and metal working operations have been 

shown to experience metal fume fever (104, 105). These ZnO fumes are comprised of a large 

proportion of nanoparticles (106). While such nanoparticles are considered combustion-

derived, they may be considered “engineered” in the sense that, for welding to be effective, 

the appropriate specified temperature range of the materials needs to be achieved.

A study of 118 shipyard workers involved with welding and a comparison group of 45 office 

workers showed cardiovascular toxicity and alterations in various biomarkers [decreased cell 

viability, increased levels of 8-OHdG, IL-6 and nitric oxide in human coronary artery 

epithelial cells] (107). Exposures of the welders to particles were in the range of 5–160 nm 

(107). These results obtained with ZnO at the nanoscale confirmed the higher incidence of 

cardiovascular disease found in welders (108, 109).

Other than welding exposures, no epidemiological studies of occupational exposures to 

ZnO-ENM have been identified. An experimental study of ZnO fumes (2.5 mg/m3 and 5 

mg/m3 for two hours) in 13 healthy non-smoking volunteers demonstrated the manifestation 

of fever and symptoms at the higher dose, as well as fever alone at the lower dose (110). 

Metal fumes generally contain nanoparticles. Exposure to ZnO at 5 mg/m3 (60 nm count 

median diameter; 170 nm mass median diameter) resulted in elevated plasma levels of IL-6, 

as well as myalgias, cough, and fatigue (110). Prior to this study, an earlier investigation of 

ZnO exposure in human subjects produced a metal fume fever in four human volunteers (2 
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hours at 5 mg/m3) (110). More recently, a dose-dependent (0.5–2 mg/m3) increase in 

symptoms, ie, fever, throat irritation, cough, minor respiratory symptoms, as well as flu-like 

symptoms, were determined after 24-hour post ZnO-ENM inhalation exposure (primary 

particle size of ~10 nm for 4 hours) in healthy human volunteers (111). However, the most 

sensitive outcomes were the concentration dependent increase in both CRP and SAA levels 

determined in blood 24 hours after exposure, while all concentrations of ZnO-ENM elicited 

significantly increases in neutrophils at the same time point (111).

In animals exposed to ZnO-ENM, in addition to pulmonary inflammation and lung injury 

(110, 112), researchers have found degeneration and necrosis of the myocardia after sub-

chronic conditions of exposure (112). After acute and sub-chronic exposures, the following 

biomarkers of inflammation were detected: increased white blood cell count in the 

peripheral blood of exposed animals (113), transient increases in total cells and neutrophil 

counts, and cytokine induced neutrophil chemoattractant (CINC-1, CINC-2) and heme 

oxygenase-1 (HO-1) in bronchoalveolar lavage fluid (BALF) (114, 115). Co-exposure of 

ZnO-ENM and toluene, at their respective permissible exposure level in the paint industry, 

was reported to potentially produce a progressive inflammatory and fibrotic response in the 

alveolar tissues of the lungs of co-exposed rats (116).

Overall, the effects observed in healthy human-volunteer investigations suggest the 

occurrence of a systemic inflammation following ZnO-ENM exposure, which may be 

explained by either primary local inflammation of the respiratory tract/lung and secondary 

resorption of inflammatory markers or by primary systemic inflammation due to resorbed 

zinc ions (111). The lack of occupational epidemiological data could be addressed in future 

investigations aimed to define dose‒ response relationships, as well as possible biomarkers, 

like acute phase proteins CRP and SAA, which could be easily employed in biological 

occupational monitoring and may be indicative not only of inflammatory reactions but also 

possible cardiovascular events.

Carbon nanotubes and carbon nanofibers

Carbon nanotubes (CNT) and carbon nanofibers (CNF) are relatively new commercial 

materials. Recent epidemiological studies have specifically investigated occupational 

populations exposed to CNT (117–120). It is important to note that there are many different 

types of CNT in commerce, and these studies generally did not distinguish the specific types 

of CNT, other than identifying multi-walled CNT (MWCNT). Additionally, some MWCNT 

have residual impurities derived from the manufacturing process that can influence their 

reactivity and, consequently, the induced biological alterations that may function as possible 

biomarkers. In a pilot study, Lee et al (121) failed to find significant changes in the 

pulmonary function, hematology, and blood chemistry in nine MWCNT manufacturing 

workers compared to four office workers.

In another study to assess markers of lung inflammation, differences in fractional exhaled 

nitric oxide (FENO) were observed between MWCNT-exposed workers and controls, but no 

differences were evident in lung function or pneumo-proteins CC16, SP-A, and SP-D (122). 

The reduction in FENO concentrations due to MWCNT exposure suggest that MWCNT 

may have an inhibitory effect on nitric oxide synthase in the airways. Also, as further 
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respiratory effect indicators, Fatkhutdinova et al (123), found that occupational exposure to 

MWCNT was associated with changes in fibrotic markers. A biomarker for interstitial lung 

disease, KL-6, was found in increased levels in collected sputum samples in exposed 

workers manufacturing MWCNT compared to controls (123). Profibrotic inflammatory 

biomarkers, such as the cytokines IL-1β, IL-4, IL-5, IL-6, IL-8 and TNFα were significantly 

higher in sputum of exposed workers than controls; and serum IL-1β, IL4 and TNFα were 

also significantly elevated in the exposed group (123).

Concerning alterations in immunological and hematological parameters, the comparison 

between MWCNT-exposed workers and age- and gender-matched controls showed 

significant upward dose-dependent trends for blood concentrations of various 

immunological indicators, including C-C motif ligand 20, basic fibroblast growth factor, and 

soluble IL-1 receptors (122). Significant decrease in neutrophils and elevation in monocytes, 

mean platelet volume, immature platelet fraction, and immature reticulocytes fraction were 

evident with increasing exposure to MWCNT (122). Beard et al (124) investigated the 

relationship between CNT and CNF exposure and biomarkers of fibrosis, inflammation, and 

oxidative stress in workers employed in manufacturing, using or distributing CNT and CNF. 

Variable percentages of the workforce employed in such facilities (up to 27%), had CNT and 

CNF present in the sputum samples as internal dose indicators (2). CNT and CNF exposure 

was more consistently associated with sputum fibrosis and oxidative stress biomarkers than 

inflammation and cardiovascular biomarkers, ie, 8-OHdG, SOD, fibrinogen, and VCAM-1 

(124). In blood, positive associations were observed between exposure and biomarkers from 

all the above-mentioned domains, including KL-6, CRP, ICAM-1 and VCAM-1 (124). 

Investigating the same workforce enrolled in the Beard study (124), Schubauer-Berigan et al 

(117) found that the inhalable elemental carbon (EC) concentration and duration of work 

with CNT and CNF were positively associated with the development of respiratory allergies.

As regards cardiovascular adverse effects, a recent study (125) investigated the associations 

between MWCNT-exposure and biomarkers of cardiovascular risk. The authors found a 

significant dose-dependent upward trend in the concentration of endothelial damage marker 

ICAM-1 in 22 MWCNT-exposed workers, compared to age-/gender-matched unexposed 

controls (125). This may indicate a MWCNT-induced endothelial activation and an 

increased inflammatory state, which may be related to cardiovascular effects. Additionally, 

in another study, resting heart rate was positively related to inhalable and respirable 

elemental carbon concentrations (used to quantify CNT and CNF concentrations), while 

hematocrit counts showed a positive relationship with CNT and CNF structure counts (117).

Concerning oxidative stress reactions, MWCNT manufacturing workers had significantly 

higher levels of the MDA, 4-hydroxy-2-hexenal (4-HHE) and n-hexanal levels in EBC than 

office workers (121). Low levels of residual metal catalyst were found in air and blood, and 

blood molybdenum was well correlated with MDA and n-hexanal concentrations, suggesting 

a possible role of such metal contamination in affecting the toxicological profile of MWCNT 

(121). Although the study by Lee et al (121) failed to show adverse health effects, it 

indicated that early biomarkers of effect can be determined in the collected biological 

matrices. These markers were not necessary indicative of pathologic changes or early 

adverse effects. The markers collected in the EBC are established indicators of oxidative 
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stress, although they may not be specific for MWCNT exposure. The use of aldehydes as 

dependent variables is based on their relationship with inflammation and ROS produced by 

activated inflammatory cells. While ROS formation is a normal physiologic process that 

occurs in every cell, increased levels of ROS can initiate harmful pathophysiological effects 

(118). Additionally, there is increasing evidence that aldelydes generated during the process 

of lipid peroxidation are also involved in many of the pathophysiological effects associated 

with oxidative stress in cells and tissues (119). Lipid peroxidation is one of the major 

mechanisms of ROS damage, and it occurs when oxidation of cell membranes initiates a 

chain reaction, which leads to the formation of aldehydes such as MDA, 4-HHE and n-

hexanal such as observed in the Lee et al (121) study.

The case for risk of carcinogenicity is less clear, but may be a function of the type of CNT. 

In this regard, the recent IARC evaluation for CNT found that there is inadequate evidence 

in humans for the carcinogenicity of CNT, although there is sufficient evidence in 

experimental animals for the carcinogenicity of MWCNT-7 (126). For this reason, 

MWCNT-7 have been classified as possibly carcinogenic to humans (Group 2B), while 

MWCNT other than MWCNT-7 and single-walled carbon nanotubes are not classifiable as 

to their carcinogenicity to humans (Group 3) (126).

The whole blood gene expression profiling may also act as a tissue surrogate and may 

provide a powerful and an informative approach to investigate various disease conditions 

and identity biomarkers (127). Shvedova et al (127), in this regard, investigated the global 

non-coding-RNA and microRNA expression profiles in blood of exposed workers, having 

direct contact with MWCNT aerosol for ≥6 months and compared these profiles with those 

of unexposed professional and/or technical staff. Interestingly, the identified pathways and 

signaling networks revealed the potential for MWCNT to exert pulmonary and 

cardiovascular adverse effects, as well as to trigger carcinogenic outcomes in humans. 

Epigenetic alterations in blood cells, induced by occupational exposure to CNT, could 

characterize another focus for biological monitoring research. In this perspective, Ghosh et 

al (128) investigated whether exposure to MWCNT in the workplace may induce DNA 

methylation changes at the global and/or gene-specific level in some functionally important 

genes in peripheral blood cells. The authors identified alterations on CpG sites in the 

promoter regions of functionally important genes in peripheral blood cells involved in the 

epigenetic machinery (ie, DNMT1, HDAC4), in the DNA damage response and G1/S 

transition in the cell cycle (ie, ATM), as well as in oncogenic activity (ie, SKI). The detected 

methylation alterations might inhibit or promote the gene expression of the corresponding 

genes.

The biomarker findings in studies of workers exposed to CNT are consistent with 

pathological findings identified in studies of laboratory animals exposed via inhalation to 

CNT that reported pulmonary inflammation, increased collagen thickness, and robust 

inflammatory response with severe oxidative stress leading to fibrosis and formulation of 

granulomatous lesions (120, 123, 129–140). In this scenario, T helper (Th) 2-dependent type 

2 immune pathways have been recognized as important drivers for the development of CNT-

induced fibrosis (120). Upon stimulation, activated Th2 immune cells and type 2 cytokines 

interact with inflammatory and tissue repair functions to stimulate an overzealous reparative 
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response to tissue damage, leading to organ fibrosis. Some of the animal studies also showed 

systemic inflammation (141), genotoxic effects (142) and an impairment in vascular smooth 

muscle reactivity (143), but also an immunosuppressive role of CNT exposure (144) and a 

carcinogenic potential due to interference with the mitotic spindle apparatus (145).

Overall, it can be concluded that at present there are no reported overt adverse effects in 

workers exposed to CNT. There is a consistent pattern of findings indicating that pulmonary 

inflammation and fibrosis could be potential outcomes in exposed populations, depending on 

the exposure level and duration of exposure (117, 124). Some fibrosis, inflammatory and 

oxidative stress biomarkers have been identified to be more strongly associated with CNT 

and CNF exposure (117, 124); however, to date, the lack of environmental or internal dose‒
exposure measurements prevents the identification of suitable dose‒response relationships. 

Future research should clarify biological changes with respect to different exposure metrics, 

ie, environmental elemental carbon levels, count of CNT in sputum samples, as well as 

possible confounding functions due to possible metal contaminations of CNT that may bias 

the CNT health impact as well as biomonitoring results. Future research on global gene 

expression profiles as well as epigenetic effects induced by CNT may provide information to 

get molecular insights into the CNT-induced toxicity and pathogenesis in humans and to 

verify in large-scale prospective studies their validity and potential applicability as exposure 

and effect markers in occupationally exposed subjects (127).

Silver nanoparticles

Silver nanoparticles (AgENM) are the most common ENM in consumer products 

(www.nanoproject.org). Demand is growing for a wide variety of silver nano-structures, 

such as spheres and wires (146). A few health studies have focused on workers explicitly 

exposed to AgENM (36, 147, 148). Two of the studies reported on the same sample of two 

workers, employed for seven years in silver nanomaterial manufacturing, who were exposed 

to 20–30-nm-sized AgENM at concentrations of 0.1 and 0.4 μg/m3 respectively, in their 

facility (147, 148). The workers showed no significant adverse changes in their health status 

(147, 148). In another study, nanomaterial handling workers in 14 manufacturing facilities in 

Taiwan were stratified for Ag-ENM (N=6 workers); significant increases were detected in 

cardiovascular disease biomarkers, VCAM and IL-6, and in reduction in heart rate frequency 

(36).

Concerning animal investigations, toxicity in the lungs, including inflammatory reactions 

and histopatho-logical alterations (149–158) were reported to be responsible for pulmonary 

functionality alterations (155, 159) or allergic responses (160): however, other investigations 

have failed to detect hematological effects, systemic alterations, and pulmonary function test 

changes after Ag-ENM exposure (161, 162). Histopathological changes in the kidney and 

liver (bile duct hyperplasia and necrosis) were identified after inhalation exposures, such as 

extra-pulmonary effects (155, 158, 159). Researchers have also reported changes in the 

expression of genes involved in xenobiotic metabolism and in the development and integrity 

of motor neurons; intracellular molecular patterns that regulate diverse cellular processes, 

including morphology, adhesion, motility; and apoptosis potentially related to neurotoxic 

and immunotoxic effects (163, 164).
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The lack of human data relative to this widespread ENM requires further investigation on 

potential health effects in exposed workers and on the selection of possible biomarkers. 

Animal preliminary findings may be helpful to guide the verification of possible biological 

changes in humans.

Discussion

Understanding the effects of ENM in exposed subjects is becoming a public and 

occupational health priority due to the widespread application of nano-enabled products and 

the increased likelihood for consumer and workplace exposures. Although the number of 

currently available occupational field and epidemiological studies is quite limited, 

preliminary considerations regarding the possible health impact of ENM and biomarkers of 

effect can lead future investigations.

Summary of data and occupational health considerations

A summary of the findings for each of the nine high volume ENM is shown in table 2. The 

third column shows pathological effects in workers in epidemiological studies. That is, 

whether a study was identified that had significant pathologic effects related to exposure to 

an ENM. The fourth column reports epidemiological studies that identified a change of 

potential biomarkers of adverse effects.

Overall, to date there is limited evidence of adverse health effects in workers exposed to any 

of the most used ENM. All of the substances in table 2 except CNT have had long periods of 

use in some form (where the primary particle may have been <100 nm) and, hence long 

periods of worker exposure. Much of that exposure was to agglomerates in the micron-size 

range, and most of the studies did not clarify particle size, preventing the extrapolation of 

suitable conclusions for the toxicological profile of the nanoscale size of the chemical 

substances. The strongest historical findings are non-malignant respiratory disease in 

workers exposed to carbon black and metal fume fever in workers exposed to zinc oxide. 

Furthermore, explicit pathologies induced by ENM exposure have not yet been 

demonstrated in studies of exposed workers. The respiratory system has been reported as the 

primary target organ for the inflammogenic potential of both carbon-, and metal- or metal-

oxide-based ENM in workplace and experimental settings, although some conflicting 

evidence in this regard may be due to the different physico-chemical characteristics of ENM, 

in terms of particle size (149), surface functionalization/coating (56, 77, 96, 102), solubility 

(40), particle dispersion (114), residual impurities (121) as well as level and duration of 

exposures (129). This is important information considering that the respiratory tract is the 

primary route of entry of ENM in occupational settings. Additionally, the relevance of the 

physico-chemical characterization of ENM in affecting their toxicological profile raises 

some concerns regarding the generalizability of findings obtained in occupational exposure 

settings where multiple ENM co-exposures may occur or where too few individuals work 

with a single agent preventing assessment of differences between chemicals in a meaningful 

way (37, 165).

Although the mechanisms for ENM-induced health effects are not fully known, the 

persistent inflammatory and related oxidative stress reactions induced by ENM may 
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determine alterations in lung functionality, as reported in workers exposed to carbon black 

(20) or to TiO2-ENM (65). In line with these results, inflammatory responses induced by 

ENM exposure, and direct lung tissue damage exerted by nano-sized particle deposition and 

biopersistence in alveoli and bronchial walls (25, 54, 72, 101), were reported to result in 

fibrogenicity and increased airway hyperresponsiveness in laboratory animals (83, 97, 120, 

129, 155, 159). The animal inhalation studies generally supported the human 

epidemiological biomarker findings and showed further significant effects for endpoints not 

yet seen in workers. In this regard, Th2-dependent type immune pathways have been 

indicated as potential triggers for the development of CNT-induced fibrosis (120). The idea 

that ENM may have a fibrogenic function in exposed workers may be confirmed by 

epidemiological findings of increased levels of pro-fibrotic markers in serum and sputum of 

MWCNT-handling workers (123, 124) and by RNA transcriptional analysis (127). Various 

findings are highly suggestive of the potential for cardiovascular dysfunction resulting from 

a systemic inflammatory status following pulmonary exposure (89, 90, 112, 117, 124, 125, 

146, 166).

Biological monitoring implications

Overall, considering the central role of the respiratory system in the toxicokinetic and 

toxicodynamic profile of ENM, the EBC, which needs further validation, has been proposed 

as a possible biological matrix to detect biomarkers of exposure, ie, the titanium content (64) 

and early effect, ie, alterations in pro-inflammatory, oxidative stress indicators (66, 67, 69–

71, 121, 122), as well as lung damage biomarkers (SP-D) (65). Additionally, nucleic acid, 

and protein and lipid oxidation biomarkers have been proposed as possible indicators of the 

oxidative stress reactions induced by ENM in the pulmonary system that can be assessed in 

EBC (69–71, 121). Moreover, considering that the persistence of inflammation and oxidative 

stress in the lungs may have a “systemic” impact on exposed organisms, biological 

monitoring investigations should consider biomarkers of systemic inflammatory and 

oxidative stress response in serum and changes in blood cell counts. This recommendation is 

supported by preliminary results demonstrating a significant association between 

occupational levels of exposure and increased serum concentrations of inflammatory 

cytokines, alterations in oxidative stress indicators, including anti-oxidant enzymes, and 

changes in blood cell count, ie, neutrophil reduction, and monocytes and reticulocyte 

increase in workers (20, 36, 65, 122–124).

Early biological alterations of blood parameters correlated to the cardiovascular 

functionality, ie, VCAM and ICAM concentrations as well as modifications in heart rate 

variability have also been explored in early human investigations on ENM toxicity with 

positive results for nano-silica, TiO2, and CNT (20, 65, 68, 117, 125). In line with such 

epidemiological data, an impaired vasodilator response due to an increase in microvascular 

oxidative stress or altered circulations mediators was detected in experimental animals (88–

92, 167). Few human studies reported data concerning the effects of ENM exposure and 

CRP, a well-known cardiovascular risk factor and an easy biomarker to measure in blood 

samples. All these issues stress the need to examine the role of ENM exposure on the 

cardiovascular system, considering the possible severe implications of such alterations on 
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the health of exposed workers, and underline the need to focus additional investigations on 

more easily applicable biological indicators.

Emerging scientific evidence demonstrates that environmentally-induced epigenetic 

alterations may play a role in the manifestation of a number of human diseases, including 

cancer, mental disorders, obesity, and other severe conditions (168). Although the 

epidemiological data concerning epigenetic changes resulting from ENM exposure are 

preliminary (38, 127, 128), future testing will be useful to help distinguish between adverse 

health effects induced by ENM exposure compared to adaptive changes. However, to initiate 

epigenetic toxicity monitoring for ENM exposure, it seems necessary to clarify ENM effects 

on the epigenome and define robust causal links between exposure, epigenetic changes and 

adverse phenotypic endpoints to develop improved assays to test such endpoints (169).

Additionally, considering the possible carcinogenic potential recognized for some types of 

ENM, ie, MWCNT-7 (126) and TiO2-ENM (129), it may be important to define early ENM 

biomarkers of genotoxicity. Testing this important toxicological aspect is crucial in safety 

assessment of new ENM compounds and products and may influence an approach to define 

suitable strategies for risk assessment and management in occupational settings.

Future research needs

This review revealed a need for robust longitudinal epidemiologic studies with clear 

exposure characterization, including particle size, extent of agglomeration, and other 

relevant physicochemical parameters. Of particular importance, studies that found strong 

evidence of adverse effects in animals should be verified/clarified in occupational field 

investigations. Also of concern, barium titanate, one of the ENM with significant 

commercial tonnage, has not been investigated for exposures or health effects; both animal 

and human studies should be conducted. Additionally, for cerium oxide, there is a need for 

epidemiological studies.

Most of the epidemiological biomarker studies on workers handling ENM are cross-

sectional in nature. Among these studies, there were significant findings of biomarkers in 

exposed workers when compared to controls. This was true for markers of oxidative-stress 

with silica and TiO2 and for pulmonary, immunological and cardiovascular markers with 

CNT. Very few studies reported on dose‒response gradients between workers in the same 

job profile with different exposure levels. Unfortunately, the limited data on environmental 

exposure levels of different ENM and biological information concerning internal doses, 

prevents the extrapolation of suitable dose‒response relationships and the ability to define 

ranges of possible “dangerous exposure concentrations” (170). Having this information 

would allow for a reasonably accurate quantitative estimate of the occupational risks at the 

group and/or individual level. This seems an even more challenging issue, considering the 

difficulties in establishing dose-metric parameters that can calculate an ENM biologically 

effective dose due to the extremely variable physico-chemical characterizations of such 

chemicals. Future investigations should be aimed at clarifying these aspects to achieve better 

risk assessment and management strategies in workplaces.
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Concluding remarks

As an overall conclusion, this paper takes the approach that it is not appropriate to address 

the question of whether there are adverse effects occurring in workers exposed in general to 

ENM, rather, each ENM should be investigated separately. Significant adverse indicators for 

specific ENM have been reported in epidemiologic and human case studies. Continuation of 

the use of precautionary controls for each ENM is warranted while further study of potential 

health effects proceeds.
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Figure 1. 
Flow chart for inclusion of epidemiologic and human case studies.
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