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Abstract

Increasing scientific evidence suggests potential adverse effects on children’s health from 

synthetic chemicals used as food additives, both those deliberately added to food during 

processing (direct) and those used in materials that may contaminate food as part of packaging or 

manufacturing (indirect). Concern regarding food additives has increased in the past 2 decades in 

part because of studies that increasingly document endocrine disruption and other adverse health 

effects. In some cases, exposure to these chemicals is disproportionate among minority and low-

income populations. This report focuses on those food additives with the strongest scientific 

evidence for concern. Further research is needed to study effects of exposure over various points in 

the life course, and toxicity testing must be advanced to be able to better identify health concerns 

prior to widespread population exposure. The accompanying policy statement describes 

approaches policy makers and pediatricians can take to prevent the disease and disability that are 

increasingly being identified in relation to chemicals used as food additives, among other uses.

More than 10 000 chemicals are allowed to be added to food in the United States, either 

directly or indirectly, under the 1958 Food Additives Amendment to the 1938 Federal Food 

Drug and Cosmetic Act (Public Law 85-929). An estimated 1000 chemicals are used under a 

“Generally Recognized as Safe” (GRAS) designation without US Food and Drug 

Administration (FDA) approval or notification.1 Many chemical uses have been designated 

as GRAS by company employees or hired consultants.2 Because of the overuse of the GRAS 

process and other key failings within the food safety system, there are substantial gaps in 

data about potential health effects of food additives. Of the 3941 food additives listed on the 

“Everything Added to Food in the United States” Web site, reproductive toxicology data 

were available for only 263 (6.7%), and developmental toxicology data were available for 

only 2.3

Accumulating evidence from nonhuman laboratory and human epidemiologic studies 

suggests that colorings, flavorings, chemicals deliberately added to food during processing 

(direct food additives), and substances in food contact materials (including adhesives, dyes, 

coatings, paper, paperboard, plastic, and other polymers) that may come into contact with 

food as part of packaging or processing equipment but are not intended to be added directly 

to food (indirect food additives) may contribute to disease and disability in the population 

(Table 1). Children may be particularly susceptible to the effects of these compounds 

because they have higher relative exposures compared with adults (because of greater 

dietary intake per pound), their metabolic (ie, detoxification) systems are still developing, 

and key organ systems are undergoing substantial changes and maturations that are 

vulnerable to disruptions.4 Chemicals of increasing concern include bisphenols, which are 

used in the lining of metal cans to prevent corrosion5; phthalates, which are esters of 

diphthalic acid that are used in adhesives and plasticizers during the manufacturing process6; 

nonpersistent pesticides, which have been addressed in a previous American Academy of 
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Pediatrics (AAP) policy statement and thus are not discussed in this report7; perfluoroalkyl 

chemicals (PFCs), which are used in grease-proof paper and paperboard food packaging8; 

and perchlorate, an antistatic agent used for packaging in contact with dry foods with 

surfaces that do not contain free fat or oil.9 Nitrates and nitrites, which have been the subject 

of previous international reviews,10 and artificial food coloring also are addressed in this 

report.

This technical report will not address other contaminants that inadvertently enter the food 

and water supply (such as aflatoxins), polychlorinated biphenyls, dioxins, metals (including 

mercury), persistent pesticide residues (such as DDT), and vomitoxin. This report will not 

focus on genetically modified foods because they involve a separate set of regulatory and 

biomedical issues. Caffeine or other stimulants intentionally added to food products will not 

be covered.

The AAP is particularly concerned about food contact substances associated with the 

disruption of the endocrine system in early life, when the developmental programming of 

organ systems is susceptible to permanent and lifelong disruption. The international medical 

and scientific communities have called attention to these issues in several recent landmark 

reports, including a scientific statement from the Endocrine Society in 2009,51 which was 

updated in 2015 to account for rapidly accumulating evidence11; a joint report from the 

World Health Organization and United Nations Environment Programme in 201352; and a 

statement from the International Federation of Gynaecology and Obstetrics in 2015.53 

Subsequent sections of this technical report focus on individual categories of chemicals and 

provide evidence on potential effects on children’s health to support the accompanying AAP 

policy statement.54

INDIRECT FOOD ADDITIVES

Bisphenols

The use of bisphenols as food additives accelerated in the 1960s, when bisphenol A (BPA) 

was identified as a useful ingredient in the manufacture of polycarbonate plastics and 

polymeric metal can coatings.55 BPA has recently been banned from infant bottles,56 and 

plastic beverage containers are increasingly designated as BPA free. However, BPA and 

related compounds are still used in polymeric resin coatings to prevent metal corrosion in 

food and beverage containers.57

BPA has been the focus of significant research and attention. It can bind to the estrogen 

receptor and cause tissues to respond as if estradiol is present; thus, it is classified as an 

“endocrine disruptor.”12 Nonhuman laboratory studies and human epidemiologic studies 

suggest links between BPA exposure and numerous endocrine-related end points, including 

reduced fertility,13,14 altered timing of puberty,15 changes in mammary gland development,
16,58 and development of neoplasias.59 Environmentally relevant doses of BPA trigger the 

conversion of cells to adipocytes,19,60 disrupt pancreatic β-cell function in vivo,61 and affect 

glucose transportation in adipocytes.19–21 BPA exposure in utero has been associated with 

adverse neurodevelopmental outcomes,23–25 and cross-sectional studies have associated 

BPA with decrements in fetal growth,62 childhood obesity,63,64 and low-grade albuminuria,
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65 although longitudinal studies of prenatal exposure have yielded less consistent 

relationships with postnatal body mass.66–69

A comprehensive, cross-sectional study of dust, indoor and outdoor air, and solid and liquid 

food in preschool-aged children suggested that dietary sources constitute 99% of BPA 

exposure.70 Dental sealants and thermal copy paper are also sources.71,72 Higher urinary 

concentrations of BPA have been documented in African American individuals,63 and BPA 

concentrations have been inversely associated with family income.73 Given that obesity is 

well documented to be more prevalent among low-income and minority children,74 

disproportionate exposure to endocrine-disrupting chemicals, such as BPA, may partially 

explain sociodemographic disparities in health.75

The FDA recently banned the use of BPA in infant bottles and sippy cups,5 and numerous 

companies are voluntarily removing BPA from their products because of consumer pressure. 

Yet, in many cases, it has been replaced with closely related alternatives, such as bisphenol 

S. These emerging alternatives have been identified in paper products and human urine.76,77 

The few studies focused on evaluating bisphenol S have identified similar genotoxicity and 

estrogenicity to BPA78–82 and greater resistance to environmental degradation than BPA.
83,84 Efforts to remove BPA from plastics and metal cans will only provide health and 

economic benefits if it is replaced with a safe alternative.55

Phthalates

Phthalate esters have a diverse array of uses in consumer products, and they can be classified 

into 2 categories: low–molecular weight phthalates are frequently added to shampoos, 

cosmetics, lotions, and other personal care products to preserve scent,6 whereas high–

molecular weight phthalates are used to produce vinyl plastics for diverse settings ranging 

from flooring, clear food wrap, and flexible plastic tubing commonly used in food 

manufaturing.85 Within the high–molecular weight category, di-2-ethylhexylphthalate 

(DEHP) is of particular interest because industrial processes to produce food frequently use 

plastic products containing DEHP.86 Racial and/or ethnic differences in phthalate exposures 

are well documented.87,88

A robust literature, including numerous animal and human studies, shows that DEHP, benzyl 

butyl phthalate, and dibutyl phthalate are antiandrogenic and adversely affect male fetal 

genital development. These chemicals exert direct testicular toxicity, thereby reducing 

circulating testosterone concentrations within the body and increasing the risk of 

hypospadias and cryptorchidism at birth. These phthalates are also associated with changes 

in men’s hormone concentrations and changes in sperm motility and quantity.6,27–29,89–91 

Mono-(2-ethylhexyl)phthalate, a DEHP metabolite, also interacts with 3 peroxisome 

proliferator–activated receptors,30 which play key roles in lipid and carbohydrate 

metabolism, providing biological plausibility for DEHP metabolites in contributing to 

childhood obesity and insulin resistance.92 Epidemiologic studies have also demonstrated an 

association between urinary phthalate metabolites and markers of oxidative stress.33,34 

Laboratory studies have found that metabolites of phthalates are linked to oxidative stress.
93,94 Oxidative stress appears to diminish the insulin-dependent stimulation of insulin-

signaling elements and glucose transport activity95 and modify the endothelial relaxant nitric 
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oxide, promoting vasoconstriction, platelet adhesion, and the release of proinflammatory 

cytokines, such as interleukin-1.96,97 Therefore, if phthalates are proinflammatory and 

increase oxidative stress, these effects could lead to changes to metabolic health outcomes. 

Emerging animal evidence also suggests that DEHP may produce arrhythmia,35 change 

metabolic profiles, and produce dysfunction in cardiac myocytes.36

Data from the National Health and Nutrition Examination Survey (NHANES) indicate that 

DEHP metabolites decreased by approximately 37% between 2001 and 2010.98 These 

decreases are attributable to the replacement of DEHP with diisodecyl (DIDP) and 

diisononylphthalate (DINP), phthalates that have not been banned or restricted by regulatory 

agencies and are increasingly detected within the population. Urinary metabolites of DIDP 

and DINP were detected in 94% and 98% of the population, respectively, in the 2009–2010 

NHANES.98 DIDP and DINP have been widely identified as food contaminants,99 and 

cross-sectional data from NHANES from 2009 to 2012 show positive associations of DIDP 

and DINP metabolite concentrations with insulin resistance and systolic blood pressure z 
scores in children and adolescents.31,32

PFCs

PFCs are synthetic organic fluorinated compounds whose carbon–fluorine bonds impart high 

stability and thermal resistance. PFCs have wide utility in stain-resistant sprays for carpets 

and upholstery, fire-retarding foams, nonstick cooking surfaces, and greaseproofing of paper 

and paperboard used in food packaging.100,101 The 2003–2004 NHANES revealed that 

>98% of the US population has detectable concentrations of PFCs in their blood, including 

perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane 

sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA).102 Although exposure can 

occur through dermal contact and inhalation, consumption of contaminated food is a major 

route of exposure to PFOS and PFOA for most people.100 Studies have associated PFOA 

and PFOS exposure with adverse health outcomes, such as reduced immune response to 

vaccines,37,38 metabolic changes,42 and decreased birth weight.43 There is also growing 

concern regarding the endocrine-disrupting potential of PFCs; studies have linked PFOA and 

PFOS to reduced fertility39,40 and thyroid alterations41,103–105 among other effects. These 

compounds are also extremely persistent and bioaccumulative, with half-lives between 2 and 

9 years in the human body.106

Because of health and environmental concerns, US production of PFOS was phased out in 

2002, and PFOA was phased out in 2015.107 However, these particular compounds are only 

2 of more than a dozen members of the parent family. For example, closely related PFNA 

chiefly replaced PFOA; increasing PFNA concentrations were detected in the 2003–2004 

NHANES and have remained stable thereafter.102

In January 2016, the FDA banned the use of 3 classes of long-chain PFCs as indirect food 

additives.108 Yet, structurally similar short-chain PFCs, such as PFHxS, may continue to be 

used. Median levels of PFHxS have been measured since NHANES 2003–2004 and have 

remained stable through NHANES 2009–2010.109 A Swedish study of perfluoroalkyl acid 

trends between 1996 and 2010 confirmed increases in PFHxS concentrations (8.3% per 

year) but also noted increases of 11% per year in another short-chain PFC substitute for 
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PFOS, perfluoroalkylbutane sulfonate (PFBS), which is increasingly found in food.110 

Modest, infrequently (2%) detectable concentrations of PFBS were identified among the US 

population in NHANES 2011–2012. Although studies have not sufficiently evaluated the 

human health consequences of exposure to short-chain PFCs, the structural similarity to 

banned compounds suggests that they may also pose human health risks.111,112

Perchlorate

Perchlorate most commonly enters the food supply through its presence as a contaminant in 

water or as a component of nitrate fertilizers.44,45,113 Exposed crops may retain elevated 

levels of the compound, as described in exploratory studies conducted by the FDA.114 In 

addition, perchlorate is an indirect food additive. Contamination in food occurs through its 

use as an antistatic agent for plastic packaging in contact with dry foods with surfaces that 

do not contain free fat or oil (such as sugar, flour, and starches) or through degradation from 

hypochlorite bleach, which is used as a cleaning solution in food manufacturing.115

Perchlorate is known to disrupt thyroid hormone production through interference with the 

sodium iodide symporter (NIS), which allows essential iodide uptake in the thyroid gland.
44,116 The thyroid hormone is critical for early life brain development, among other 

processes, and alterations to normal hormone concentrations can have lifelong cognitive 

consequences.117–121 Exposure to perchlorate among pregnant women, especially those who 

are iodine deficient, raises particular concern given that the developing fetus is entirely 

reliant on the maternal thyroid hormone during the first trimester of pregnancy.117,122,123 

Maternal hypothyroidism during pregnancy has been associated with cognitive deficits in 

children.120,121 Infants represent another important susceptible population, and the intake of 

powdered formula may result in high perchlorate exposure from associated packaging 

materials. Perchlorate and other food contaminants that alter thyroid hormone homeostasis, 

such as polybrominated diphenyl ethers,124–126 may be contributing to the increase in 

neonatal hypothyroidism and other thyroid system perturbations that have been documented 

in the United States.127,128 In addition, the thyroid hormone is critical for normal growth 

processes, and recent evidence suggests that high exposure to multiple compounds that 

interfere with iodide uptake is associated with poor growth outcomes.49

DIRECT FOOD ADDITIVES

Artificial Food Colors

Synthetic artificial food colors (AFCs) are added to foods and beverages for aesthetic 

reasons, and the resulting brightly colored products are appealing to young children in 

particular. In some cases, AFCs serve as substitutes for nutritious ingredients, such as in fruit 

juice drinks that contain little or no actual fruit. Nine AFCs currently are approved for use in 

the United States: Blue 1, Blue 2, Green 3, Yellow 5, Yellow 6, Red 3, Red 40, Citrus Red 2, 

and Orange B.129 FDA data indicate that the use of AFCs increased more than fivefold 

between 1950 and 2012, from 12 to 68 mg per capita per day.130

Over the last several decades, studies have raised concerns regarding the effect of AFCs on 

child behavior and their role in exacerbating attention-deficit/hyperactivity disorder 
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symptoms.131–136 Elimination of AFCs from the diet may provide benefits to children with 

attention-deficit/hyperactivity disorder.131,137–139 Although the mechanisms of action have 

not yet been fully elucidated, at least one AFC, Blue 1, may cross the blood-brain barrier.
135,140 Overall, however, further work is needed to better understand the implications of 

AFC exposure and resolve the uncertainties across the scientific evidence. The available 

literature should be interpreted with caution because of the absence of information about the 

ingredients for a number of reasons, including patent protection.

The FDA has set acceptable daily intakes for each of the AFCs.141 However, these 

standards, as well as original safety approval for the color additives, are based on animal 

studies that do not include neurologic or neurobehavioral end points.140,142

Given that such effects have been observed in children, a thorough reassessment of AFCs is 

warranted to determine whether they meet the agency’s benchmark of safety: “convincing 

evidence that establishes with reasonable certainty that no harm will result from the intended 

use of the color additive.”142

Nitrates and Nitrites

There has been longstanding concern regarding the use of nitrates and nitrites as 

preservatives in cured and processed meats, fish, and cheese.143 In a 2004 statement, the 

American Medical Association emphasized that infants are particularly vulnerable to 

methemoglobinemia from nitrates and nitrites because of the chemical composition of their 

gastric tracts.144 The American Medical Association statement also highlighted the risk of 

gastrointestinal or neural cancer from the ingestion of nitrates and nitrites, which (although 

not carcinogenic themselves) may react with secondary amines or amides to form 

carcinogenic N-nitroso compounds (NOCs) in the body. In 2006, the International Agency 

for Research on Cancer classified ingested nitrates and nitrites, in situations that would lead 

to endogenous nitrosation (production of NOCs), as “probable human carcinogens” (Group 

2A).10,145 In 2015, the International Agency for Research on Cancer specifically classified 

processed meat (which includes meat that has been salted, cured, or otherwise altered to 

improve flavor and preservation) as “carcinogenic to humans” (Group 1).47 Such processing 

can result in the increased formation of NOCs, and there is convincing evidence linking 

consumption of processed meats with colorectal cancer.47 High maternal intake of nitrite-

cured meats has also been linked to an increased risk of childhood brain tumors in the 

offspring, especially tumors of the astroglia.48,145 Current FDA regulations currently allow 

up to 500 ppm of sodium nitrate and 200 ppm of sodium nitrite in final meat products. 

However, no nitrates or nitrites can be used in food produced specifically for infants or 

young children.146 Nitrates, like perchlorate, can also disrupt thyroid function by blocking 

the NIS and thereby interfering with essential iodide uptake. Although its relative potency is 

much lower than that of other common NIS inhibitors, nitrate is still a significant concern, 

given that (1) combined exposures from food and water may account for a larger proportion 

of NIS inhibition than from perchlorate exposure and (2) NIS inhibitors may act together 

additively.50,147 Thyroid hormones are essential for many physiologic processes in the body, 

including normal growth, and recent evidence suggests that high exposure to NIS inhibitors, 

including nitrate, is associated with reductions in growth measures.49 In addition, as noted 
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above with regard to perchlorate, maternal thyroid disruption during pregnancy is of 

particular concern because the fetus is entirely reliant on the maternal thyroid hormone 

during the first trimester. Thyroid hormone is critical for neurologic developmental 

processes, and early life deficiencies can result in lifelong adverse effects on cognitive 

health.117–121

In recent years, there has been increasing use of alternative sources of nitrate and nitrite 

preservatives, such as celery powder, in products labeled as “natural” and “organic.”148,149 

These products may contain nitrates and nitrites in concentrations that can be equivalent to 

or higher than those found in traditional products using sodium-based sources.149,150 Thus, 

consumers should be aware that with respect to nitrates and nitrites alone, natural and 

organic products may not provide advantages over conventional products.
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