SUPPLEMENTARY INFORMATION

Real-Time Particle Monitoring of Pesticide Drift from an Axial Fan Airblast Orchard Sprayer

Magali N. Blanco, MS¹; Richard A. Fenske, PhD¹; Edward J. Kasner, PhD¹; Michael G. Yost, PhD¹; Edmund Seto, PhD¹; Elena Austin, PhD¹

¹Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States

Contact Author

Magali N. Blanco

HSB F230

1959 NE Pacific Street

Seattle, WA 98195

(206) 221 - 1528

magali@uw.edu

	Starting		Ending
Parameter	Units	Conversion Factors	Units
PNC	$\frac{count}{0.01ft^3}$	$\frac{100\ 0.01\ ft^3}{ft^3}x\ \frac{35.3147\ ft^3}{m^3}$	$\frac{count}{m^3}$
GM	μm		m
Diameter	count	10 ⁶ μm	count
Density	$\frac{g}{cm^3}$	$\frac{10^6 \mu g}{g} x \frac{10^6 cm^3}{m^3}$	$\frac{\mu g}{m^3}$
PNC to PMC	$PNC\left(\frac{count}{m^3}\right)$	$\left(\frac{m}{count}\right)^3 x \frac{\mu g}{m^3}$	$PMC\left(\frac{\mu g}{m^3}\right)$

Table S1. Conversion factors to estimate PMC from PNC

Day	Date	Spray Events	Samples per	Total
			Spray Event	Samples
1	6/10/2016	3 ¹	5	15
2	9/28/2016	4	5	20
3	9/29/2016	4	3 ²	12
4	9/30/2016	4	5	20
	Total	15		67

 Table S2a. Number of samples collected above the canopy

¹The first spray event was dropped since the wind was not blowing southbound. ²Two samplers failed at locations B and D during that spray day.

Day	Date	Spray Events	Samples per	Total
			Spray Event	Samples
1	6/10/2016	3 ¹	4^{2}	12
2	9/28/2016	4	5	20
3	9/29/2016	4	5	20
4	9/30/2016	4	5	20
	Total	15		72

Table S2b. Number of samples collected below the canopy

¹The first spray event was dropped since the wind was not blowing southbound. ²One sampler was not placed at locations E due to a protocol modification.

Figure S1. Time series plot comparing one-minute particle mass concentrations (PMC) during AFA sprayer events and control periods for one of our study days (September 30th, 2016).

Control • AFA