
A real-time reverse transcription–polymerase chain
reaction (RT-PCR) assay was developed to rapidly detect
the severe acute respiratory syndrome–associated coron-
avirus (SARS-CoV). The assay, based on multiple primer
and probe sets located in different regions of the SARS-
CoV genome, could discriminate SARS-CoV from other
human and animal coronaviruses with a potential detection
limit of <10 genomic copies per reaction. The real-time RT-
PCR assay was more sensitive than a conventional RT-
PCR assay or culture isolation and proved suitable to
detect SARS-CoV in clinical specimens. Application of this
assay will aid in diagnosing SARS-CoV infection.

In late 2002, a life-threatening febrile respiratory illness
appeared in Guangdong Province, China, and quickly

spread throughout Asia and to other parts of the world
(1–4). Designated “severe acute respiratory syndrome”
(SARS), the etiologic agent was later identified as a
hitherto unrecognized coronavirus (SARS-CoV) (5,6). A
diagnosis of SARS is based primarily on clinical and epi-
demiologic criteria, but many respiratory viruses can cause
similar symptoms, and therefore rapid, reliable diagnostic
tests for SARS-CoV infection were needed. In response to
this need, three types of diagnostic tests for SARS-CoV
were quickly developed: tissue culture isolation, antibody
detection, and reverse transcription-polymerase chain
reaction (RT-PCR) assays.  

A variety of RT-PCR assays were developed during the
epidemic for SARS-CoV (1,5–8), including a commercial
ready-to-use RT-PCR kit (Artus Biotech, Hamburg,
Germany). Early RT-PCR assays based on conventional
designs required postamplification product processing

(e.g., gel electrophoresis), were time-consuming, and were
prone to false-positive results from amplicon contamina-
tion. Conversely, real-time RT-PCR assays based on
detecting and quantifying a fluorescent signal generated
during amplification do not require postamplification pro-
cessing and therefore eliminate one potential avenue for
template contamination.  

A variant of the real-time format, based on TaqMan
probe hydrolysis technology (Applied Biosystems, Foster
City, CA), has been shown to provide sensitive, specific,
and quantifiable results in viral diagnostic assays (9) and has
been used successfully to study emerging virus infections
(10,11), including SARS (6,12). In response to the SARS
public health emergency, we developed and evaluated a
TaqMan real-time RT-PCR assay based on three distinct tar-
gets in the SARS-CoV genome for rapid deployment to the
National Laboratory Response Network for Bioterrorism
(LRN) (http://www.cdc.gov/programs/bio.htm).

Materials and Methods

Clinical Specimens
A total of 340 clinical specimens collected from 246

persons with confirmed or suspected SARS-CoV infec-
tion (13) were used in this study. Specimens included oro-
and nasopharyngeal swabs (dry and in viral transport
media), sputa, nasal aspirates and washes, bronchoalveo-
lar lavage, and lung tissue specimens collected at autopsy.
Specimen processing was performed in a class II biologi-
cal safety cabinet using biosafety level three (BSL3) work
practices. Three 100-µL aliquots of each specimen were
distributed to vials each containing 900 µL of NucliSens
lysis buffer (bioMérieux, Durham, NC) and stored at
–70°C until testing.
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Virus Culture
Vero E6 cells were inoculated with clinical specimens

and observed for cytopathic effect, consisting of cell
rounding with a refractive appearance followed by detach-
ment from the flask surface (5). Plaque titrations were con-
ducted by standard methods (14).

Nucleic Acid Extraction
Nucleic acids were recovered from clinical specimens

using the automated NucliSens extraction system
(bioMérieux). Following manufacturer’s instructions,
specimens received in NucliSens lysis buffer were incubat-
ed at 37°C for 30 min with intermittent mixing, and 50 µL
of silica suspension, provided in the extraction kit, was
added and mixed. The contents of the tube were then trans-
ferred to a nucleic acid extraction cartridge and processed
on an extractor workstation. Approximately 40–50 µL of
total nucleic acid eluate was recovered into nuclease-free
vials and either tested immediately or stored at –70°C.

Primers and Probes
Multiple primer and probe sets were designed from the

Urbani strain of SARS-CoV polymerase 1b and nucleo-
capsid gene sequences (15) by using Primer Express soft-
ware version 1.5 or 2.0.0 (Applied Biosystems) with the
following default settings: primer melting temperature
(TM) set at 60°C; probe TM set at 10°C greater than the
primers at approximately 70°C; and no guanidine residues
permitted at the 5′ probe termini. All primers and probes
were synthesized by standard phosphoramidite chemistry
techniques at the Biotechnology Core Facility at the
Centers for Disease Control and Prevention (CDC).

TaqMan probes were labeled at the 5′-end with the reporter
molecule 6-carboxy-fluorescein (FAM) and at the 3′-end
with the quencher Blackhole Quencher 1 (Biosearch
Technologies, Inc., Novato, CA). Optimal primer and
probe concentrations were determined by cross-titration of
serial twofold dilutions of each primer against a constant
amount of purified SARS-CoV RNA. Primer and probe
concentrations that gave the highest amplification efficien-
cies in this study were selected for further study (Table 1).

Real-Time RT-PCR Assay
The real-time RT-PCR assay was performed by using

the Real-Time One-Step RT-PCR Master Mix (Applied
Biosystems). Each 25-µL reaction mixture contained
12.5 µL of 2X Master Mix, 0.625 µL of the 40X
MultiScribe and RNase Inhibitor mix, 0.25 µL of 10 µM
probe, 0.25 µL each of 50 µM forward and reverse
primers, 6.125 µL of nuclease-free water, and 5 µL of
nucleic acid extract. Amplification was carried out in 96-
well plates on an iCycler iQ Real-Time Detection System
(Bio-Rad, Hercules, CA). Thermocycling conditions con-
sisted of 30 min at 48°C for reverse transcription, 10 min
at 95°C for activation of the AmpliTaq Gold DNA poly-
merase, and 45 cycles of 15 s at 95°C and 1 min at 60°C.
Each run included one SARS-CoV genomic template con-
trol and at least two no-template controls for the extraction
(to check for contamination during sample processing) and
one no-template control for the PCR-amplification step. As
a control for PCR inhibitors, and to monitor nucleic acid
extraction efficiency, each sample was tested by real-time
RT-PCR for the presence of the human ribonuclease
(RNase) P gene (GenBank accesssion number NM_
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Table 1. Primers and probes used for real-time RT-PCR assaysa 
Assay ID Primer/ probe Sequence (5′>3′) Genomic region Locationb 
Primary diagnostic assay     

SARS1 F CAT GTG TGG CGG CTC ACT ATA T RNA polymerase 15370-15392 
 R GAC ACT ATT AGC ATA AGC AGT TGT AGC A  15422-15449 
 P TTA AAC CAG GTG GAA CAT CAT CCG GTG  15395-15420 
SARS2 F GGA GCC TTG AAT ACA CCC AAA G Nucleocapsid 28531-28552 
 R GCA CGG TGG CAG CAT TG  28581-28597 
 P CCA CAT TGG CAC CCG CAA TCC  28559-28574 
SARS3 F CAA ACA TTG GCC GCA AAT T Nucleocapsid 29016-29034 

 R CAA TGC GTG ACA TTC CAA AGA  29063-29083 
 P CAC AAT TTG CTC CAA GTG CCT CTG CA  29036-29061 
To confirm positive results     

N3 F GAA GTA CCA TCT GGG GCT GAG Nucleocapsid 28432-28452 
 R CCG AAG AGC TAC CCG ACG  28383-28400 
 P CTC TTT CAT TTT GCC GTC ACC ACC AC  28406-28431 
3′NTR F AGC TCT CCC TAG CAT TAT TCA CTG 3′ nontranslated region 29619-29642 
 R CAC CAC ATT TTC ATC GAG GC  29576-29595 
 P TAC CCT CGA TCG TAC TCC GCG T  29597-29618 
M F TGT AGG CAC TGA TTC AGG TTT TG Membrane protein 26951-26973 

 R CGG CGT GGT CTG TAT TTA ATT TA  27005-27027 
  P CTG CAT ACA ACC GCT ACC GTA TTG GAA  26974-27000 
aRT-PCR, reverse transcription–polymerase chain reaction; F, forward primer; R, reverse primer; P, probe. 
bLocation based on the severe acute respiratory syndrome–associated coronavirus, Urbani strain (GenBank accession no. AY278741). 



006413) by using the following primers and probe: for-
ward primer 5′-AGATTTGGACCTGCGAGCG-3′; re-
verse primer 5′-GAGCGGCTGTCTCCACAAGT-3′;
probe 5′-TTCTGACCTGAAGGCTCTGCGCG-3′. The
assay reaction was performed identically to that described
above except that primer concentrations used were 30 µM
each. Fluorescence measurements were taken and the
threshold cycle (CT) value for each sample was calculated
by determining the point at which fluorescence exceeded a
threshold limit set at the mean plus 10 standard deviations
above the baseline. A test result was considered positive if
two or more of the SARS genomic targets showed positive
results (CT <45 cycles) and all positive and negative con-
trol reactions gave expected values.

Clinical specimens submitted to CDC for SARS-CoV
testing that gave positive results were confirmed with a
TaqMan real-time RT-PCR assay based on three different
primer and probe sets (Table 1). This assay was performed
independently in a separate laboratory using newly extract-
ed nucleic acid from a second specimen aliquot. The con-
firmatory assay used the SuperScript One-Step RT-PCR
(Invitrogen Corp., Carlsbad, CA) and the Mx4000 Multi-
plex Quantitative PCR system (Stratagene, La Jolla, CA).

Synthesis of RNA Transcripts
Template for the nucleocapsid gene RNA was plasmid

DNA (pCRII, Invitrogen Corp.) containing a full-length
copy of the open reading frame for the SARS-CoV nucle-
ocapsid gene oriented behind a T7 promoter. The plasmid
was linearized by digestion with SpeI. The template for the
polymerase RNA was a RT-PCR product generated by
using the following primers: Cor-p-F2-T7, 5′-GTAATA
CGACTCACTATAGGGCTAACATGCTTAGGATAA
TGG-3′ and Cor-p-R2, 5′-CCTATTTCTATAGAGACA
CTC-3′. Approximately 1 µg of RNA from Vero cells
infected with SARS-CoV was used in RT-PCR reactions
performed by using the SuperScript RT-PCR kit
(Invitrogen Corp.) according to the manufacturer’s instruc-
tions; both templates were purified by phenol-chloroform
extraction and ethanol precipitation before being used for
in vitro transcription. RNA was synthesized in vitro by
using the MegaScript kit (Ambion Inc., Austin, TX)
according to the standard protocol. Synthetic RNA was
treated with RNase-free DNase before being purified by
phenol-chloroform extraction and ethanol precipitation.
The concentration of RNA was determined by use of UV
spectroscopy. Synthetic RNA was positive sense and 1,369
nt in length for N and 325 nt in length for polymerase. 

Results

Real-Time RT-PCR Sensitivity and Reproducibility
Tenfold serial dilutions of the polymerase and nucleo-

capsid RNA transcripts were tested to assess the copy
detection limits and dynamic range of our optimized real-
time RT-PCR assays. The lower potential limit of detection
was approximately 2 transcript copies per reaction for
SARS2 and SARS3, and 7.5 copies per reaction for
SARS1 (Figure). The confirmatory assays, which employ
three different primer and probe sets (N3, 3′NTR, and M),
showed potential limits of detection similar to the SARS2
and SARS3 assays. Strong linear correlations (r2 >0.99)
were obtained between CT values and transcript quantity
over at least a 6-log range from approximately 102 to 107
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Figure. Typical amplification plot derived from serial 10-fold dilu-
tions of severe acute respiratory syndrome–associated coronavirus
RNA transcripts using TaqMan reverse transcription–polymerase
chain reaction primer/probe sets SARS1, SARS2, and SARS3. A
PCR Base Line Subtractive Curve Fit view of the data is shown with
relative fluorescence units (RFU) plotted against cycle number. The
default setting of 10 times the standard deviation of fluorescence in
all wells over the baseline cycles was used to calculate the thresh-
old cycle, or CT value, for a positive reaction (horizontal line).
Inserts show standard curve analysis of the RNA amplification plots
with CT values plotted against starting copy number. Plots derived
from dilutions containing 2 x 106 to 20 transcript copies for SARS2
and SARS3, and 7.5 x 106 to 75 copies for SARS1.



copies per reaction for the three primer/probe sets.
Linearity was markedly reduced for copy numbers exceed-
ing 106 (data not shown).

Assay reproducibility was tested by using replicate 10-
fold serial dilutions of the RNA transcripts and intra- and
interassay variability evaluated for each dilution point in
triplicate on three different days. At the lower copy detec-
tion limit for SARS2 and SARS3 (2 copies per reaction),
assay reproducibility exceeded 90%. In contrast, the lower
copy detection limit for SARS1 (7.5 copies per reaction)
was positive in <50% of replicate reactions. One hundred
percent reproducibility with SARS1 was achieved at the
dilution that contained 75 transcript copies per reaction.
Over the linear range of the assay, the coefficient of varia-
tion of the mean CT values within and between runs was
0.46%–2.54% and 0.64%–2.39%, respectively (Table 2). 

To assess the efficiency of amplification of the RNA
transcripts in the presence of exogenous nucleic acid and
potential RT-PCR inhibitors, 10-fold serial dilutions of the
RNA transcripts were prepared in water and pooled total
nucleic acid extract from 20 SARS-CoV–negative human
respiratory specimens (nasopharyngeal aspirates,
bronchial washes, sputum, naso- and oropharyngeal
swabs, and lung tissue). Exogenous nucleic acid had no
discernible effect on amplification efficiency of the
SARS1 and SARS3 primer/probe sets, as demonstrated by
the similarity in linear regression slopes and endpoint
detection limits in the presence and absence of specimen
extract (Table 3). In contrast, the standard curve for
SARS2 had a more efficient slope (–3.21) in water than in
the presence of spiked extract (–3.48) and with greater
variation in the CT values at 20 target copies or lower, sug-
gesting that the amplification reaction was less efficient in
the presence of the specimen extract. This observation was
confirmed on two additional repetitions of the same exper-
iment.

The real-time RT-PCR assay was compared with a pre-
viously described conventional RT-PCR for SARS-CoV

by using fluorescent dye-labeled primers and GeneScan
amplicon analysis (5). Tenfold serial dilutions of a pre-
titrated SARS-CoV stock adjusted to 1 x 107 PFUs/mL
were prepared in triplicate and tested by all assays (Table
4). The real-time RT-PCR assays were positive with 100%
frequency at a 10–8 dilution. Accordingly, the lowest virus
quantity detected was 0.01 PFU/100 µL of specimen
extract. The conventional RT-PCR assay was at least 10-
fold less sensitive in repeat comparisons.

Specificity
We compared our primer and probe sets with sequences

for 14 SARS-CoV field isolates that became available dur-
ing the course of this study (16) and found no nucleotide
mismatches. In contrast, alignments with other published
human and animal coronaviruses (GenBank accession no.:
human coronaviruses X69721 and AF124989; bovine
coronaviruses NC003045 and AF124985; murine hepatitis
viruses NC001846 and M55148; sialodacryoadenitis virus
AF124990; canine coronavirus AF124986; feline infec-
tious peritonitis virus AF124987; porcine hemagglutinat-
ing encephalomyelitis virus AF124988, Z34093, and
AF124992; turkey coronavirus AF124991; and avian
infectious bronchitis virus NC_001451) showed little
sequence identity with our primer and probe sets. To fur-
ther assess the potential for crossreactions with other mem-
bers of the Coronaviridae family, the RT-PCR assays were
tested against nucleic acid extracts of human respiratory
coronaviruses OC43 (VR-759) and 229E (VR-740), feline
infectious peritonitis virus (VR-3004), mouse hepatitis
virus (VR-1426), bovine coronavirus (VR-874), porcine
transmissible gastroenteritis virus (VR-743), and avian
infectious bronchitis virus (VR-841), obtained from the
American Type Culture Collection (Manassas, VA), and
human enteric coronavirus (VR-1475). In addition, nucle-
ic acid extracts of field isolates of influenza A and B;
parainfluenza 1, 2, and 3; rhinovirus; adenovirus; human
metapnuemovirus; and respiratory syncytial virus, as well
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Table 2. Reproducibility of real-time RT-PCR assaysa 
 RNA transcript copy numberb 
 7.5 x 101 7.5 x 102 7.5 x 103 7.5 x 104 7.5 x 105 7.5 x 106 
SARS1       

CV within assay (%)c 2.53 0.96 0.49 0.69 1.66 0.7 
CV between assays (%)d 2.39 1.09 0.82 0.64 2.1 0.79 

 2.0 x 101 2 x 102 2 x 103 2 x 104 2 x 105 2 x 106 
SARS2       

CV within assay (%) 1.27 0.57 0.46 0.72 0.84 0.67 
CV between assays (%) 1.54 1.18 0.93 1.47 1.54 1.32 

SARS3       
CV within assay (%) 0.8 0.55 0.65 0.5 0.27 1.25 
CV between assays (%) 0.94 0.64 1.07 1.13 1.24 1.65 

aRT-PCR, reverse transcription–polymerase chain reaction; CV, coefficient of variation. 
bTen-fold dilutions of the polymerase and nucleocapsid RNA transcripts; copies per reaction; dilution series thawed on 3 different days and assays performed in triplicate 
for each dilution. 
cDetermined from three replicates within each assay. 
dDetermined from three independent assays performed on different days. 



as human and nonhuman primate cell lines were tested. No
positive reactions were obtained with any of the primer
and probe sets.

Evaluation with Clinical Specimens
The real-time RT-PCR assay was used to test 14 clini-

cal specimens (including throat swab [2 specimens], spu-
tum [1 specimen], throat wash [5 specimens], and lung
autopsy tissues [6 specimens]) from 10 patients with labo-
ratory confirmed SARS-CoV infection (Table 5). Assay
results were positive with all specimens for all three
primer/probe sets. An additional, 326 respiratory speci-
mens collected during the course of the outbreak from 236
suspected U.S. SARS patients who were serologically neg-
ative for SARS-CoV infection were also negative by the
real-time RT-PCR.

Discussion 
In response to the SARS outbreak, we developed a real-

time RT-PCR assay based on multiple primer and probe
sets designed to different genomic targets to facilitate sen-
sitive and specific detection of SARS-CoV in clinical
specimens. A potential detection limit of <10 transcript
copies per reaction was achieved with greater relative sen-

sitivity than cell culture isolation or conventional RT-PCR.
The potential for quantitation over a wide dynamic range
(at least 6 logs) was demonstrated with low intra- and
interassay variability and limited inhibition from exoge-
nous nucleic acid extract from respiratory secretions. The
increased sensitivity of the real-time RT-PCR assay over
cell culture and conventional RT-PCR methods may aid
detection of the virus at earlier stages of infection, when
the virus is present at low titer in respiratory secretions (8).
In addition, by eliminating the need for postamplification
product processing, the real-time RT-PCR format permit-
ted shortened turnaround time for reporting results, which
proved critical during the SARS outbreak.

Although real-time RT-PCR offers clear advantages
over more conventional RT-PCR formats, assay results
must still be interpreted with caution. For example, the
effectiveness of RT-PCR for detection of SARS-CoV in
clinical specimens has been shown to be greatly influ-
enced by the quantity, type, and timing of specimen col-
lection (8,17). False-negative results due to poor quality
nucleic acid or presence of RT-PCR inhibitors can also be
a concern. We addressed this by simultaneously testing
for the human RNase P gene, which should be present in
all adequately collected samples. False-negative results
could also potentially arise from mutations occurring in
the primer and probe target regions in the SARS-CoV
genome. We addressed this by including multiple genetic
targets in our assay and by carefully comparing our
primer and probe sequences against published sequences
of SARS-CoV as they became available. To avoid false-
positive results, meticulous care was taken to prevent
introduction of contaminating viral RNA or previously
amplified DNA during preparation of the nucleic acid
extracts and amplification reactions. In addition, all RT-
PCR–positive specimens were retested from a second,
unopened sample aliquot and confirmed in a second lab-
oratory by using a real-time assay based on different
genetic targets.
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Table 3. Efficiency of real-time PCR assays  
 Mean CT

b values at estimated RNA transcript copy number 
 7.5 x 100 7.5 x 101 7.5 x 102 7.5 x 103 7.5 x 104 7.5 x 105 7.5 x 106 Slopec 

Efficiency
(%)d 

SARS1          
RNA transcript alone Neg 38.65±1.48 34.25±0.57 31.1±0.14 27.5 24.2 20.55±0.07 –3.55 91.1 
RNA transcript + extracte Neg 38.05±0.92 34.85±0.21 31.55±0.07 27.75±0.07 24.4 20.6 –3.49 93.3 

 2 x 100 2 x 101 2 x 102 2 x 103 2 x 104 2 x 105 2 x 106   
SARS2          

RNA transcript alone 35.4±0.57 32.1±0.14 29.45±0.64 26.15±0.07 22.9±0.14 19.4 16.35±0.07 –3.21 104.9 
RNA transcript + extract Neg 34.55±1.91 29.2±0.28 26.2 23.1 19.6±0.14 16.6 –3.48 93.9 

SARS3          
RNA transcript alone 39.3 36.2±0.42 32.8 29.1±0.14 25.9 22.15±0.07 19.2 –3.39 97.1 
RNA transcript + extract 40.3 36.2±0.28 33.4±0.28 29.9±0.21 26.05±0.07 22.55±0.21 19.65±0.21 –3.42 96.1 

aPCR, polymerase chain reaction; CT, threshold cycle number.; neg, negative. 
bValues shown are mean of triplicate samples ± standard deviations. 
cSlope determined from the formula: Y = Y intercept – slope log10.  Slopes calculated for SARS1 (7.5 x 106 to 7.5 x 101); SARS2 (2 x 106 to 2 x 101); SARS3 (2 x 106 to 2 x 100). 
dEfficiency = [10(–1/slope)] – 1. 
eReactions performed in presence of pooled total nucleic acid extract from 20 human respiratory specimens. 

Table 4. Comparison of real-time RT-PCR assay with culture and 
conventional RT-PCRa 

Real-time RT-PCR SARS-CoV 
dilutionb 

Conventional  
RT-PCR SARS1 SARS2 SARS3 

10–4 3/3c 3/3 3/3 3/3 
10–5 3/3 3/3 3/3 3/3 
10–6 3/3 3/3 3/3 3/3 
10–7 3/3 3/3 3/3 3/3 
10–8 0/3 3/3 3/3 3/3 
10–9 0/3 0/3 1/3 0/3 
10–10 0/3 0/3 0/3 0/3 
aRT-PCR, reverse transcription–polymerase chain reaction; SARS-CoV, severe 
acute respiratory syndrome–associated coronavirus. 
bSerial 10-fold dilution of SARS-CoV stock culture containing 1 x 107 PFUs/mL. 
cNumber of positive results divided by the number of replicates tested. 



In conclusion, our real-time RT-PCR assay permitted
rapid, sensitive, and specific detection of SARS-CoV in
clinical specimens and provided needed diagnostic support
during the recent SARS outbreak. Widely deploying this
assay through the LRN will enhance our ability to provide
a rapid response in the event of the possible return of SARS.
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Table 5. Results of real-time RT-PCR assay with specimens from patients with laboratory-confirmed SARS-CoV infection  
Real-time RT-PCR CT

c values 
Case ID Location Specimen ID Specimen 

 
Serology 

Vero E6 
culture 

Conventional 
RT-PCRb SARS1 SARS2 SARS3 RNase P 

05078 Toronto 2003756523 Lung, RM N/A – + 24.2 21.6 23 23.9 
  2003756525 Lung, RU  – + 24.9 21.5 23 23.7 
05077 Thailand 2003756502 Throat swab + + + 37.5 36.2 39.8 29.3 
05000 Hong Kong 2003757035 Lung, RU + – + 26.7 22.6 24.1 24.7 
  2003757036 Lung, LU  – + 27.2 24.9 26.5 26 
  2003757037 Lung, RM  – + 34.9 37.5 31.9 27.4 
  2003757038 Lung, LL  – + 29.6 27 28.6 24.5 
00220 Utah, USA 2003757508 Sputum + + + 24.7 23 24.8 30.6 
05001 Vietnam 2003757190 Throat wash + + + 23.7 22.4 24.1 30.1 
05008 Vietnam 2003757229 Throat wash + – + 35.5 35.5 36.7 30 
05010 Vietnam 2003757239 Throat wash + – + 31.1 29.3 31.5 34.2 
05013 Vietnam 2003757251 Throat wash + – + 29.5 28.4 30.3 28.8 
05017 Vietnam 2003757268 Throat wash + + + 26 24.7 26.4 27.9 
05316 Vietnam 2003759760 Throat swab N/A + N/A 25 25.3 28.2 28 
aRT-PCR, reverse transcription–polymerase chain reaction; SARS-CoV, severe acute respiratory syndrome–associated coronavirus; CT, threshold cycle number; RM, 
right middle; RU, right upper; LU, left upper; LL, left lower; N/A, not applicable. 
bRef. 5. 
cValues shown mean of duplicate values. 




