Use of a Reduced (4-Dose) Vaccine Schedule for Postexposure Prophylaxis to Prevent Human Rabies
Recommendations of the Advisory Committee on Immunization Practices
The MMWR series of publications is published by Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.

Suggested Citation: Centers for Disease Control and Prevention. [Title]. MMWR 2010;59(No. RR-#):[inclusive page numbers].

Centers for Disease Control and Prevention
Thomas R. Frieden, MD, MPH
Director
Peter A. Briss, MD, MPH
Acting Associate Director for Science
James W. Stephens, PhD
Office of the Associate Director for Science
Stephen B. Thacker, MD, MSc
Deputy Director for Surveillance, Epidemiology, and Laboratory Services

Editorial and Production Staff
Frederic E. Shaw, MD, JD
Editor, MMWR Series
Christine G. Casey, MD
Deputy Editor, MMWR Series
Teresa F. Rutledge
Managing Editor, MMWR Series
David C. Johnson
Lead Technical Writer-Editor
Jeffrey D. Sokolow, MA
Project Editor
Martha F. Boyd
Lead Visual Information Specialist
Malbea A. LaPete
Stephen R. Spriggs
Terraye M. Starr
Visual Information Specialists
Kim L. Bright
Quang M. Doan, MBA
Phyllis H. King
Information Technology Specialists

Editorial Board
William L. Roper, MD, MPH, Chapel Hill, NC, Chairman
Virginia A. Caine, MD, Indianapolis, IN
Jonathan E. Fielding, MD, MPH, MBA, Los Angeles, CA
David W. Fleming, MD, Seattle, WA
William E. Halperin, MD, DrPH, MPH, Newark, NJ
King K. Holmes, MD, PhD, Seattle, WA
Deborah Holtzman, PhD, Atlanta, GA
John K. Iglehart, Bethesda, MD
Dennis G. Maki, MD, Madison, WI
Sue Mallonee, MPH, Oklahoma City, OK
Patricia Quinlisk, MD, MPH, Des Moines, IA
Patrick L. Remington, MD, MPH, Madison, WI
Barbara K. Rimer, DrPH, Chapel Hill, NC
John V. Rullan, MD, MPH, San Juan, PR
William Schaffner, MD, Nashville, TN
Anne Schuchat, MD, Atlanta, GA
Dixie E. Snider, MD, MPH, Atlanta, GA
John W. Ward, MD, Atlanta, GA

Contents
Introduction ... 1
Methods ... 2
Rationale for Reduced Doses of Human Rabies Vaccine 2
Revised Rabies Postexposure Prophylaxis Recommendations 5
Vaccination and Serologic Testing .. 7
Management of Adverse Reactions, Precautions, and Contraindications ... 7
Variation from Human Rabies Vaccine Package Inserts 7
References .. 8
Use of a Reduced (4-Dose) Vaccine Schedule for Postexposure Prophylaxis to Prevent Human Rabies

Recommendations of the Advisory Committee on Immunization Practices

Prepared by
Charles E. Rupprecht, VMD, PhD¹
Deborah Briggs, PhD²
Catherine M. Brown, DVM³
Richard Franka, DVM, PhD¹
Samuel L. Katz, MD⁴
Harry D Kerr, MD⁵
Susan M. Lett, MD³
Robin Levis, PhD⁶
Martin I. Meltzer, MD¹
William Schaffner, MD⁷
Paul R. Cieslak, MD⁸

¹National Center for Emerging and Zoonotic Infectious Diseases (proposed), CDC
²Kansas State University, Manhattan, Kansas
³Massachusetts Department of Public Health, Jamaica Plain, Massachusetts
⁴Duke University Medical Center, Durham, North Carolina
⁵American College of Emergency Physicians, Dallas, Texas
⁶Food and Drug Administration, Washington, District of Columbia
⁷Vanderbilt University School of Medicine, Nashville, Tennessee
⁸Oregon Department of Public Health, Corvallis, Oregon

Summary

This report summarizes new recommendation and updates previous recommendations of the Advisory Committee on Immunization Practices (ACIP) for postexposure prophylaxis (PEP) to prevent human rabies (CDC. Human rabies prevention—United States, 2008: recommendations of the Advisory Committee on Immunization Practices. MMWR 2008;57[No. RR-3]). Previously, ACIP recommended a 5-dose rabies vaccination regimen with human diploid cell vaccine (HDCV) or purified chick embryo cell vaccine (PCECV). These new recommendations reduce the number of vaccine doses to four. The reduction in doses recommended for PEP was based in part on evidence from rabies virus pathogenesis data, experimental animal work, clinical studies, and epidemiologic surveillance. These studies indicated that 4 vaccine doses in combination with rabies immune globulin (RIG) elicited adequate immune responses and that a fifth dose of vaccine did not contribute to more favorable outcomes. For persons previously unvaccinated with rabies vaccine, the reduced regimen of 4 1-mL doses of HDCV or PCECV should be administered intramuscularly. The first dose of the 4-dose course should be administered as soon as possible after exposure (day 0). Additional doses then should be administered on days 3, 7, and 14 after the first vaccination. ACIP recommendations for the use of RIG remain unchanged.

For persons who previously received a complete vaccination series (pre- or postexposure prophylaxis) with a cell-culture vaccine or who previously had a documented adequate rabies virus-neutralizing antibody titer following vaccination with noncell-culture vaccine, the recommendation for a 2-dose PEP vaccination series has not changed. Similarly, the number of doses recommended for persons with altered immunocompetence has not changed; for such persons, PEP should continue to comprise a 5-dose vaccination regimen with 1 dose of RIG. Recommendations for pre-exposure prophylaxis also remain unchanged, with 3 doses of vaccine administered on days 0, 7, and 21 or 28. Prompt rabies PEP combining wound care, infiltration of RIG into and around the wound, and multiple doses of rabies cell-culture vaccine continue to be highly effective in preventing human rabies.

Introduction

Rabies is a zoonotic disease caused by RNA viruses in the family Rhabdoviridae, genus Lyssavirus (1). Virus is transmitted in the saliva of rabid mammals via a bite. After entry to the central nervous system, these viruses cause an acute, progressive encephalomyelitis. The incubation period usually ranges from 1 to 3 months after exposure, but can range from days to
years. Rabies can be prevented by avoidance of viral exposure and initiation of prompt medical intervention when exposure does occur. In the United States, animal rabies is common. In a recent study, approximately 23,000 persons per year were estimated to have been exposed to rabid animals and received rabies postexposure prophylaxis (PEP) (2). With the elimination of canine rabies virus variants and enzootic transmission among dogs, human rabies is now rare in the United States, with an average of one or two cases occurring annually since 1960 (3).

Prompt wound care and the administration of rabies immune globulin (RIG) and vaccine are highly effective in preventing human rabies following exposure. A variety of empirical schedules and vaccine doses have been recommended over time, based in part on immunogenicity and clinical experience in areas of the world with enzootic canine or wildlife rabies (4). As more potent vaccines were developed, the number of vaccine doses recommended for PEP has decreased, and studies aimed at further revision and reduction of PEP schedules and doses in humans have been encouraged. By the latter half of the 20th century, a 4- to 6-dose, intramuscular regimen using human diploid cell vaccine (HDCV) or purified chick embryo cell vaccine (PCECV) was being recommended (5—8). In the United States, a 5-dose PPEP vaccine regimen was adopted during the 1980s (9—12). In 2007, when human rabies vaccine was in limited supply, an ad hoc National Rabies Working Group was formed to reassess the recommendations for rabies prevention and control in humans and other animals. In 2008, a smaller Advisory Committee on Immunization Practices (ACIP) Rabies Workgroup was formed to review rabies vaccine regimen options. This report provides updated ACIP recommendations regarding the use of a 4-dose vaccination regimen, replacing the previously recommended 5-dose regimen, for rabies PEP in previously unvaccinated persons.

Methods

The ACIP Rabies Workgroup* was formed in October 2008 to review 1) previous recommendations; 2) published and unpublished data from both national and global sources regarding rabies PEP; and 3) the immunogenicity, effectiveness, and safety of a 4-dose PEP rabies vaccination regimen. The ACIP Rabies Workgroup used an evidence-based process for consideration of a reduced vaccination regimen in human rabies PEP. This approach consisted of a review of information available from basic and applied studies of rabies prevention. Because rabies is almost always fatal among immunologically naïve persons once clinical symptoms of rabies occur, randomized, placebo-controlled efficacy studies of vaccine in humans cannot be conducted. The ACIP Rabies Workgroup reviewed six areas: 1) rabies virus pathogenesis, 2) experimental animal models, 3) human immunogenicity studies, 4) prophylaxis effectiveness in humans, 5) documented failures of prophylaxis in humans, and 6) vaccine safety. Studies for review were identified by searching the PubMed database and other relevant references and by consulting subject-matter experts. When definitive research evidence was lacking, the recommendations incorporated the expert opinion of the ACIP Rabies Workgroup members. The ACIP Rabies Workgroup also sought advice and comment from representatives of the vaccine industry, the National Association of State Public Health Veterinarians, the Council of State and Territorial Epidemiologists, state and local public health officials, additional national stakeholder groups, and other national and international experts. The proposed revised recommendations and a draft statement from the ACIP Rabies Workgroup were presented to the full ACIP during February 2009. After review and comment by ACIP, a revised draft, recommending a reduced regimen of 4 1-mL doses of rabies vaccine for PEP in previously unvaccinated persons, was prepared for consideration. These recommendations were discussed and accepted by ACIP at the June 2009 meeting (13).

Rationale for Reduced Doses of Human Rabies Vaccine

A detailed review of the evidence in support of a reduced, 4-dose schedule for human PEP has been published (14). The totality of the evidence, obtained from the available peer-reviewed literature, unpublished data sources, epidemiologic reviews, and expert opinion strongly supports a reduced vaccination schedule (Table 1). Since the 19th century, prophylactic interventions against rabies have recognized the highly neurotropic characteristics of lyssaviruses and have aimed at neutralizing the virus at the site of infection before it can enter the human central nervous system (Figure 1) (4,15,16). To accomplish this, immunologic interventions must be prompt and must be directed toward local virus neutralization, such as local infiltration with RIG and vaccination. Modern recommended rabies PEP regimens emphasize early wound care and passive immunization (i.e., infiltration of RIG in and around the wound) combined with active immunization (i.e., serial doses of rabies vaccine). Accumulated scientific evidence indicates that, following rabies virus exposure, successful neutralization and clearance of rabies virus mediated via appropriate PEP generally ensures patient survival (8).

A list of the membership appears on page 9 of this report.
The induction of a rabies virus-specific antibody response is one important immunologic component of response to vaccination (4). Development of detectable rabies virus-specific neutralizing antibodies is a surrogate for an adequate immune response to vaccination. Clinical trials of human rabies vaccination indicate that all healthy persons develop detectable rabies virus-neutralizing antibody titers rapidly after initiation of PEP. For example, in a literature review conducted by the ACIP Rabies Workgroup of at least 12 published rabies vaccination studies during 1976–2008 representing approximately 1,000 human subjects, all subjects developed rabies virus-neutralizing antibodies by day 14 (14).

Observational studies indicate that PEP is universally effective in preventing human rabies when administered promptly and appropriately. Of the >55,000 persons who die annually of rabies worldwide, the majority either did not receive any PEP, received some form of PEP (usually without RIG) after substantial delays, or were administered PEP according to schedules that deviated substantially from current ACIP or World Health Organization recommendations (17). For example, a review of a series of 21 fatal human cases in which patients received some form of PEP indicated that 20 patients developed signs of illness, and most died before day 28 (Figure 2). In such cases, in which widespread infection of the central

TABLE 1. Summary of evidence in support of a 4-dose postexposure prophylaxis regimen — United States, 2010

<table>
<thead>
<tr>
<th>Evidence</th>
<th>Conclusion</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus pathogenesis</td>
<td>High neurotropism of rabies virus requires immediate immunization (local infiltration with human rabies immune globulin [HRIG] and vaccination) to neutralize virus at the site of infection and prevent viral entry into the central nervous system.</td>
<td>Published literature,* expert national and international opinion, and historic observations</td>
</tr>
<tr>
<td>Experimental animal models</td>
<td>Protection in animal models was elicited without regard to the absolute number of vaccine doses used.</td>
<td>Published literature,* expert national and international opinion, and unpublished data</td>
</tr>
<tr>
<td>Human clinical studies</td>
<td>All patients develop adequate levels of virus-neutralizing antibodies by day 14, without any additive value of a 5th dose of vaccine administered at day 28 (in regards to any substantive increase in measured virus-neutralizing antibody levels).</td>
<td>Published literature,* expert national and international opinion, and unpublished data</td>
</tr>
<tr>
<td>Epidemiologic surveillance</td>
<td>No human rabies cases were identified in patients who received appropriate wound care, HRIG, and 4 doses of vaccine.</td>
<td>Published literature,** expert national and international opinion</td>
</tr>
<tr>
<td>Health economics</td>
<td>Expected positive national benefits are related to omission of a 5th dose (e.g., minimized travel expenses, reduced time out of work, health-care workers have more time for other patients, and fewer adverse reactions).</td>
<td>Published literature** and expert national opinion</td>
</tr>
</tbody>
</table>

nervous system occurs before the due date (i.e., day 28) of the fifth vaccine dose, the utility of that dose must be nil. In the United States, of the 27 human rabies cases reported during 2000–2008, none of the patients had a history of receiving any PEP before illness, and this is the most common situation for human rabies deaths in both developed and developing countries (3,8). In India, an analysis from two animal bite centers during 2001–2002 demonstrated that in 192 human rabies cases, all deaths could be attributed to failure to seek timely and appropriate PEP, and none of them could be attributed to a failure to receive the fifth (day 28) vaccine dose (18). Even when PEP is administered imperfectly or not according to established scheduled dose recommendations, it might be generally effective. Several studies have reported cases involving persons who were exposed to potentially rabid animals and who received less than 5, 4, or even 3 doses of rabies vaccine but who nevertheless did not acquire rabies (Table 2). For example, in one series from New York, 147 (13%) of 1,132 patients had no report of receiving the complete 5-dose vaccine regimen. Of these patients, 26 (18%) received only 4 doses of vaccine, and two of these patients were exposed to animals with laboratory-confirmed rabies. However, no documented cases of human rabies occurred (CDC, unpublished data, 2003). The ACIP Rabies Working Group estimates that >1,000 persons in the United States receive rabies prophylaxis annually of only 3 or 4 doses, with no resulting documented cases of human rabies, even though >30% of these persons likely have exposure to confirmed rabid animals (14). In addition, no case of human rabies in the United States has been reported in which failure of PEP was attributable to receiving less than the 5-dose vaccine course. Worldwide, although human PEP failures have been reported very rarely, even in cases in which intervention
appeared both prompt and appropriate (8), no cases have been attributed to the lack of receipt of the fifth human rabies vaccine dose on day 28 (4, 17).

In vivo laboratory animal studies using multiple animal models from rodents to nonhuman primates have underscored the importance of timely PEP using RIG and vaccine, regardless of the absolute number of vaccine doses used or the schedule (14, 19). For example, in a study in which 1, 2, 3, 4, or 5 doses of rabies vaccine were used in a Syrian hamster model in combination with human rabies immune globulin (HRIG), no statistically significant differences in elicited protection and consequent survivorship were observed among groups receiving different doses (20). In the same study, using a murine model, no differences were detected in immunogenicity and efficacy of PEP with 2, 3, or 4 vaccine doses. In another study using a nonhuman primate model, 1 dose of cell-culture vaccine, in combination with RIG administered 6 hours postexposure, provided substantial protection (21). In another study, a 3-dose regime was evaluated in a canine model and determined to be effective in preventing rabies (22).

Compared with older, nerve tissue-based products, adverse reactions associated with modern human rabies vaccination are uncommon (4). A review by the Workgroup of published and unpublished human rabies vaccine clinical trials and Vaccine Adverse Event Reporting System data identified no adverse events that were correlated to a failure to receive the fifth vaccine dose. As some adverse reactions might be independent clinical events with each vaccine administration, the omission of the vaccine dose on day 28 might have some positive health benefits. Otherwise, the overall safety of human rabies PEP is expected to be unchanged from the evidence provided in the 2008 ACIP report (12).

Preliminary economic assessments support the cost savings associated with a reduced schedule of vaccination (23, 24). The ACIP Rabies Workgroup has estimated that, assuming 100% compliance with a recommended vaccine regimen, a change in recommendation from a 5-dose schedule to a 4-dose schedule would save approximately $16.6 million in costs to the U.S. health-care system. Persons who receive rabies vaccination might see some savings related to deletion of the fifth recommended dose of vaccine, measured in both the cost of the vaccine and the costs associated with the additional medical visit.

Revised Rabies Postexposure Prophylaxis Recommendations

This report presents revised recommendations for human rabies PEP (Table 3). Rabies PEP includes wound care and administration of both RIG and vaccine.

Postexposure Prophylaxis for Unvaccinated Persons

For unvaccinated persons, the combination of RIG and vaccine is recommended for both bite and nonbite exposures, regardless of the time interval between exposure and initiation.

<table>
<thead>
<tr>
<th>Location (year)</th>
<th>No. of persons exposed</th>
<th>Persons who received <5 doses of vaccine</th>
<th>No. of documented rabies deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York (1998–2000)†</td>
<td>1,132</td>
<td>147 (13)</td>
<td>0</td>
</tr>
<tr>
<td>India (2003)§</td>
<td>439</td>
<td>261 (59)</td>
<td>0</td>
</tr>
<tr>
<td>Puerto Rico (2008)†</td>
<td>191</td>
<td>30 (16)</td>
<td>0</td>
</tr>
</tbody>
</table>

* No cases of human rabies were recorded that were attributable to receipt of only 4 doses of vaccine.
† SOURCE: CDC, unpublished data, 2008.
TABLE 3. Rabies postexposure prophylaxis (PEP) schedule — United States, 2010

<table>
<thead>
<tr>
<th>Vaccination status</th>
<th>Intervention</th>
<th>Regimen*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not previously vaccinated</td>
<td>Wound cleansing</td>
<td>All PEP should begin with immediate thorough cleansing of all wounds with soap and water. If available, a virucidal agent (e.g., povidine-iodine solution) should be used to irrigate the wounds.</td>
</tr>
<tr>
<td></td>
<td>Human rabies immune globulin (HRIG)</td>
<td>Administer 20 IU/kg body weight. If anatomically feasible, the full dose should be infiltrated around and into the wound(s), and any remaining volume should be administered at an anatomical site (intramuscular [IM]) distant from vaccine administration. Also, HRIG should not be administered in the same syringe as vaccine. Because RIG might partially suppress active production of rabies virus antibody, no more than the recommended dose should be administered.</td>
</tr>
<tr>
<td></td>
<td>Vaccine</td>
<td>Human diploid cell vaccine (HDCV) or purified chick embryo cell vaccine (PCECV) 1.0 mL, IM (deltoid area), 1 each on days 0, 3, 7, and 14.</td>
</tr>
</tbody>
</table>
| Previously vaccinated** | Wound cleansing | All PEP should begin with immediate thorough cleansing of all wounds with soap and water. |"
immediately and the second dose 3 days later. Administration of HRIG is unnecessary, and HRIG should not be administered to previously vaccinated persons to avoid possible inhibition of the relative strength or rapidity of an expected anamnestic response (26). Local wound care remains an important part of rabies PEP for any previously vaccinated persons.

Vaccination and Serologic Testing

Postvaccination Serologic Testing

All healthy persons tested in accordance with ACIP guidelines after completion of at least a 4-dose regimen of rabies PEP should demonstrate an adequate antibody response against rabies virus (14). Therefore, no routine testing of healthy patients completing PEP is necessary to document seroconversion (12). When titers are obtained, serum specimens collected 1–2 weeks after prophylaxis (after last dose of vaccine) should completely neutralize challenge virus at least at a 1:5 serum dilution by the rapid fluorescent focus inhibition test (RFFIT). The rabies virus-neutralizing antibody titers will decline gradually since the last vaccination. Minimal differences (i.e., within one dilution of sera) in the reported values of rabies virus-neutralizing antibody results might occur between laboratories that provide antibody determination using the recommended RFFIT. Commercial rabies virus antibody titer determination kits that are not approved by the Food and Drug Administration are not appropriate for use as a substitute for the RFFIT. Discrepant results might occur after the use of such tests, and actual virus-neutralizing activity in clinical specimens cannot be measured.

Management of Adverse Reactions, Precautions, and Contraindications

Management of Adverse Reactions

Recommendations for management and reporting of vaccine adverse events have not changed. These recommendations have been described in detail previously (12).

Immunosuppression

Recommendations for rabies pre- and postexposure prophylaxis for persons with immunosuppression have not changed. General recommendations for active and passive immunization in persons with altered immunocompetence have been summarized previously (27,28). This updated report discusses specific recommendations for patients with altered immunocompetence who require rabies pre- and postexposure prophylaxis. All rabies vaccines licensed in the United States are inactivated cell-culture vaccines that can be administered safely to persons with altered immunocompetence. Because corticosteroids, other immunosuppressive agents, antimalarials, and immunosuppressive illnesses might reduce immune responses to rabies vaccines substantially, for persons with immunosuppression, rabies PEP should be administered using a 5-dose vaccine regimen (i.e., 1 dose of vaccine on days 0, 3, 7, 14, and 28), with the understanding that the immune response still might be inadequate. Immunosuppressive agents should not be administered during rabies PEP unless essential for the treatment of other conditions. If possible, immunosuppressed patients should postpone rabies preexposure prophylaxis until the immunocompromising condition is resolved. When postponement is not possible, immunosuppressed persons who are at risk for rabies should have their virus-neutralizing antibody responses checked after completing the preexposure series. Postvaccination rabies virus-neutralizing antibody values might be less than adequate among immunosuppressed persons with HIV or other infections (29,30). When rabies pre- or postexposure prophylaxis is administered to an immunosuppressed person, one or more serum samples should be tested for rabies virus-neutralizing antibody by the RFFIT to ensure that an acceptable antibody response has developed after completing the series. If no acceptable antibody response is detected after the final dose in the pre- or postexposure prophylaxis series, the patient should be managed in consultation with their physician and appropriate public health officials.

Variation from Human Rabies Vaccine Package Inserts

These new ACIP recommendations differ from current rabies vaccine label instructions, which still list the 5-dose series for PEP. Historically, ACIP review and subsequent public health recommendations for the use of various biologics has occurred after vaccine licensure and generally are in agreement with product labels. However, differences between ACIP recommendations and product labels are not unprecedented. For example, during the early 1980s, ACIP review and recommendations concerning the intradermal use of rabies vaccines occurred well in advance of actual label claims and licensing (9). On the basis of discussions with industry representatives, alterations of current product labels for HDCV and PCEC are not anticipated by the producers of human rabies vaccines licensed for use in the United States.
References

27. CDC. Recommendations of the Advisory Committee on Immunization Practices (ACIP): use of vaccines and immune globulins for persons with altered immunocompetence. y42(No. RR-4).

Advisory Committee on Immunization Practices
Membership as of June 24, 2009

Chair: Dale Morse, MD, New York State Department of Health, Albany, New York.

Executive Secretary: Larry Pickering, MD, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia.

Members: Carol Baker, MD, Baylor College of Medicine, Houston, Texas; Robert Beck, JD, Consumer Representative, Palmyra, Virginia; Lance Chilton, MD, University of New Mexico, Albuquerque, New Mexico; Paul Cieslak, MD, Oregon Public Health Division, Portland, Oregon; Kristen Ehresmann, MPH, Minnesota Department of Health, St. Paul, Minnesota; Janet Englund, MD, University of Washington and Children's Hospital and Regional Medical Center, Seattle, Washington; Franklin Judson, MD, University of Colorado Health Sciences Center, Denver, Colorado; Susan Lett, MD, Massachusetts Department of Public Health, Boston, Massachusetts; Michael Marcy, MD, UCLA Center for Vaccine Research, Torrance, California; Cody Meisner, MD, Tufts Medical Center, Boston, Massachusetts; Kathleen Neuzil, MD, University of Washington; Seattle, Washington; Mark Sawyer, MD, University of California–San Diego, California; Ciro Valentini Sumaya, MD, Texas AM&H Science Center, College Station, Texas; Jonathan Temte, MD, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.

Ex Officio Members: James C. Turner, MD, Administration, Washington, District of Columbia; Linda Murphy, Centers for Medicare and Medicaid Services, Baltimore, Maryland; George T. Curlin, MD, National Institutes of Health, Bethesda, Maryland; Norman Baylor, MD, Food and Drug Administration, Bethesda, Maryland; Linda Kinsinger, MD, Department of Veterans Affairs, Durham, North Carolina.

Liaison Representatives: American Academy of Family Physicians, Doug Campos-Outcalt, MD, Phoenix, Arizona; American Academy of Pediatrics, Joseph Bocchini, MD, Shreveport, Louisiana; American College Health Association, James C. Turner, MD, Charlotteville, Virginia; American College of Obstetricians and Gynecologists, Stanley Gall, MD, Louisville, Kentucky; American College of Physicians, Gregory Poland, MD, Rochester, Minnesota; American Geriatrics Society, Kenneth Schmader, MD, Durham, North Carolina; America's Health Insurance Plans, Tamara Lewis, MD, Salt Lake City, Utah; American Medical Association, Lillian Tan, PhD, Chicago, Illinois; American Osteopathic Association, Stanley Gregg, DO, Tulsa, Oklahoma; American Pharmacists Association, Stephen L. Foster, PharmD, Memphis, Tennessee; Association for Prevention Teaching and Research, W. Paul McKinney, MD, Louisville, Kentucky; Biotechnology Industry Organization, Clement Lewin, PhD, Cambridge, Massachusetts; Canadian National Advisory Committee on Immunization, Joanne Langley, MD, Halifax, Nova Scotia, Canada; Department of Health, United Kingdom, David M. Salisbury, MD, London, United Kingdom; Healthcare Infection Control Practices Advisory Committee, Alexis Ellward, MD, St Louis, Missouri; Infectious Diseases Society of America, Samuel L. Katz, MD, Durham, North Carolina; National Association of County and City Health Officials, Jeff Duchin, MD, Seattle, Washington; National Association of Pediatric Nurse Practitioners, Patricia Stinchfield, MPH; National Foundation for Infectious Diseases, William Schaffner, MD, Nashville, Tennessee; National Immunization Council and Child Health Program, Mexico, Vesta Richardson, MD, Mexico City, Mexico; National Medical Association, Patricia Whitley-Williams, MD, New Brunswick, New Jersey; National Vaccine Advisory Committee, Guthrie Birkhead, MD, Albany, New York; Pharmaceutical Research and Manufacturers of America, Damian A. Braga, Swifwater, Pennsylvania; Peter Paradiso, PhD, Collegeville, Pennsylvania; Society for Adolescent Medicine, Amy Middleman, MD, Houston, Texas; Society for Healthcare Epidemiology of America, Harry Keyserling, MD, Atlanta, Georgia.

ACIP Rabies Workgroup
Membership as of June 24, 2009

Chair: Paul Cieslak, MD, Oregon Department of Public Health, Corvallis, Oregon.

Members: Deborah Briggs, PhD, Kansas State University, Manhattan, Kansas; Catherine Brown, DVM, Massachusetts Department of Public Health, Jamaica Plain, Massachusetts; Samuel L. Katz, MD, Duke University Medical Center, Durham, North Carolina; Harry D. Kerr, MD, American College of Emergency Physicians, Dallas, Texas; Susan M. Lett, MD, Massachusetts Department of Public Health, Jamaica Plain, Massachusetts; Robin Levis, PhD, Food and Drug Administration, Washington, District of Columbia; William Schaffner, MD, Vanderbilt University School of Medicine, Nashville, Tennessee; Charles E. Rupprecht, VMD, PhD, Richard Franka, DVM, PhD, Martin I. Meltzer, PhD, CDC, Atlanta, Georgia.