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Guidelines for Investigating Clusters of Health
Events -
APPENDIX. Summary of Methods for
Statistically Assessing
Clusters of Health Events
The following summaries are provided as a resource to
investigators who may become involved with the
statistical
aspects of reported clusters of health events and who are not
likely to have a direct effect on the
day-to-day management of
the clusters.
TEMPORAL CLUSTERING
Ederer, Myers, and Mantel
approach

Ederer, Myers, and Mantel (1) developed a test for temporal
clustering using a cell-occupancy approach.
They divided the time
period into k disjoint subintervals. Under the null hypothesis of
no clustering, the n
cases are randomly distributed among the
subintervals (i.e., are multinomially distributed). The test
statistic m is the maximum number of cases occurring in a
subinterval. If the health event is rare and of
unknown etiology,
m is summed over several locations and time periods. The sum is
tested by using a
single degree of freedom chi-square test.
Ederer, Myers, and Mantel (1) and Mantel, Kryscio, and Myers
(2)
provide tables of the exact null distribution of m for selected
values of k and n.
Scan Test

Naus proposed a test of temporal clustering that is known as
the scan test (3). The test statistic, the
maximum number of
cases observed in an interval of length t, is found by "scanning"
all intervals of
length t in the time period (resulting in
overlapping intervals). In certain cases, this approach is
intuitively
more appealing than the disjoint interval approach of
Ederer, Myers, and Mantel (1), but more
complicated
mathematically. However, situations exist for which the disjoint
interval approach is the more
satisfactory choice. Statistical
significance of the scan test is assessed by using tables of
p-values
calculated by Naus (4) and Wallenstein (5) for selected
interval lengths, time lengths, and sample sizes.
Unfortunately,
the computations necessary to obtain other exact p-values for the
scan statistic are complex
and often not feasible. However, Knox
and Lancashire (6) have derived a set of relatively simple
formulas
for an approximation to the exact p-value.

Naus compared the power of the scan test with that of the
Ederer, Myers, and Mantel test and concluded
that if the scanning
interval is small and the data are continuous over the interval,
the scan test is the more
powerful of the two (7). Weinstock
proposed a generalization of the scan test that adjusts for
changes in
the population at risk (8).
Bailar, Eisenberg, and Mantel Test of Temporal Clustering

Bailar, Eisenberg, and Mantel suggested a test of temporal
clustering based on the number of pairs of
cases in a given area
that occur within a specified length of time d of each other (9).
The numbers of close
pairs occurring in q areas are summed. The
test statistic is assumed to be approximately normally
distributed.
Larsen Test
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Larsen, Holmes, and Heath developed a rank order procedure for
detecting temporal clustering (10). The
time period is divided
into disjoint subintervals that are numbered sequentially (i.e.,
ranked). The test
statistic K is the sum of absolute differences
between the rank of the subinterval in which a case occurred
and
the median subinterval rank. Small values of K indicate unimodal
clustering. Generally, the K
statistics for multiple geographic
areas are summed. The resulting statistic is asymptotically
normal with
simple mean and variance. This test is sensitive only
to unimodal clustering; it cannot distinguish multiple
clustering
from randomness.
Tango Clustering Index

Tango developed a test of temporal clustering based on the
distribution of counts in disjoint equal time
intervals (11). The
test is useful when the data are grouped. The test statistic
(cluster index) is a quadratic
form involving the relative
frequencies in each interval and a measure of distance between
intervals. The
clustering index obtains a maximum value of 1 when
all cases occur in the same interval. Although the
statistic is
easy to calculate, the asymptotic distribution using Tango's
formula is not. However, Tango will
provide upon request an
algorithm written in BASIC to obtain the asymptotic distribution.

Whittemore and Keller showed that the distribution of Tango's
index is asymptotically normal with simple
mean and variance
(12).
SPATIAL CLUSTERING
Geary Contiguity Ratio

Geary developed a test of spatial clustering that assesses
whether rates for adjacent areas are more similar
than would be
expected if they were randomly distributed among the geographic
areas (13). The test
statistic, the contiguity ratio, is the
ratio of the sum of mean squared differences between rates for
pairs of
adjacent areas to the weighted sum of mean squared
differences between rates for all pairs of areas. If the
rates
are geographically distributed at random, the contiguity ratio is
close to one; otherwise, it is less than
one. Geary derived an
expression for the approximate variance of the ratio. If the
number of areas is not
too small, the ratio is asymptotically
normally distributed. Hechtor and Borhan provide another
computational formula for the statistic (14).
Ohno, Aoki, and Aoki Test

Ohno, Aoki, and Aoki (15) and Ohno and Aoki (16) developed a
simple test for spatial clustering that uses
rates for geographic
areas (e.g., census tracts, counties, or states) rather than data
for individual cases. The
test assesses whether the rates in
adjacent areas are more similar than would be expected under the
null
hypothesis of no clustering.

For this test, the rate for each area is classified into one of
n categories, and each pair of adjacent areas is
identified. The
test statistic is the number of adjacent concordant pairs--i.e.,
the number of pairs of areas
that are adjacent and have rates in
the same category. An overall clustering measure (summed across
all
categories) can be obtained as well as category-specific
clustering measures. The observed number of
adjacent concordant
pairs is compared with the expected number by using a chi-square
test. Ohno, Aoki,
and Aoki provide a simple formula for
calculating the expected number of pairs (15).
Grimson Test

Grimson, Wang, and Johnson proposed a test of spatial
clustering for use in detecting clusters of
geographic areas
designated as high risk (17). The null hypothesis is that
high-risk areas are randomly
distributed within a larger area and
do not cluster.

Given n high-risk areas, the test statistic is the number of
pairs of high-risk areas that are adjacent to each
other. This
statistic is equivalent to the category-specific statistic from
Ohno, Aoki, and Aoki (15).
Grimson et al. recommended using a
simple Monte Carlo simulation to obtain p-values for the test
statistic
(17).
Whittemore Test

Whittemore, Friend, Brown, and Holly developed a test for
spatial clustering across geographic areas that
adjusts for
different distributions of population subgroups across the region
(18). Thus, the test requires
population data. The test statistic
is the mean distance between all pairs of cases, and can be
expressed as a
generalization of Tango's clustering index--i.e.,
a quadratic form involving relative frequencies from
subgroups
and a matrix of distances between pairs of areas. The statistic
is asymptotically normal (mean
and variance derived), and the
test has good power when disease rates for all subgroups are
elevated in the
same areas. Power is poor when areas with
elevated rates vary for subgroups. The test also has poor power



when clusters occur in more than one area. The test can be
adapted to detect temporal clustering when the
distance matrix
represents distances between pairs of time intervals.
Cuzick and Edwards Test

Cuzick and Edwards proposed a test for spatial clustering that
applies to populations with non-uniform
population density (19).
The test involves drawing a set of controls from the population
and combining
them with the cases. Cuzick and Edwards propose two
nearest-neighbor tests. The statistic for the first test
is the
number of persons in the case group whose nearest neighbor also
is in the case group. The second
test statistic is the sum of the
number of cases among the K nearest neighbors for each person who
is in
the case group. This second test will be more powerful when
a few large clusters exist, whereas the first
test is more
powerful when many small clusters are involved. Cuzick and
Edwards provide formulas for
the mean and variance and establish
asymptotic normality for the test statistics.
SPATIAL AND
TEMPORAL CLUSTERING
Pinkel and Nefzger Cell Occupancy Approach

In 1959, Pinkel and Nefzger proposed a cell occupancy approach
to test for spatial-temporal clustering
(20). Assuming that r
cases are randomly allocated to m space-time cells, these
investigators developed an
exact test for determining the
probability of observing k "close" cases (i.e., cases occurring
within a
specified distance and length of time of each other).

For this test, the study area and time period are divided into
space-time cells based on the space and time
distances used to
define closeness. The test is sensitive not only to space-time
clustering but also to spatial
clustering or temporal clustering
alone, a property that is not desirable (21).
Knox 2 x 2 Contingency
Table Test

Knox developed a space-time clustering test that involves
dichotomizing the spatial and temporal
dimensions (22,23). A 2 x
2 contingency table is formed by classifying the n(n-1)/2 pairs
of cases as close
in space and time, close in space only, close
in time only, or close in neither space nor time.

The test statistic X, the observed number of pairs close in
both space and time, is assumed to be
approximately Poisson
(since although pairs are dependent, X is small compared with the
total number of
pairs).

Barton and David concluded that, although use of the Poisson
approximation is appropriate in some
situations, in general it
could yield misleading results (24). Mantel outlined methodology
for obtaining the
exact permutational distribution of X (21).
Barton and David Points-on-a-Line Approach

Barton, David, and Herrington (25) and David and Barton (26)
adapted an earlier test (27) for use in
detecting space-time
interaction. The test, analogous to analysis of variance,
involves the ratio of within-
group variance to overall variance.
Pairs of cases separated in time by less than a specified length
of time
are formed into time clusters (i.e., treatment groups).

The test statistic Q is the ratio of the average squared
geographic distance between pairs of cases within
clusters to the
average squared distance between all pairs of cases. Under the
null hypothesis of no space-
time interaction, one would expect
this ratio to be 1. When clustering is present, Q is smaller than

1. To assess significance, David and Barton suggested using a
randomization test to determine the
exact distribution of Q (26).
Since calculation of the exact distribution often is not
feasible, Barton
and David suggested using a beta approximation
when the number of cases is small and a normal
approximation when
the number of cases is large (28). When the number of clusters is
large, Q is
approximately normally distributed; otherwise, an F
approximation is more appropriate.

An advantage of Barton and David's test is that actual
distances are used, and the only arbitrariness is in
the
selection of the critical time point. A disadvantage of the test
is that the small distances, which are of
most interest, have
less influence on the statistic than do the large distances. In
fact, the large distances
may so dominate the statistic that they
mask any clustering.
Mantel Generalized Regression Approach



Mantel developed a "generalized regression" approach to the
detection of clustering in space and time
(21). The test
statistic Z is the sum over all pairs of cases of a function of
the distance between two cases
multiplied by a function of the
time between two cases. Knox's test can be derived as a special
case of
Mantel's test. Mantel recommended using reciprocal
transformations of the distances to increase the
influence of
close distances and decrease the influence of long distances.
Mantel (21) and Siemiatycki (29)
concluded that the test has low
power if no transformation is made.

A constant must be added to the distances before making the
reciprocal transformation because of the
possibility of very
small or zero time and/or space distances. Unfortunately, the
constants chosen influence
the value of the test statistic and
the outcome of the test of significance if the normal
approximation is
used. Mantel suggested that, for best results,
the constants be close to the expected distances between
close
pairs. Glass, Mantel, Guns, and Spears (30) and Siemiatycki (29)
found that as the size of the
constants increases, the test
statistic tends to decrease.

A test of statistical significance is obtained by obtaining the
exact randomization distribution of Z, by
using Monte Carlo
simulation to obtain an approximation to the distribution of Z,
or by assuming that Z is
asymptotically normally distributed
(Mantel derived expressions for the measured variance) (21).
Klauber
(31) and Siemiatycki (29) found the distribution of Z to
be highly skewed and showed that although the
use of the normal
approximation is appropriate when Z is highly significant or
nonsignificant, its use is
inappropriate when Z has borderline
significance.

One asset of Mantel's test is that actual space and time
distance are used, thus avoiding arbitrary cutpoints
and loss of
information. Another advantage to this approach is its
applicability to two or more samples
(31,32).
Pike and Smith Extension to Knox Test

Pike and Smith extended Knox's test to diseases with long
latent periods by defining a geographic area and
period of time
of infectivity and susceptibility (33). Pairs of cases are
considered close in space if their
geographic areas of
infectivity and susceptibility overlap, and close in time if
their periods of infectivity
and susceptibility overlap. The test
statistic is the number of pairs close in both space and time.
Lloyd and
Roberts Test

Lloyd and Roberts outlined a test for either spatial or
temporal clustering that Smith and Pike noted in
1974 can be
viewed as a special case of Knox's test (34). Lloyd and Roberts
suggested using the number
of pairs among all possible pairs of
cases that are close in time (or in space) as the test statistic.
A test of
significance is obtained by calculating the mean number
of close pairs for sets of randomly selected
controls and by
assuming a Poisson distribution with this mean. Smith and Pike
indicated that the
randomization distribution of the test
statistic could be obtained, and they suggested that matched
controls
be used in the procedure (35).
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