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Guidelines for Investigating Clusters of Health
Events - APPENDIX. Summary of Methods for
Statistically Assessing Clusters of Health Events

The following summaries are provided as a resource to investigators who may become involved with the
statistical aspects of reported clusters of health events and who are not likely to have a direct effect on the
day-to-day management of the clusters. TEMPORAL CLUSTERING Ederer, Myers, and Mantel

approach

Ederer, Myers, and Mantel (1) developed a test for temporal clustering using a cell-occupancy approach.
They divided the time period into k disjoint subintervals. Under the null hypothesis of no clustering, the n
cases are randomly distributed among the subintervals (i.e., are multinomially distributed). The test
statistic m is the maximum number of cases occurring in a subinterval. If the health event is rare and of
unknown etiology, m is summed over several locations and time periods. The sum is tested by using a
single degree of freedom chi-square test. Ederer, Myers, and Mantel (1) and Mantel, Kryscio, and Myers
(2) provide tables of the exact null distribution of m for selected values of k and n. Scan Test

Naus proposed a test of temporal clustering that is known as the scan test (3). The test statistic, the
maximum number of cases observed in an interval of length t, is found by "scanning" all intervals of
length t in the time period (resulting in overlapping intervals). In certain cases, this approach is intuitively
more appealing than the disjoint interval approach of Ederer, Myers, and Mantel (1), but more
complicated mathematically. However, situations exist for which the disjoint interval approach is the more
satisfactory choice. Statistical significance of the scan test is assessed by using tables of p-values
calculated by Naus (4) and Wallenstein (5) for selected interval lengths, time lengths, and sample sizes.
Unfortunately, the computations necessary to obtain other exact p-values for the scan statistic are complex
and often not feasible. However, Knox and Lancashire (6) have derived a set of relatively simple formulas
for an approximation to the exact p-value.

Naus compared the power of the scan test with that of the Ederer, Myers, and Mantel test and concluded
that if the scanning interval is small and the data are continuous over the interval, the scan test is the more
powerful of the two (7). Weinstock proposed a generalization of the scan test that adjusts for changes in
the population at risk (8). Bailar, Eisenberg, and Mantel Test of Temporal Clustering

Bailar, Eisenberg, and Mantel suggested a test of temporal clustering based on the number of pairs of
cases 1n a given area that occur within a specified length of time d of each other (9). The numbers of close
pairs occurring in q areas are summed. The test statistic is assumed to be approximately normally
distributed. Larsen Test
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Larsen, Holmes, and Heath developed a rank order procedure for detecting temporal clustering (10). The
time period is divided into disjoint subintervals that are numbered sequentially (i.e., ranked). The test
statistic K is the sum of absolute differences between the rank of the subinterval in which a case occurred
and the median subinterval rank. Small values of K indicate unimodal clustering. Generally, the K
statistics for multiple geographic areas are summed. The resulting statistic is asymptotically normal with
simple mean and variance. This test is sensitive only to unimodal clustering; it cannot distinguish multiple
clustering from randomness. Tango Clustering Index

Tango developed a test of temporal clustering based on the distribution of counts in disjoint equal time
intervals (11). The test is useful when the data are grouped. The test statistic (cluster index) is a quadratic
form involving the relative frequencies in each interval and a measure of distance between intervals. The
clustering index obtains a maximum value of 1 when all cases occur in the same interval. Although the
statistic is easy to calculate, the asymptotic distribution using Tango's formula is not. However, Tango will
provide upon request an algorithm written in BASIC to obtain the asymptotic distribution.

Whittemore and Keller showed that the distribution of Tango's index is asymptotically normal with simple
mean and variance (12). SPATIAL CLUSTERING Geary Contiguity Ratio

Geary developed a test of spatial clustering that assesses whether rates for adjacent areas are more similar
than would be expected if they were randomly distributed among the geographic areas (13). The test
statistic, the contiguity ratio, is the ratio of the sum of mean squared differences between rates for pairs of
adjacent areas to the weighted sum of mean squared differences between rates for all pairs of areas. If the
rates are geographically distributed at random, the contiguity ratio is close to one; otherwise, it is less than
one. Geary derived an expression for the approximate variance of the ratio. If the number of areas is not
too small, the ratio is asymptotically normally distributed. Hechtor and Borhan provide another
computational formula for the statistic (14). Ohno, Aoki, and Aoki Test

Ohno, Aoki, and Aoki (15) and Ohno and Aoki (16) developed a simple test for spatial clustering that uses
rates for geographic areas (e.g., census tracts, counties, or states) rather than data for individual cases. The
test assesses whether the rates in adjacent areas are more similar than would be expected under the null
hypothesis of no clustering.

For this test, the rate for each area is classified into one of n categories, and each pair of adjacent areas is
identified. The test statistic is the number of adjacent concordant pairs--i.e., the number of pairs of areas
that are adjacent and have rates in the same category. An overall clustering measure (summed across all
categories) can be obtained as well as category-specific clustering measures. The observed number of
adjacent concordant pairs is compared with the expected number by using a chi-square test. Ohno, Aoki,
and Aoki provide a simple formula for calculating the expected number of pairs (15). Grimson Test

Grimson, Wang, and Johnson proposed a test of spatial clustering for use in detecting clusters of
geographic areas designated as high risk (17). The null hypothesis is that high-risk areas are randomly
distributed within a larger area and do not cluster.

Given n high-risk areas, the test statistic is the number of pairs of high-risk areas that are adjacent to each
other. This statistic is equivalent to the category-specific statistic from Ohno, Aoki, and Aoki (15).
Grimson et al. recommended using a simple Monte Carlo simulation to obtain p-values for the test statistic
(17). Whittemore Test

Whittemore, Friend, Brown, and Holly developed a test for spatial clustering across geographic areas that
adjusts for different distributions of population subgroups across the region (18). Thus, the test requires
population data. The test statistic is the mean distance between all pairs of cases, and can be expressed as a
generalization of Tango's clustering index--i.e., a quadratic form involving relative frequencies from
subgroups and a matrix of distances between pairs of areas. The statistic is asymptotically normal (mean
and variance derived), and the test has good power when disease rates for all subgroups are elevated in the
same areas. Power is poor when areas with elevated rates vary for subgroups. The test also has poor power



when clusters occur in more than one area. The test can be adapted to detect temporal clustering when the
distance matrix represents distances between pairs of time intervals. Cuzick and Edwards Test

Cuzick and Edwards proposed a test for spatial clustering that applies to populations with non-uniform
population density (19). The test involves drawing a set of controls from the population and combining
them with the cases. Cuzick and Edwards propose two nearest-neighbor tests. The statistic for the first test
is the number of persons in the case group whose nearest neighbor also is in the case group. The second
test statistic is the sum of the number of cases among the K nearest neighbors for each person who is in
the case group. This second test will be more powerful when a few large clusters exist, whereas the first
test i1s more powerful when many small clusters are involved. Cuzick and Edwards provide formulas for
the mean and variance and establish asymptotic normality for the test statistics. SPATIAL AND
TEMPORAL CLUSTERING Pinkel and Nefzger Cell Occupancy Approach

In 1959, Pinkel and Nefzger proposed a cell occupancy approach to test for spatial-temporal clustering
(20). Assuming that r cases are randomly allocated to m space-time cells, these investigators developed an
exact test for determining the probability of observing k "close" cases (i.e., cases occurring within a
specified distance and length of time of each other).

For this test, the study area and time period are divided into space-time cells based on the space and time
distances used to define closeness. The test is sensitive not only to space-time clustering but also to spatial
clustering or temporal clustering alone, a property that is not desirable (21). Knox 2 x 2 Contingency
Table Test

Knox developed a space-time clustering test that involves dichotomizing the spatial and temporal
dimensions (22,23). A 2 x 2 contingency table is formed by classifying the n(n-1)/2 pairs of cases as close
in space and time, close in space only, close in time only, or close in neither space nor time.

The test statistic X, the observed number of pairs close in both space and time, is assumed to be
approximately Poisson (since although pairs are dependent, X is small compared with the total number of
pairs).

Barton and David concluded that, although use of the Poisson approximation is appropriate in some
situations, in general it could yield misleading results (24). Mantel outlined methodology for obtaining the
exact permutational distribution of X (21). Barton and David Points-on-a-Line Approach

Barton, David, and Herrington (25) and David and Barton (26) adapted an earlier test (27) for use in
detecting space-time interaction. The test, analogous to analysis of variance, involves the ratio of within-
group variance to overall variance. Pairs of cases separated in time by less than a specified length of time
are formed into time clusters (i.e., treatment groups).

The test statistic Q is the ratio of the average squared geographic distance between pairs of cases within
clusters to the average squared distance between all pairs of cases. Under the null hypothesis of no space-
time interaction, one would expect this ratio to be 1. When clustering is present, Q is smaller than

1. To assess significance, David and Barton suggested using a randomization test to determine the
exact distribution of Q (26). Since calculation of the exact distribution often is not feasible, Barton
and David suggested using a beta approximation when the number of cases is small and a normal
approximation when the number of cases is large (28). When the number of clusters is large, Q is
approximately normally distributed; otherwise, an F approximation is more appropriate.

An advantage of Barton and David's test is that actual distances are used, and the only arbitrariness is in
the selection of the critical time point. A disadvantage of the test is that the small distances, which are of
most interest, have less influence on the statistic than do the large distances. In fact, the large distances
may so dominate the statistic that they mask any clustering. Mantel Generalized Regression Approach



Mantel developed a "generalized regression" approach to the detection of clustering in space and time
(21). The test statistic Z is the sum over all pairs of cases of a function of the distance between two cases
multiplied by a function of the time between two cases. Knox's test can be derived as a special case of
Mantel's test. Mantel recommended using reciprocal transformations of the distances to increase the
influence of close distances and decrease the influence of long distances. Mantel (21) and Siemiatycki (29)
concluded that the test has low power if no transformation is made.

A constant must be added to the distances before making the reciprocal transformation because of the
possibility of very small or zero time and/or space distances. Unfortunately, the constants chosen influence
the value of the test statistic and the outcome of the test of significance if the normal approximation is
used. Mantel suggested that, for best results, the constants be close to the expected distances between
close pairs. Glass, Mantel, Guns, and Spears (30) and Siemiatycki (29) found that as the size of the
constants increases, the test statistic tends to decrease.

A test of statistical significance is obtained by obtaining the exact randomization distribution of Z, by
using Monte Carlo simulation to obtain an approximation to the distribution of Z, or by assuming that Z is
asymptotically normally distributed (Mantel derived expressions for the measured variance) (21). Klauber
(31) and Siemiatycki (29) found the distribution of Z to be highly skewed and showed that although the
use of the normal approximation is appropriate when Z is highly significant or nonsignificant, its use is
inappropriate when Z has borderline significance.

One asset of Mantel's test is that actual space and time distance are used, thus avoiding arbitrary cutpoints
and loss of information. Another advantage to this approach is its applicability to two or more samples
(31,32). Pike and Smith Extension to Knox Test

Pike and Smith extended Knox's test to diseases with long latent periods by defining a geographic area and
period of time of infectivity and susceptibility (33). Pairs of cases are considered close in space if their
geographic areas of infectivity and susceptibility overlap, and close in time if their periods of infectivity
and susceptibility overlap. The test statistic is the number of pairs close in both space and time. Lloyd and
Roberts Test

Lloyd and Roberts outlined a test for either spatial or temporal clustering that Smith and Pike noted in
1974 can be viewed as a special case of Knox's test (34). Lloyd and Roberts suggested using the number
of pairs among all possible pairs of cases that are close in time (or in space) as the test statistic. A test of
significance is obtained by calculating the mean number of close pairs for sets of randomly selected
controls and by assuming a Poisson distribution with this mean. Smith and Pike indicated that the
randomization distribution of the test statistic could be obtained, and they suggested that matched controls
be used in the procedure (35).
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