Contents

Foreword vii
Acknowledgements viii

1. **General principles**
 Introduction 1

PART I. Biosafety guidelines
5

2. **Microbiological risk assessment**
7
 Specimens for which there is limited information 8
 Risk assessment and genetically modified microorganisms 8

3. **Basic laboratories – Biosafety Levels 1 and 2**
9
 Code of practice 9
 Laboratory design and facilities 12
 Laboratory equipment 14
 Health and medical surveillance 16
 Training 16
 Waste handling 17
 Chemical, fire, electrical, radiation and equipment safety 19

4. **The containment laboratory – Biosafety Level 3**
20
 Code of practice 20
 Laboratory design and facilities 21
 Laboratory equipment 22
 Health and medical surveillance 22

5. **The maximum containment laboratory – Biosafety Level 4**
25
 Code of practice 25
 Laboratory design and facilities 25

6. **Laboratory animal facilities**
28
 Animal facility – Biosafety Level 1 29
 Animal facility – Biosafety Level 2 29
 Animal facility – Biosafety Level 3 30
 Animal facility – Biosafety Level 4 31
 Invertebrates 32

7. **Guidelines for laboratory/facility commissioning**
33

8. **Guidelines for laboratory/facility certification**
36
PART II. Laboratory biosecurity

9. Laboratory biosecurity concepts

PART III. Laboratory equipment

10. Biological safety cabinets
- Class I biological safety cabinet
- Class II biological safety cabinets
- Class III biological safety cabinet
- Biological safety cabinet air connections
- Selection of a biological safety cabinet
- Using biological safety cabinets in the laboratory

11. Safety equipment
- Negative-pressure flexible-film isolators
- Pipetting aids
- Homogenizers, shakers, blenders and sonicators
- Disposable transfer loops
- Microincinerators
- Personal protective equipment and clothing

PART IV. Good microbiological techniques

12. Laboratory techniques
- Safe handling of specimens in the laboratory
- Use of pipettes and pipetting aids
- Avoiding the dispersal of infectious materials
- Use of biological safety cabinets
- Avoiding ingestion of infectious materials and contact with skin and eyes
- Avoiding injection of infectious materials
- Separation of serum
- Use of centrifuges
- Use of homogenizers, shakers, blenders and sonicators
- Use of tissue grinders
- Care and use of refrigerators and freezers
- Opening of ampoules containing lyophilized infectious materials
- Storage of ampoules containing infectious materials
- Standard precautions with blood and other body fluids, tissues and excreta
- Precautions with materials that may contain prions

13. Contingency plans and emergency procedures
- Contingency plan
- Emergency procedures for microbiological laboratories

14. Disinfection and sterilization
- Definitions
- Cleaning laboratory materials
15. Introduction to the transport of infectious substances 94
 International transport regulations 94
 The basic triple packaging system 95
 Spill clean-up procedure 95

PART V. Introduction to biotechnology 99

16. Biosafety and recombinant DNA technology 101
 Biosafety considerations for biological expression systems 102
 Biosafety considerations for expression vectors 102
 Viral vectors for gene transfer 102
 Transgenic and “knock-out” animals 102
 Transgenic plants 103
 Risk assessments for genetically modified organisms 103
 Further considerations 104

PART VI. Chemical, fire and electrical safety 105

17. Hazardous chemicals 107
 Routes of exposure 107
 Storage of chemicals 107
 General rules regarding chemical incompatibilities 107
 Toxic effects of chemicals 107
 Explosive chemicals 108
 Chemical spills 108
 Compressed and liquefied gases 109

18. Additional laboratory hazards 110
 Fire hazards 110
 Electrical hazards 111
 Noise 111
 Ionizing radiation 111

PART VII. Safety organization and training 115

19. The biosafety officer and biosafety committee 117
 Biosafety officer 117
 Biosafety committee 118
20. Safety for support staff
 Engineering and building maintenance services 119
 Cleaning (domestic) services 119

21. Training programmes

PART VIII. Safety checklist

22. Safety checklist
 Laboratory premises 125
 Storage facilities 125
 Sanitation and staff facilities 126
 Heating and ventilation 126
 Lighting 126
 Services 126
 Laboratory biosecurity 127
 Fire prevention and fire protection 127
 Flammable liquid storage 128
 Compressed and liquefied gases 128
 Electrical hazards 128
 Personal protection 129
 Health and safety of staff 129
 Laboratory equipment 130
 Infectious materials 130
 Chemicals and radioactive substances 130

PART IX. References, annexes and index

References 135
Annex 1 First aid 138
Annex 2 Immunization of staff 139
Annex 3 WHO Biosafety Collaborating Centres 140
Annex 4 Equipment safety 141
 Equipment that may create a hazard 141
Annex 5 Chemicals: hazards and precautions 145

Index 170
The World Health Organization (WHO) has long recognized that safety and, in particular, biological safety are important international issues. WHO published the first edition of the *Laboratory biosafety manual* in 1983. The manual encouraged countries to accept and implement basic concepts in biological safety and to develop national codes of practice for the safe handling of pathogenic microorganisms in laboratories within their geographical borders. Since 1983, many countries have used the expert guidance provided in the manual to develop such codes of practice. A second edition of the manual was published in 1993.

WHO continues to provide international leadership in biosafety through this third edition of the manual by addressing biological safety and security issues facing us in the current millennium. The third edition stresses throughout the importance of personal responsibility. New chapters have been added on risk assessment, safe use of recombinant DNA technology and transport of infectious materials. Recent world events have revealed new threats to public health through deliberate misuse and release of microbiological agents and toxins. The third edition therefore also introduces biosecurity concepts – the protection of microbiological assets from theft, loss or diversion, which could lead to the inappropriate use of these agents to cause public health harm. This edition also includes safety information from the 1997 WHO publication *Safety in health-care laboratories* (1).

The third edition of the WHO *Laboratory biosafety manual* is a helpful reference and guide to nations that accept the challenge to develop and establish national codes of practice for securing microbiological assets, yet ensuring their availability for clinical, research and epidemiological purposes.

Dr A. Asamoa-Baah
Assistant Director-General
Communicable Diseases
World Health Organization
Geneva, Switzerland
The development of this third edition of the *Laboratory biosafety manual* has been made possible through the contributions of the following, whose expertise is gratefully acknowledged:

Dr W. Emmett Barkley, Howard Hughes Medical Institute, Chevy Chase, MD, USA
Dr Murray L. Cohen, Centers for Disease Control and Prevention, Atlanta, GA, USA (retired)
Dr Ingegerd Kallings, Swedish Institute of Infectious Disease Control, Stockholm, Sweden
Ms Mary Ellen Kennedy, Consultant in Biosafety, Ashton, Ontario, Canada
Ms Margery Kennett, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Australia (retired)
Dr Richard Knudsen, Office of Health and Safety, Centers for Disease Control and Prevention, Atlanta, GA, USA
Dr Nicoletta Previsani, Biosafety programme, World Health Organization, Geneva, Switzerland
Dr Jonathan Richmond, Office of Health and Safety, Centers for Disease Control and Prevention, Atlanta, GA, USA (retired)
Dr Syed A. Sattar, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
Dr Deborah E. Wilson, Division of Occupational Health and Safety, Office of Research Services, National Institutes of Health, Department of Health and Human Services, Washington, DC, USA
Dr Riccardo Wittek, Institute of Animal Biology, University of Lausanne, Lausanne, Switzerland

The assistance of the following is also gratefully acknowledged:

Ms Maureen Best, Office of Laboratory Security, Health Canada, Ottawa, Canada
Dr Mike Catton, Victorian Infectious Diseases Reference Laboratory, North Melbourne, Australia
Dr Shanna Nesby, Office of Health and Safety, Centers for Disease Control and Prevention, Atlanta, GA, USA
Dr Stefan Wagener, Canadian Science Centre for Human and Animal Health, Winnipeg, Canada

The writers and reviewers also wish to acknowledge the original contributions of the many professionals whose work was embodied in the first and second editions of the *Laboratory biosafety manual* and in the 1997 WHO publication *Safety in health-care laboratories* (1).
1. General principles

Introduction
Throughout this manual, references are made to the relative hazards of infective microorganisms by risk group (WHO Risk Groups 1, 2, 3 and 4). This risk group classification is to be used for laboratory work only. Table 1 describes the risk groups.

Table 1. Classification of infective microorganisms by risk group

<table>
<thead>
<tr>
<th>Risk Group 1 (no or low individual and community risk)</th>
<th>A microorganism that is unlikely to cause human or animal disease.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Group 2 (moderate individual risk, low community risk)</td>
<td>A pathogen that can cause human or animal disease but is unlikely to be a serious hazard to laboratory workers, the community, livestock or the environment. Laboratory exposures may cause serious infection, but effective treatment and preventive measures are available and the risk of spread of infection is limited.</td>
</tr>
<tr>
<td>Risk Group 3 (high individual risk, low community risk)</td>
<td>A pathogen that usually causes serious human or animal disease but does not ordinarily spread from one infected individual to another. Effective treatment and preventive measures are available.</td>
</tr>
<tr>
<td>Risk Group 4 (high individual and community risk)</td>
<td>A pathogen that usually causes serious human or animal disease and that can be readily transmitted from one individual to another, directly or indirectly. Effective treatment and preventive measures are not usually available.</td>
</tr>
</tbody>
</table>

Laboratory facilities are designated as basic – Biosafety Level 1, basic – Biosafety Level 2, containment – Biosafety Level 3, and maximum containment – Biosafety Level 4. Biosafety level designations are based on a composite of the design features, construction, containment facilities, equipment, practices and operational procedures required for working with agents from the various risk groups. Table 2 relates but does not “equate” risk groups to the biosafety level of laboratories designed to work with organisms in each risk group.

Countries (regions) should draw up a national (regional) classification of microorganisms, by risk group, taking into account:
1. Pathogenicity of the organism.
2. Mode of transmission and host range of the organism. These may be influenced by existing levels of immunity in the local population, density and movement of the host population, presence of appropriate vectors, and standards of environmental hygiene.
3. Local availability of effective preventive measures. These may include: prophylaxis by immunization or administration of antisera (passive immunization); sanitary measures, e.g. food and water hygiene; control of animal reservoirs or arthropod vectors.
4. Local availability of effective treatment. This includes passive immunization, postexposure vaccination and use of antimicrobials, antivirals and chemotherapeutic agents, and should take into consideration the possibility of the emergence of drug-resistant strains.

The assignment of an agent to a biosafety level for laboratory work must be based on a risk assessment. Such an assessment will take the risk group as well as other factors into consideration in establishing the appropriate biosafety level. For example, an agent that is assigned to Risk Group 2 may generally require Biosafety Level 2 facilities, equipment, practices and procedures for safe conduct of work. However, if particular experiments require the generation of high-concentration aerosols, then Biosafety

Table 2. Relation of risk groups to biosafety levels, practices and equipment

<table>
<thead>
<tr>
<th>RISK GROUP</th>
<th>BIOSAFETY LEVEL</th>
<th>LABORATORY TYPE</th>
<th>LABORATORY PRACTICES</th>
<th>SAFETY EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic – Biosafety Level 1</td>
<td>Basic teaching, research</td>
<td>GMT</td>
<td>None; open bench work</td>
</tr>
<tr>
<td>2</td>
<td>Basic – Biosafety Level 2</td>
<td>Primary health services; diagnostic services, research</td>
<td>GMT plus protective clothing, biohazard sign</td>
<td>Open bench plus BSC for potential aerosols</td>
</tr>
<tr>
<td>3</td>
<td>Containment – Biosafety Level 3</td>
<td>Special diagnostic services, research</td>
<td>As Level 2 plus special clothing, controlled access, directional airflow</td>
<td>BSC and/or other primary devices for all activities</td>
</tr>
<tr>
<td>4</td>
<td>Maximum containment – Biosafety Level 4</td>
<td>Dangerous pathogen units</td>
<td>As Level 3 plus airlock entry, shower exit, special waste disposal</td>
<td>Class III BSC, or positive pressure suits in conjunction with Class II BSCs, double-ended autoclave (through the wall), filtered air</td>
</tr>
</tbody>
</table>

BSC, biological safety cabinet; GMT, good microbiological techniques (see Part IV of this manual)
Level 3 may be more appropriate to provide the necessary degree of safety, since it ensures superior containment of aerosols in the laboratory workplace. The biosafety level assigned for the specific work to be done is therefore driven by professional judgement based on a risk assessment, rather than by automatic assignment of a laboratory biosafety level according to the particular risk group designation of the pathogenic agent to be used (see Chapter 2).

Table 3 summarizes the facility requirements at the four biosafety levels.

<table>
<thead>
<tr>
<th>Table 3. Summary of biosafety level requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOSAFETY LEVEL</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Isolation(^a) of laboratory</td>
</tr>
<tr>
<td>Room sealable for decontamination</td>
</tr>
<tr>
<td>Ventilation:</td>
</tr>
<tr>
<td>— inward airflow</td>
</tr>
<tr>
<td>— controlled ventilating system</td>
</tr>
<tr>
<td>— HEPA-filtered air exhaust</td>
</tr>
<tr>
<td>Double-door entry</td>
</tr>
<tr>
<td>Airlock</td>
</tr>
<tr>
<td>Airlock with shower</td>
</tr>
<tr>
<td>Anteroom</td>
</tr>
<tr>
<td>Anteroom with shower</td>
</tr>
<tr>
<td>Effluent treatment</td>
</tr>
<tr>
<td>Autoclave:</td>
</tr>
<tr>
<td>— on site</td>
</tr>
<tr>
<td>— in laboratory room</td>
</tr>
<tr>
<td>— double-ended</td>
</tr>
<tr>
<td>Biological safety cabinets</td>
</tr>
<tr>
<td>Personnel safety monitoring capability(^d)</td>
</tr>
</tbody>
</table>

\(^a\) Environmental and functional isolation from general traffic.
\(^b\) Dependent on location of exhaust (see Chapter 4).
\(^c\) Dependent on agent(s) used in the laboratory.
\(^d\) For example, window, closed-circuit television, two-way communication.

Thus, the assignment of a biosafety level takes into consideration the organism (pathogenic agent) used, the facilities available, and the equipment practices and procedures required to conduct work safely in the laboratory.