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Abstract

More than 10 million new cases of tuberculosis (TB) are diagnosed worldwide each year. The 

majority of these cases occur in low-and middle-income countries where the TB epidemic is 

predominantly driven by transmission. Efforts to ‘end TB’ will depend upon our ability to halt 

ongoing transmission. However, recent studies of new approaches to interrupt transmission have 

demonstrated inconsistent effects on reducing population-level TB incidence. TB transmission 

occurs across a wide range of settings, that include households and hospitals, but also community-

based settings. While home-based contact investigations and infection control programmes in 

hospitals and clinics have a successful track record as TB control activities, there is a gap in our 

knowledge of where, and between whom, community-based transmission of TB occurs. Novel 
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tools, including molecular epidemiology, geospatial analyses and ventilation studies, provide hope 

for improving our under-standing of transmission in countries where the burden of TB is greatest. 

By integrating these diverse and innovative tools, we can enhance our ability to identify 

transmission events by documenting the opportunity for transmission—through either an 

epidemiologic or geospatial connection—alongside genomic evidence for transmission, based 

upon genetically similar TB strains. A greater understanding of locations and patterns of 

transmission will translate into meaningful improvements in our current TB control activities by 

informing targeted, evidence-based public health interventions.
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INTRODUCTION

Humans are the sole reservoir for Mycobacterium tuberculosis (Mtb), the causative agent of 

tuberculosis (TB). Therefore, person-to-person transmission is the sole mechanism for 

propagating the global TB epidemic, which is now responsible for more than 10 million 

cases each year and 4000 deaths each day. The majority of this burden is borne by 

individuals living in low-and middle-income countries, where 97% of TB occurs.1 The 

World Health Organization has set an ambitious goal to ‘end TB’ and reduce TB incidence 

to less than 10 per 100 000 population by 2035. However, this goal will not be achievable 

without significant innovations in TB control.2 It is increasingly clear that TB incidence in 

high-burden countries is driven by transmission, where annual rates of infection can exceed 

9% among certain age groups, and rates of reinfection after previously successful treatment 

can reach 11%.3–5

The importance of directly addressing transmission is further underscored by the variable 

success of latent TB infection (LTBI) treatment campaigns in reducing population-level TB 

incidence.6,7 Treatment of LTBI can reduce the number of incident cases resulting from 

reactivation or from a recent exposure, but will not reduce cases that occur upon subsequent 

exposure. Thus, while ongoing efforts to reduce the persistent burden of reactivation disease 

are invaluable, interventions specifically targeted to interrupting transmission are essential if 

dramatic declines in TB incidence are to be achieved. Yet, our current understanding of 

transmission dynamics and patterns in high-burden settings remains woefully inadequate.

Historically, transmission has been thought to occur in the context of prolonged, close 

contact, as would occur among household members or hospitalized patients.8,9 Attempts to 

interrupt transmission have traditionally focused on these settings, with interventions such as 

home-based contact investigations and administrative and environmental controls at 

hospitals and clinics.10,11 Yet, epidemiologic investigations in these locations are often 

unable to identify an individual in the home or hospital as a source of transmission for the 

majority of cases. In terms of addressing TB control at a broader, community-wide level, 

there have been calls to expand active case-finding programmes, which aim to decrease the 

TB burden by identifying undiagnosed cases.12 However, despite historical success of 
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population-based interventions including isoniazid preventive therapy and active case-

finding, recent trials have yielded mixed results in high-burden settings (Table 1).13,15–18 

These data suggest that more targeted case-finding programmes or location-based environ-

mental or administrative controls might be more effective.

Our ability to design interventions to interrupt trans-mission has been hampered by a gap in 

our under-standing of where, and between whom, community-based transmission occurs. 

However, novel tools, including molecular epidemiology, geospatial analyses and ventilation 

studies, provide hope for improving our understanding of transmission in countries where 

the burden is greatest. We believe that a better understanding of locations and patterns of 

transmission can trans-late into meaningful improvements in our current TB control 

activities by informing targeted, evidence-based public health interventions—and that these 

targeted interventions to interrupt transmission may be more effective, and more cost-

effective, than untargeted, community-wide efforts. A critical step in achieving meaningful 

reductions in TB incidence will be to close the existing knowledge and implementation gaps 

around transmission.

EXISTING EVIDENCE FOR LOCATIONS OF TRANSMISSION AND 

INTERVENTIONS TO INTERRUPT TRANSMISSION

TB transmission is generally categorized as having occurred in one of the following 

locations: (i) homes;(ii) healthcare and congregate settings, including hospitals, clinics and 

prisons; and (iii) community-based settings, including workplaces, public transport (e.g. 

buses and trains) and other congregate locations where transmission may occur between 

individuals who may or may not know one another.

Homes

Soon after Robert Koch’s identification of Mtb as the causative agent of TB, it became clear 

that TB was transmitted between individuals by aerosols and that close contact, as with 

household members, was associated with a high likelihood of transmission.19 Several meta-

analyses of contact investigations support the elevated risk of TB infection among household 

contacts, with approximately half of household contacts demonstrating evidence of TB 

infection.20–22 While household contact screening is high yield for identifying additional 

cases of TB infection and disease, a number of recent studies suggest that the proportion of 

transmission that actually occurs in the household may have been over-estimated in high-

burden settings. For example, in one household contact study in South Africa, only 46% of 

household members had a matching Mtb strain—meaning more than half of these 

individuals likely acquired their TB infection from someone outside of their household.23 A 

similar study in Vietnam, albeit with a small number of household contacts, found that only 

17% of household contacts shared the same Mtb strain.24 A study in Malawi, using 

population-based whole-genome sequencing (WGS), estimated that only 9.4% of TB 

transmission occurred between contacts known to one another, although the ascertainment of 

contacts may have been incomplete.25 A recent meta-analysis that included 26 studies 

published from 1929 to 2015 reached similar conclusions.26 Namely, that residing with a TB 

case significantly increased the odds of TB infection on an individual level—but household 
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contact accounted for less than 20% of transmission at the population level. Modelling 

studies, in conjunction with social mixing and ventilation studies, also suggest that a 

minority of TB transmission—with estimates ranging from 16% to 30%—occurs in 

households in high-burden settings such as South Africa and Peru.3,27–30 Furthermore, a 

recent study that modelled social-contact behaviour using data from Cape Town, South 

Africa, determined that transmission from non-repeated casual contact could contribute up to 

79% of TB disease.31

Nevertheless, home-based contact investigations have a proven record of success for 

identifying TB infection and disease among household contacts.12,32 Recent data indicate a 

prevalence and incidence of TB at least 10-fold greater among household contacts than that 

in the general population.33 In another recent study from Vietnam, active case-finding 

among house-hold contacts significantly increased the identification of incident cases of TB 

(relative risk: 2.5, 95% CI: 2.0–3.2).15 Given that the majority of transmission occurs 

outside the household, the high yield of contact investigations suggests that household 

contacts may share other risk factors for TB—whether a shared risk of infection from a 

similar social milieu or shared risk of progression from infection to disease based on mal-

nutrition or genetic predisposition. Additional benefits of household contact tracing, beyond 

the identification of co-prevalent cases of active TB, include the administration of TB 

preventive treatment, and antiretroviral therapy for HIV-infected individuals. Therefore, 

house-hold contact investigation remains an essential element of TB control, although these 

investigations are seldom conducted in resource-limited settings.34

Healthcare and congregate settings

Healthcare and congregate settings, which are typically considered to include correctional 

facilities, barracks and shelters, present yet another high risk for TB transmission.35–41 In 

1940, it was reported that the pro-portion of medical students with a positive tuberculin skin 

test (TST) increased with each successive year of training.42 Half a century later, the 

heightened risk of nosocomial transmission between patients came to the forefront with the 

rise of the HIV epidemic in the early 1990s and multiple reports of multidrug-resistant 

(MDR) TB transmission in hospital wards.37,38,43 More recently, nosocomial transmission 

was again recognized as a significant driver for a devastating epidemic of extensively drug-

resistant (XDR) TB among patients with HIV in South Africa.44 Healthcare workers have 

not been spared from these latter waves of nosocomial transmission. A systematic review of 

over 50 studies identified substantial risk of TB infection among healthcare workers and, in 

a study from South Africa, healthcare workers had an incidence of MDR and XDR TB more 

than five times greater than that of the general population.45,46 Incarcerated persons also 

have elevated incidence of LTBI and TB, with a series of studies from Brazil indicating that 

LTBI prevalence among inmates increased by 5% with each year of incarceration, and that 

54% of incident cases of TB among non-incarcerated community members could be 

connected to Mtb strains circulating in local prisons based on shared genotypes.39,47

The World Health Organization has advocated for infection control programmes to reduce 

transmission in healthcare facilities, congregate settings and house-holds.35 One such 

programme is the ‘Finding TB cases Actively, Separating safely, and Treating effectively (F-
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A-S-T)’ strategy, which incorporates early case detection, diagnosis and treatment to reduce 

the risk and duration of exposure for both patients and health-care workers.11 Environmental 

controls, including natural and mechanical ventilation and ultraviolet germicidal irradiation 

(UVGI), and redesign of health-care facilities to separate potentially infectious individuals 

from other patients can also reduce the risk of nosocomial transmission.48–50

Community-based settings

Given that a minority of transmission occurs among household contacts in high-burden 

settings, the majority of transmission presumably occurs in a wide range of community-

based settings (e.g. marketplaces, houses of worship, public transport, etc.), between casual 

contacts or individuals not known to one another. Thus, interventions focused on households 

and nosocomial settings, while important and high yield, will not be sufficient to interrupt 

the majority of transmission events. Interventions targeted to community-based settings with 

high rates of transmission, on the other hand, may translate into substantial reductions in TB 

incidence. However, to date, there have been no studies designed to explicitly confirm the 

presence or locations of community trans-mission. Rather, the evidence for community-

based transmission is garnered primarily from the lack of evidence for transmission in 

homes and hospitals.

A population-based genotyping study in China found limited evidence for epidemiologic 

links among clusters of genotypically related cases, underscoring the dominant role of 

transmission from casual contact in the community.51 Likewise, in a recent study of South 

Africans diagnosed with XDR TB, 15% had evidence for household transmission and an 

additional 15% had evidence for hospital-based transmission.52 Among the remaining 70% 

of individuals without an epidemiologic link, the majority had WGS data suggestive of 

transmission, with nearly 60% of study participants with an Mtb strain within five single-

nucleotide polymorphisms (SNPs) of another participant and nearly 80% within 10 SNPs of 

another participant.53 These data, alongside ventilation and social mixing studies suggesting 

that the majority of rebreathed air and social interactions occur outside of the home, strongly 

support the hypothesis that much of transmission occurs as a result of casual contact in the 

community.
3,27–30,52,54,55

These hypotheses need to be tested in studies that utilize the full breadth of the currently 

available genomic and geospatial tools. Such studies could also provide an evidence base to 

guide targeted interventions to interrupt this community-based transmission, just as contact 

investigations have been successful for addressing transmission in households.

TOOLS TO STUDY TB TRANSMISSION

Historically, annual case notification rates and prevalence surveys of LTBI, particularly 

among children and adolescents, have also been used to measure transmis-sion.56,57 While 

these approaches cannot identify specific transmission events, they provide valuable insight 

into population-level temporal trends in exposure to infection and can be used to gauge the 

impact of interventions to decrease transmission. TB transmission in low-burden settings has 

also been studied using ‘shoe-leather’ epidemiology to uncover point-source out-breaks, 

where TB patients are interviewed about people encountered and places visited during their 
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infectious period. In high-burden settings, household contact surveys have been used to 

study rates of transmission between index cases and their household contacts.20,21 However, 

these approaches have significant shortcomings, in that they presume transmission based 

upon an epidemiologic connection between two individuals and evidence of TB infection or 

disease in the contact. The advent of molecular epidemiology and sophisticated tools to 

characterize ventilation and aerosols, alongside the expansion of geospatial techniques have 

significantly enhanced our ability to study and understand transmission (Table 2; for a 

review of existing tools to study transmission, see Kranzer et al., Yates et al., Theron et al.
18,57,58).

Molecular epidemiology: Genotyping to WGS

By characterizing genetic similarities and differences between Mtb strains, molecular 

epidemiology facilitates the identification of transmission events. Genotyping, which 

became available in the mid-1980s, identifies genetic biomarkers such as repeated genetic 

units or insertion sequences that vary between Mtb strains.59 By identifying related Mtb 

strains, genotyping has been utilized to determine the likelihood of transmission between 

individuals.59–63 In low-burden settings, population-based genotyping in the context of TB 

out-breaks has allowed for the identification of transmission that occurred not only between 

named contacts, but also between individuals not known to one another. For example, in two 

US-based outbreak investigations, genotyping facilitated the identification of epidemiologic 

links between individuals not known to one another but who frequented the same 

restaurants, bars or houses of worship.64,65 While Mtb genotyping has been less utilized in 

high-burden settings, presumably due to cost and limited laboratory capacity, there are 

several studies from high-burden settings where genotyping has enhanced our understanding 

of trans-mission. A study conducted in South Africa utilizing DNA fingerprinting indicated 

that only 19% of trans-mission was occurring within households.23 However, in contrast to 

low-burden settings, where transmission events are relatively isolated and genotypically 

related cases are often presumed to represent transmission, genotyping may be less sensitive 

in high-burden set-tings, where TB is endemic and many cases may share a genotype, 

especially in regions with specific dominant genotypes.

More recently, WGS of Mtb isolates has emerged as a powerful tool to advance our ability to 

study TB transmission and define outbreaks.66,67 By accounting for the sequential 

accumulation of (SNPs), WGS has the potential to reveal microevolution and chains of 

transmission, not simply clusters of related cases. For example, WGS was used to investigate 

an extended TB outbreak in Canada and revealed the presence of two genetically distinct 

Mtb transmission networks, despite identical genotypes, suggesting two concomitant 

outbreaks rather than a single outbreak (Fig. 1).68 In Malawi, WGS enabled the 

reconstruction of transmission networks, estimation of between-patient mutation rates and 

lineage-specific rates of transmission.69

The integration of WGS data with epidemiologic data about individuals’ social interactions 

and movements can provide compelling evidence for transmission events by establishing the 

opportunity for transmission, based upon an epidemiologic connection, and a closely related 

Mtb strain. This understanding of where and between whom transmission is occurring can 
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help inform more directed public health interventions to interrupt future transmission. In 

order to attain these goals, population-level research that includes WGS is urgently needed 

in high-burden settings. In addition to enhancing our ability to construct transmission 

networks, population-level research can also help to address outstanding methodological 

questions about the interpretation of WGS data, such as the appropriate SNP threshold for 

identifying transmission, the mutation rate of Mtb in different set-tings, within-host 

evolution of Mtb and mixed infection with multiple strains.70–73

Geospatial analysis

There has also been a dramatic increase in the use of geospatial data and spatial scan 

statistics to understand disease patterns and transmission over the last several decades.74 

Geospatial data can include a range of data types including: self-report of home residence, 

administrative data on neighbourhoods and districts, health centre and hospital location data 

and global positioning system (GPS) coordinates. In the context of TB, geospatial analyses 

have helped to identify areas of spatial aggregation and ‘hotspots’ of TB transmission in a 

number of settings (Fig. 2).75–81 The sensitivity and resolution of these geospatial analyses 

depend in large part upon the type of data that is collected. Many studies have mapped TB 

patients’ homes to identify spatial aggregation. These data can then be used to guide 

interventions or focus further investigation. For example, a targeted, neighbourhood-level 

intervention in Texas identified individuals with a positive TST residing in higher incidence 

neighbourhoods and offered them isoniazid preventive therapy—which resulted in dramatic 

declines in TB in those neighbourhoods for the subsequent decade.82

There are several examples of TB outbreaks where individuals were queried about where 

they spend their time, providing a more comprehensive sense of their ‘activity space’, which 

enabled the identification of areas of transmission beyond their primary residence.83,84 For 

example, during a TB outbreak investigation in Japan, an activity space analysis identified a 

major railway station as a likely hotspot for transmission.84

Mobile phone data and wearable GPS devices represent another emerging and promising 

source for geospatial data. These devices have the potential to provide near-continuous 

information about an individual’s movement patterns and interactions with other individuals, 

with the added advantage of not being subject to recall bias. However, these benefits must be 

balanced against some of the limitations from these data sources, including signal loss and 

cellular tower density (for mobile phone data), and battery-life restrictions and not wearing 

the device (for wearable GPS devices).85 Also, it is worth noting that structured interviews 

have been compared to GPS devices or phone records in several studies, and that interviews 

provide reasonably accurate estimates of locations visited (>70% concordance).85–87

An additional challenge in characterizing movement patterns relevant to TB transmission is 

that individuals are often exposed to TB months to years prior to their development of active 

disease and then they are often ill for extended periods prior to diagnosis. These delays 

increase the likelihood that an individual’s movement patterns will have changed between 

when they were infected and diagnosed. Nevertheless, given the increasingly ubiquitous 

nature of cell phones with geospatial capacity, further research into the potential of these 

data streams to inform our understanding of TB transmission is warranted. Innovative 
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studies that incorporate detailed data about individuals’ movements with WGS data can 

greatly enhance our under-standing of where best to intervene to halt ongoing TB 

transmission.

Social mixing and ventilation studies

Advances in indirect measures of transmission potential are also a significant advance in 

recent years. For example, studies of social mixing, where the amount of contact between 

individuals is quantified, demonstrate that casual contact in community locations is quite 

common in high-burden settings, such as South Africa.28,29,88 Rates and types of social 

mixing vary by age and demography—for example, children and young adults are most 

likely to be infected in schools and workplace contacts increase with adulthood.3,29 

Therefore, the findings of these studies should be viewed as hypothesis-generating for future 

studies to empirically confirm whether transmission is indeed occurring in community 

settings such as schools, work-places and public transport. Furthermore, it is likely that 

social mixing patterns vary across cultures, so it will be essential to characterize these 

patterns at the local level to direct initial interventions or target further research.

Ventilation studies, with devices that quantify ambient CO2 levels as a proxy for rebreathed 

air and trans-mission potential, and new technologies to characterize cough aerosol 

production also represent new directions to enhance transmission research.3,55,89 Ventilation 

studies have recently shown that there are a limited number of air exchanges in many 

locations where casual contact occurs, such as schools and churches (Fig. 3).3,30,90 In such 

spaces, the likelihood of transmission from an infectious person to others is increased, given 

the high proportion of rebreathed air. It is important to prospectively study transmission rates 

and rebreathed air to validate whether ambient CO2 levels are an accurate proxy for 

transmission potential.

Biomarkers

There is great interest and a critical need for an assay of recent TB infection—that could 

both inform trans-mission research and help to risk-stratify individuals for TB preventive 

therapy. At present, the TST and interferon-gamma release assays (IGRAs) remain the only 

established means for gauging whether an individual is infected with TB, yet they are unable 

to distinguish between remote and recent infection (in the absence of serial testing with 

conversion to a positive test following a negative test at baseline). This limitation is 

particularly challenging for understanding trans-mission in high-burden settings where a 

majority of individuals will have had exposure to TB by adulthood and as a result, 

chronically positive TST and IGRA.91 In such settings, recent transmission is often assumed 

when a close contact has a positive TST or IGRA, but it is equally plausible that the close 

contact was infected by another index case in the community.

In a recent report from the UK, the presence of TNF-α-only T effector cells was found to 

distinguish between individuals believed to have acquired TB either recently or remotely, as 

determined by epidemiologic and clinical data.92 While this study was relatively small, with 

only 59 total participants enrolled, and was conducted in a low-burden setting, the prospect 

of a cellular immune signature capable of reliably identifying recent infection is exciting and 
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warrants further study in other cohorts and high-burden settings. In another series of recent 

studies, RNA-based transcriptional sig-natures have been found to predict the risk of 

developing active TB disease among several household contact cohorts enrolled across 

Africa.93,94 While these studies were focused on the risk of progression to active dis-ease 

and did not explicitly examine whether infection may have been remote or recent, 

epidemiologic data has long indicated that the risk of progression is inversely associated 

with the time since infection. In addition, the gene signature did not predict progression to 

disease among a community-based cohort of South African adolescents. Therefore, it will be 

worth exploring whether this RNA signature may also be a proxy for recent TB exposure. 

There are a handful of other reports of immune signatures for various aspects of TB 

infection that warrant further investigation as potential indicators of recent infection.95–98 A 

reliable biomarker of recent transmission would also be helpful for reducing the sample size 

and duration of trials to evaluate reductions in transmission following the introduction of 

new interventions.

CONCLUSION

While transmission is driving the global TB epidemic, our current understanding of how to 

interrupt and pre-vent transmission remains limited.99 Proven interventions to halt 

transmission in selected settings, such as household contact investigations and 

environmental controls to prevent nosocomial transmission, must be more broadly 

implemented. Yet, true progress towards substantially reducing TB incidence will require 

additional insights into where, and between whom, TB is transmitted. Recent advances in 

molecular epidemiology and geospatial analyses have the ability to identify specific 

locations where the majority of TB transmission is occurring in high-burden settings. 

Greater understanding of the types of locations where transmission is occurring has the 

potential to catalyse innovative public health interventions to halt transmission in 

community settings and bring us meaningfully closer to the goal of ending TB.
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Figure 1. 
Putative transmission networks constructed from genotyping data versus whole-genome data 

for 32 patients. Genotyping data from analyses of mycobacterial interspersed repetitive unit–

variable number tandem repeats (MIRU-VNTRs) were used in panel (A), and whole-

genome data were used in panel (B). Each panel shows patients (identified by case number) 

represented by circles coloured according to smear status and clinical presentation as an 

index of infectivity: Black circles indicate smear-positive pulmonary disease, grey circles 

smear-positive miliary disease or smear-negative pulmonary disease and white circles 

indicate smear-negative extrapulmonary disease. The cases are connected by arrows on the 

basis of reported social relationships representing plausible transmission attributable to a 

single case (purple arrows) or multiple potential sources of transmission (light blue lines), 

with dashed arrows indicating moderately infective patients and solid lines highly infective 

patients. The network in panel (B), with cases shown according to tuberculosis lineage (A in 

blude and B in pink), provides a more accurate picture of transmission, with transmission 

restricted to each lineage, facilitating epidemiologic interpretation of the underlying social-

network data and revealing the role of the second and third source cases (MT0010 and 

MT0011) (Adapted from Gardy et al.,68 with permission).
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Figure 2. 
Health centre-level risks of tuberculosis (TB). Annual per-100 K rates of drug-sensitive and 

drug-resistant TB (A) and multidrug-resistant (MDR) TB (B) by health centre catchment 

area. (C) Ratio of the per-capita rate of MDR to non-MDR cases by health centre. Health 

centre catchment areas are represented by polygons, with polygon fill colour indicating the 

TB or MDR TB rate in cases/100 K population. The boundaries of administrative districts of 

Lima are overlaid in black and labelled in white (Adapted from Zelner et al.,75 with 

permission).
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Figure 3. 
(A) Ambient parts per million of CO2 recorded at minute intervals by the logging device 

carried by a subject during a 24-h period. (B) Litres per minute of rebreathed air with 

additional allocation to specific locations. Litres per minute of rebreathed air were calculated 

for a 24-h period (transformation from ambient CO2 levels in Fig. 2A) and additionally 

allocated to specific locations using diary and global positioning system (GPS) information. 

The volume of rebreathed shared air is represented by the area under the curve for each 

location visited and the daily rebreathed volume is the sum of all volumes at all locations 

visited (Adapted from Wood et al.,55 with permission).
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Table 1

TB interventions intended to achieve a population-level impact

Intervention Study setting and year Outcomes

IPT Tunisia, urban slums, 1963 25.8% Reduction in TB case rates

Greenland, villages, 1966 31.3% Reduction in cumulative case rates

Alaska (USA), villages, 1967 59.3% Reduction in cumulative case rates

Brazil, HIV clinics, 2013 27% Reduction in TB incidence

Active/enhanced case-finding Oregon (USA), homeless shelters,
 1986

87% Reduction in case notification rate

Cambodia, national survey, 2002 62% Reduction in case notification rate

Harare (Zimbabwe), suburbs, 2005 41% Reduction in TB prevalence

Zambia, South Africa, rural
 communities, 2006

No significant reductions in TB prevalence
 or infection incidence

Vietnam, districts, 2018 39% Reduction in TB incidence

Active/enhanced case-finding + IPT Brazil, urban slums, 2010 15% Reduction in TB incidence

South Africa, gold mines, 2011 No significant reduction in TB incidence

Adapted from Churchyard et al.,13 with the addition of data from Okada et al.14 and Fox et al.,15 with permission IPT, Isoniazid preventive 
therapy; TB, tuberculosis.
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Table 2

Novel tools to study TB transmission

Tool Applications Challenges Research needs

Molecular
 epidemiology and
 WGS

Identification of clusters of
 related cases and chains of
 transmission, including
 between individuals not
 known to one another

Unclear SNP threshold for
 determining likelihood of
 transmission

Large-scale WGS studies to
 better understand Mtb
 transmission networks on a
 population level

Geospatial analysis Identification of spatial
 ‘hotspots’ of high
 transmission areas

Logistical obstacles to
 collecting comprehensive
 patient-level data

Validation of various types of
 geospatial data, for example
 home residence versus daily
 movement patterns;
 individual recall versus
 mobile phone or wearable
 GPS data

Social mixing and
 ventilation studies

Documentation of social
 interactions associated with
 transmission and
 quantification of rebreathed
 air in congregate settings

Social mixing studies difficult
 given variable latency of TB;
 technology to directly
 measure aerosolized Mtb
 and compare to ambient
 CO2

Characterization of social
 mixing and ventilation
 patterns in congregate
 settings across different
 cultures and environments

Biomarkers Biological assay of recent
 exposure and infection

Research in early stages; cost
 and technical challenges for
 immune-based diagnostics

Replication and validation of
 immune-based signatures
 for recent infection in
 multiple populations and
 settings

GPS, global positioning system; Mtb, Mycobacterium tuberculosis; SNP, single-nucleotide polymorphism; TB, tuberculosis; WGS, whole-genome 
sequencing.

Respirology. Author manuscript; available in PMC 2019 December 05.


	Abstract
	INTRODUCTION
	EXISTING EVIDENCE FOR LOCATIONS OF TRANSMISSION AND INTERVENTIONS TO INTERRUPT TRANSMISSION
	Homes
	Healthcare and congregate settings
	Community-based settings

	TOOLS TO STUDY TB TRANSMISSION
	Molecular epidemiology: Genotyping to WGS
	Geospatial analysis
	Social mixing and ventilation studies
	Biomarkers

	CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

