

COMPENDIUM OF MATERIALS FOR NOISE CONTROL

U. S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health

COMPENDIUM OF MATERIALS FOR NOISE CONTROL

Robert A. Hedeen IIT Research Institute 10 West 35th Street Chicago, Illinois 60616

Contract 210-77-00-63

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Center for Disease Control National Institute for Occupational Safety and Health Robert A. Taft Laboratories 4676 Columbia Parkway Cincinnati, Ohio 45226

May 1980

DISCLAIMER

The contents of this report are reproduced herein as received from the contractor. The opinions, findings, and conclusions expressed herein are not necessarily those of the National Institute for Occupational Safety and Health, nor does mention of company names or products constitute endorsement by the National Institute for Occupational Safety and Health.

NIOSH Project Officer: William McKinnery Principal Investigator: Robert Hedeen

DHEW (NIOSH) Publication No. 80-116

PREFACE

The publication of the first edition of the <u>Compendium of Materials for Noise</u> <u>Control</u> (No. 75-165) in 1975 was greeted with enthusiasm by noise control engineers and others interested in aural tranquility. For the first time, a comprehensive listing of noise control materials, with associated technical data, was available in a single source. In the ensuing years, as manufacturers dropped old product lines and added new products, the <u>Compendium</u> began to become obsolete. This second edition has been revised in many ways, but its aim is the same. It is designed for use by those selecting materials and systems for noise control. It will be found useful in determining availability, acoustical performance, and sources of noise control materials and systems, especially those with industrial applications. Data on specific products as well as general information on the uses and limitations of these products are included.

The primary sources of contact with the manufacturers of the products were the list of contributors to the first edition of the Compendium, the "Buyer's Guide" in S/V Sound and Vibration for July and August 1977, and the Riverbank Acoustical Laboratory client list. A total of 627 companies (as well as 21 testing laboratories and manufacturer's associations) derived from these sources were sent letters and questionnaires soliciting descriptions and technical data on their products. Responses generally took the form of product data literature and laboratory test reports, which had to be transcribed into a form suitable for typing in a tabular format. While the greatest pains were taken to ensure the accuracy of the tables, Murphy's Law virtually requires the inclusion of a few minor typographical errors, and for these the authors apologize. The final count of positive responses (those providing usable product information) was 146, providing a response to contact ratio of 23.3 percent. Remarkably, the ratio for the first edition of the Compendium was an almost identical 23.5 percent, although the contact lists, methods of contact, and numbers contacted were markedly different.

The data tables in this edition of the <u>Compendium</u> are entirely new. Contributors to the previous edition were asked to resubmit their products with the most recent data, and many companies not appearing before are represented. The organization of the data tables and the technical discussion has been revised with the hope of simplifying the use of the volume. The inclusion of eight tables of mufflers, silencers, and ducts is a major improvement to this edition. Data are presented as received from the manufacturers, and have not been verified by IITRI or NIOSH. Some products have been listed with little or no technical data. They have been included to make the user aware that the products exist, and the manufacturer should be contacted for any further required information.

The data tables comprise the principal content of the <u>Compendium</u>. The technical narrative provides highlights of the basic techniques of noise control. While not intended as a substitute for the more advanced and detailed books on noise control, it is hoped that it will provide basic reference material for those not already familiar with the subject. This compendium is the authors' contribution to an ultimate goal of a quieter environment.

ACKNOWLEDGEMENTS

The preparation of data tables in this document would have been an impossible task without the diligence and patience of John Kopec of IITRI. The assistance of Carol Sessions and Mary Sims, also of IITRI, in preparing the manuscript is appreciated. Pat Wagner, Jill Reed, and Virginia Martin were typists who struggled to interpret the handwritten draft. Special thanks are extended to Dr. Renny S. Norman, IITRI Program Manager, for his understanding of the many problems involved.

Also, NIOSH is grateful to Bruel and Kjaer Instruments for permission to reprint their microphone curves, to EDN Magazine for Figure 1, and to the Acoustical and Insulating Materials Association for providing the absorption data on common building materials in Table 5. The illustrations in the data tables are from the manufacturers' literature and are reprinted with their kind permission.

ABSTRACT

This compendium of commercial noise-reduction materials and systems was developed for use by plant engineers, industrial hygenists, acoustical consultants, and others engaged in noise control. It can be used to determine the availability of noise control products, their characteristics and specifications, and their supply sources. Also included is a technical discussion of operating principals, uses, and limitations of the products listed.

CONTENTS

Foreword	
Preface	
Acknowledgements	
Abstract	
Company Code Numbers and Addresses	1
Other Organizations Supplying Technical Material	13
Categorical Listing of Companies Contributing Data	15
Testing Laboratories with Acronyms and Addresses	17
Introduction	19
Some Basic Concepts	20
Terminology and Definition	20
Sound Intensity	22
Sound Pressure	23
Sound Power	23
Relationship Between Sound Intensity. Pressure. and Power	25
Combining Decibels	28
Directionality	30
Noise Weighting and Filtering	32
Instruments for Noise Measurements	38
Microphones	38
Sound Level Meters	41
Calibration of Sound Level Meters	43
Frequency Analyzers	43
Methods of Noise Control	45
Sound Absorption	49
Sound Absorption Measurements (ner ASTM (423-77)	50
Absorption Coefficients Exceeding Unity	51
Mountings for Absorption Tests	52
Dependence of Absorption Coefficient on Frequency	52
Sound Absorption Measurements (per ASTM C384-58).	54
Relationship Between Random and Normal Incidence Coefficients	56
Noise Control by Absorption	57
Absorption of Ceilings	63
Absorption of Walls	65
Absorption of Carnets	66
Absorption of Furnishings	67
Sound Barriere	68
Sound Transmission Loss Massurements (per ASTM FQD_77)	69
Donendance of Transmission Loss on Franceson	71
Test Recility Dequirements	72
Notes Control by Barriar	73
NULDE OULLEL BY BALLEL	77
Walls as Darriers	78
GLASS AS A DAITIET	, 0

CONTENTS (contd)

Doors as Barriers	79
Ceilings as Barriers	82
Freestanding Walls as Barriers	82
Noise Reduction and Enclosures	84
Impact Sound	88
Impact Sound Transmission Measurements (ner ASTM F/97-77)	88
Impact Sound Transmission Measurements (per ASIM E497-77)	00
Open Blan Office Treatment	90
Diping Ducta Mufflage and Ciloneana	92
Tiping, Ducts, Mulliers and Silencers	94
Insertion Loss	94
Pipe Lagging	94
Ducting	95
Mufflers and Silencers 1	.02
Vibration 1	.08
Vibration Isolators 1	11
Vibration Damping 1	.13
Bibliography1	15
Books on Acoustics and Noise Control 1	.15
Periodicals (Materials)1	17
Periodicals (Systems)	21
Noise Control	26
Measurement and Standards 1	.37
Description of Pertinent Standards 1	.43
Absorption	.43
Transmission Loss, Sound Transmission Class, and Impact Isolation 1	45
American National Standards Institute	49
Guide to the Data Tables	53
Data Tables	55
Absorptive Block	59
Roam	63
\mathbf{F}_{o}	70
Class Fiber Materials	70
Glass fiber Materials	. /
Mineral Fiber Materials	.00
	.90
Barrier/Fiberglass Composites 1	.93
Barrier/Foam Composites 1	.98
Mastics	.04
Quilted Materials 2	.08
Plain and Mass Loaded Plastics 2	:11
Glass and Plastic Sheets 2	.15
Other Barrier Materials 2	:18
Ceiling Tiles 2	22
Curtains	:31
Panels	:36
Roof Decks	45
Unit Absorbers	52
Enclosures	59
Doors	66
Floors	70

CONTENTS (concl)

.

~

Windows	0
Operable Partitions	3
Open Plan Systems 296	6
Wall Treatments	С
Pipe Laggings	7
General Industrial Silencers 314	4
High Pressure Discharge Silencers 322	2
Fan Silencers	7
Inlet and Exhaust Silencers 332	2
Splitter/Louver Silencers 335	5
Vehicular Mufflers 338	3
Duct Silencers	ίŧ
Ducting Materials	Э
Seals)
Damping Deadeners, and Padding Materials	2
Special Applications	5
Index to Data Tables	7
Photographic Credits 379)

FIGURES

1.	Audible sound frequencies of some musical instruments, voices,	
	and other noises (approximate)	21
2.	Chart for adding or subtracting decibels	28
3.	Standard A-, B-, and C-weighting curves for sound level meters;	
	also proposed D-weighting curve	33
4.	Free field correction for microphone with protecting grid	39
5.	Typical directional characteristics for 1-inch microphone	
	with protecting grid	40
6.	Frequency response curve supplied by B&K Instruments with 1-inch	
	pressure microphone type 4144	40
7.	Frequency response curve supplied by B&K Instruments with 1-inch	
	free field microphone type 4145	41
8.	Block diagram of a sound level meter	42
9.	Mountings used in sound absorption tests	53
10.	Sound absorption coefficients versus frequency for some types	
	of sound absorbing materials	54
11.	Relationship of random to normal incident absorption coefficients	
	at a test frequency of 500 Hz	56
12.	Relative sound pressure level versus distance from the source	
	for semireverberant fields	59
13.	Relative distribution of absorption qualities of acoustical	
	ceiling materials	64
14.	Typical absorption data for acoustical ceilings	65
15.	Typical practical performance of a wall relating to the transmis-	
	sion of sound showing the three separate regions	70
16.	Determination of sound transmission class	72
17.	Possible routes for sound travel from one room to another	73
18.	Improvement in wall transmission loss by spacing sides, and	
	by adding absorbing material in the cavity	78

FIGURES (concl)

19.	Effects of improved sealing of doors on sound transmission class.	80
20.	Dependence of sound transmission loss for doors on weight	81
21,	Geometry for determining sound attenuation by a freestanding wall	83
22.	Typical barriers for partial noise control in work areas	85
23.	Impact insulation class contours	89
24.	Interconnections between noise sources, paths, and receivers	95
25.	Uses of flexible couplings in ducts	96
26.	Noise sources and attenuation in a simple duct system	97
27.	Dependence of noise reduction coefficient of duct lines	
	on thickness	99
28.	Increase of absorbing surface in lined ducts	100
29.	Sound absorbing plenum	100
30.	Schematic diagram of an expansion chamber	103
31.	Transmission loss of expansion chamber of length ℓ and $S_2/S_1 = m$.	104
32.	Expansion chamber mufflers	105
33.	Parallel baffle silencer	106
34.	Tubular baffle silencer	106
35.	Natural frequency of a single degree of freedom vibrating system	
	as a function of static deflection	109
36.	Response of a single degree of freedom vibration system	
	with various damping factors	110
37.	Vibration isolation of compressor piping	112
38.	Vibration break in building structure to reduce transmission	
	of vibrations	113

TABLES

1.	Sound intensity level ratios and number of decibels for each	24
2.	Levels of some common sounds	27
3.	A-, B-, and C-weighting networks for sound level meters	
	as specified by ANSI S1.4-1971	34
4.	Center and cutoff frequencies for preferred series of contiguous	
	octave and one-third octave bands as specified by ANSI S1.6	36
5.	Absorption coefficients of general building materials	
	and furnishings	55
6.	Suggested correction factors for large extended areas	
	of the same absorption material	57
7.	Air absorption of 20°C to be added to average absorption	
	coefficient of room materials	58
8.	Noise reduction coefficients for concrete	66
9.	Effects of padding on carpet noise reduction coefficient	67
10.	Effects of carpets and pads on impact noise	67
11.	Sound transmission class of some common building materials	71
12.	Sound transmission class of monolithic and laminated glass	79
13.	Sound transmission class of air-spaced glass and monolithic	
	glass of comparable thickness	79
14.	Typical improvements with floor and ceiling treatments	90
15.	Approximate attenuation in dB of round elbows	96
16.	Duct end reflection loss in dB	98

COMPANY CODE NUMBERS AND ADDRESSES

Code	Company	Address	Pertinent Data Table
1	Accessible Products	1350 E. 8th St. Tempe, AZ 85281 (602) 967-8888	27
2	Acoustex of Canada Ltd.	83 Sunrise Ave. Toronto, Ontario M4AlBl (416) 751-2380	16,28,29
3	Acoustics Development	1810 Holste Rd. Northbrook, IL 60062 (312) 272-8880	38
4	Acoustiflex Corporation	811 Center St. Plainfield, IL 60544 (815) 436-4640	2,10,14, 16,18,25, 26
5	Aeroacoustic Corporation	4876 Victor St. Jacksonville, FL 32207 (904) 731-3577	11,14,16, 19,28,29, 30,32,34
6	Air Filter Corporation	4554 W. Woolworth Ave. Milwaukee, WI 53218 (414) 353-5800	31,32
7	Alcoa (Aluminum Company of America)	1501 Alcoa Bldg. Pittsburgh, PA 15219 (412) 553-3770	16
8	Allied Steel Products	7800 N.W. 37th Ave. Miami, FL 33147 (305) 691-0615	20
9	Allied Witan Company	13805 Progress Pkwy. Cleveland, OH 44133 (216) 237-9630	29
10	Alpha Associates, Inc.	Two Amboy Ave. Woodbridge, NJ 07095 (201) 634-5700	7,16

1

۰. ۱

.

Code	Company	Address	Pertinent Data Table
11	Alphadyne, Incorporated	2119 Grand Ave. St. Paul, MN 55105 (612) 698-5561	16,26
12	Alpro Structural Systems Corporation (Acoustics Division)	P.O. Box 50070 New Orleans, LA 70150 (504) 522-8656	5,16
13	American Acoustical Products	9 Cochituate St. Natick, MA 01760 (617) 237-4223	2,4,7,8, 11,13,37
14	Amweld Building Products	100 Plant St. Niles, OH 44446 (216) 652-9971	20
15	Armstrong Cork Company	W. Liberty St. Lancaster, PA 17604 (717) 397-0611	14,18,26
16	Arrow Sintered Products Company	7650 Industrial Dr. Forest Park, IL 60130 (312) 921-7054	29
17	Atlas Minerals and Chemicals	Farmington Rd. Mertztown, PA 19539 (215) 682-7171	29
18	Babcock and Wilcox	P.O. Box 1260 Lynchburg Research Center Lynchburg, VA 24505 (804) 384-5111	5,27
19	Barry Wright Corporation (Vlier Division)	2333 Valley St. Burbank CA 91505 (213) 843-1922	29
20	BLI Corporation	33 Parker Ave. Stamford, CT 06906 (203) 325-3883	4,10,14, 16,18,25, 26,38
21	Bodyguard Inc.	P.O. Box 8338 Columbus, OH 43201 (614) 291-7601	16
22	Bostik	Boston St. Middleton, MA 01949 (617) 777-0100	37

. 2

Code	Company	Address	Pertinent Data Table
23	Breton Industries Inc.	10 Leonard St. Amsterdam, NY 12010 (518) 842-3030	15
24	Brunswick Corporation (Technetics Division)	2000 Brunswick Ln. Deland, FL 32720 (904) 736-1700	35
25	Builders Brass Works Corporation	3447 Union Pacific Ave. Los Angeles, CA 90023 (213) 269-8111	36
26	The Canada Metal Company Ltd. (Noise Control Division)	721 Eastern Ave. Toronto, Ontario, Canada M4M-1E6 (416) 465-4684	7,8
27	L. E. Carpenter and Company	170 N. Main St. Wharton, NJ 08885 (201) 366-2020	4
28	The Celotex Corporation	P.O. Box 22602 Tampa, FL 33622 (813) 871-4811	3,5,9,14
29	Certainteed Corporation (Insulation Group)	3000 Chrysler Rd. P.O. Box 15080 Kansas City, KS 66115 (913) 342-6624	4,35
30	Chemprene Division (The Richardson Company)	570 Fishkill Ave. Beacon, NY 12508 (914) 831-2800	11,13
31	Chemical Fabrics Corporation	P.O. Box 367 108 Northside Dr. Bennington, VT 05201 (802) 442-3122	4
32	Childers Products Corporation	P.O. Box 22228 23350 Mercantile Rd. Beachwood, OH 44122 (216) 464-8020	19,27,37
33	Controlled Acoustics Corporation	221 E. Hartsdale Ave. Hartsdale, NY 10530 (914) 725-1700	2,7,8,11, 37

	Code	Company	Address	Pertinent Data Table
	34	Conwed Corporation (Ceiling Products Division)	332 Minnesota St. St. Paul, MN 55101 (612) 221-1184	14
. •	35	Curries Manufacturing	251 9th St. S.E. Mason City, IA 50401 (515) 423-1334	20
	36	Daubert Chemical Company	1200 Jorie Blvd. Oakbrook, IL 60521 (312) 582-1000	37
	37	DeVac Inc.	10130 State Highway 55 Minneapolis, MN 55441 (612) 542-3400	23 -
	38	Dixie Manufacturing Company Inc.	110 Colley Ave. P.O. Box 59 Norfolk, VA 23501 (804) 625-8251	37
	39	Donaldson Company Inc.	1400 W. 94th St. P.O. Box 1299 Minneapolis, MN 55440 (612) 887-3131	33
	40	Doug Biron Associates Inc.	P.O. Box 413 Buford, GA 30518 (404) 945-2929	2,4,7,8, 9,11,15, 16,18,27, 28,29,37, 38
	41	H. E. Douglass Engineering Sales Company	10861 Sherman Way Sun Valley, CA 91352 (213) 875-3144	38
	42	E. I. DuPont DeNemours and Company Inc.	1007 Market St. Rm. B1216 Wilmington, DE 19899 (302) 774-1000	11
	43	Duracote Corporation	350 N. Diamond St. Ravenna, OH 44266 (216) 296-3486	8,11
	44	Duwe Precast Concrete Products Inc.	P.O. Box 2068 Oshkosh, WI 54901 (414) 231-3980	17
	45	Eagle-Picher Industries, Inc. (Chemicals and Fibers Division)	P.O. Box 1328 Joplin, MO 64801 (417) 623-8000	5,27

.

4

<u>Code</u>	Company	Address	Pertinent Data Table
46	Eastman Chemical Products, Inc. (Plastics Products Division)	P.O. Box 431 Kingsport, TN 37662 (800) 251-0351	12
47	Eckel Industries Inc. (Eckoustic®Division)	155 Fawcett St. Cambridge, MA 02138 (617) 491-3221	2,4,8,11, 15,16,19, 37
48	Ecology Controls Inc.	223 Crescent St. Waltham, MA 02154 (617) 893-1020	38
49	Elwin G. Smith Company	100 Walls St. Pittsburgh, PA 15202 (412) 761-7474	16
50	Environmental Elements Corp. (Sound Control Systems Group)	P.O. Box 1318 Baltimore, MD 21203 (301) 368-7060	16,30,31, 32,34
51	Epic Metals Corporation	ll Talbot Ave. Rankin, PA 15104 (412) 351-3913	17
52	Federated Metals Corporation	P.O. Box 2600 270 Foothill Rd. Somerville, NJ 08876 (201) 356-2600	16,20,22
53	Feeder Corporation of America	4429 James Pl. Melrose Park, IL 60160 (312) 343-4900	38
54	Fenestra Company	4040 W. 20th St. P.O. Box 8189 Eric, PA 16505 (814) 838-2001	20
55	Fibron Corporation	P.O. Box 03061 Portland, OR 97203 (503) 286-8315	6,21,22
56	Fluid Kinetics Corporation	P.O. Box C.E. Ventura, CA 93001 (805) 644-5587	29
57	Foamade Industries	1220 Morse St. Royal Oak, MI 48068 (313) 548-5555	2

-

-

•

Code	Company	Address	Pertinent Data Table
58	Foam Design Inc.	Box 983 735 Westland Dr. Lexington, KY 40501 (606) 252-5671	11,15
59	Forty-Eight Insulations Inc.	P.O. Box 1148 Aurora, IL 60504 (312) 896-4800	22
60	Frommelt Industries Inc.	465 Huff St. Dubuque, IA 52001 (319) 556-2020	11
61	Gallagher-Kaiser Corporation	13710 Mt. Elliott Ave. Detroit, MI 48212 (313) 368-3100	16
62	General Acoustics Corporation	12248 Santa Monica Blvd. Los Angeles, CA 90025 (213) 820-1531	31
63	Glasrock [®] Products Inc.	7380 Bohannon Rd. Fairburn, GA 30213 (404) 964-1421	29
64	Globe-Amerada Glass Company	2001 Greenleaf Ave. Elk Grove Village, IL 60007 (312) 439-5200	12,23
65	Globe Industries Inc.	2638 E. 126th St. Chicago, IL 60633 (312) 646-1300	7,9
66	Goodyear Tire and Rubber Company	1144 E. Market St. Akron, OH 44316 (216) 794-2616	2,8,13,27
67	Haworth Inc.	545 E. 32nd Holland, MI 49423 (616) 392-5961	25
68	Holcomb and Hoke Manufacturing Company Inc.	1545 Van Buren St. P.O. Box A-33900 Indianapolis, IN 46203 (317) 784-2444	24
69	Hubert Fiberboard Inc.	P.O. Box 167, E. Morgan St. Boonville, MO 65233 (816) 882-2704	22

.

.

~

<u>Code</u>	Company	Address	Pertinent Data Table
70	I.D.E. Processes Corporation (Noise Control Division)	106 81st Ave. Kew Gardens, NY 11415 (212) 544-1177	16,19,28
71	Inryco Inc.	Box 393 4101 W. Burnham St. Milwaukee, WI 53201 (414) 383-4030	16,17
72	Insulation Contracting, Inc.	P.O. Box 1883 Mobile, AL 36601 (205) 456-4561	19
73	Insul-Coustic Corporation	Jernee Mill Road Sayreville, NJ 08872 (201) 257-6674	4,9,10, 11,18,26, 27,35
74	Johns-Manville Corporation	Ken-Caryl Ranch Denver, CO 80217 (303) 979-1000	3,4,14, 27,35
75	Kaiser Cement and Gypsum Corporation	Kaiser Center 300 Lakeside Dr. Oakland, CA 94666 (415) 271-2211	21,22
76	Kelley Company, Inc.	6720 N. Teutonia Ave. Milwaukee, WI 53209 (414) 352-1000	15
77	George Koch Sons Inc. (Thermal-Acoustics Division)	10 S. 11th Ave. Evansville, IN 47744 (812) 425-1321	16,19,25
78	Korfund Dynamics Corporation	P.O. Box 235 Cantiague Rd. Westbury, NY 11590 (516) 333-7580	2,8,11, 16,19,34, 37
79	Laminated Glass Corporation	355 W. Lancaster Ave. Haverford, PA 19041 (215) 642-2344	12
80	Lehigh Fluid Power Inc.	York Rd., Rt. 179 Lambertville, NJ 08530 (609) 397-3487	29
81	The Logan-Long Company Inc.	Rt. 73 and 25 Franklin, OH 45005 (513) 746-4561	9,37

.

7

-

•

<u>Code</u>	Company	Address	Pertinent Data Table
82	Lord/All Force Acoustics	2001 Peninsula Dr. P.O. Box 1067 Erie, PA 16512 (814) 838-7691	2,15,16 18,19,37, 38
83	Maher Engineering Company	1251 Rand Rd. Des Plaines, IL 60016 (312) 824-2124	2,7,8, 11,13,37
84	Martin Fireproofing Georgia Inc.	P.O. Box 768 Elberton, GA 30635 (404) 283-6942	17
85	Metal Building Interior Products Company	Kane Building 1640 E. 40th St. Cleveland, OH 44103 (216) 431-6040	4,14,18, 26
86	W. B. McGuire Company Inc.	l Hudson Ave. Hudson, NY 12534 (518) 828-7652	15
87	Merco Manufacturing Inc.	P.O. Box 4110 Dallas, TX 75208 (214) 741-1538	17
88	Modu-Line Window Inc.	930 Single Ave. P.O. Box 128 Wausau, WI 54401 (715) 845-9666	23
89	Monsanto Plastics and Resins Company	800 N. Lindbergh Blvd. St. Louis, MO 63166 (314) 694-1000	12
90	National Cellulose Corporation	12315 Robin Blvd. Houston, TX 77045 (713) 433-6761	6,13,18, 22,27
91	National Concrete Masonry Association	6845 Elm St. P.O. Box 135 McLean, VA 22101 (703) 790-8650	22
92	National Gypsum Company Gold Bond Building Products	325 Delaware Ave. Buffalo, NY 14202 (716) 852-5880	14,26
93	Noise Control Associates Inc.	32 Park St. Montclair, NJ 07042 (201) 746-5181 8	10

•

Code	Company	Address	Pertinent Data <u>Table</u>
94	Noise Reduction Corporation	Rt. 1 Box 3 N. Redwood, MN 56275 (507) 637-3067	38
95	Overly Manufacturing Company	P.O. Box 70 574 W. Otterman St. Greensburg, PA 15601 (412) 834-7300	20
96	Owens Corning Fiberglass Corporation	Sound Laboratory Bldg. 300 Grandville, OH 43023 (614) 587-0610	4,11,14, 18,25,26, 27,35
97	Owens Illinois Inc.	P.O. Box 1035 Toledo, OH 43666 (419) 247-5000	13
98	Pittsburgh Corning Corporation	800 Presque Isle Dr. Pittsburgh, PA 15239 (412) 327-6100	4,18,35
99	Plicoflex Inc.	1430 E. Davis St. Arlington Heights, IL 60005 (312) 392-5700	24
100	Presray Inc.	159 Maple Blvd. Pawling, NY 12564 (914) 855-1220	36
101	The Proud Foot Company Inc.	P.O. Box 9 Greenwich, CT 06830 (203) 869-9031	1,18
102	Quietflo	137 S. Middletown Rd. Nanuet, NY 10954 (914) 352-8877	28
103	The R.C.A. Rubber Company	1833 E. Market St. Akron, OH 44305 (216) 784-1291	21
104	Reeves Brothers Inc. (Noise Control Materials Division)	222 Rampart St. Charlotte, NC 28203 (704) 333-1131	2,15
105	Richards-Wilcox Manufacturing Company	174 3rd St. Aurora, IL 60507 (312) 897-6951 9	20,24

Code	Company	Address	Pertinent Data Table
106	Robinson Acoustics Ltd.	313 Enford Rd. Richmond Hill, Ontario L4C3E9 (416) 889-0218	26
107	Rohm and Haas Company	Independence Mall West Philadelphia, PA 19105 (215) 592-3000	12
108	Rollform Products, Inc.	220 Seegers Elk Grove Village, IL 60007 (312) 640-7760	17
109	Scientific Applications Inc.	P.O. Box 615 Highway 34 W. Mt. Pleasant, IA 52641 (319) 385-9021	2,21,22
110	Shatterproof Glass Corporation	4815 Cabot Ave. Detroit, MI 48210 (313) 582-6200	12
111	Shielding, Inc.	3295 S. Highway 97 Redmond, OR 97756 (503) 548-4032	11
112	Singer Safety Products Inc.	444 N. Lake Shore Dr. Chicago, IL 60611 (312) 222-1860	2,11,15, 19
113	Span-Deck Incorporated	Box 99 Franklin, TN 37064 (615) 794-4556	17,21
114	Sonic Barrier Sound Products Ltd.	3400 Lysander Ln. Richmond, British Columbia V7B1C3 (604) 273-5722	19
115	Sonotrol Systems Ltd.	486 Evans Ave., Unit #8 Toronto, Ontario, Canada M8W2T7 (416) 252-5979	18,26
116	Sorber Sound Proofing Company	8 Aaron St. Framingham, MA 01701 (617) 879-2140	15

Code	Company	Address	Pertinent Data Table
117	The Soundcoat Company, Inc.	175 Pearl St. Brooklyn, NY 11201 (212) 858-4100	2,7,8,11, 13,37
118	Sound Control Design	215½ S. County St. Waukegan, IL 60085 (312) 623-1317	25
119	Sound Fold Inc.	P.O. Box 2125 Dayton, OH 45429 (513) 228-3773	15
120	Sound-Metal Engineering Inc.	P.O. Box 58 Lawrenceville, IL 62439 (618) 943-2396	16,19
121	The Spencer Turbine Company	600 Dayhill Rd. Windsor, CT 06095 (203) 688-8361	31
122	Stanley Door Systems	2400 E. Lincoln Rd. Birmingham, MI 48012 (313) 646-1100	20
123	Stark Ceramics, Inc.	P.O. Box 8880 Canton, OH 44711 (216) 488-1211	1
124	Sunnex Corporation	87 Crescent Rd. Needham, MA 02194 (617) 444-4730	29
125	Tempmaster Corporation	1222 Ozark St. N. Kansas City, MO 64116 (816) 421-0723	16,19
126	Tex-Steel Corporation	467 Industrial Air Park P.O. Box 992 Harlingen, TX 78550 (512) 423-0912	20
127	Tracoustics Inc.	415 E. St. Elmo Rd. P.O. Box 3610 Austin, TX 78764 (512) 444-1961	19
128	Transco Inc.	55 E. Jackson Blvd. Chicago, IL 60604 (312) 427-2818	16

Code	Company	Address	Pertinent Data Table
129	Trus Joist Corporation	9777 W. Chinden Blvd. Boise, ID 83702 (208) 375-4450	21
130	Tube-Lok Products	4644 S.E. 17th Ave. Portland, OR 97202 (503) 234-9731	2,8
131	United Sheet Metal Division (McGill Corporation)	200 E. Broadway Westerville, OH 43081 (614) 882-7401	16,35
132	United States Department of Agriculture, Forest Products Lab	P.O. Box 5130 Madison, WI 53705 (608) 257-2211	22
133	United States Gypsum Company	101 S. Wacker Dr. Chicago, IL 60606 (312) 321-3865	18,25,26
134	United Steel Deck, Inc.	475 Springfield Ave. P.O. Box 662 Summit, NJ 07901 (201) 277-1617	17
135	Universal Silencer Division Nelson Industries Inc.	P.O. Box 411 Stoughton, WI 53589 (608) 873-4272	28
136	Upstate Precision Manufacturing Inc.	Franklyn Building Rt. 9 Plattsburgh, NY 12901 (518) 563-7440	25
137	Velcro USA Inc.	681 5th Ave. New York City, NY 10022 (212) 751-2144	38
138	Verco Manufacturing Inc.	4340 N. 42nd Ave. Phoenix, AZ 85019 (602) 272-1347	17
139	Vibration and Noise Engineering Corporation	Metro Square 2655 Villa Creek Dr. Dallas, TX 75234 (214) 243-1951	19,28
140	Viracon Inc.	800 Park Dr. Owatonna, MN 55060 (507) 451-9551	12

/

Code	Company	Address	Pertinent Data Table
141	Vogel Peterson	Rt. 83 and Madison St. Elmhurst, IL 60126 (312) 279-7123	25
142	VSM Corporation Environmental Systems Group	7515 Northfield Rd. Cleveland, OH 44146 (216) 439-5400	16
143	Warren Sales Corporation	Box 11849 Knoxville, TN 37919 (615) 588-6459	1
144	Western Conference of Lathing and Plastering Institutes, Inc.	P.O. Box 6468 Santa Anna, CA 92706 (714) 531-1278	21,22
145	Weyerhaeuser Company	P.O. Box 188 Longview, WA 98632 (206) 425-2150	20,21,22
146	Zero, Weather Stripping Company Inc.	415 Concord Ave. Bronx, NY 10455 (212) 583-3230	36
	OTHER ORGANIZATIONS SU	PPLYING TECHNICAL MATERIAL	
	Association of Home Appliance	20 N. Wacker Dr.	

-

Manufacturers (AHAM)	Chicago, IL 60606 (312) 236-2921
Brick Institute of America (BIA)	1750 Old Meadow Rd. McLean, VA 22101 (703) 893-4010
Hardwood Plywood Manufacturing Association (HPMA)	P.O. Box 6246 Arlington, VA 22206 (703) 671-6262
National Concrete Masonry Association (NCMA)	6845 Elm St. P.O. Box 135 McLean, VA 22101 (703) 790-8650
Portland Cement Association (PCA)	5420 Old Orchard Rd. Skokie, IL 60076 (312) 966-6200

-

Company

Prestressed Concrete Institute (PCI)

Expanded Shale, Clay, and Slate Institute

United States Department of Agriculture, Forest Products Lab

Western Conference of Lathing and Plastering Institutes, Inc. 20 N. Wacker Dr. Chicago, IL 60606 (312) 346-4071

7401 Wisconsin Ave. Suite 414 Bethesda, MD 20014 (301) 654-0140

P.O. Box 5130 Madison, WI 53705 (608) 257-2211

P.O. Box 6468 Santa Anna, CA 92706 (714) 531-1278

CATEGORICAL LISTINGS OF COMPANIES CONTRIBUTING DATA

Table	Title	Organization Code Numbers
	Group A: Noise	Control Materials
1	Absorptive Block	101, 123, 143
2	Foams	4, 13, 33, 40, 47, 57, 66, 78, 82, 104, 109, 112, 117, 130
3	Felt	28, 74
4	Glass Fiber Material	13, 20, 27, 29, 31, 40, 47, 73, 74, 85, 96, 98
5	Mineral Fiber	12, 18, 28, 45
6	Spray On	55, 90
7	Barrier/Fiberglass	10, 13, 26, 33, 40, 65, 117
8	Barrier/Foam	13, 26, 33, 40, 43, 47, 66, 78, 117, 130
9	Mastic	28, 40, 65, 73, 81
10	Quilted	4, 20, 73, 93
11	Plain and Mass Loaded Plastics	5, 13, 30, 33, 40, 42, 43, 47, 58, 60, 73, 78, 96, 111, 112, 117
12	Glass/Plastic Sheets	46, 64, 79, 89, 107, 110, 140
13	Other Barrier Materials	13, 30, 66, 90, 97, 117
	Group B: Nois	e_Control_Systems
14	Ceiling Tile	4, 5, 15, 28, 34, 74, 85, 92, 96
15	Curtains	23, 40, 47, 58, 76, 82, 86, 104, 112, 116, 119
16	Panels	2, 4, 5, 7, 11, 12, 21, 40, 47, 49, 50, 52, 61, 70, 71, 77, 78, 82, 120, 125, 128, 131, 142
17	Roof Decks	44, 51, 71, 84, 87, 108, 113, 134, 138
18	Unit Absorbers	4, 15, 20, 40, 73, 82, 85, 90, 96, 98, 101, 115, 133
19	Enclosures	5, 32, 47, 70, 72, 77, 78, 82, 112, 114, 120, 125, 127, 139
20	Doors	8, 14, 35, 52, 54, 95, 105, 122, 126, 145

15

•. ·

.

Table	Title	Organization Code Numbers
21	Floors	55, 75, 103, 109, 113, 129, 144, 145
22	Walls	52, 55, 59, 69, 75, 90, 91, 109, 132, 144, 145
23	Windows	37, 64, 88
24	Operable Partitions	68, 99, 105
25	Open Plan	4, 67, 77, 96, 118, 133, 136, 141
26	Wall Treatment	4, 11, 15, 73, 85, 92, 96, 106, 115, 133
27	Pipe Lagging	1, 18, 32, 40, 45, 66, 73, 74, 90, 96
	Group C: Muffler, Sile	encer, and Duct Systems
28	General Industrial Silencers	2, 5, 40, 70, 102, 135, 139
29	High Pressure Discharge	2, 5, 9, 16, 17, 19, 40, 56, 63, 80, 124
30	Fan Silencers	5, 50
31	Inlet and Exhaust Silencers	6, 50, 62, 121
32	Splitter/Louvers	5, 6, 50
33	Vehicular Mufflers	39
34	Duct Silencers	5, 50, 78
35	Ducting	24, 29, 73, 74, 96, 98, 131
	Group D: Mi	scellaneous
36	Seals	25, 100, 146
37	Damping, Deadeners, Padding	13, 22, 32, 33, 36, 38, 40, 47, 78, 81, 82, 117

38 Special Applications

.

3, 20, 40, 41, 48, 53, 82, 94, 137

16

,

TESTING LABORATORIES WITH ACRONYMS AND ADDRESSES

Armstrong Acoustical Laboratories West Liberty St. Lancaster, PA 17604 (717) 397-0611	AAL
Bolt Beranek & Newman 50 Moulten St. Cambridge, MA 02138 (617) 491-1850	BBN
Cedar Knolls Acoustical Laboratory9 Saddle Rd. 9 Saddle Rd. Cedar Knolls, NJ 07927 (201) 539-6261	CKAL
Cominco Product Research Center Sheridan Park Mississaqua, Ontario L5K1B4 (416) 822-2022	CLC
Company Reference	CR
Company Test	СТ
Detroit Testing Laboratory Inc 8720 Northend Oak Park, MI 48237 (313) 398-2100	DTL
Geiger & Hamme Labs Box 1345 Ann Arbor, MI 48106 (313) 971-3033	G&H
<pre>International Acoustics Testing Laboratory Inc. (INTEST)I P.O. Box 8049 St. Paul, MN 55113 (612) 645-6699</pre>	NTEST
Jim Walters Testing Laboratories Jim Walters Research Corp. 10301 9th St. N. St. Petersburg, FL 33702 (813) 576-4171	WL

.

....

-

Electrical Testing Labs Kodaras Acoustical Laboratory Division Industrial Park Cortland, NY 13045 (607) 753-6711	KAL
National Bureau of Standards Sound Section Room B106, B1dg. 233 Washington, D.C. 20234 (301) 921-3607	NBS
National Gypsum Company 1650 Military Rd. Buffalo, NY 14217 (716) 873-9750	NGC
Owens Corning Reverberation Lab Product Testing Laboratory Technical Center, Owens Corning Fiberglass Corporation P.O. Box 415 Granville, OH 43023 (614) 587-0610	OCRL
Riverbank Acoustical Laboratories IIT Research Institute 1512 Batavia Ave. Geneva, IL 60134 (312) 232-0104	RAL
Simpson Timber Company Research Center	SRC
Wingerter Laboratories Incorporated 1820 N.E. 144th St. N. Miami, FL 33161 (305) 944-3401	WLI

These organizations are the sources of the technical data presented in the tables. Their acronyms appear in the reference column of all tables. When the data provided by a manufacturer was not associated with a specific test laboratory, the letters CR indicate that the data was derived from a company reference. Following CR, when available, is the identification of the particular company brochure in which the data is published.

CKAL, CLC, G&H, INTEST, KAL, and RAL are independent acoustical testing laboratories specializing in the testing of noise control materials to the appropriate standards. AAL, JW, NGC, OCRL, and SRC are laboratories owned and operated by the manufacturer for the purpose of testing their own products. They occasionally perform tests for other companies. NBS no longer performs tests of this sort on a routine basis as in the past. BBN is an acoustical consulting firm. DTL and WLI perform a variety of testing services in addition to acoustical tests.

INTRODUCTION

The sounds of industry, growing in volume over the years, have heralded not only technical and economic progress but also the threat of an everincreasing incidence of hearing loss and other noise related health hazards to exposed employees. Noise is not a new hazard. Indeed, noise-induced hearing loss was observed centuries ago. Ramazzini in "De Morbis Artificium Distriba" in 1700 described how those hammering copper "have their ears so injured by that perpetual din..that workers of this class became hard of hearing and, if they grow old at this work, completely deaf." Before the Industrial Revolution, however, comparatively few people were exposed to high level workplace noise. It was the advent of steam power in connection with the Industrial Revolution that first brought general attention to noise as an occupational hazard. Workers who fabricated steam boilers were found to develop hearing loss in such numbers that such a malady was dubbed "boilermakers disease". Increasing mechanization in all industries and most trades has since proliferated the noise problem.

Exposures to noise levels found at the workplace, particularly in mechanized industries, are likely to be the most intense and sustained of any experience in daily living. As such, they represent the severest form of acoustic insult to man and therein pose the greatest harm to human function. The effects of occupational noise exposures include:

Temporary and permanent losses in hearing sensitivity

Physical and psychological disorders

Interference with speech communications or the reception of other wanted sounds

Decremental job performance

Engineering controls for the abatement of environmental noise reduce the intensity of the noise either at the source or in the immediate exposure environment. A number of these procedures require considerable expertise, and it is recommended that employers avail themselves of the services of a competent acoustical engineer in development of a noise abatement program. However, many noise control techniques may be implemented directly by company personnel at relatively little expense. (NOTE: The foregoing discussion was excerpted from "Criteria for a Recommended Standard...Occupational Exposure to Noise", DHEW (NIOSH) 1972).

SOME BASIC CONCEPTS

TERMINOLOGY AND DEFINITIONS

Sound consists of pressure waves traveling in an elastic medium, such as air, with propagation occurring in the direction of the wave motion. Noise is a subclass of sound: that sound which is undesirable to its receiver.

A pure tone of sound originates from simple harmonic motion, e.g., the reciprocating motion of a piston in air. The sound wave produced by this motion is a sinusoidal pressure wave whose fluctuation is governed by the displacement and rate at which the piston moves back and forth. Frequency is defined as the number of times this pressure fluctuation passes through a complete cycle in 1 sec. The unit of frequency is the hertz (1 Hz = 1 cycle per sec). The sound frequencies of some common items in air are shown in Figure 1.

The small changes above and below atmospheric pressure resulting from this compression and rarefaction of the air molecules are called "sound pressure". Since sound pressure is a periodic phenomenon, it is invariably expressed in terms of its root mean square (rms) value. Physiologically, the sensation of hearing is produced by this pressure variation. Broadband noise may be defined as a combination of sound waves with differing frequencies and amplitudes as distinct from a pure tone which has a single frequency and amplitude. Thus, broadband noise is a sound wave composed of a number of components combining to yield a resultant complex wave. In noise control work, broadband noise is the most common type of sound. The techniques available for analyzing the components of broadband noise into distinct frequency ranges is referred to as "spectral analysis".

If one were to freeze an oscillating, traveling, pressure fluctuation in time its resultant would be a wavelength defined as the measured distance between the maximum pressure points or any other analogous points on two successive parts of the wave. The Greek letter lambda (λ) is the symbol for wavelength, and it is measured in units of feet or meters.

The velocity with which the corresponding pressure points on successive parts of the wave pass a given point is the speed of sound, and the speed of sound is always equal to the product of the wavelength and the frequency, i.e., $c = \lambda f$. This speed is dependent on the equilibrium pressure, p_s , of the gas through which the sound wave is traveling and on the equilibrium gas density, ρ . The speed of sound (c) is given by the expression

$$c = \sqrt{\gamma p_s}/\rho$$
 m/sec or ft/sec (1)

where the constant γ is the ratio of the specific heat of a gas at constant pressure to its specific heat at constant volume. For air, at most normally

Figure 1. Audible sound frequencies of some musical instruments, voices, and other noises (approximate). (Courtesy of Sonotone Corp., Elmsford, NY. Reprinted by permission of EDN Magazine, April 1967.)

encountered temperatures, γ is equal to 1.4. If the medium may be considered a perfect gas (e.g., air), the speed of sound may also be expressed as

$$c = \sqrt{\gamma RT}$$
(2)

where T is the absolute temperature and R is the ideal gas constant for the appropriate units. Substituting the values of the constants in equation (2), the speed of sound in air at a temperature t of $22^{\circ}C$ ($72^{\circ}F$) is

$$c = 20.05 \sqrt{(t+273)} = 344 \text{ m/sec}$$
 (t in °C) (3a)

$$c = 49.05 \sqrt{(t + 460)} = 1131 \text{ ft/sec} (t \text{ in }^{\circ}\text{F})$$
 (3b)

The simplest model of acoustic wave propagation is the free field. A free field is a region of space where the medium of wave propagation is considered to be homogeneous and free of obstructions. In a free field the sound from a point source radiates equally in all directions in the form of a spherical wave. As such, the <u>intensity</u> of the wave follows the same inverse square law as light, and the intensity drops to one-fourth its value each time the distance is doubled. The <u>sound pressure</u> drops by one-half when the distance from the source is doubled, since pressure can be shown to be proportional to the square root of intensity. The decrease in intensity or pressure does not hold everywhere within the free field. Near to the sound source (within about two or three wavelengths) the waves behave in a complicated manner requiring special mathematical description; this region is known as the near field. Further out, the inverse square relationship begins to hold; this region, theoretically extending indefinitely, is the far field. The intensity of a spherical wave in a free field at a distance r from the source is represented mathematically by

$$I = \frac{W}{4\pi r^2} = \frac{p^2}{\rho c}$$
(4)

where I is the intensity in watts/ m^2 , W is the total acoustic power radiated by the source in watts, p is the root mean square sound pressure, and pc is the product of the density of the medium and the speed of sound. This product is called the "characteristic impedance" of the medium through which the sound wave is traveling and is the constant of proportionality that relates the squared sound pressure to the sound intensity.

SOUND INTENSITY

or

The range of intensity which the human ear can perceive, from the barely discernible to the threshold of pain, is approximately seven orders of magnitude (10^7) . The level of sensation is usually measured or reported in a smaller range of numbers by use of the logarithm of the ratio of the measured level to some reference level. For this purpose the unit of the Bel has been borrowed from telephone technology. The loudness of a sound is defined in Bels as

number of Bels =
$$\log_{10} (I/I_o)$$
 (5)

where I is the intensity of sound and I_0 is the reference intensity, which has an agreed upon value of 1 picowatt/per square meter (pW/m^2) . Therefore if $I = I_0$, the number of Bels is 0, and if $I = 10 I_0$, the number of Bels is 1. The preferred unit for measuring sound has become the minimum difference in loudness that is usually perceptible, one-tenth of a Bel, or 1 decibel (dB); thus

number of dB = 10
$$\log_{10} (I/I_0)$$
 (6)

When any acoustical quantity is expressed in terms of decibels relative to a reference quantity, it is known as a level. Thus the sound intensity level (L_T) is

$$L_{I} = 10 \log \frac{I}{I_{o}} dB re I_{o}$$
(7)

It is clear from this expression that for each change in the intensity by one order of magnitude (factor of 10), the number of decibels is changed by 10; or, for each change in the intensity of a factor of 2, the number of decibels is changed by 3. Some decibel values for selected intensity ratios are shown in Table 1.

SOUND PRESSURE

Sound pressure is expressed in decibels for the same reason as intensity; the large range of values commonly encountered. As with sound intensity, there is a reference sound pressure, p_{o} , equal to 20 micropascals (µPa).

The sound pressure level in decibels is defined as the logarithm of the ratio of the mean squared pressure to the reference pressure squared:

$$L_{p} = 10 \log \frac{p^{2}}{\frac{p}{p_{o}}} = 20 \log \frac{p}{p_{o}} dB re p_{o}$$
(8)

Note in the expression that the logarithm of the pressure ratio is multiplied by 20 instead of 10 as for sound intensity level. This is due to the fact that the pressure ratio is squared. Thus there is a 20 dB change in sound pressure level for an order of magnitude change in the sound pressure, and 40 dB change for an increase of 100 times; and instead of a 3 dB change for doubling as in sound intensity, there is a 6 dB change for doubling of sound pressure.

SOUND POWER

The amount of energy per unit time that radiates from a source in the form of an acoustic wave is sound power. If the source is enclosed by an imaginary surface, then all energy leaving the source must pass through this surface. This relationship can be written as

$$W = IS$$
(9)

where W is the sound power, S is the area of the surface enclosing the source, and I is the average intensity per unit area of the surface.

Sound intensity ratio I/I _o	Number of decibels (dB=10 log (I/I ₀))
1000.0	30.0
100.0	20.0
10.0	10.0
9.0	9.5
8.0	9.0
7.0	8.5
6.0	7.8
5.0	7.0
4.0	6.0
3.0	4.8
2.0	3.0
1.0	0.0
0.9	-0.5
0.8	-1.0
0.7	-1.5
0.6	-2.2
0.5	-3.0
0.4	-4.0
0.3	-5.2
0.2	-7.0
0.1	-10.0
0.01	-20.0
0.001	-30.0

Table 1. Sound intensity level ratios and number of decibels for each.

If the source is in a free field, and radiates power equally, in all directions, then the sound power can be written from equation (4) as

$$W = I(4\pi r^2) \tag{10}$$

where the enclosing surface is a sphere of radius r chosen for convenience. The expression for sound power level is given by

 $L_{w} = 10 \log_{10} \frac{W}{W_{o}} dB re W_{o}$ (11)

where W is the sound power in watts, and W₀ is the reference sound power of 10^{-12} watt or 1 pW. (NOTE: Some earlier texts use 10^{-13} watt as the reference value so whenever the power level is reported the reference used must also be stated.)
RELATIONSHIP BETWEEN SOUND INTENSITY, PRESSURE, AND POWER

For a young person with good hearing, the threshold of hearing at 1000 Hz (the quietest sound audible) corresponds to approximately a 20 μ Pa rms pressure. The Pascal (Pa) is the unit of pressure used throughout this volume, and is equal to one Newton per square meter. This value was thus chosen as the reference value for decibels of sound pressure P_o; a sound pressure of 20 μ Pa is 0 dB.

The reference sound intensity $\rm I_O$ was chosen to be 1 pW/m² so that the intensity level and the corresponding sound pressure level would be nearly numerically equal for spherical or plane sound waves in air at room temperature and sea level pressure.

Recalling equation (4), the relationship between L_p and L_I may be derived as

$$L_{I} = 10 \log \frac{I}{I_{o}} = 10 \log \frac{p^{2}}{\rho c I_{o}} = 10 \log \frac{p^{2}}{p_{o}^{2}} \frac{p_{o}^{2}}{\rho c I_{o}}$$
$$= L_{p} + 10 \log \frac{p_{o}^{2}}{\rho c I_{o}}$$
(12)

Substituting the numerical values of the reference quantities, the density of air, and the speed of sound, equation (12) may be simplified to

$$L_{I} = L_{p} + 10 \log \frac{(20 \times 10^{-6})^{2}}{(1.20)(344)(10^{-12})}$$
$$= L_{p} - 0.14 ~ U_{p}$$
(12a)

Equation (4) may also be developed into a relationship between sound power and sound pressure

$$I = \frac{W}{S} = \frac{p^2}{\rho_c}$$
(4)

$$L_{W} = 10 \log \frac{W}{W_o} = 10 \log \frac{p^2 S}{\rho_c W_o}$$

$$= 10 \log \left[\frac{p^2}{p_o^2} \frac{p_o^2}{\rho_c W_o} S \right]^{-1}$$

$$= L_{p} + 10 \log S + 10 \log \frac{p_o^2}{\rho_c W_o}$$
(13)

If spherical radiation into a free field is assumed, the power is radiated into a sphere of area $S = 4\pi r^2$ where r is the distance from the source to the measuring point.

Therefore

$$10 \log S = 10 \log 4\pi + 10 \log r^2 = 11 + 20 \log r$$

The values of the constants in the third term to the right in equation (13) are the same as in equation (12a) since W_0 was chosen to equal I_0 . Therefore, the third term is approximately zero and

$$L_{w} = L_{p} + 10 \log S = L_{p} + 20 \log r + 11 dB re 1 pW$$
 (14)

2

where r is measured in meters. If radiation occurs outdoors over the ground, the power is radiated into a hemisphere. The area S becomes equal to $2\pi r^2$ with the result that

$$L_{r} = L_{r} + 20 \log r + 8 dB re 1 pW$$
 (15)

with r again measured in meters. If the distance r is to be measured in feet, equations (14) and (15) become respectively

$$L_{w} = L_{p} + 20 \log r + 0.7 dB re 1 pW (spherical)$$
 (14a)

$$L_{w} = L_{p} + 20 \log r - 2.3 \text{ dB re } 1 \text{ pW (hemispherical)}$$
(15a)

Equations (14) and (15) may be inverted to determine the sound pressure level if the sound power level is known. Generally, it is the sound pressure which is measured with microphones or other sensors and the sound power is then calculated. It is often desirable to know the sound power emitted by a source, since the sound power level remains almost constant regardless of the acoustic environment (free field, echos, etc.) the source is placed in. The sound pressure level developed by the same source will vary widely depending on the acoustic environment.

EXAMPLE 1: (a) Determine the sound pressure level at 10 m for a sound source radiating 116 dB re 1 pW uniformly into a free field. (b) Also determine the sound pressure level of this source at the same distance over a flat open plane.

SOLUTION: (a) Reversing equation (14) we have

(b) Using equation (15) for hemispherical radiation

$$L_{p} = 116 - 20 \log 10 - 8$$
$$= 116 - 20 - 8$$

= 88 dB re 20 μPa

26

For hemispherical radiation the result is just 3 dB greater than for spherical or free field radiation. This is borne out by the fact that radiation over a hard plane is like the radiation of a light bulb in front of a mirror. All light radiated into the hemisphere which contains the mirror is reflected into the hemisphere with which we are concerned. Or one may consider optically that there is a true source and an imaginary mirrow image that is also radiating which in effect gives us two identical sources and a 3 dB increase in sound pressure level.

To relate some of these values to how the human ear responds to sound is a complex process. Generally a change in sound pressure level of 1 dB can be just barely distinguished under proper conditions. A change of 3 dB in sound pressure level is readily discernable, and a change of 10 dB would give the psychological impression of doubling or halving the sound. Some common sounds, their sound pressure levels at a few feet, and sound power levels are listed in Table 2.

Sound power watts	Sound power level dB re 10 ⁻¹² watt	Sound pressure Pa	Sound pressure level dB re 20µPa	Sound source
300000.0	200 185 175	1 atmosphere 20000.0	194 180 170	Saturn rocket
30000.0	165 155	2000.0	160 150	Ram jet Turbot jet
300.0	145 135	200.0	140 135 · 130	Propeller aircraft Threshold of pain Pipe organ
3.0	125 115	20.0	120 110	Riveter, chipper Punch press
0.03	105 95	2.0	100 90	Passing truck Factory
0.0003	85 75	0.2	80 70	Noisy office
0.00003	65 55	0.02	60 50	Conversational speech Private office
0.0000003	45 35	0.002	40 30	Average residence Recording studio
0.000000003	25 15	0.0002	20 10	Rustle of leaves Threshold of good
0.00000000003	5	0.00002	0	Threshold of excellent youthful hearing

Table 2. Levels of some common sounds.

COMBINING DECIBELS

Since decibels represent the logarithm of the ratio of two quantities, they cannot be added directly. The antilogarithm must first be taken before the quantities can be combined arithmetically. This process is included automatically in decibel addition charts such as the one appearing in Figure 2.

Figure 2. Chart for adding or subtracting decibels. Upper row b shows the difference between the total and smaller values. Bottom row c shows the difference between the total and larger values, and center row a shows the difference between the large and small values. (Chart good for any decibels--pressure, power, or intensity.) Use of this chart is shown in examples 7 and 8.

EXAMPLE 2: Two sources are radiating noise into a free field. One source has a sound power level of 123 dB and the other source has a sound power level of 117 dB re 1 pW. What is the combined sound power level of the two sources?

SOLUTION:

$$L_{W} = 10 \log \frac{W}{W_{o}}$$

or

 $W = W_0 \text{ antilog } L_w/10$ Source 1: $W_1 = 10^{-12} \text{ antilog } 123/10$ $= 10^{-12} \times 1.996 \times 10^{12} = 1.996 \text{ watt}$

Source 2:
$$W_2 = 10^{-12}$$
 antilog 117/10
= $10^{-12} \times 5.012 \times 10^{11} = 0.5012$ watt

$$W_T = W_1 + W_2 = 2.4972$$
 watt
 $L_w = 10 \log \frac{W_T}{W_0} = 10 \log \frac{2.4972}{10^{-12}}$
 $L_w = 124$ dB re 1 pW

The same process can be used for sound intensity level or sound pressure level. The solution is given to the nearest whole decibel since that was the accuracy implied by the problem statement.

EXAMPLE 3: Suppose the sound pressure level of each of the three individual noise sources is measured at a point such that with only the first source running, the sound pressure level is 86 dB re 20 μ Pa, with only the second source running it is 84 dB re 20 μ Pa, and with only the third source it is 89 dB re 20 μ Pa. What will be the sound pressure level at this point with all three sources running?

SOLUTION:

$$p_{T}^{2} = p_{o}^{2} \left[\operatorname{antilog} \frac{L_{p1}}{10} + \operatorname{antilog} \frac{L_{p2}}{10} + \operatorname{antilog} \frac{L_{p3}}{10} \right]$$

$$= p_{o}^{2} \left[\operatorname{antilog} 8.6 + \operatorname{antilog} 8.4 + \operatorname{antilog} 8.9 \right]$$

$$P_{T}^{2} = p_{o}^{2} \left[3.982 + 2.512 + 7.944 \right] \times 10^{8}$$

$$= p_{o}^{2} \times 14.438 \times 10^{8}$$

$$L_{pT} = 10 \log \frac{p^{2}T}{p_{o}^{2}} = 10 \log \left[14.438 \times 10^{8} \right]$$

$$= 91.6 \text{ dB} \stackrel{\sim}{\sim} 92 \text{ dB}.$$
Note that it was only necessary to add the pressure-squared value

Note that it was only necessary to add the pressure-squared values of the decibels, and the constant reference p_0^2 was carried through the calculations and not evaluated.

EXAMPLE 4: Add 85 dB and 88 dB using Figure 2.

SOLUTION: $L_L - L_S = 88 - 85 = 3$ dB. Enter row a at 3 and read row b to get 4.8 to be added to smaller level:

$$L_{m} = 85 + 4.8 = 89.8 \text{ dB} \approx 90 \text{ dB}$$

Or, enter row a to 3 and read value of row c to get 1.8 dB to be added to larger level:

$$L_{m} = 88 + 1.8 = 89.8 \text{ dB} \% 90 \text{ dB}$$

To substract levels enter row b or c, whichever corresponds to the difference between the levels, then read value in row a which must be added (subtracted) to (from) the smaller (larger) value to obtain the unknown value.

EXAMPLE 5: Subtract 83 dB from 87 dB (see Figure 2).

SOLUTION: $L_T = L = 87 - 83 = 4$ dB. Enter row b to 4 and read value in row a of 1.7 which must be subtracted from the larger value of 87 dB to obtain the unknown value of 85.3 = 85.

EXAMPLE 6: Add the three sound pressure levels of Example 3 using the chart in Figure 2.

SOLUTION:

$$\begin{bmatrix} 84 & dB \\ 86 & dB \end{bmatrix} = \begin{bmatrix} 88.15 & dB \\ 89 & dB \end{bmatrix} = \begin{bmatrix} 91.6 & dB \\ 292 & dB \end{bmatrix} = \begin{bmatrix} 91.6 & dB \\ 292 & dB \end{bmatrix}$$

which is the same result obtained with the more lengthy procedure shown in Example 3.

DIRECTIONALITY

Now consider another aspect of the noise source; does the sound radiate equally in all directions in a spherical space? Until now it has been assumed that it does. If it does not, then one must be concerned with the directionality of the sound. The directionality of a sound source in a free field is given by the directivity factor Q_{0} which will vary with the angle θ about the source. Q_{0} is defined as the ratio between the squared sound pressure measured at an angle θ and a distance r from the source and the space-average squared sound pressure at the same distance r; that is

$$Q_{\theta} = \frac{p_{\theta}^2}{\frac{1}{p^2}} = \operatorname{antilog} \frac{L_{p\theta} - \overline{L}_p}{10}$$
(16)

 $L_{p\theta}$ = the sound pressure level measured at a distance r and an angle θ from the source

L = the average sound pressure level over the surface of an imaginary sphere with a radius of r

It is usually more convenient to express the directivity factor in its logarithmic form, the directivity index (DI_{Δ}) .

$$DI_{\theta} = 10 \log Q_{\theta} = L_{p\theta} - \overline{L}_{p}$$
(17)

with directivity in mind, equation (14) should be modified accordingly:

$$L_{w} = L_{p\theta} + 20 \log r + 11 - DI_{\theta}$$
(18)

If the source is placed on a hard reflective surface with a free field above, the power directed downward is reflected back up with the result that the intensity increases 3 dB (double) above that of the same source in a full free field. Equation (17) becomes

$$DI_{\theta} = L_{p\theta} - \overline{L}_{p} + 3$$
(17a)

while equation (18) remains the same. The 3 dB difference between equations (14) and (15) is now accounted for by the 3 dB in the DI_{Θ} for hemispherical radiation. Note that if a source radiates uniformly into hemispherical free space, the DI_{Θ} is equal to 3 and equation (18) reduces to equation (15).

EXAMPLE 7: What is the sound pressure level at 10 m in the direction of position 1 for a noise source when the free hemispherical field sound pressure levels measured at 3 m are

Position	L p	Position	L P	Position	L p
1	100	5	89	9	101
2 3	94 97	6 7	90 93	10 11	100 97
4	93	8	96	12	95

SOLUTION: We must obtain
$$\overline{L}_{p}$$
 by averaging the pressures. Thus,
 $p_{1}^{2} = p_{o}^{2} x \operatorname{antilog} L_{p1}/10 = p_{o}^{2} x 10 x 10^{9} (Pa)^{2}$
 $p_{2}^{2} = p_{o}^{2} x 2.512 x 10^{9}$
 $p_{3}^{2} = p_{o}^{2} x 5.012 x 10^{9}$
 $p_{4}^{2} = p_{o}^{2} x 1.995 x 10^{9}$
 $p_{5}^{2} = p_{o}^{2} x 0.794 x 10^{9}$
 $p_{6}^{2} = p_{o}^{2} x 1.0 x 10^{9}$
 $p_{7}^{2} = p_{o}^{2} x 1.995 x 10^{9}$
 $p_{8}^{2} = p_{o}^{2} x 3.981 x 10^{9}$
 $p_{9}^{2} = p_{o}^{2} x 10 x 10^{9}$
 $p_{10}^{2} = p_{o}^{2} x 10 x 10^{9}$
 $p_{11}^{2} = p_{o}^{2} x 5.012 x 10^{9}$
 $p_{12}^{2} = p_{0}^{2} x 58.052 x 10^{9}$
Average $p_{0}^{2} x 4.838 x 10^{9}$ (Pa)

31

$$\overline{L}_{p} = 10 \log p_{avg}^{2} = 10 \log 4.838 \times 10^{9}$$

 $p_{o}^{2} = 96.9 \text{ dB re } 20 \mu \text{Pa}$

The average sound power level L is now determined from equation (15) since this radiation is hemispherical.

 $L_w = \overline{L}_p + 20 \log r + 8$ = 96.9+9.5+8 = 11.4 dB re 1 pW

Now determine DI for position 1 from equation (17a).

$$DI_1 = 100 - 96.9 + 3 = 6.1 \text{ dB}$$

The sound pressure level at 10 m in the direction of position 1 can be found by inverting equation (18)

$$L_{p\theta} = L_{w} - 20 \log r - 11 + DI_{\theta}$$

= 114.4 - 20 log 10 - 11 + 6.1
= 80.5 dB \approx 81 dB re 20 µPa

To compare the results of averaging mean pressures with averaging sound pressure levels in this case p^2 gives a value for L_p of 96.9 dB. By simply averaging the decibel values we would have obtained $L_p = 95.4$ which is about 1.5 dB low. This example points out the difference in the values obtained between arithmetic averaging of the decibel levels and averaging of the true values. Whenever a set of decibel levels of any sort must be averaged a simple arithmetic averaging process will yield a result that is lower than the true average of the measured value. This holds true for decibel sound power, decibel sound intensity, decibel sound pressure, or any other decibel numbers. However, if the spread of data to be averaged is less than 3 dB, a simple arithmetic average will yield reasonably accurate results.

NOISE WEIGHTING AND FILTERING

Thus far only the magnitude of sound has been discussed. Sound is generally not composed of a single frequency oscillating wave--sound can be made up of many frequencies, all existing simultaneously. A young, healthy ear is sensitive to the sound frequency range from about 20 to 20,000 Hz. This range narrows with age of the listener plus any possible hearing loss that may have occurred, so that for a normal adult the upper frequency limit may be approximately 14,000 Hz. Also the ear response varies with different frequencies; the least sensitivity in the lower frequency range and the greatest sensitivity in the range 2000 to 4000 Hz. This difference in sensitivity with frequency tends to become less as the intensity of the sound increases. Consequently, to build an instrument that responds to sound in a manner similar to the human ear, acousticians have developed four frequency weighting networks for measuring sound. These correspond to the A-, B-, C-, and D-weighting curves, and are electronic filters which attenuate the signal at different frequencies as shown in Figure 3. The specific attenuation versus frequency is shown in Table 3. At most common sound levels, the A-weighting curve corresponds most clearly to the response of the human ear; and consequently the A-weighting network is normally used in noise control work.

Figure 3. Standard A-, B-, and C-weighting curves for sound level meters; also proposed D-weighting curve for monitoring jet aircraft noise.

Other filters used to analyze acoustic energy pass a narrower range of frequencies than the A-, B-, C-, or D-curves. These filters are of two types--the first a constant bandwidth filter. This type of filter generally has a narrow bandwidth of a few hertz which does not change as the operating frequency changes. The second type of filter is more commonly used in acoustics and is a constant percentage bandwidth filter. The width of the band being utilized is a fixed percent of the frequency at which the instrument is operating.

For example, a 6 percent bandwidth filter would have a bandwidth of 60 Hz when it is set to operate at 1000 Hz, and a bandwidth of 120 Hz when operating at 2000 Hz.

The constant percentage filters most often used in acoustics are octave band filters or some submultiple of an octave such as one-half octave, one-third octave, or one-tenth octave. The logarithmic difference between each upper frequency limit, f_2 , and the corresponding lower frequency limit, f_1 , for constant perentage filters is also a constant. For octave band filters, this difference by definition is

$$\log f_2 - \log f_1 = \log \frac{f_2}{f_1} = \log 2$$
 (19)

Frequency Hz	A-weighting relative response dB	B-weighting relative response dB	C-weighting relative response dB
10	-70.4	-38.2	-14.3
12.5	-63.4	-33.2	-11.2
16	-56.7	-28.5	- 8.5
20	-50.5	-24.2	- 6.2
25	-44.7	-20.4	- 4.4
31.5	-39.4*	-17.1	- 3.0
40	-34.6	-14.2	- 2.0
50	-30.2	-11.6	- 1.3
63	-26.2*	- 9.3	- 0.8
80	-22.5	- 7.4	- 0.5
100	-19.1	- 5.6	- 0.3
125	-16.1*	- 4.2	- 0.2
160	-13.4	- 3.0	- 0.1
200	-10.9	- 2.0	0
250	- 8.6*	- 1.3	0
315	- 6.6	- 0.8	0
400	- 4.8	- 0.5	0
500	- 3.2*	- 0.3	0
630	- 1.9	- 0.1	0
800	- 0.8	0	0
1000	0 *	0	0
1250	+ 0.6	0	0
1600	+ 1.0	0	- 0.1
2000	+ 1.2*	- 0.1	- 0.2
2500	+ 1.3	- 0.2	- 0.3
3150	+ 1.2	- 0.4	- 0.5
4000	+ 1.0*	- 0.7	- 0.8
5000	+ 0.5	- 1.2	- 1.3
6300	- 0.1	- 1.9	- 2.0
8000	- 1.1*	- 2.9	- 3.0
10000	- 2.5	- 4.3	- 4.4
12500	- 4.3	- 6.1	- 6.2
16000	- 6.6	- 8.4	- 8.5
20000	- 9.3	-11.1	-11.2

Table 3. A-, B-, and C-weighting networks for sound level meters as specified by ANSI SI.4-1971

*Values used for converting octave band readings into A-weighted sound levels. and

$$f_2 = 2f_1$$
 (20)

If each filter has a frequency range equal to a submultiple, k, of an octave, then the constant difference is

$$\log f_2 - \log f_1 = \frac{\log 2}{k} = \log 2^{1/k}$$
(21)

and

$$f_2 = 2^{1/k} f_1$$
 (22)

NOTE: In the special case of one-third octave bands (k = 3), since $2^{1/3} = 1.25992$ and $10^{1/10} = 1.25893$, $f_2 = 10^{1/10} f_1$ is used in practice for computational convenience.

The center frequency, ${\bf f}_{\rm c},$ of a constant percentage filter is the logarithmic or geometric mean of ${\bf f}_1$ and ${\bf f}_2$

$$f_c = antilog \frac{\log f_1 + \log f_2}{2} = (f_1 f_2)^{1/2}$$
 (23)

$$f_{c} = (2^{1/k} f_{1} f_{1})^{1/2} = 2^{1/2k} f_{1} = 2^{-1/2k} f_{2}$$
 (24)

and

$$f_1 = 2^{-1/2k} f_c$$
(25)

$$f_2 = 2^{1/2k} f_c$$
 (26)

The constant percentage, $\mathbf{P}_{\mathbf{k}}^{},$ for a set of filters is thus

$$P_{k} = 100 \frac{(f_{2}-f_{1})}{f_{c}} = 100 (2^{1/2k} - \bar{2}^{1/2k})$$

$$k = 1, 2, 3...$$
(27)

The most common constant percentages used are 70.7 percent of the center frequency for octave band filters and 23.2 percent for one-third octave bands.

For a broadband sound the octave band sound pressure level will be just the sum of the three one-third octaves that make up the octave band. Similarly, if measurements are made in one-tenth octaves then 10 of these will add up to the sound pressure level in the octave band. This addition must be made of the mean sound pressures squared and then converted to decibels or the decibels can be added using Figure 2. For example, if the three one-third octave levels are 65, 68, and 70 dB we get 72.9 dB for the octave band. The preferred series of octave band and one-third octave band center frequencies, as specified by ANSI S1.6, along with upper and lower frequency limits are shown in Table 4.

		Frequ	lency, Hz					
	Octave One-third octave							
Lower band limit	Center	Upper band limit	L4 b 1:	ower oand Cent imit	Upper er band limit			
11	16	22	1 1 1 1	1.2 12 4.1 16 7.8 20	.5 14.1 17.8 22.4			
22	31.5	44	2: 2: 3.	2.4258.2315.540	28.2 .5 35.5 44.7			
44	63	88	44 51 71	4.7 50 6.2 63 0.8 80	56.2 70.8 89.1			
88	125	177	89 111 141	9.1 100 2 125 1 160	112 141 178			
177	250	354	178 224 283	8 200 4 250 2 315	224 282 354			
354	500	707	354 44 563	4 400 7 500 2 630	447 562 707			
707	1000	1414	70) 89: 112:	7 800 1 1000 2 1250	891 1122 1414			
1414	2000	2828	1414 1778 2239	4 1600 8 2000 9 2500	1778 2239 2828			
2828	4000	5656	2828 3548 4465	8 3150 8 4000 7 5000	3548 4467 5656			
5656	8000	11312	5650 7079 8913	6 6300 9 8000 3 10000	7079 8913 11220			
11312	16000	22624	11220 14130 17780	0 12500 0 16000 0 20000	14130 17780 22390			

Table 4. Center and cutoff frequencies for preferred series of contiguous octave and one-third octave bands as specified by ANSI S1.6

36

EXAMPLE 8: The unweighted octave band sound pressure levels for a particular noise source are as shown below. Determine the A-weighted level of this source.

SOLUTION: The A-weighted correction factors (rounded to the nearest decibel) from Table 3 corresponding to each octave band center frequency are added to the sound pressure levels as shown in the table below.

Octave band frequency, Hz	63	125	250	500	1000	2000	4000	8000
SPL, dB	71	62	64	68	62	55	52	44
A-weighted correction, dB	-26	-16	-9	-3	0	+1	+1	-1
SPL, dBA	45	46	55	65	62	56	53	43

The corrected octave band levels in the bottom row are then summed, either mathematically or with the aid of Figure 2.

37

INSTRUMENTS FOR NOISE MEASUREMENTS

MICROPHONES

The basic sensing instrument for measuring sound pressure in air is the microphone. These sensors come in a variety of sizes and types but they all have one thing in common. The basic sensor is a diaphragm which is forced to vibrate as the sound wave impinges upon it. This vibratory motion is then converted into an electrical signal in any one of a number of ways.

One of the ways to sense sound is to use the diaphragm as one side of a capacitor to which a large polarizing voltage is applied. Any movement in the diaphragm results in a change in the capacitance and an electrical signal is generated.

A second type of microphone is one in which the diaphragm is attached directly to a piezoceramic material. Motion of the diaphragm causes strain in the ceramic which results in the generation of an electronic signal. These microphones are generally less sensitive than the capacitor types since the diaphragm is mounted directly to the ceramic, although a polarization voltage is not required.

A third type is the dynamic (moving coil) microphone. In this type the diaphragm is attached to a coil which is forced to move through a magnetic field as the diaphragm moves. The movement of the coil through the magnetic field causes a current to flow in the coil. These microphones have a lower electrical impedance than condenser or ceramic microphones. Because of the mass of the coil, however, these microphones are more sensitive to vibration. Additionally, their magnetic operating principle makes them susceptible to external magnetic fields, and their low frequency response is limited due to the large excursions of the coil needed as the frequency is lowered.

A newcomer to the microphone arena is the electret microphone. These are capacitor microphones but the air gap between the capacitor plates is replaced with a prepolarized dielectric. This construction offers the quality of the capacitor microphone but elminates the need for the direct current bias voltage. These microphones are of more simple and rugged construction, and have a higher capacitance which simplifies some of the electrical problems associated with the very small capacitance of the capacitor type microphones.

The sensitivity of a microphone is generally dependent on the frequency and direction of the incident sound wave, and size of the diaphragm. The sensitivity at a given frequency is defined as the ratio of the root mean square output voltage to the root mean square sound pressure and is given in units of volts per pascal or other similar units. If the sensitivity is measured by applying the sound pressure uniformly over the surface of the diaphragm with an electrostatic actuator the response is called pressure response.

The free field response at a given frequency is defined as the ratio of the root mean square output voltage to the root mean square sound pressure that existed at the microphone location prior to the insertion of the microphone.

These two definitions are identical for a microphone with negligible dimensions. However, when the wavelength of the sound wave becomes comparable to the dimensions of the diaphragm, the microphone acts as a reflector which causes an increase in pressure on the diaphragm and a corresponding increase in output voltage. This reflection effect also depends on the angle of incidence of the sound wave on the diaphragm.

Since it is impossible to make a microphone with zero dimensions there will always be some effect on the sound field when the microphone is inserted. Therefore, to obtain the pressure that exists at that point before the microphone is inserted one must apply correction to the sensitivity of the microphone. In Figure 4 some corrections are shown that must be applied to the microphone sensitivity as a function of frequency in kilohertz (kHz) and angle of incidence on the diaphragm.

Figure 4. Free field correction for microphone with protecting grid (electrostatic actuator method of pressure calibration). (Courtesy Bruel & Kjaer Instruments Inc.)

As previously mentioned the increase in pressure at the diaphragm for wavelengths comparable to the dimensions of the diaphragm shows up very clearly in the sensitivity correction that must be applied when the sound wave is incident normally on the diaphragm. Note how close the peak in the zero incidence correction curve comes to the frequency where the wavelength equals the diameter of the diaphragm (shown in this figure as $D/\lambda = 1$). Another view of the dependence of sensitivity on frequency and angle of incidence is shown in Figure 5. In this figure the relative response for five frequencies through the full 360 deg of possible incidence are shown. For the microphone shown, the circular symmetry makes the response symmetric about the axis of the diaphragm.

Figure 5. Typical directional characteristics for 1-inch microphone with protecting grid. (Courtesy Bruel & Kjaer Instruments Inc.)

To reduce the complexity of applying these corrections when using a microphone the manufacturers have designed microphones with proper tension and damping on the diaphragm so that either a free field response may be obtained directly or a pressure response will result. Figure 6 shows the response of a typical "pressure" microphone (Bruel & Kjaer 2.54 cm (1-inch) microphone). This type of microphone should be pointed at 90 deg to the source of the sound to obtain the proper flat frequency response. A flat frequency response is one in which the microphone sensitivity is independent of frequency.

Figure 6. Frequency response curve supplied by B&K Instruments with 1-inch pressure microphone type 4144. (Courtesy Bruel & Kjaer Instruments Inc.)

To produce a so-called free field microphone, this manufacturer has constructed the diaphragm so that the pressure response is as shown in the lower curve in Figure 7. If the microphone is pointed at the sound source (0 deg incidence) the correction factor for 0 deg shown in Figure 4 must be applied. As an example, observe that the lower response curve in Figure 7 is -9 dB at 10,000 Hz. The 0 deg incidence correction curve at 10,000 Hz in Figure 4 is +9 dB. Adding the two curves at this frequency brings the free field response up to 0 dB--the frequency response becomes flat.

Figure 7. Frequency response curve supplied by B&K Instruments with 1-inch free field microphone type 4145. (Courtesy Bruel & Kjaer Instruments Inc.) Lower curve: microphone pressure response. Upper curve: microphone pressure response with correction added for zero angle of incidence giving the free field response.

These general characteristics hold for most microphones. If one desired to use a microphone which qualifies as a precision instrument he can take assurance in the fact that standards for the performance of such microphones are published by the American National Standards Institute (ANSI), for example, ANSI S1.12-1967, "Specifications for Laboratory Standard Microphones." When purchasing such a microphone the manufacturer will supply the buyer with a calibration curve, stating to which appropriate standard the microphone complies and this calibration will be traceable to the National Bureau of Standards (refer to standard ANSI S1.10-1966, "Method for the Calibration of Microphones").

SOUND LEVEL METERS

In its basic form a sound level meter (SLM) is simply a microphone mounted on an amplifier with a meter to indicate the level of the sound pressure at the microphone. While construction details may vary, all SLM should read the same value when exposed to the same sound pressure. Consequently, ANSI has another standard for sound level meters - ANSI S1.4-1971, "Specification for Sound Level Meters". This standard clearly points out the tolerances within which the meter must be able to measure sound pressure levels. NIOSH maintains a certification program for industrial sound level meter sets. The certified meters are essentially those meeting the ANSI S1.4-1971 standard for a type 2 sound level meter set to A-weighting and slow response. A list of certified meters is available in the NIOSH Certified Equipment List. As previously discussed, sound is composed of both amplitude and frequency, and the A-, B-, C-, and D-weighting curves were introduced along with band pass filters. A typical SLM may incorporate some or all of these filters such as shown in the block diagram of Figure 8. The "typical" SLM has the microphone mounted on the front and the output is amplified and fed to one of the filter circuits as selected by a switch. Band pass filters are usually of the constant percentage or fractional octave type. Constant bandwidth filters are not usually provided on portable meters.

Figure 8. Block diagram of a sound level meter.

After passing through the selected filter network the signal is again amplified. At this point an output jack is provided so that the signal may be recorded on tape or fed to some other signal analyzing device. After being amplified the signal goes to a mean square rectifier and the value is displayed on a meter in decibel units. Note here that the meter may have either a fast or slow response which is switch selectable. The fast response provides an averaging time of 200 to 250 ms. The slow response position averages the signal for a greater period of time.

Each of the blocks shown in Figure 8 is covered in the specifications of ANSI S1.4-1971, including the response time of the meter. While this standard does not specify which of the filter circuits a SLM must have it does specify how accurately the weighting curves must correspond to the attenuations shown in Table 3. The accuracy requirements are divided into four groups:

Type 0 - Laboratory standard SLM (proposed) Type 1 - Precision SLM (most stringent) Type 2 - General purpose SLM Type 3 - Survey SLM (least stringent)

A fifth type called special purpose SLM includes those which have only a portion of the variations possible. These special purpose meters must meet the standard for those features they do incorporate.

Only sound levels that are reasonably steady in time have been considered thus far. Another noise type which must be considered is the so-called "impulse" noise. This is a sound of short duration such as a gunshot or the noise produced by a hammer striking an object. To measure such sounds the SLM described is not very well equipped because the meter simply cannot respond fast enough. These sounds can best be measured by connecting the SLM output to a storage oscilloscope and reading the peak amplitude from the display. However, there are some instruments available which incorporate a "peak hold" feature. This is an instrument that has a very fast response electrical circuit which measures the peak of the sound pressure pulse and holds the value long enough for the meter to display the value that is held. The meter then holds this value until the operator resets the instrument.

Currently being considered by international standards groups is another meter response time called "impulse" response. This impulse measurement is between the meter fast response time and the true peak measurement (see S/V Sound and Vibration, March 1974).

CALIBRATION OF SOUND LEVEL METERS

Although a SLM comes from the factory calibrated and is provided with the appropriate traceability to the National Bureau of Standards, its performance must be checked on a regular basis. Several devices are available for this purpose. The most common of these is a calibrator which fits directly over the microphone and generates a known pressure level within the closed volume by the motion of a piston back and forth or with a small loudspeaker. It is recommended that a sound level meter be calibrated with a compatible acoustical calibrator before and after a measurement period. The manufacturer's instructions should be followed for procedures and corrections for environmental conditions such as temperature and atmospheric pressure. A complete recalibration of the sound level meter and acoustical calibrator is recommended on a periodic basis.

FREQUENCY ANALYZERS

Since a SLM is a small portable device it cannot incorporate all of the capabilities to analyze sounds which an engineer may desire. For this reason an output jack is often provided. With this output the engineer can either record the sounds on tape or he may connect the SLM directly to some other signal analysis device.

Some of the devices which find particular use in acoustics are frequency analyzers which can produce frequency spectra in real time in almost any desired bandwidth or type. These "real time analyzers" are generally of two types. The first is the multiple filter in which the electronic signal is fed to many filters simultaneously and the output of each is displayed in suitable fashion. The second type uses a time compression technique and feeds the signal through a single variable filter at such a speed that the signal appears to have been run through many filters at once. Of increasing importance in recent years have been analyzers which employ the same techniques in a digital manner. These analyzers are rather large expensive devices and are therefore not on the equipment list of the average individual or small company. The types of analysis that can be performed with these or other even more sophisticated instruments are many and varied.

METHODS OF NOISE CONTROL

The basic idea behind the techniques for limiting a person's exposure to noise is very simple and straightforward. The reference frame dealt with in noise reduction is composed of a sound source, the sound wave path, and a sound wave receiver which, in common circumstances, is an ear or a microphone that is used for measurement.

The best and most satisfying means of reducing noise levels is to reduce the source sound output. This approach may require major modifications, including better quality control, closer tolerances on moving parts, better balancing of rotating parts, and sometimes even a complete redesign of the technique utilized to perform the job for which this machine is intended. Since something vibrating causes compression and rarefaction of the air which is observed as sound, the above mentioned and many other modifications to a sound source are all aimed toward reducing the vibration of any part to the lowest possible level. Normally these modifications are not within the capability of the user and therefore must be left to the equipment manufacturers. Fortunately for those directly affected, manufacturers are beginning to make these changes.

At the other end of the noise control path is the receiver. The method of controlling noise exposure at the receiving end usually means removing the affected person from the sound field. When this cannot be done the alternative is to have the person wear ear muffs or ear plugs. This procedure is actually a control on the path of the noise but since it is incorporated directly with the receiver it is considered a receiver application.

The middle course of action is modification to the path the sound takes from the source to the receiver. It is with controls on the sound path that most of the items listed in this document are concerned.

Sound can reach a listener's ears by several different routes. The most obvious for internal noise sources is the direct path, a straight line through the air from source to receiver. In a given room, reflections from walls, ceiling, floor, or any solid objects may contribute as much or more to the sound pressure level than the direct path. As sound travels through solids and air, it may travel an indirect route through floors and walls and arrive at the receiver after reradiation.

Paths for external sound include penetration through and/or around open or closed doors, partitions, walls, windows, roofs, ceilings and floors. The effectiveness of a well-designed acoustical wall can be largely destroyed by relatively small openings.

Basically the two different acoustic environments that are employed in evaluating noise sources or the effectiveness of acoustic insulation are the free field and diffuse field. As previously mentioned a free field is defined as a homogenous, isotropic medium, free from boundaries. A reverberant field exists when sound from the source bounces back and forth from the hard surfaces of the room such that the sound pressure level at any point is composed of many such reflected waves. In an ideal reverberant field the sound waves are perfectly reflected with no loss in intensity and a diffuse condition exists where the sound pressure level is equal everywhere. In real life, a perfect free or reverberant field is rarely found. Sound almost always propagates in an environment between these two extremes. Only in laboratories may approximations to these ideal fields be found. An anechoic (echo free) room has its walls, floors, and ceilings lined with material which absorbs the sound waves which reach it. The absence of reflections produces a sound field which is essentially free at most frequencies. A reverberation room on the other hand has walls, floor, and ceiling constructed of hard, solid materials to reflect as much of the sound waves as possible. The reflections in the sound field, along with the presence of irregularities in the surfaces and large rotating vanes produce a reverberant field. Most test procedures for acoustic materials have evolved around the use of a reverberation room.

In actual conditions when a sound wave strikes a surface it is partially reflected, partially transmitted through the surface, and partially absorbed. These interactions of sound waves and surfaces will be examined in turn.

The practical approach to noise control takes into account the noise sources, paths, and receivers. The following items must be determined successively to accomplish noise control:

- 1. Noise criteria for each occupied space.
- 2. Sound power level of the noise produced by each source.
- 3. Noise levels at typical employee positions in that space.
- 4. Attenuation of the noise by walls, ducts, etc., between each source and the space in question.
- 5. Required additional attenuation (item 3 minus item 1).
- 6. Identify major noise sources and select noise control treatment.
- 7. Any special mountings of the devices necessary to control flanking noise.
- 8. Any vibrating elements whose vibrations may be transmitted to some other member causing it to become a noise radiator.

Criteria: The first of these items, criteria for the space, is not part of the scope of this compendium. In a factory the criteria are determined by some federal agency such as the Occupational Safety and Health Administration (OSHA). In an office environment or concert hall the factors determining acoustic criteria are more numerous and complex than just a requirement for reduction of the sound pressure level to conserve hearing.

Sound Power: The second item is more straightforward. If at all possible one should obtain from the manufacturer of a noisy device the sound power levels that have been measured in the laboratory. Fortunately, more and more manufacturers are taking such measurements and data are becoming available. Barring this course one must make his own measurements of sound power, which can be very difficult if not completely impossible on a large piece of machinery in a factory environment. One usually is forced to make sound pressure level measurements at many locations around the noise source and attempt to estimate the sound power. The effects of other machinery, the room itself, background noises, etc., can preclude a very accurate determination.

The procedure for determining sound power is basically simple. Make enough measurements on a hemisphere around the source in a quiet anechoic space above a hard floor. If one is careful to choose his points on this hemisphere such that each measurement represents an equal area of the surface, then the sound power is computed with the aid of equations (14) or (18). It is important to realize that this procedure only produces accurate results if the measurements are made in a free field environment. When performed in a factory the results are far from accurate but provide an estimate of the sound power.

Noise Levels: The sound pressure levels must be measured at all locations where it is desirable to reduce the noise. These measurements must include an A-weighted sound pressure level, dBA, and they should also include measurements in each of the octave bands. For engineering analysis of machine noise sources a narrow band analysis of the noise can also be of value if the presence of pure tones is observed. This frequency analysis is an aid in determining the source of the noise as well as being necessary to make a proper selection of the noise control item. The best choice of noise control item is made by obtaining the closest fit possible between the noise spectrum and the noise reduction spectrum of the noise control device.

Noise Attenuation: Having measured the sound pressure levels and knowing the criteria that must be met, the noise level now must be reduced by the required amount. The fourth and fifth items can best be handled at the same time. When attempting to reduce the noise levels one is faced with the fact that the presently existing attenuation is not sufficient and more must be done. If the attenuation is sufficient this will be evident when the noise levels are measured at the desired locations.

Noise Control Devices: This item concerns the selection and use of noise reducing devices, and because this is the subject that occupies most of the latter portion of the compendium, it is only defined at this point.

Mountings: When the goal is to keep noise from traveling, any possible path should not be overlooked. Normally one thinks of sound traveling through the air but this certainly is not the only medium that will support sound waves. In fact, sound travels very well in most solids.

Therefore when one deals with flanking and transmission problems it must be remembered that the hard materials are very good conductors of sound. An aid in reducing sound transmitted through these objects is the mismatch of mechanical impedances at boundary surfaces such as from air to steel, or steel to wood. Just as with electrical power transmission, the greater the mismatch of impedances the more reflection of energy and loss in power transfer results. As in electronics, the optimum power is transferred when the impedances of the two items are equal. The same holds true for acoustics. Therefore, flanking paths can be greatly reduced by introducing materials in the path of the sound which have poorly matching mechanical impedance. For example, place pieces of rubber or cork between structural steel members, mount items on a material different from the main support, etc.

The most commonly occurring flanking path is an actual opening in the partition. A direct leak such as this can completely destroy the effectiveness of any sound barrier.

Vibration: Noise from vibrating elements may be considered as another aspect of the flanking problem. Vibrations in a solid structure may be radiated as sound. The use of vibration isolation devices causes a mechanical impedance mismatch between a vibrating machine and the surrounding structures, preventing vibrational energy from reaching any elements which may prove to be good sound radiators.

SOUND ABSORPTION

The sound absorbing quality of a material is described by an absorption coefficient, α , which is defined as the ratio of the total energy incident on a surface minus the energy reflected from the surface, to the energy incident upon the surface. As such the absorption coefficient can vary between zero and one. When the energy is perfectly reflected the ratio is zero and when the energy is completely absorbed this ratio is one. The absorption coefficient of a surface depends on the frequency of the sound impinging on it. To completely specify the absorption properties of a material, a table or curve of α versus frequency must be obtained.

The mechanism of sound absorption is that the acoustic energy of the wave is converted to some other form of energy, usually heat. Three major means of converting the acoustic energy are by using porous absorptive materials, diaphragmatic absorbers, and resonant or reactive absorbers.

Porous absorptive materials are the best known of the acoustical absorbers. These are usually fuzzy, fibrous materials, perforated board, foams, fabrics, carpets, and cushions, etc. In these materials the sound wave causes motion of the air in the spaces surrounding the fibers or granules, the frictional energy losses occur as heat, and the acoustic energy is reduced. Because this is the mechanism by which these materials absorb sound, it is easy to see that a "too loose" material will not cause enough frictional energy loss and will be a poor absorber. On the other hand, a material which is too dense will not permit enough air motion to generate sufficient friction and will also be a poor absorber. The latter type of material is more of a reflector than an absorber.

In a diaphragmatic absorber the panel oscillates at the same frequency as the sound wave impinging upon it (or at some harmonic). Since no material is perfectly elastic, the natural damping will absorb some of the incident energy. This type of absorber is usually more effective at lower frequencies since the higher frequencies tend to be reflected. Since the absorption coefficient of this absorber type is very dependent on mass, rigidity, size, shape, and mounting methods, it is difficult to forecast how any particular panel will operate in practice. Usually it is necessary to test prototypes for each specific application.

Resonant or reactive absorbers (often called Helmholtz resonators) are cavities which confine a volume of air which is connected to the atmosphere by a small hole or channel in the cavity. If the cavity is very small compared with the wavelength of the incident sound wave, the air in the connecting channel is forced to oscillate into and out of the cavity. The air inside the cavity acts as a spring and the kinetic energy of the vibration is essentially that of the air in the channel moving as an incompressible and frictionless fluid. This type of absorber has a very narrow frequency band where absorption takes place and as such its use is somewhat limited. This narrow band of absorption can be broadened by insertion of a porous type of absorber into the cavity. Also, the absorption peak is usually in the lower frequencies and as such this principle is useful for increasing the low frequency performance of common porous type absorbers.

Commercial panels are available which have many small holes in the face and the appropriate dimensions of absorber and air gap behind the faces to increase the low frequency absorption. This principle requires that the face plate have an opening of approximately 5 percent or less to effect any tuning. Common perforated absorption panels usually have a much higher open area, since the large closed surface acts to reflect the higher frequencies.

SOUND ABSORPTION MEASUREMENTS (PER ASTM C423-77)

The absorption coefficient of a material may be observed to vary with the frequency of the incident sound and with the angle of incidence between the sound waves and the materials. By testing the absorption properties of the material in a reverberation room, the dependence of absorption on direction may be averaged since in the diffuse sound field produced in a reverberation room the sound waves arrive from all directions with equal probability. Absorption coefficients measured in a reverberation room are called random incidence absorption coefficients. The presence of absorption removes energy from a sound field, and this energy loss can be measured by the rate at which the sound intensity in a room decays after the sound source is removed. The rate of decay of a sound field in a reverberation room is expressed as the "reverberation time" which is the time required for the sound pressure level to drop 60 dB after the source is removed.

The test procedure for the measurement of random incidence absorption coefficients is specified by and described in ASTM Standard C423-77, "Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms."

Often, instead of the absorption coefficient of a material, which is a nondimentional quantity, the total absorption of an area is considered. One sabin is 1 sq ft of perfect absorption; similarly, 2 sq ft of material with an absorption coefficient of 0.5 is also 1 sabin of total absorption. The total absorption of a patch of material is the product of the absorption coefficient and the surface area of the material. The units of total absorption are square feet. A metric sabin is used when dealing with metric quantities. Its definition is the same but the basic unit is a square meter. One metric sabin is equal to 10.76 English sabins.

The total absorption in the room is first measured without the specimen by turning on a sound source long enough to come to a steady state level and then measuring the rate of decay of the sound pressure level when the sound source is suddenly turned off. The total absorption of the room is then given by the Sabine equation

$$A = 0.9210 \frac{Vd}{c}$$

(28)

where

- V is the volume of the room; cu ft
- d is the rate of decay of the sound field; dB/sec
- c is the speed of sound; ft/sec
- A is the total absorption in sabins; sq ft

If the volume used is expressed in cubic meters and the speed of sound is in meters per second, then the absorption will be given in metric sabins. After measuring the total absorption in the room the specimen is brought into the room and the total absorption is again measured in the same manner. The absorption added to the room by the test specimen is then determined by taking the difference, thus

$$A_{\text{specimen only}} = A_{\text{with specimen}} - A_{\text{without specimen}}$$
$$= 0.9210 \text{ V } (d_{\text{with}} - d_{\text{without}})/c$$
(29)

The absorption coefficient is then determined by dividing the total absorption by the area of the specimen

$$= A/S$$
(30)

where α is the absorption coefficient and S is the area of the specimen in either square meters or square feet as required.

There are several important factors to note about this standard laboratory procedure. First, the room must be very hard and be able to support a reverberant (diffuse) sound field very close to the ideal. Also, the room must be sufficiently large so that the introduction of a highly absorbing specimen will not destroy this diffuse field. Because of the second limitation the specimen must be small enough to not interfere with the diffuseness of the sound field but it must also be large enough so that accurate data may be obtained. The size of the specimen also introduces other effects such as the fact that smaller specimens will generally measure higher values of absorption coefficient than a larger area of the same material. To avoid variations from different laboratories the standard specifies that the specimen size is to be at least 21.95 sq m (72 sq ft), which is the customary size.

Absorption Coefficients Exceeding Unity

α

In this method of testing the diffuse sound field measures absorption for all angles of incidence and not just for normal incidence. The method of measuring absorption coefficients using the decay rate of the sound field can yield absorption coefficients as high as 1.2 to 1.3 (the absorption coefficient by definition must be between zero and 1). These higher values do not cause problems in practice.

The principal reasons that the measured values of absorption coefficients sometimes exceed unity are diffraction effects and the size of the specimen. Diffraction probably accounts for most of the difference in the lower frequencies while specimen size is more responsible for the effects at higher frequencies, since the theory which relates absorption to the decay rate of the sound field is based on an infinite size sample in a diffuse field.

An additional factor affecting the absorption in a reverberation room is that the air is also an absorber, the extent of which is dependent on temperature and relative humidity, especially at the higher frequencies. To control this dependency, the laboratory measurement of absorption is usually made in a room where these values are maintained within narrow limits. (Temperature and humidity values should be included in the laboratory report of a test.)

Mountings for Absorption Tests

Another item that affects the absorption properties of a material is the method of mounting. For a porous type absorber the space between it and the wall will increase the absorption somewhat as the space is increased. Consequently, to maintain standard mountings for testing, the Acoustical and Insulating Materials Association (AIMA) specifies seven standard mountings which should be used for testing sound absorbing materials. These mountings are shown in Figure 9. Laboratories making absorpiton tests will always include in their report which of these mountings were used for the test.

Since the standard mountings are based on actual methods of installing absorbing material, the mountings reported in tests made in recent years are predominantly numbers four and seven as these represent the most popular methods of mounting modern acoustical material. While no standard mounting exists for landscape screens or absorbent partitions, they are commonly tested in pairs in an upright position, arranged nonparallel to each other, and separated by approximately 1.52 m (5 ft).

Dependence of Absorption Coefficient on Frequency

Only the magnitude of sound absorption has been discussed but as with the other properties of sound the absorption also depends on frequency. Some typical sound absorption coefficients versus frequency are shown in Figure 10. Notice the increase in absorption coefficient with increasing frequency and increasing thickness.

The frequency dependence of the absorption coefficient is obtained by measuring the absorption as described above in six one-third octave bands centered at 125, 250, 500, 1000, 2000 and 4000 Hz. The laboratory report will therefore show six absorption coefficients and the frequencies at which they were measured. Note that these numbers are rounded to the nearest integral multiple of 0.01 as specified in the standard. Table 5 lists the average absorption coefficients of some typical building materials.

Figure 9. Mountings used in sound absorption tests. (from AIMA Bulletin, "Performance Data, Architectural Acoustical Material")

Figure 10. Sound absorption coefficients versus frequency for some types of sound absorbing materials.

It is somewhat cumbersome to compare absorbers if one must be looking at six numbers for each of them. To simplify such comparisons and to provide a means of rating the sound absorbing properties of a material, a one-number rating is employed which is called the Noise Reduction Coefficient (NRC). The average of the absorption coefficients at the four measuring frequencies of 250, 500, 1000, and 2000 Hz, rounded to the nearest multiple of 0.05, is the NRC. For example, if the absorption coefficients at the six frequencies were 0.16, 0.26, 0.68, 0.98, 0.99 and 0.98 and the average of the middle four is 0.7275, the report would show the results as:

Frequency,							
Hz	125	250	500	1000	2000	4000	NRC
Absorption							
Coefficients	0.16	0.26	0.69	0.98	0.99	0.98	0.75

SOUND ABSORPTION MEASUREMENTS (PER ASTM C384-58)

Another test procedure used to determine sound absorption coefficients is performed using an impedance tube. The term "impedance tube" indicates that the same apparatus may be used to determine the acoustic impedance of materials, although this property is normally only used for research purposes. The test procedure is governed by ASTM standard C384-58, "Test for Impedance and Absorption of Acoustical Materials by the Tube Method". Absorption coefficients (α_n) are determined for normal incidence only and an NRC is not computed. In effect, a small sample of the material to be tested is placed at one end of a closed tube and a pure tone sound is generated within the tube. By measuring the maxima and minima of the standing sound waves inside the tube the absorption coefficients can be determined. For this test, pure tones are utilized, the frequency of which corresponds to the center frequency of an octave band (i.e., 125, 250, 500, 1000, 2000 or 4000 Hz).

Table 5. Absorption Coefficients of general building materials and furnishings.

;

Complete tables of coefficients of the various materials that normally constitute the interior finish of rooms may be found in the various books on architectural acoustics. The following short list will be useful in making simple calculations of the reverberation in rooms.

MATERIALS	COEFFICIENTS, Hz					
	125	250	500	1,000	2,000	4.000
Brick, unglazed	0.03	0.03	0.03	0.04	0.05	0.07
Brick, unglazed, painted	.01	.01	.02	.02	.02	.03
Carpet, heavy, on concrete	.02	.06	.14	.37	.60	.65
Same, on 40 oz hairfelt or foam						
rubber	.08	.24	.57	.69	.71	.73
Same, with impermeable latex						
backing on 40 oz hairfelt or						
foam rubber	.08	.27	.39	.34	.48	.63
Concrete Block, coarse	.36	.44	.31	.29	.39	.25
Concrete Block, painted	.10	.05	.06	.07	.09	.08
Fabrics:						
Light velour, 10 oz per są yd,						
hung straight, in contact with wall	.03	.04	.11	.17	.24	.35
Medium velour, 14 oz per są yd,						
draped to half area	.07	.31	.49	.75	.70	.60
Heavy velour, 18 oz per sq yd,						
draped to half area	.14	.35	.55	.72	.70	.65
Floors:						
Concrete or terrazzo	.01	.01	.015	.02	.02	.02
Linoleum, asphalt, rubber or cork						
tile on concrete	.02	.03	.03	.03	.03	.02
Wood	.15	.11	.10	.07	.06	.07
Wood parquet in asphalt on concrete	.04	.04	.07	.06	.06	.07
Glass:						
Large panes of heavy plate glass	.18	.06	.04	.03	.02	.02
Ordinary window glass	.35	.25	.18	.12	.07	.04
Gypsum Board, $\frac{1}{2}$ " nailed to 2 x 4's						
16" o.c.	.29	.10	.05	.04	.07	.09
Marble or Glazed Tile	.01	.01	.01	.01	.02	.02
Openings:						
Stage, depending on furnishings			.25 —	75		
Deep balcony, upholstered seats			.50 —	- 1.00		
Grills, ventilating			.15 —	50		
Plaster, gypsum or lime, smooth						
finish on tile or brick	.013	.015	.02	.03	.04	.05
Plaster, gypsum or lime, rough finish						
on lath	.14	.10	.06	.05	.04	.03
Same, with smooth finish	.14	.10	.06	.04	.04	.03
Plywood Paneling, 3/8" thick	.28	.22	.17	.09	.10	.11
Water Surface, as in a swimming pool	.008	.008	.013	.015	.020	.025
Air, Sabins per 1000 cubic feet @ 50% RH				.9	2.3	7.2

ABSORPTION OF SEATS AND AUDIENCE, sabins per square foot of seating area or per unit

Audience, seated in upholstered seats,						
per sq ft of floor area	0.60	0.74	0.88	0.96	0.93	0.85
Unoccupied cloth-covered upholstered	10					-
seats, per sq ft of floor area	.49	.66	.80	.88	.82	.70
Unoccupied leather-covered upholstered					_	
seats, per sq ft of floor area	.44	.54	.60	.62	.58	.50
Wooden Pews, occupied, per sq ft of						
floor area	.57	.61	.75	.86	.91	.86
Chairs, metal or wood seats,						
each, unoccupied	.15	.19	22	.39	38	.30

(Reprinted Courtesy of AIMA.)

Often a laboratory or the manufacturer will measure the normal incidence absorption coefficients in an impedance tube and then estimate a value for the NRC.

Relationship between Random and Normal Incidence Coefficients

It is important to realize that a concrete theoretical relationship has not yet been developed to relate α_n to α , and that any estimate made is based on empirical relationships. A rule of thumb for relating α_n to α (Section V-1, ASTM C384) is that α_n is about one-half of α for small values of α and as α becomes large α_n becomes almost equal to α . The maximum difference occurs for intermediate values and can be as large as 0.25 to 0.35. In general α_n is always smaller than α (see Figure 11).

Figure 11. Relationship of random to normal incidence absorption coefficients at a test frequency of 500 Hz. (A. London, JASA, 1950)

NOISE CONTROL BY ABSORPTION

If different surfaces of a room are comprised of different materials (the usual case), the average absorption coefficient is determined by the sum of the coefficients of each area:

$$\overline{\alpha} = \frac{\Sigma S_{i} \alpha_{i}}{\Sigma S_{i}}$$
(31)

where

 α_i = random incidence coefficient of the ith surface S_i = area of that surface

Another method which can be used to determine the average absorption coefficient of a room is due to Fitzroy (JASA, 1959)

 $\overline{\alpha} = S \left[\frac{x}{\overline{\alpha}} + \frac{y}{\overline{\alpha}} + \frac{z}{\overline{\alpha}_{z}} \right]^{-1}$ (32)

where

x = total floor-ceiling areas with average absorption coefficient $\overline{\alpha}_{x}$

y = total side wall areas with average absorption coefficient $\overline{\alpha}_{v}$

z = total end wall areas with average absorption coefficient
$$\alpha_z$$

This equation is especially useful for areas where the absorption material is not evently distributed.

When large extended areas of the same absorption material are used, the absorption coefficients may not be the same as observed in laboratory-sized samples. Table 6 presents suggested correction factors from Faulkner, <u>Handbook of Indus</u>-trial Noise Control (Industrial Press, NY 1976).

Table 6. Suggested correction factors for large extended areas of the same absorption material. Multiply the laboratory absorption coefficients by the factors given for each octave band.

	Frequency, Hz					
Common sample sizes, ft	125	250	500	1000	2000	4000
	Aba	sorptio	n Coef	ficient	Multip	liers
8 by 9	0.49	0.66	0.79	0.88	0.94	0.97
6 by 8	0.43	0.60	0.75	0.86	0.92	0.96

At higher frequencies, the air within a room will absorb a fraction of the acoustic energy. An accurate determination of the absorption of the room requires the addition of this air absorption to the average absorption coefficient of the materials. This additional absorption is listed in Table 7.

Table 7. Air absorption at 20° C to be added to average absorption coefficient $\overline{\alpha}$ of room materials. V = volume of room in cu ft. S = surface area of room in sq ft.

Relative Humidity	2000 Hz	4000 Hz	6300 Hz	8000 Hz
30%	0.0144 V/S	0.0464 V/S	0.1024 V/S	0.1640 V/S
50%	0.0116 V/S	0.0296 V/S	0.0612 V/S	0.1040 V/S
70%	0.0104 V/S	0.0260 V/S	0.0488 V/S	0.0736 V/S

When the average absorption coefficients are known, the total room absorption in sabins is given by

 $A = \overline{\alpha}S \tag{33}$

where

S = total area of the room.

Another useful quantity is the room constant

$$R = S(e^{\overline{\alpha}} - 1)$$
(34)

Frequently it is impractical or even impossible to determine the room constant by directly calculating α . In this case the room constant can be determined by first measuring the reverberation time of the room. This is a rather complicated procedure best left to a professional acoustician or noise consultant. The average absorption coefficient can then be derived from equation (28) such that

 $\overline{\alpha} = \frac{0.049 \text{ V}}{\text{TS}} \tag{35}$

Here, T is the reverberation time in seconds. Note that the numerical value of the speed of sound in English units and the 60 dB decay (i.e., decay rate, d = 60/T) appearing in equation (28) have been incorporated into equation (35).

The effect of the room absorption and distance from the noise source on the sound pressure level can be seen in Figure 12 where the relative sound pressure level in decibels is plotted versus distance from a noise source of sound power level L_W for several values of the room constant. If the room constant is near zero (perfectly reflecting surfaces) the sound pressure level differs very little throughout the room and a reverberating field exists. On the other hand as the

room constant becomes very large the sound pressure field approaches that of a free field. This information can be very important when considering sound treatment for a room.

In many cases, the operator of a piece of machinery is probably affected more by the direct field of the noise source rather than the reverberant field. Consequently, absorption treatment on the walls and ceiling will not reduce the noise of this machine at the operator's position. It can be seen in Figure 12 that the sound pressure level can never be below the straight line corresponding to the free field $1/r^2$ decrease.

Employees a little further from the machine will probably be in a region that can be called a semireverberant field, i.e., where the sound pressure level is made up of some combination of the direct and reflected sound. Figure 12 can be used as a quick guide to determine if sound absorption treatment reduces the noise level at a given location.

Figure 12. Relative sound pressure level versus distance from the source for semireverberant fields. r = distance from acoustic center; R = room constant.

Suppose it is desired to reduce the sound pressure level at a particular operator's position which is 8 m from the sound source with a sound power level of L_w . If the room constant is determined to be about 1000, any absorbent material on the walls will have a negligible effect on the sound pressure level at this position.

If however, the room constant is significantly below 1000, an absorption treatment of the surfaces of the room (e.g., R = 1000 after treatment) can have an appreciable effect which would be equal to

$$[(L_p - L_w)_R < 1000] - [(L_p - L_w)_R = 1000]$$

Thus in practice, one must first determine when absorption treatment will be useful. Figure 12 is based on the relationship

$$L_{p} = L_{w} + 10 \log \left(\frac{1}{2\pi r^{2}} + \frac{4}{R}\right)$$
 (36a)

for the usual case of a noise source resting on a hard surface. If the source were suspended above the floor of a large room, equation (36a) would become

$$L_{p} = L_{w} + 10 \log \left(\frac{1}{4\pi r^{2}} + \frac{4}{R}\right)$$
 (36b)

The more general form of this expression includes the directivity factor Q such that

$$L_{p} = L_{w} + 10 \log \left(\frac{Q}{4\pi r^{2}} + \frac{4}{R}\right)$$
 (36c)

Note that equations (36a, 36b, and 36c) are identical except for the first term in the argument of the logarithm. Equations (36a) and (36b) can be obtained readily from (36c) if one notes that for a nondirectional source in a free field Q=1 and for the same nondirectional source in a free field over a reflecting plane Q=2. (See Beranek, "Acoustics", pp 311-322, 1957, for the development and discussion of equation (36).)

Clearly the larger R becomes, the lower the sound pressure level at a given distance from the source. To determine the decrease in sound pressure level when absorption is added to a room, which increases the room constant R, one could calculate the value of L_p from equation (36) for R_1 before treatment and again for R_2 , the room constant after treatment, or by the equivalent relation

Reduction in dB =
$$(L_{p1} - L_w) - (L_{p2} - L_w)$$
 (37)
 $L_{p1} - L_{p2} = 10 \log \left[\left(\frac{Q}{4\pi r^2} + \frac{4}{R_1} \right) / \left(\frac{Q}{4\pi r^2} + \frac{4}{R_2} \right) \right]$

where L_{p1} is the sound pressure level before acoustic treatment and L_{p2} is the sound pressure level after treatment, both levels measured at the same point in the room. The use of this equation is illustrated by the following example.
EXAMPLE 9: The dimensions of a room are 15.24 m (50 ft)(length), 7.62 m (25 ft) (width), and 3.66 m (12 ft)(height). The absorption in the room is shown below using absorption coefficients provided by AIMA in Table 5.

Room component	S i (sq ft)	a _i (@ 500 Hz)
Floor; linoleum 10 occupants seated at desks	1150 100	0.03 0.55
Ceiling; plaster	1250	0.06
Side walls; gypsum board windows	1000 100	0.05 0.10
End walls; gypsum board doors	450 150	0.05 0.18
Total	4200	

Given these initial room conditions:

- Can absorption treatment be effective in reducing the 500 Hz octave band sound level of a newly installed machine at a position 8 m from an observer?
- 2. How much reduction of the sound level from this source will be achieved using absorption treatment?

SOLUTION: Since the absorption present in the room is fairly evenly distributed, the average absorption coefficient may be calculated from equation (31).

$$\overline{\alpha} = \frac{\Sigma \mathbf{S}_{\mathbf{i}} \alpha_{\mathbf{i}}}{\Sigma \mathbf{S}_{\mathbf{i}}} =$$

$=\frac{(1150)(.03)+(100)(.55)+(1250)(.06)+(1000)(.05)+(100)(.10)+(450)(.05)+(150)(.18)}{4200}$

= 0.065

and thus, the room constant from equation (33) before treatment

$$R_1 = S(e^{\alpha} - 1) = 4200 \ (e^{0.065} - 1) = 283 \ sq \ ft$$

= 26.3 sq m

Observing Figure 12, a room constant corresponding to about 26 sq m is well above the free field curve at r = 8 m. Absorption can thus be effective for this position. However, for a given room constant, absorption treatment will have less of an effect as the distance from the machine, or r, decreases. Also the use of absorber materials can never reduce the sound to a level below that of the free field radiation. At best, a sound absorber can reduce the reflections to zero which is the same as removing the surface entirely (i.e., no surface = no reflection = perfect absorber).

From the data tables, an acoustical wall treatment with an absorption coefficient of 0.95 at 500 Hz is selected to cover all four walls, and a type of mineral fiber ceiling panel with an absorption coefficient of 0.90 at 500 Hz is selected to cover the ceiling. With these treatments in place, the new absorption characteristics of the room are as shown:

Room component	S _i (sq ft)	^a i (@ 500 Hz)
Floor; linoleum 10 occupants seated at desks	1150 100	0.03 0.55
Ceiling; mineral fiber panels	1250	0.90
Side walls; wall treatment windows	1000 100	0.95 0.10
End walls; wall treatment doors	450 150	0.95 0.18

$\overline{\alpha} = \frac{(1150)(.03)+(100)(.55)+(1250)(.90)+(1000)(.95)+(100)(.10)+(450)(.95)+(150)(.18)}{4200}$

= 0.626

$$R_2 = 4200 \ (e^{0.626} - 1) = 3654 \ sq \ ft$$

= 339.8 sq m

The reduction in sound level at a distance r = 8 m from the source for application of the absorption material is calculated for the 500 Hz band using equation (37) with Q = 2 which assumes the noise source in the room will be sitting on the floor (hemispherical radiation)

$$\Delta L_{p} = 10 \log \left[\left(\frac{Q}{4\pi r^{2}} + \frac{4}{R_{1}} \right) / \left(\frac{Q}{4\pi r^{2}} + \frac{R}{R_{2}} \right) \right]$$

= 10 log $\left[\left(0.0025 + \frac{4}{26.3} \right) / \left(0.0025 + \frac{4}{339.8} \right) \right]$
= 10.3 dB

A drop of about 10 dB in the 500 Hz octave band at a point 8 m from the source would be expected after the described treatment had been applied to this room.

For the complete noise reduction expected, a similar analysis of absorption coefficients and room constants before and after treatment must be carried out for the remaining octave bands. The decibel sum of noise reduction in all bands is then calculated to arrive at the total noise reduction expected from the treatment. The appropriate A-weighting corrections (see Table 3) must be included in each octave band before decibel addition if the total noise reduction in dBA is desired.

Absorption of Ceilings

The main purpose of acoustical ceilings is for the absorption of sound. In the previous example, it was shown how the absorption added to a room can reduce the sound pressure level in the reverberant sound field region of a room.

There are many types of acoustical ceilings, ranging from the attractive tiles seen in homes and offices to the thicker sturdier panels that can be used in an industrial atmosphere. The range of absorption ability of modern acoustical ceilings extends from an NRC of about 0.30 to over 0.90. The ceiling used in the example had an NRC of 0.90. From a sampling of the tests performed at one acoustical testing laboratory the most common value for NRC is about 0.55 to 0.70 as can be seen in Figure 13. This sampling includes ceilings made of wood fiber, glass fiber, and other mineral fibers. It also includes the full range of densities and thicknesses that are common to ceilings. This figure shows the relative number of ceiling materials whose NRC lies in the indicated range. Since a mean value is about NRC = 0.60 one can say that typical noise reduction effects will be obtained with NRC = 0.60 items, not with NRC = 0.90 items.

Note that ceilings are usually tested with the number 7 mounting (40.64 cm (16 inch) plenum behind material). The effect of this mounting is to increase the absorption in the lower frequency range over what would be obtained if the material were mounted directly to the surface. The typical shape of the curve of sound absorption coefficient versus frequency can be seen in Figure 14. In this figure, three "typical" absorption coefficient versus frequency curves are shown. Note the increase in low frequency absorption, and reduction in high requency absorption for the absorbing material covered with a perforated metal facing tested using mounting number 7. Note also that while the thicker material will usually have a better low frequency absorption the two shown here for mounting number 4 appear to contradict this. However the thicker one does have an overall higher absorption level and this further points out that there is no such thing as "typical". These data once again reemphasize that the NRC should not be used as the basis for selecting any acoustical treatment. The full set of frequency data should be utilized and the chosen product matched to the noise spectrum in the space where it is to be used.

One note of caution on ceilings should be heeded. Since acoustic absorption takes place when the sound penetrates into the pores or openings in the material, care should be taken when the ceiling is painted. If the paint is not applied properly, it can plug the openings so that sound cannot enter into the material. The result is that sound is reflected from the surface, and the absorbent capability is completely destroyed. If it becomes necessary to paint an acoustical ceiling the manufacturer should be contacted for his recommended method which will preserve the acoustical qualities. If it is known before purchasing a ceiling that painting will be required in the future, the "paintability" of the ceiling should be considered, as some ceiling materials are better able to withstand painting than others. Again, check with the manufacturer for his recommendations.

Figure 14. Typical absorption data for acoustical ceilings.

Absorption of Walls

Normally walls are considered to be sound barriers, but as seen in the example, the applications of absorbent materials to the walls of a room aid in the reduction of noise levels in a noisy space. While almost any absorption material may be used with success on walls, there is a certain class of material called wall facing or treatment specifically designed for this purpose. These generally have a fiberglass or mineral fiber core covered with fabric. They may be attached directly to the wall or attached by a system of furring strips to create an air gap between the treatment and the wall. As in the case of ceilings, this air gap would serve to decrease the low frequency absorption of the treatment. Standard unpainted concrete block can also exhibit reasonable absorption characteristics, especially if they have a coarse texture. Noise reduction coefficients for concrete block are shown in Table 8.

Material, medium texture, unpainted	Approximate NRC	Adjustment, Coarse texture		percent Fine texture	
Expanded shale block	0.45	Add	10	Deduct 10	
Heavy aggregate block	0.27	Add	5	Deduct 5	
Deductions from NRC for painted block, percent					
Paint type Ap	plication	One coat	Two coats	Three coats	
Any	Spray	10	20	70	
Oil base	Brushed	20	55	75	
Latex or resin base	Brushed	30	55	90	
Cement base	Brushed	60	90		

Table 8. Noise reduction coefficients for concrete.

(Courtesy Expanded Shale and Slate Institute)

A particular kind of block is constructed with internal cavities with slots or openings in the surface connecting the cavities to the outside. This configuration makes each block a Helmholtz resonator tuned to a particular frequency. Such blocks are generally most effective as absorbers at low frequencies and near the frequency for which they are tuned.

Absorption of Carpets

Carpets serve the dual purposes of floor covering and noise reduction. Noise reduction is achieved in two ways; carpets absorb the incident sound energy; and sliding and shuffling movements on carpets produce less noise than on bare floors. The Carpet and Rug Institute has published a report on "Sound Conditioning with Carpet" and some of their findings are:

- 1. NRC of carpets laid directly on bare concrete floor ranged from 0.25 to 0.55;
- 2. fiber type has virtually no influence on sound absorption;
- 3. cut pile provides greater noise reduction than loop pile;
- 4. the NRC increased as pile weight and/or pile heights were increased;
- 5. carpet pads have considerable effects on sound absorption as shown in Table 9;

- 6. permeability of backing results in higher NRC. In one test a carpet with a coated backing had an NRC of 0.40 and the same carpet with an uncoated backing had an NRC of 0.60; and
- 7. carpets and pads provide significant improvements in impact noise ratings of floors. Table 10 shows the results of tests made on a concrete slab using a woven, 44 oz wool carpet with various pads.

Pad weight oz	Pad material	NRC
	None	0.35
32	Hair	0.50
40	Hair	0.55
86	Hair	0.60
32	Hair jute	0.55
40	Hair jute	0.60
86	Hair jute	0.65
31	Foam rubber, 3/8 inch	0.60
44	Sponge rubber	0.45

Table 9. Effects of padding on carpet noise reduction coefficient.

Table 10. Effects of carpets and pads on impact noise.

Floor covering	INR	IIC
None	-17	34
Carpet only	+14	65
Carpet with 40 oz hairfelt pad	+21	72
Carpet with urethane foam pad	+24	75
Carpet with 44 oz sponge rubber	+25	76
Carpet with 31 oz 3/8 inch form rubber	+28	79
Carpet with 80 oz sponge rubber	+29	80

Absorption of Furnishings

The use of general furnishings, such as chairs, draperies, carpets, etc., can provide absorption of the sound in the room. For offices, homes, schools, etc., the noise control should also be attractive. Modern sound absorption wall and ceiling treatments are available in many colors and patterns. But just using these is not quite enough. If the wall and ceiling treatment is selected for good sound absorption and the effect of general furnishings is overlooked, the finished area may be too dead and unpleasant. Some absorption data on these items are given in Table 5. The absorption of curtains and draperies depends on spacing from the wall, how close and deep the pleats are, size, and the material used. Some coefficients for these items can be found in the data tables.

SOUND BARRIERS

The portion of the sound wave that is not absorbed or reflected when the sound wave strikes a surface is transmitted through to the other side. The fraction of the incident energy that is transmitted through the partition is defined to be the transmission coefficient (τ). That portion of the energy which is "lost" upon transmission through a material is the difference between the incident energy and the transmitted energy. Expressed in decibel terms, the sound transmission loss is

TL = 10 log
$$\frac{W_i}{W_o}$$
 - 10 log $\frac{W_t}{W_o}$ = 10 log $\frac{W_i}{W_t}$ = 10 log $\frac{1}{\tau}$ (38)

Just as with the absorption coefficient the transmission coefficient depends on frequency and equation (38) indicates the transmission loss is also frequency dependent.

The mechanism of transmission loss is similar to that of a diaphragmatic absorber. The incident sound wave causes the partition to vibrate. This vibration in turn causes the air on the other side of the partition to be set into motion and sound is radiated as though this partition were now a sound source. However, this new sound field will be much lower in energy since much of the energy of the incident wave was spent in forcing the partition to vibrate.

It can be shown that for a "limp" panel, (a limp panel is an idealized panel without flexural stiffness), the transmission loss should theoretically increase by 6 dB each time the mass of the panel is doubled. This, however, does not hold strictly true in practice. In the real world a doubling of the mass of the wall will increase the transmission loss only by about 4 or 5 dB. The real world mass law, which is obtained from empirical results can be stated as

 $TL = 23 + 14.5 \log m \, dB$ (39a)

where m is expressed in lb/sq ft or

 $TL = 13 + 14.5 \log m \, dB$ (39b)

where m is expressed in kg/sq m. The increase predicted from this expression for a doubling of the mass is about 4.4 dB. Generally the transmission loss increases more slowly than 4.4 dB per octave of frequency below 1000 Hz, and approximately at the rate of 4.4 dB per octave above this frequency. Some notable exceptions to this are due to stiffness, resonances, and coincidence effects.

Resonance occurs when the frequency of the incident sound wave corresponds to

(001)

a natural frequency of the partition. At this frequency very little energy is required to force the panel to vibrate, and the high amplitude of this vibration produces a correspondingly high sound pressure level on the opposite side of the panel. In some instances the sound wave passes through the panel almost as if it were not there. To avoid the effects of resonance it is desirable to have the lowest natural frequency possible. This condition can best be met by using panels which are as limp and as massive as possible.

A condition similar to resonance can occur when sound waves are incident on a panel at an oblique angle. At certain frequencies the phases of the incident wave will coincide with the phase of the panel's flexural waves. Under these conditions the intensity of the transmitted wave may nearly equal that of the incident wave. Wave coincidence can only occur when the wavelength of the sound in air is less than the wavelength of sound in the panel. Thus, coincidence can only occur at a frequency above a certain critical frequency which is determined by the material and thickness of the panel. For a single homogeneous panel, this frequency is given by

$$f_{c} = \frac{c^2}{1.8t} \sqrt{\frac{P}{E}}$$

where C = speed of sound

- t = thickness of panel
- p = mass density of panel
- E = modulus of elasticity of panel material

In practice the sound wave is usually not incident from a single direction but is more omnidirectional. A typical panel will have studs, braces, discontinuities, etc., and the effect of coincidence can usually be neglected. If, however, this effect is encountered it can usually be reduced by using very stiff and thick walls or by heavy walls with small stiffness. In general, the transmission properties of a wall behave more like the typical performance shown in Figure 15.

It should be emphasized that sound absorbent materials, due to their soft, porous structure, offer only low resistance to a sound wave and permit the passage of the wave through to the other side relatively unattenuated. Only when these materials are very dense or very thick will they appreciably reduce the amplitide of a sound wave as it passes through. Thus, a sound absorbing material is a poor sound barrier. Remember that if air can pass through the material, so can sound.

On the other hand, typical sound barrier materials are hard, heavy, and very reflective. These materials generally follow the mass law and as such offer a high resistance to the passage of a sound wave. A sound barrier material is a poor absorber and an absorbent material is a poor barrier.

SOUND TRANSMISSION LOSS MEASUREMENTS (per ASTM E90-77)

The test procedure for measurement of transmission loss of materials is specified by, and described in, ASTM Standard E90-77, "Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions". Unlike the absorption coefficient, the transmission

(40)

coefficient is rarely measured in practice. Instead the transmission loss is calculated in a more roundabout manner from sound pressure levels. To measure the transmission loss of a specimen it is simply mounted in the connecting opening between two reverberation rooms. Care is taken to assure that the only sound path between the two rooms is through the specimen. A sound source is operated in the source room and sound pressure levels in the source room and the receiving room are then measured in each of 16 contiguous onethird octave bands from 125 through 4000 Hz. The transmission loss is then computed from the relationship

$$TL = NR + 10 \log S - 10 \log A$$
 (41)

where TL is the transmission loss in decibels, S is the total area of the sound transmitting surface of the test specimen, A is the total absorption in the receiving room (expressed in units consistent with S), and

$$NR = L_{p_s} - L_{p_r}$$
(42)

is the noise reduction between the two reverberation rooms. Average sound pressure level in the source room is L . Average sound pressure level in the receiving room is L .

FREQUENCY (Hz)

Figure 15. Typical practical performance of a wall relating to the transmission of sound showing the three separate regions.

The variation in sound pressure level over a large portion of each room must be carefully measured to ensure accuracy in determining the average level. The term for the absorption of the receiving room is necessary to account for the fact that the sound pressure level developed in the receiving room will depend upon the amount of absorption in the room. Equation (41) may be derived from the basic principles of equation (38) by noting that the power incident on a panel is equal to intensity times the area of the panel, and that decibels of intensity are approximately equal to decibels of pressure.

Dependence of Transmission Loss on Frequency

Since once again there is a situation where the acoustical properties of an item are frequency dependent and there are 16 numbers to describe these properties it is desirable to reduce this amount of data to a single number. In the case of TL properties this single-number rating is called Sound Transmission Class (STC). The STC is determined by comparing the set of transmission losses at all 16 frequencies to a set of standard STC contours as described in ASTM Standard E413-70T, "Tentative Classification for Determination of Sound Transmission Class". Briefly stated, the STC contour must be chosen which fits the TL curve in such a way that in no event is the TL curve more than 8 dB below the STC contour at any frequency, and the sum of the deviations of the TL values which are below the contour shall not exceed 32 dB. The highest contour to which the specimen TL curve can satisfy these requirements is used as the STC curve. The value of this curve at 500 Hz is then chosen as the STC of the specimen.

The STC values of some common materials are shown in Table 11. The values shown in Table 11 are representative because the weights and densities of these materials vary and some of the items are porous even though they are heavy.

Material	STC
24-gauge steel	26
1/8-inch plate glass	28
1/4-inch plate glass	30
3/16-inch steel plate	35
4-inch two-cell concrete block	41
4-inch two-cell concrete block	
(filled with sand)	43
Two layers of 5/8-inch gypsum	
board on 2x4-inch studs 16	
inches on center	43
8-inch lightweight hollow	
concrete block	46
8-inch hollow core concrete block	50
4-inch brick wall with 1/2-inch	
plaster	50
8-inch brick wall	52
6-inch dense concrete	54
12-inch brick wall	59

Γał	ole l	1.	Sound	l tran	ısmi	ssi	on	clas	ss
of	some	con	mon ł	ouildi	ng	mat	eri	als.	

In general these curves provide a good comparison between specimens, but due to the way deviations from the standard curve are handled poor comparisons can be made as shown in Figure 16. The partition shown by the solid line has TL values that are higher than those for the dashed curve except between about 600 to 2000 Hz and yet has a STC 5 dB lower than for the dashed curve. This only points out that STC is a convenience and should be used with care in selection of any particular item.

Figure 16. Determination of sound transmission class.

Test Facility Requirements

A few comments are in order at this point about the characteristics of the reverberation rooms used for testing partitions for transmission loss. One of these is that the rooms should be large enough to support a diffuse field in the lower frequencies. The size should be such that

 $V = 4\lambda^3 \tag{43}$

where V is the room volume and λ is the wavelength of the lowest frequency of interest in units consistent with V. For example if a room has a volume 178.3958 cu m (6300 cu ft) it should not be used for measurements below about 97 Hz.

A second requirement is that the sound field in the two reverberation rooms be

sufficiently diffuse so that measurements can be made such as to ensure that the mean value of the noise reduction can be known to within 1 dB with 90 percent confidence. To accomplish this, laboratories use special, very hard rooms, with both fixed and rotating panels (vanes) to increase the diffuseness of the sound field.

A further requirement on the laboratory is the reduction of flanking path transmission to the point where it no longer interferes with the measurements. Flanking transmission occurs when the sound travels from the source room to the receiving room by some route other than through the test specimen. Some of these paths are through cracks or gaps around the specimen, into the floor or wall in the source room, through the connecting floor and wall, or any other route the sound may take as shown in Figure 17. Flanking path transmission is considered to have negligible effect on measurements when the sound pressure level transmitted by flanking is more than 10 dB below the level transmitted by the specimen.

Figure 17. Possible routes for sound travel from one room to another. For paths 1 through 4 the sound travels some portion of the path in solid material. Path 5 represents transmission through any crack, gap, or other opening in the wall.

Finally, the ASTM standard for measuring transmission loss recommends that the minimum dimensions of the test specimen be at least 2.44 by 3.66 m (8 by 12 ft), with the exception that doors, windows, and other smaller items should be their normal size. This is because the full effects of stiffness, resonances, etc., will be different if the specimen is different from what will be constructed in actual use.

NOISE CONTROL BY BARRIER

Controlling noise by barrier is simply a matter of providing some form of wall or other heavy dense object between the source of the sound and the receiver, i.e., its path is blocked. One of the most inexpensive and easiest to accomplish methods providing a barrier is to locate a source or a receiver behind an already existing barrier. For example, if a new apartment is to be constructed near an expressway and the landscape is hilly, the hill between the apartment and expressway can be used as a barrier. When this is not possible, bedrooms or other spaces where quiet is desired should be on the far side of the building. Hallways, elevators, etc., should be on the side facing the noise. In this way a great deal of special acoustical treatment can be eliminated.

In a factory the noisy machinery should not be in the same room with quieter objects. If noisy equipment is to be located outdoors, it should be placed on the side away from the area where quiet is desired. If the plant is located near a residential neighborhood the noisy activities such as loading docks should be on the side away from the homes. A little thought before the installation of some noise source can save a lot of time and money later.

To determine what the sound level in a room would be after a barrier wall has been erected, equation (41) can be reversed to obtain

$$NR = TL - 10 \log S/A \tag{44}$$

and it can then be seen that the noise reduction is dependent on the total absorption in the receiving room. This is understandable if one remembers what reverberation does to the sound field. The noise that comes through the wall bounces around in the receiving room so the level is not what it would be if a free field existed on the receiving side.

EXAMPLE 10: The sound pressure level on one side of a 3.05 by 4.27 m (10 by 14 ft) wall is measured 95 dB in the 500 Hz octave band. If the transmission loss of the wall is 47 dB in this band and the absorption in the receiving room is 1000 sabins, what will the sound pressure level be in the receiving room?

SOLUTION:

or

$$NR = L -L = TL - 10 \log S/A$$

$$L_{p_{r}} = L_{p_{s}} -TL + 10 \log S/A$$

= 95 - 47 + 10 log $\frac{10 \times 14}{1000}$
= 39.5 dB re 20 µPa

and the absorption in the receiving room has reduced the sound level by 8.5 dB more than what is predicted by simply subtracting the TL value from the sound level in the source room. Note that if the receiving room is very hard such that S > A, then the opposite is true.

In the general case of using a partition as a sound barrier, the partition may be a wall with a door and windows and may even be built in several sections each with a different transmission loss. It is necessary to know the average transmission loss of the entire assembly. This is found by first determining an average transmission coefficient $\overline{\tau}$ in a manner similar to finding the average absorption coefficient.

$$\overline{\tau} = \frac{\sum_{i=1}^{\Sigma \tau} \sum_{i=1}^{S_{i}}}{\sum_{i=1}^{\Sigma S_{i}}}$$
(45)

and

$$\overline{TL} = 10 \log 1/\tau$$
 (46)

where S_i and T_i are the area and transmission coefficient of the ith section of the partition. τ_i for each section may be determined by inverting equation (38):

$$\tau_{i} = \operatorname{antilog}\left(-\frac{\operatorname{TL}_{i}}{10}\right)$$
(47)

Now the noise reduction of this partition can be determined by combining equation (46) with equation (41) as

$$NR = TL - 10 \log S/A$$
(48)

EXAMPLE 11: A partition consists of a concrete wall (TL=50) 3.66 m (12 ft) high by 30.5 m (100 ft) long with a window (TL=25), a door (TL=30), and an open area (leak) under the door. Determine the noise reduction through this wall in the 500 Hz band. The total absorption of the room on the receiving side of the wall is 300 sabins. The areas and transmission coefficients of each element of the partition are

ITEM	DIMENSION	AREA (sq ft)	TL (dB)	τ
wall	12 x 100	1151.4	50	0.00001
window	4 x 6	24.0	25	0.00316
door	7 x 3.5	24.5	30	0.00100
leak	0.5 inch x 3.5 ft	0.15	0	1.00000

SOLUTION: Note that the area of the concrete wall is 1200 sq ft minus the area of the window, door, and leak, and that the TL of an open area such as a leak is zero. The noise reduction of the wall is determined using equations (46), (47), and (48)

 $\frac{1}{\tau} = \frac{(0.00001)(1151.4) + (0.00316)(24) + (0.001)(24.5) + (1)(0.15)}{1200} = 0.0002$

$$\overline{\text{TL}}$$
 = 10 log $\frac{1}{0.0002}$ = 37 dB
NR = 37 - 10 log $\frac{1200}{300}$ = 31 dB

Due to the sections with lower TL values (especially the leak) and the hardness of the receiving room, the 50 dB wall results in a noise reduction of only 31 dB.

If absorption treatment is added to bring the absorption of the receiving room up to 2000 sabins, we will have a noise reduction of

$$NR = 37 - 10 \log \frac{1200}{2000} = 39 \text{ dB}$$

Observe that the increased absorption in the receiving room works together with the wall to produce a noise reduction greater than predicted from the wall alone.

If the leak is blocked with a seal that provides a transmission loss of 50 dB, the transmission coefficient τ of the leak drops from 1 to 0.00001. Considering the leak blocked while retaining the original receiving room absorption of 300 sabins, the noise reduction across the wall becomes

$$\overline{\tau} = \frac{(0.0001)(1151.4) + (0.00316)(24) + (0.001)(24.5) + (0.00001)(0.15)}{1200} = 0.00009$$

$$\overline{\text{TL}}$$
 = 10 log $\frac{1}{0.00009}$ = 40 dB
NR = 40 - 10 log $\frac{1200}{300}$ = 34 dE

The whole job, sealing the leak and providing 2000 sabins of absorption in the receiving room, results in a noise reduction of

$$NR = 40 - 10 \log \frac{1200}{2000} = 42 \text{ dB}$$

which represents an improvement of 11 dB over the original case. To improve this even more, it can be seen from the calculated transmittances that the door and the window are still the weakest links. This example also shows how a barrier and an absorbing material work together to improve the transmission loss. For this reason, many noise control materials are a composite of barrier with absorber bonded to it. Lead-loaded vinyl with absorbing plastic foam on one side is a popular combination. The example only considered the noise reduction at one frequency band, 500 Hz. A complete analysis would include similar computations for all significant frequency bands. Walls As Barriers

In general, walls can be classified as nonload-bearing partition type walls, load-bearing, and masonry type walls. Masonry walls are made up of bricks, or various types of concrete and may be plastered or painted.

Plasterboard walls are relatively light, inexpensive, and easy to erect. A typical plasterboard wall consists of two plasterboard leaves, separated by an air space and a system of studs or framing members. The sound transmission loss of such a wall depends on the transmission losses of the individual leaves and on the degree of coupling introduced by the intervening air space and stud system. The studs can sometimes act as vibration conductors and thus may degrade the performance of a wall assembly. If the studs have low torsional rigidity (e.g., steel channels) transmission via the studs appears to be negligible. If proper construction techniques are used, it is possible to get a transmission loss greater than that predicted by the mass law. The main factor in achieving this enhanced performance is to construct what is referred to as a "double wall". In a double wall arrangement the two sides of the wall are independent of each other (there are no connecting braces, and each side uses its own set of studs).

Figure 18 shows the transmission losses of three wall assemblies as functions of frequencies. Wall assembly number 1 has the lowest STC even though its density is slightly higher than the other two assemblies. It can be seen from the figure that a significant increase (14 dB in this case) in transmission loss can be achieved by separating the two leaves of a wall and putting a sound absorbent batt in the wall cavity.

Load-bearing walls made from concrete or bricks are heavier than the plasterboard wall and consequently they can provide increased sound attenuation. For instance, the Brick Institute reports STC from 39 to 59 for specific walls made from structural clay tiles or bricks, with their weights ranging from 107.41 to 566.36 kg/sq m (22 to 116 lb/sq ft). Concrete walls also provide similar attenuation and in general the dense, heavyweight concrete walls perform better than the lightweight concrete walls - particularly at low frequencies.

In addition to plasterboard and masonry many other types of wall materials are used and the wall construction also ranges from a simple brick wall to walls with a complex stud system combined with acoustical and thermal batts. Plywood, hardboard, steel, etc., are other commonly used wall materials. In all cases it can be said that increased mass and decreased coupling between different components along the path of sound result in high transmission loss.

Glass as a Barrier

Glass windows are often the weak link in an otherwise good sound barrier. Acceptable sound transmission loss can be achieved in most cases by a proper selection of glass. Mounting of the glass in its frame should be done with care to eliminate noise leaks and to reduce the glass plate vibrations.

Acoustical performance of glass is often improved by a plastic inner layer or an air gap. Table 12 shows the comparison of STC values for glass and laminated glass of various thicknesses. Table 13 compares the monolithic glass plate with air-spaced glass of equal thicknesses.

Overall Thickness inch	Monolithic Glass STC	Two equally thick layers glass with 0.030-inch plastic inner layer STC
0.125	23	
0.25	28	34
0.5	31	37
0.75	36	41
1.00	37	

Table 12. Sound transmission class of monolithic and laminated glass.

Table 13. Sound transmission class of air-spaced glass and monolithic glass of comparable thickness.

Overall Thickness inch	Air-spaced Glass Construction	STC	Comparably Thick Glass without Air Space STC
1.0	Two 0.25-inch plates with 0.50-inch air space	32	31
1.5	Two 0.25-inch plates with 1-inch air space	35	31
2.75	0.25- and 0.5-8 inch with 2-inch air space	39	36
4.75	0.25- and 0.5-inch plates with 4-inch air space	40	36
6.75 .	0.25- and 0.5-inch plates with 6-inch air space	42	36

Doors As Barriers

Sound transmission loss of a door depends upon its material and construction, and the sealing between the door and the frame. Most doors are of wood or steel construction with various stiffnesses and barrier batts added to the hollow cavity inside the door if one exists. It is usually difficult to specify the STC of a door because the sealing between the door and the frame is not a precisely controlled variable. The variations in STC of two doors as the sealing was improved by increasing the deflection of gaskets, by adding extra gaskets, and by changing the gasket materials, are shown in Figure 19. In each case the improved sealing improves the performance such that the STC approaches its maximum possible value shown by the completely sealed case.

This figure points out improvements that can be made by attacking the weakest link. If better sealing does not offer sufficient improvement selecting

Figure 19. Effects of improved sealing of doors on sound transmission class. (Based on a series of tests on two different types of door.)

a better door design becomes necessary. Generally the heavier doors provide increased attenuation. Wood and steel doors behave essentially in a similar manner as shown in Figure 20 which shows a form of the mass law dependence of STC on weight (in 1b/sq ft) for wood and steel doors. These data which are based on many tests conducted in an acoustical laboratory, indicate an increase of 8 to 9 dB in STC for a doubling of the weight. NOTE: That effects of better design, better sealing, etc., are also reflected in this figure. The approximate relationships are

For steel doors:
$$STC = 15 + 27 \log W$$
 (49a)

For wood doors:
$$STC = 12 + 32 \log W$$
 (49b)

where W = weight of the door in lb/sq ft. It should be emphasized that these relationships are purely empirical and that large deviations may be possible for any given door.

Figure 20. Dependence of sound transmission loss for doors on weight. Approximate STC for wood door, STC=12+32 log W; approximate STC for steel door, STC=15+27 log W; where W=weight of the door in lb/sq ft.

Ceilings As Barriers

The use of ceilings as sound barriers is not a normal application. Yet it is frequently through the ceiling and the open plenum above into the next room and down through the ceiling of the adjoining room that sound travels. This is just one flanking path that can seriously degrade the sound isolation between rooms.

There are several alternatives for reducing the noise transmitted in this way. One method is to place a barrier in the ceiling plenum between the two rooms. This may be difficult sometimes due to the piping, wiring, ductwork, etc., that is probably in this space.

A second way is to place some barrier material such as gypsum board on top of the ceilings. However, one must be careful because enclosing the space above the ceiling may decrease the absorption coefficient of the ceiling and reduce the absorption of the room below.

The third method is to use a ceiling that has both the proper absorption and sound transmission loss properties. For this reason ceilings are tested for their transmission from one room to another as well as for sound absorption. This test provides a sound attenuation factor for the ceiling. A two-room test procedure has been developed for this purpose. Basically, the procedure involves the construction within a room of a partition which does not quite reach the ceiling. The suspended panel ceiling to be tested is installed in the room on both sides of the partition so as to simulate a plenum above the suspended ceiling extending between both halves of the test room. The transmission loss of sound passing up through the suspended ceiling, through the plenum, and back down through the ceiling into the other half of the room is then measured. The transmission loss of the partition should be considerably greater than that of the test ceiling. A drawing illustrating this procedure appears in the text before data table 14.

Freestanding Walls As Barriers

A freestanding wall is defined here as a solid fence, with no bounding surface above the wall so that sound waves can pass freely over the wall.

As with all sound control systems the amount of attenuation provided by a freestanding wall depends on the frequency as well as many other factors. For low frequencies where the sound wavelength is of the same order of magnitude as the wall dimensions, the sound diffracts around the edges and over the top of the wall with very little attenuation (zero to 5 dB) on the other side. The higher frequencies can be very effectively attenuated with reductions of 20 dB being quite possible.

The attenuation of an infinitely long, freestanding wall can be determined from Figure 21 and the relationship

Attenuation (dB) = 20 log
$$(2.5 \text{ N}) + 5 \text{ dB}$$
 (50)

N = 1, for where

$$N = \left[\frac{2}{\lambda} (A + B - d)\right]^{\frac{1}{2}}$$
(51)

- λ = wavelength of sound, meters
- d = straight line distance from source to receiver in meters,
- A+B = shortest path length of wave travel over the wall between source and receiver.

Figure 21. Geometry for determining sound attenuation by a freestanding wall.

Attenuations range from a low of about 5 dB to a maximum of about 24 dB. This attenuation can then be subtracted from the sound pressure level that would exist at the point of the receiver if the wall were not there.

The maximum attenuation occurs when A + B >> d and/or when λ is very small (high frequency).

EXAMPLE 12: Determine the attenuation at 1000 Hz for a freestanding wall 4 m high.

SOLUTION: The wavelength of sound at 1000 Hz is 0.344 m. Assume that the wall is long enough so that the sound diffracting around the ends can be neglected. Also assume the point noise source is 1.7 m from the ground and the receiver is a human ear also 1.7 m from the ground. Locate the wall such that the source is 3 m from the wall and the receiver 6 m from the wall. Then

$$N = \left[\frac{2}{.344} (3.78 + 6.43 - 9)\right]^{\frac{1}{2}} = 2.65$$

Attenuation = 20 log [(2.5)(2.65)] + 5 = 21.4 dB

On the other hand, how high must the wall be built to obtain a specified attenuation? For example, for the same case as above, how high must the wall be to obtain 15 dB attenuation at 125 Hz, where the wavelength is 2.75 m? By rearranging equation (50),

N = 0.4 antilog
$$\frac{dB-5}{20}$$
.

The value of A + B can be derived from equation (51) as

$$A + B = N^2 \lambda/2 + d.$$

The wall height can then be determined on a trial and error basis or graphically; in this case, A + B is 11.2 m, which corresponds to a wall height of 5 m. (Further discussion of the attenuation of sound by freestanding walls can be found in the Journal of the Acoustical Society of America, 55(3), pp 504-518, March 1974).

The wall should be constructed of such a material that transmission of sound through the wall does not degrade its performance since the above equations assume no transmission through the wall. This can be readily accomplished if the surface density of the wall is at least about 9.76 kg/sq m (2 lb/sq ft).

One final note on the use of a freestanding wall is that the noise from the source will reflect off the wall so that to an observer on the same side of the wall, the sound pressure level will be higher than if the wall were not there.

Noise Reduction And Enclosures

A barrier may be characterized by its noise reduction (NR) alone. For example, the sound pressure level inside an enclosure, L_1 , and the sound pressure level outside the enclosure, L_2 , may be measured simultaneously. The difference in these two levels is the NR value. If the noise source is inside the enclosure the NR is given by L_1-L_2 , or NR is L_2-L_1 if the noise source is outside the enclosure.

The NR can differ significantly from the transmission loss for a specimen since the absorption in the two regions where the measurements are made is not included in the calculation. Whenever this value is presented in the data tables it is pointed out so the user will be aware of the difference.

The measurement of NR is not only used for enclosures, but for any case where the difference in two sound pressure levels is determined. One should also be aware that the NR of a specimen bears no relation to the noise reduction class (NRC) of an absorber material. The NR relates to the ability of a specimen to block sound whereas the NRC is a sound absorption property.

In many cases the purpose of an acoustic enclosure is to keep the noise from getting inside. Examples are soundproof booths for machine operators and audiometric test booths for testing the hearing of employees. It is relatively straightforward to calculate the noise reduction by employing the principles of transmission loss, since the enclosure may simply be regarded as a small room, and its walls as partitions. More often, however, an enclosure, or box, is placed around a noise source to keep the noise from getting outside. Several common designs of enclosures and barriers are illustrated in Figure 22. In predicting the noise reduction for this case there are some subtleties which warrant further discussion.

Figure 22. Typical barriers for partial noise control in work areas.

To predict the NR of an enclosure the procedure is the same as with a barrier wall. One first determines the transmittance of the total surface area and then, including the absorption of the space outside the enclosure, determines the noise reduction of the box.

÷. ·

EXAMPLE: A noisy machine sits in a room in a factory. The room has been found to have a total absorption of 3000 sabins at 250 Hz. It is desired to build a 3.05 m by 3.05 m by 3.05 m (10 ft by 10 ft by 10 ft) enclosure about the machine, made of partitions with a TL in the 250 Hz band of 50 dB. There will be a 1.07 m by 2.13 m (3.5 ft by 7 ft) door in the enclosure. The TL of the door at 250 Hz is 25 dB. What noise reduction can we expect to achieve from the use of the enclosure?

SOLUTION: As in example 11, we must calculate the average transmission loss, this time for four walls and a ceiling.

ITEM	AREA (sq ft)	TL (dB)	τ
Four walls (less door)	375.5	50	0.00001
Ceiling	100	50	0.00001
Door	24.5	25	0.00316
$\overline{\tau} = \frac{(475.5)(0.1)}{1000}$	00001) + (24.5 500)(0.00316)	= 0.00016
\overline{TL} = 10 log $\overline{0.0}$	$\frac{1}{0016}$ = 38 dB		
NR = 38 - 10 log	$\frac{500}{3000} = 46 \text{ dB}$		

The NR computed above is the difference between noise levels inside and outside the box, and represent what one would most likely be concerned with in practice. However, what is the noise level inside the box? An interesting phenomenon occurs in a complete enclosure. If there is some source of sound power and a box is built around it, the sound energy density, or the intensity, will increase until the amount of power absorbed by the walls is equal to the power emitted by the source. This phenomenon is referred to as "sound build-up". To illustrate, suppose that the machine being enclosed has been found by prior testing, to produce 105 dB of sound power at 250 Hz. If the room constant R is 350 sq m, the sound pressure level of the machine at a distance of 1.5 m (5 ft) is

$$L_{p} = L_{w} + 10 \log \left[\frac{1}{2\pi r^{2}} + \frac{4}{R} \right]$$

= 105 - 11 = 94 dB re 20 µPa

The enclosure is now placed around the machine. It is made of steel with an absorption coefficient of 0.2. The concrete floor it rests on also has an absorption coefficient of 0.2.

The room constant in the enclosure is

$$R = S(e^{\overline{\alpha}} - 1) = 600(e^{\cdot 02} - 1) = 12 \text{ sq ft}$$
$$= 1.1 \text{ sq m}$$

(Note that the surface area inside the enclosure used in determining R includes the area of the floor). The sound pressure level at 1.5 m (5 ft), (now just inside the enclosure wall) is

$$L_{p} = 105 + 10 \log \left[\frac{1}{2\Pi(1.5)^{2}} + \frac{4}{1.1} \right] = 111 \text{ dB re } 20 \ \mu\text{Pa}$$

Recalling that the NR of the enclosure was found to be 46 dB, the sound pressure level just outside the enclosure will be 111 - 46 = 65 dB, compared with 94 dB at the same location before construction of the enclosure. The effect of building the enclosure has been a reduction of the noise by 29 dB. While this is a good improvement, it is a long way from the 46 dB predicted by the barrier properties of the enclosure alone.

This problem is not insurmountable. The solution is to add absorption to the lining of the walls of the enclosure. If the job is good enough, the level at the inside of the wall can be very nearly what it would be in a free field. In the above example, the external room constant was so large that the sound pressure at 1.5 m (5 ft) from the source was essentially that of a free field. As can be seen from Figure 12. Note that not in any case can the use of acoustical treatment inside a room reduce the sound pressure level at a point below that of the direct path transmitted wave. This wave is the free field wave which represents the minimum achievable sound pressure level that can be obtained without using a sound barrier between the source and the receiver.

Another factor that must be considered is resonance. If the dimensions of the box result in resonance due to one of the modes of the sound, the box can be driven to high levels of vibration and become a new radiator of these components of the sound. When this occurs the sound pressure level outside the box can be higher than it was even before the box was installed. This effect is significantly reduced when the noise source occupies a sufficient fraction of the room volume, by the use of absorbent lining on the interior surfaces of the enclosure, damping treatment on the panels, and stiffening of the panels.

IMPACT SOUND

The term impact sound as used here should not be confused with hazardous impact noise as defined by OSHA regulations. The tests described herein are used to measure transmission of footsteps and similar sounds and have little relevance to control of industrial impact noise.

A knowledge of sound transmission loss is useful for many objects such as walls, floors, doors, windows, specialized panels, or any other item that may be used to block a sound path. In the case of floors, however, not all noise in the space below the floor is due to airborne sound transmission through the floor. Some of the noise below the floor is due to sliding objects across the floor, footsteps, dropping objects, etc. These occurrences induce structural vibrations in the floor assembly which are reradiated as sound waves into the rooms above and below the floor.

IMPACT SOUND TRANSMISSION MEASUREMENTS (PER ASTM E497-77)

The recommended method for this test procedure has been published by ASTM as E492-77 "Method of Laboratory Measurement of Impact Sound Transmission through Floor-Ceiling Assemblies Using the Tapping Machine".

This test utilizes a standard impact source which is known as a tapping machine. With this machine making fixed amplitude impacts on the floor the sound pressure level produced in the room below is measured in 16 contiguous one-third octave bands from 100 Hz through 3150 Hz. The sound pressure levels thus measured are affected by the absorption in the receiving room. In order to compare results from different receiving rooms, these values are normalized to a reference room which has an absorption of 108 sabins or 10 metric sabins. This normalization is obtained through the relationship

$$L_{N} = L_{p} - 10 \log (A_{o}/A_{2}) dB re 20 \mu Pa$$
 (52)

where

 \boldsymbol{L}_{N} is the normalized sound pressure level,

 L_{p} is the mean square measured sound pressure level,

 A_2 is the measured absorption in the receiving room measured as described for absorption tests, and

 A_{o} is the reference absorption in the same units as A_{o} .

There is still much debate over the use of the tapping machine as an impact source. Many feel that this excitation is not representative of footsteps, sliding furniture, etc. Just as with absorption and transmission data the impact data make comparisons between products difficult. There is another one-number rating called the Impact Insulation Class (IIC), which is obtained by comparing the normalized sound pressure levels at each of the 16 one-third octave bands to a set of standard contours as in the case of the STC for transmission loss. These contours however have a different shape from the STC contours. The normalized sound pressure level curve in this case must fit the standard contour in such a way that in no event is the $L_{\rm N}$ curve more then 8 dB above the IIC contour at any frequency, and the sum of the deviations of the $L_{\rm N}$ values which are above the IIC contour shall not exceed 32 dB. The lowest contour to which the specimen $L_{\rm N}$ curve at 500 Hz is then chosen as the IIC number of the specimen. The standard contour is shown in Figure 23.

Figure 23. Impact insulation class contours. Contour 1, IIC = 55; Contour 2, IIC = 52; Contour 3, IIC = 48.

An older single-number rating for impact insulation which was used by the Federal Housing Administration is known as the Impact Noise Rating (INR). This rating is based on the same contours, but a standardized floor was given an INR = 0. Thus, the first contour above this had a rating of -1 (higher sound pressure level = poorer floor) and the first contour below had a rating of +1. Consequently the INR can take on positive and negative values. This standard floor compares to the IIC contour which has a value of 51 at 500 Hz; thus, any value of IIC can be obtained from the INR by adding 51. That is

$$IIC = INR + 51$$

(53)

IMPACT NOISE CONTROL

The use of floors as barriers of sound in the path between two rooms is exactly as with walls plus a few additional considerations. First consider the STC of the floor. Generally, floors have good STC since their structural requirements are such that the floors are sufficient mass. However, this is not always true, especially in some of the modern apartment constructions.

One of the main problems with floors is that they are located in the direction of gravity for footsteps, falling objects, support of furniture and equipment of all sorts, etc. These falling objects produce impact noises both in the spaces above and below the floor. Because of these impacts, many floors are now tested for impact insulation.

Sound transmission of a floor can be decreased by increasing the weight of the floor or by designing a more complex floor system using acoustical batts, cavities, etc. The goal of these complexities is to decouple the bottom of the floor assembly from structural vibrations set up in the top part of the assembly.

The IIC of a floor cannot be significantly increased by increasing its weight, but a carpet on the floor, or even better, a carpet placed on a pad, can greatly increase the IIC. The effects of various floor treatments on STC and IIC are shown in Tables 10 and 14.

There of the other and	Change in ratings			
Type of treatment	Airborne, STC	Impact, INR or IIC		
2-inch concrete topping, 24 psf	3	0		
Standard 44 oz carpet and 40 oz pad	0	48		
Other carpets and pads	0	44 to 56		
Vinyl tile	0	3		
0.5 inch wood block adhered to concrete	0	20		
0.5 inch wood block and resilient fiber underlay adhered				
to concrete	4	26		
Floating concrete floor on fiberboard	7	15		
Wood floor, sleepers on concrete	5	15		
Wood floor on fiberboard	10	20		
Acoustical ceiling resiliently mounted	5	27		
Acoustical ceiling added to floor with carpet	5	10		
Plaster or gypsum board ceiling resiliently mounted	10	8		
Plaster or gypsum board ceiling with insulation				
in space above ceiling	13	13		
Plaster direct to concrete	0	. 0		

Table 14. Typical improvements with floor and ceiling treatments.

Consideration must be given to what happens when a piece of vibrating machinery is mounted on the floor. At the moment no particular test procedure exists to predict what noise this type of installation will have. What can be said is that if the floor is driven to a sufficiently high level of vibration it will become an acoustic radiator of noise into the spaces both above and below. To prevent such problems one must mount machinery on proper vibration isolation mounts.

It cannot be said that the real noises produced by objects hitting the floor above will resemble the noises of the tapping machine. Since the machine is portable, it cannot simulate the shifting of weight distributions that occur as a human walks across the floor, nor does it produce the sort of structural vibrations set up as furniture slides on the floor. These actions produce creaking and squeaking noises, especially in wood construction floors, which are not accounted for by the IIC values and the ASTM test method. The use of a tapping machine is only of value as a standard in comparing the performance of a floor to other floors similarly tested.

There is no definite way one can predict the sound pressure levels in the room below any particular floor without first measuring the noise of the specific impact of interest. The only handle that is available is that the higher the IIC the lower the sound level in the space below for most, but not all, types of impact noises. Of course, just as with STC, the true shape of the sound spectrum must be considered in its entirety.

With regard to airborne sound transmission, it was shown earlier that a good IIC floor probably has a good STC as well. It should not be overlooked, however, that flanking paths such as into the walls of the upper room, down through the wall, and out into the space of the room below, can contribute a good portion of the noise in the space below. Also, any impact on the floor will send vibrations into the walls which can become airborne sound in the room below.

Laboratories that measure impact insulation provide a good test floor in terms of isolation. Any good installation of a floor that must have a high insulation against impact noises should be equal to the laboratory setup. There are numerous ways and materials that can be used to increase the isolation of the floor from the wall and even from the subfloor. The interested reader should consult the relevant data tables of this volume as well as one of the many good books on architectural acoustics for the many designs presently used.

Of additional benefit to the sound barrier properties of a floor is the fact that if there is a space below there is probably some kind of ceiling also. Consequently, a floor should not be considered alone but as a floor-ceiling system. Well designed floor-ceiling systems can significantly improve the acoustic environment by reducing impact sound generation, increasing the sound absorption, and attenuating the airborne sound that passes through the floor.

OPEN PLAN OFFICE TREATMENT

In response to the growing popularity of open plan office architecture, a growing number of manufacturers are producing a variety of decorative wall treatments and freestanding landscape screens to divide a large office area into smaller work areas. Speech privacy bewteen work areas is a major concern of such treatments. The landscape screens provide sound absorption and act as a freestanding barrier to noise.

Such screens are generally constructed of an absorbent core held in a wood or metal frame and covered with fabric. The units may be attached together at their ends to enclose or delineate areas. They may have an open area at the bottom or they may extend to the floor, although the units which extend to the floor are more effective barriers. Since the screens are obviously sold as a preformed unit and the size of the specimen will affect the absorption, the measured absorption is reported directly in sabins per unit and is usually not reduced to a coefficient. Transmission of sound through the screens is described by normal transmission loss values. To reduce transmission, some screens contain an impermeable septum in the core.

Sound may still diffract over the tops of the screens as discussed in the section of freestanding barriers, and reflections off the ceiling may travel from one side of a screen to the other. For this reason, most open plan office designs incorporate a combination of landscape screens and sound absorbent ceilings. Electronic noise masking systems may also be employed to diminish the intelligibility of speech diffracting over the tops of the screens.

The Public Buildings Service of the Government Services Administration has published a test method to quantify the acoustic privacy of open plan office systems (PBS-C.2 "Test Method for the Sufficient Verification of Speech Privacy Potential Based on Objective Measurements"). This method defines interzone attenuation as the difference in decibels, at a given frequency, between the sound pressure level on one side of a screen and the level on the other side. Measurements are taken 0.914 m (3 ft) from a sound source on one side and at specified points on the other side. The distance between the source and the measuring point is called the interzone distance. Functional Interzone Attenuation at each frequency is defined as the average of individual interzone attenuation values over a specified range of interzone distances, typically 2.743 to 3.657 m (9 to 12 ft) from the source (the screen is usually 1.828 m (6 ft) from the source). The averages are "functional" because they represent interzone distances typical of actual office layouts.

The functional interzone attenuation in each one-third octave band between 400 Hz and 2000 Hz (representative of speech frequencies) are compared to the STC contours within the same frequency range and a single number descriptor is derived in a manner similar to the STC except that the allowable deficiencies are cut

in half (4 at any one frequency and 16 total). This descriptor is called the NIC'. An open-plan office layout with an NIC' equal to or exceeding 20 is considered to provide adequate privacy between areas. Both screens and ceilings may be evaluated by this method by using them in conjunction with a standard-ized ceiling or screen, respectively.

PIPING, DUCTS, MUFFLERS AND SILENCERS

INSERTION LOSS

The tests previously described do not apply to such items as ducts, mufflers, pipe lagging, etc. The measurement procedure for these is simply to measure the noise radiating from some pipe or duct work, and then apply (insert) the specimen and measure the sound pressure levels again. The difference in sound pressure levels is due to the insertion of the device under test and is called the "insertion loss". This is a before-and-after type measurement as opposed to the simultaneous measurement on two sides of a partition for noise reduction and transmission loss. The concept of insertion loss may also apply to enclosures as was illustrated in example 13.

PIPE LAGGING

The covering of a pipe or duct with some sound barrier material is normally referred to as "lagging". Lagging amounts to wrapping the pipe with a flexible sound barrier material in such a way that no seams exist to permit an acoustic leak. This is accomplished by overlapping the barrier material at the places where one piece ends and another begins, also overlapping the two ends of each piece at the point where they wrap back on each other. These seams should then be secured with duct tape so that the barrier remains properly in place.

To realize the full benefit of the lagging, the barrier must not touch the pipe it is covering. Any direct connection between the lagging and the pipe will cause the lagging to vibrate as well, and reduce its effectiveness as a sound barrier. This incidently also holds for any enclosure around a noise source. The lagging can be effectively "floated" away from the pipe wall by first wrapping the pipe with a layer of foam, fiberglass, or other porous material that acts both as a vibration isolator, and sound absorber, and even increases the transmission loss in the higher frequencies. The outer layer of barrier material can be made of any limp impermeable membrane such as thin sheet metal, asphalted paper, rubber, lead loaded vinyl, lead sheet, etc. The heavier and limper the better, just as with any barrier application.

The means of determining how much reduction in sound level can be achieved by such treatment is a little more difficult to determine than for a wall or enclosure because of the different types of acoustical data that are encountered. Some items that are useful as lagging materials such as leaded vinyl may also be useful as a hanging curtain or as a plug to close some opening. Consequently, the manufacturer of these items may have them tested for transmission loss in the usual way between two reverberation rooms. This provides a good measure of the sound barrier capability of the material, but requires that one knows the sound pressure level very close to the pipe along its length and the absorption in the surrounding space. Some manufacturers actually mount their material on a piece of test pipe and determine the noise reduction of the covering by measuring the sound pressure level inside the pipe and in the space outside the lagging. To use these data requires that the sound pressure level inside the pipe, the sound pressure level produced by the pipe vibrations, and the absorption in the surrounding space be known.

Insertion loss measurements are made with a test pipe in a reverberation room with a noise source of some kind inside the pipe. Measurements are made in the room with only the bare pipe and again after the pipe is lagged. Insertion loss data are the most meaningful and easiest to use.

DUCTING

Sound may propagate through the ductwork which often connects spaces which would otherwise be sound isolated from each other. In particular, the noise of a fan or blower can travel great distances along the duct work and be heard in many areas of a building.

Figure 24 illustrates interconnection through ducts. The fan in room A produces vibrations which enter room B through the floor and it produces noise which may enter room B through the air diffuser or by vibration of the duct walls. The noise may travel to all other rooms through the duct. The men talking in room C produce noise in room B. Noise from the shop D may travel through the ducts to rooms B, C and E.

Figure 24. Interconnections between noise sources, paths, and receivers.

Figure 25 shows the use of flexible couplings between ducts and blower and between ducts and a noise attenuation package, as well as the use of vibrationisolating hangers. Figure 26 shows the noise sources in a simple duct system with the spectra of the sources and the attenuation of a lined duct, an attenuation package, a bend, and the end reflection losses.

A very good description of the propagation of sound as related to ductwork can be found in the "ASHRAE 1973 Systems Handbook". The following discussion presents some of the pertinent information taken from Chapter 35 of the book.

Normally occurring features of a duct system such as bends and abrupt changes in cross section can provide sound attenuations without the need for special silencing components. Elbows and bends, because they block the line-of-sight transmission of the waves, produce attenuations at the higher frequencies as shown in Table 15.

Figure 25. Uses of flexible couplings in ducts. (a) Canvas or flexible molded rubber and fabric sleeves serve as vibration breaks between fan and connecting ductwork. (b) Canvas or molded rubber connectors between ductwork and high-attenuation devices such as aircoustat package sound attenuators prevent short-circuiting of noise through duct walls. Vibration-isolating hangers should be used where objectionable amounts of noise may short-circuit through supports and building structure.

Diameter or dimensions, (inch)	Octave band center frequency, Hz							
	63	125	250	500	1000	2000	4000	8000
5-10	0	0	0	0	1	2	3	3
11-20	0	0	0	1	2	3	3	3
21-40	0	0	1	2	3	3	3	3
41-80	0	1	2	3	3	3	3	3

Table 15. Approximate attenuation in dB of round elbows.

Figure 26. Noise sources and attenuation in a simple duct system. The sources are the fan and the grille. Attenuation is provided by a package attenuation unit, a lined duct, a bend, and by reflection of lowfrequency waves backward at the end of the duct.

When a duct abruptly changes its cross section, as when it empties into a room, a portion of the wave will be reflected back down the duct because of a mismatch of acoustic impedance at the boundary of the two regions. Table 16 illustrates this. Note that the attenuation is best at the frequencies where the wavelength is much larger than the lateral dimension of the duct.

Duct diameter, (inch)	Octave band center frequency, Hz						
	63	125	250	500	1000	2000	
5	17	12	8	4	1	0	_
10	12	8	4	1	0	0	
20	8	4	1	0	0	0	
40	4	1	0	0	0	0	
80	1	0	0	0	0	0	

Table 16. Duct end reflection loss in dB.

Applies to ducts terminating flush with wall or ceiling and several duct diameters from other room surfaces. If closer to other surfaces, use entry for next larger duct. No loss for frequencies above 2000 Hz.

The following points should be considered when lining a duct with absorptive material.

- 1. For absorption of frequencies below 500 Hz, the material should be at least 5.08 cm (2 inches) thick. Thin materials, particularly when mounted on hard surfaces, will absorb only the high frequencies.
- 2. Increased absorption at frequencies below 700 Hz may be obtained by using a perforated facing in which the area of the perforation is from 3 to 10 percent of the surface area. Such facings, however, decrease the absorption at high frequencies.
- 3. Any air space behind the material has considerable effect. Absorption coefficients should be based on the particular mounting method intended.

The dependence of absorption NRC on thickness is shown in Figure 27. This figure shows the range of typical NRC for any given thickness. The frequency dependence varies as with any absorbing material on the type and spacing of the pores, any covering such as mylar, perforated metal, etc. Again the specific product and thickness should be selected on the basis of the full range of frequency data and not just on NRC. If the entire duct cannot be lined, some improvement may be gained by lining two duct widths before and after bends and the last five duct widths before an outlet.

Figure 27. Dependence of noise reduction coefficient of duct lines on thickness.

Although the exact mathematics of sound attenuations in a lined duct is rather complicated, theoretically the following empirical relation can be used to estimate the sound attenuation if the proper limitations on its use are observed.

Attenuation (dB) = 12.6 1
$$\frac{P}{S} \alpha^{1.4}$$
 (54)

where l = length of lined duct in feet; p = perimeter of the duct inside the lining, inches; S = cross-sectional area of the duct inside the lining, square inches; and α = absorption coefficient of the lining (frequency dependent). Some limitations on the use of equation (54) are:

- 1. smallest side of the duct should be between 15.24 and 45.72 cm (6 and 18 inches);
- 2. duct width to height ratio should be less than 2;
- 3. the equation should not be used where airflow velocities are greater than 1219 m/min (4000 ft/min); and
- 4. line of sight propagation of the higher frequencies is not accounted for by this equation. (In a straight 3.048 cm (12 inch) duct the attenuation in the 8000 Hz octave band will be only about 10 dB for any lining length over 0.914 m (3 ft). The attenuation in the next lower octave band, 4000 Hz, will be about midway between 10 dB and the value calculated from equation (54). The frequency above which the 10 dB limit applies is inversely proportional to the shortest dimension of the duct.)

Some actual measurements have indicated that the sound level drops much faster than predicted by equation (54) for the first 1.524 m (5 ft) of the duct. After that the rate of sound level dropoff is much slower than predicted by equation (54). This is mainly due to flanking transmissions where the sound enters the duct wall and is transmitted along the wall itself. This flanking appears to be the limiting factor in any instance where the predicted sound attenuation exceeds 2 dB/ft. To reduce this flanking it is therefore recommended that flexible vibration couplings be inserted in the ductwork for every 25 dB of lining attenuation required in any frequency band.

If additional attenuation is still required then the attenuation can be increased by increasing the absorbing surface in the lined duct as shown, for example, in Figure 28. Another means of reducing the noise in a duct is by using a sound absorption plenum, shown in Figure 29, which is sometimes the most economical arrangement.

Figure 28. Increase of absorbing surface in lined ducts.

Figure 29. Sound absorbing plenum.

The attenuation provided by such a plenum can be determined by the empirical expression

Attenuation (dB) = 10 log
$$\left[\frac{1}{S_{e}\left(\frac{\cos\theta}{2\pi d^{2}} + \frac{1-\alpha}{\alpha S_{w}}\right)}\right]$$
 (55)

where

 α = absorption coefficient of the lining (frequency dependent)

 $S_e = plenum exit area$ $S_w = plenum wall area$

- d = distance between entrance and exit
- θ = the angle of incidence at the exit, i.e., the angle d makes with the normal to the exit opening (deg)

English or metric units may be used, as long as they are consistent.

EXAMPLE 14: As an example of the attenuation a plenum can provide, suppose we build a box 3048 m (10 ft) on a side which attaches to a 0.6096 m (2 ft) square duct in the manner shown in Figure 29. Now line the plenum with a sound absorbing liner such as foam or fiberglass, which has an absorption coefficient in the 1000 Hz octave band of 0.6. What attenuation may we expect in the 1000 Hz band from this plenum?

SOLUTION: For the 1000 Hz band,

$$\alpha = 0.6$$

$$S_{e} = 4 \text{ ft}^{2}$$

$$S_{w} = 6 \times (10^{2}) - 4 = 596 \text{ sq ft}$$

$$d = \sqrt{8^{2} + 10^{2}} = 12.8 \text{ ft}$$

$$\theta = \tan^{-1}(8/10) = 38.7 \text{ deg}$$

Attenuation (dB) = 10 log $\left[\frac{1}{4\left(\frac{\cos 38.7}{2\pi(12.8)^{2}} + \frac{1-0.6}{0.6 \times 596}\right)}\right] = 21.2 \text{ dB}$

This result is fairly accurate as the predictions obtained with equation (55) normally are within a few decibels for frequencies where the wavelength is less than the plenum dimensions (in this case the wavelength is just over a foot). For the lower frequencies this equation can be conservative by 5 to 10 dB since the abrupt change in the duct dimensions acts to reflect these longer wavelengths.

It may be necessary to purchase a prepackaged silencer, which can be installed as part of the ductwork, and acoustically treated grills where the ducts terminate in rooms. The attenuation of these devices as with airflow silencing application is dependent on the flow rate, the pressure drop, and the noise frequency content, etc. Specific data for each application should be obtained directly from the manufacturer of these items.

Another concern in duct noise is with sound that propagates through the duct wall, into and out of the duct. As the primary concern in this case is keeping the sound from getting out of the duct, it should be remembered that ducts make good acoustical connections between rooms. One does not want to have sound enter the duct where it passes through a noisy room to be transmitted to another room, especially if a great deal of time, money, and effort have been expended to reduce the noise (e.g., from fans, blowers, etc.) by installing plenums or silencers. In either case if barrier treatment is applied on the outside of the ductwork or the piping it should reduce the transmission of sound through the walls.

MUFFLERS AND SILENCERS

A muffler or silencer is a section of pipe or duct which has been designed to reduce the transmission of sound along its length while allowing free flow of gas. Noisy gas flow through a duct consists of alternating pressure waves superimposed on a steady flow, analogous to an alternating current superimposed on a direct current in an electrical transmission line. Continuing this analogy, a muffler serves as a low-pass filter, removing or attenuating the alternating component while passing the steady component.

The performance of mufflers may be described in several ways. Insertion loss is defined as the difference in decibels between the sound pressure measured at a point before and after the muffler is placed between the source and the measurement point. Transmission loss is defined as 10 times the logarithm of the ratio of the sound power entering the muffler to the sound power transmitted through the muffler. Noise reduction is the difference between sound levels measured at the input of a muffler and its output. Attenuation is the decrease in sound power between two points in a system. It is usually determined by measuring the decrease in sound pressure per unit length of a duct or pipe. In practical terms, insertion loss is generally regarded as the most useful descriptor of performance and the most convenient to measure.

Mufflers are generally classified into three types: reactive, dissipative, and dispersive. Reactive mufflers consist of chambers, resonators, and finite sections of pipe which work to create a mismatch of acoustic impedance between the inlet and outlet of the muffler. Upon meeting a change in acoustic impedance, a portion of the energy in the sound wave is reflected, either to travel back to the source or to be reflected back and forth within the muffler. If the impedance relationships are correct- there will also be some amount of destructive interference with the oncoming wave, canceling out the pressure variations. The simplest kind of reactive muffler is the expansion chamber, where the duct opens into a large volume, creating an abrupt change in cross-sectional area at each end of the volume (Figure 30).

A mathematical analysis of the reflection and expansion of sound waves as they pass through the chamber leads to a theoretical expression for the transmission loss through such a muffler:

TL = 10 log
$$\left[1 + \frac{1}{4} \left(m - \frac{1}{m}\right)^2 \sin^2 k\ell\right]$$
 (56)

where

 $m = \frac{\text{cross-sectional area of chamber}}{\text{cross-sectional area of duct}}$ k = wave number = $2\pi/\lambda$ λ = wavelength of the sound ℓ = length of expansion chamber

It can be seen from this theoretical relationship that the transmission loss of a muffler is a maximum at those frequencies where the length of the muffler is an odd multiple of a quarter-wavelength; $\lambda/4$, $3\lambda/4$, etc.

Figure 30. Schematic diagram of an expansion chamber

Figure 31 illustrates curves of TL versus the parameter $k\ell$ for various values of the area ratio m. The performance of expansion chamber mufflers is not affected by steady flow through it, at least for reasonable gas velocities. At very high speeds, noise from turbulence in the flow itself may make the muffler ineffective. Side-branch resonators work in a manner similar to expansion chambers. Openings in a through pipe lead to a chamber to the side of the main flow. The chamber and the openings form a Helmholtz resonator which attenuates noise at the frequency the resonator is tuned to.

EXAMPLE 15: It is desired to reduce the sound power output of a compressor by 10 dB. Design an expansion chamber for the exhaust which will accomplish this. The predominate frequency of the exhaust noise is 250 Hz, the exhaust port has a diameter of 7.62 cm (3 inches), and the temperature of the exhaust is 175° F.

SOLUTION: At this elevated temperature, the speed of sound and hence the wavelength at 250 Hz is significantly different from its value at room temperature: from equation (36)

Figure 31. Transmission loss of expansion chamber of length ℓ and $S_2/S_1 = m$.

$$\lambda = \frac{c}{f} = \frac{1236}{250} = 4.94 \text{ ft}$$
$$k = \frac{2\pi}{\lambda} = 1.27$$

Figure 31 indicates that a chamber area to pipe area of m = 7 will be sufficient to produce a transmission loss of 10 dB. Substituting these values into equation (56) allows us to solve for the length of the expansion chamber (note that the argument of the sine is in radians).

$$10 = 10 \log \left[1 + \frac{1}{4}(7 - \frac{1}{7})^{2} \sin^{2} 1.27\ell\right]$$

 $\ell = 0.839 \text{ ft}$

About 25.4 cm (10 inches). Assuming the expansion chamber is to be cylindrical the ratio of the areas of chamber to pipe is equal to the ratio of the diameters squared.

$$m = D^2/d^2$$

7 = D^2/9
D = 7.9 inches

A cylindrical expansion chamber 20.06 cm (7.9 inches) in diameter and 25.4 cm (10 inches) long will provide a TL of 10 dB in this case.

By observing that the abscissa of Figure 31 is proportional to frequency, one may see the major drawback to reactive mufflers--the attenuation they provide is only effective over a narrow frequency range. Since exhaust noise is often broadband, simple expansion chambers of the type illustrated in Figure 30 are rarely used. Most manufacturers of reactive mufflers produce units which contain a combination of differently tuned expansion chambers in series or parallel, with and without side-branch resonators. Some common examples are shown in Figure 32.

Figure 32. Expansion chamber mufflers.

Dissipative silencers employ a sound absorbing material to attenuate the sound waves. Fiberglass and stranded metal are common materials for this purpose. The incident sound energy is partially converted to heat by causing motion in the fibers during its passage through the material. The simplest form of dissipative silencers incorporate parallel baffles running lengthwise of a fibrous material often covered with plastic or perforated sheet metal to protect the fibers and prevent them from entering the airstream. The acoustical performance depends on the thickness, spacing, and length of the baffles as well as the absorption coefficients of the material.

Decreasing the thickness of each baffle and the parallel spacing between them, and increasing the length of the baffles will increase the performance of the system, particularly at frequencies above 500 Hz. Additional noise attenuation may be achieved by staggering sets of parallel baffles, thereby blocking lineof-sight transmission of the sound waves down the duct. Commercially manufactured parallel baffle units are often produced in modular form enabling them to be stacked and combined by the user to fit any size or performance requirements. A commonly encountered form of parallel baffle is the tubular silencer. In this configuration, the baffle has the form of a slug or cylinder of absorbing material, often protected by plastic or perforated metal, suspended along the axis of a circular outer shell. The inner surface of the shell may also be lined with acoustic material. The performance of these units is similar to rectangular parallel baffle silencers-good high frequency attenuation with somewhat lesser performance at lower frequencies. Figures 33 and 34 illustrate some typical parallel and tubular baffle silencers.

Figure 33. Parallel baffle silencer.

Figure 34. Tubular baffle silencer.

Dispersive mufflers are pressure reducing devices that fit downstream of an orifice or a constriction in a piping system. They act to drop the gas pressure, hence reducing the velocity, and to straighten the flow, reducing the turbulence. Gas velocity and turbulence are prime causes of aerodynamically induced noise. They may be used to reduce noise from control valves, outlet nozzles, blow-off lines, and in ducting.

Aerodynamic noise tends to be relatively broad band in nature, the spectrum rolling off slightly on either side of a frequency peak. This peak may be approximated by the relationship

$$f_{max} = SV/d$$

(57)

where

S = Strouhal number (= 0.2, approximately constant)
V = flow velocity
d = exit diameter

It can be shown that the sound power radiated by a gas jet is proportional to the eighth power of the jet speed. Such a strong dependence means that even a small reduction in velocity can effect substantial reductions in noise levels.

Dispersive silencers usually have the form of a slotted or perforated metal cage or a covering of porous material around the exit of an air line. The velocity of the jet is reduced by these devices by making the path of jet to the ambient atmosphere more complicated.

The muffler designs most effective over a broad range of frequencies are generally the combination designs. Designs employing a combination of elements enable use of the advantages of each type. Since reactive silencers are usually most effective over a narrow range of frequencies, such a device will often be lined with acoustical materials to broaden the absorption characteristics as well as flow straighteners to reduce turbulence. Likewise, since a parallel baffle silencer is most effective at higher frequencies, it might be combined with a series of reactive elements tuned to lower frequencies to provide broad band attenuation. Commercial silencers are readily available in a wide variety of types and sizes. Although applications can vary, reactive silencers are considered best for reciprocating exhausts or other pulsing gas flows; dissipative silencers are useful in large air handling ducts and flues; and dispersive silencers find most use in high speed, high pressure systems.

The pressure drop through a silencer can often be a critical factor in the selection process. All silencers create a line pressure drop to some degree. Care must be taken to choose a unit which will not materially affect the performance of the system it is attached to. Many manufacturers produce silencers with standard, medium, and low pressure drop characteristics. Also several silencers may often be installed in parallel to reduce pressure drop while retaining silencing performance. Dispersive-type silencers tend to introduce the most extreme pressure drop while straight-through dissipative units cause little pressure drop.

The performance of many silencers is proportional to the gas flow rate through them and to the size of the piping in the system. A thorough understanding of the operational characteristics of the problem system is necessary before a wise choice of silencer can be made. Most important is knowledge of the frequency spectrum of the noise. The goal is to choose a silencer whose attenuation curve most nearly matches the spectrum of the noise source while meeting other design parameters such as pressure drop, construction adequate for the operating climate, mountability, and cost.

107

VIBRATION

An understanding of mechanical vibration is essential to noise control since all sound begins as a vibration of something. Noise radiating from vibrating machines can reach excessive levels, especially if the machine has large, thin panels. A more common problem is the coupling of vibration to structural elements of the building such as floors, walls, and piping. This kind of vibration problem can be effectively reduced by the proper use of isolation or damping treatment. While the emphasis of this document is on noise control through modification of the sound path, a short discussion of basic vibration control will aid in a better understanding of noise control modifications to the source.

The simplest vibrating system is the undamped single degree of freedom system. In its most elementary form, it consists of a mass which is displaced and a spring which restores the displacement, such as a vibrating machine on a single isolator mount. The term single degree of freedom indicates that the system can only move along one dimension, i.e., up and down. While consideration of such a simple system moves us quite some distance from real world vibrating systems, the basic principles behind its behavior also govern the much more complicated systems normally encountered.

When the system is given an initial motion, it will vibrate at its natural frequency, that frequency which causes the change of the kinetic energy of mass into potential energy in the spring at the most efficient rate. The natural frequency is strictly a function of the mass and stiffness of the system. Also a function of mass and stiffness is the static deflection, the amount the spring deforms when the mass is applied. The natural frequency may most easily be predicted by the relationship

$$f_n = \frac{3.13}{\sqrt{d}} Hz$$
(57a)

where d = static deflection in inches, or

$$f_n = \frac{4.98}{\sqrt{d}} Hz$$
(57b)

where d = static deflection in centimeters.

Figure 35 shows a chart of natural frequency versus static deflection. When the system is excited by a time-varying force (as in an out-of-balance machine), it will vibrate at the frequency of the force.

The effectiveness of the isolation provided by the spring can be characterized

by the transmissibility (TR); the ratio of the force transmitted through the spring to the exciting force due to the mass. The transmissibility of a simple spring-mass system is given theoretically by

$$TR = \frac{1}{(f/f_n)^2 - 1}$$
(58)

where f = forcing frequency

 f_n = natural frequency

Figure 35. Natural frequency of a single degree of freedom vibrating system as a function of static deflection,

This relationship is illustrated by the solid curve in Figure 36. Note that the curve goes, theoretically at least, to infinity when the forcing frequency is equal to the natural frequency of the system. This indicates that the transmitted force becomes infinite at this point. In actual use, the presence of a property called damping limits the response of the natural frequency, but it is still an operating frequency to be avoided.

Damping is an element of vibrating systems analogous to absorption in noise control — it dissipates the energy of the system. All materials have some amount of internal damping, and specific damping elements may be added to a vibrating system. Damping produces the broken lines in Figure 36, lowering the response at resonance.

Figure 36. Response of a single degree of freedom vibration system with various damping factors.

From the definition of transmissibility, it is apparent that when TR is greater than one, the forces transmitted will be magnified. A glance at Figure 36 will show that no isolation is possible unless the ratio of forcing frequency to natural frequency is greater than the square root of two. Consequently, the basic approach to vibration isolation is to lower the natural frequency of the system as much as possible. The lower the natural frequency is relative to the forcing frequency, the more isolation is theoretically realizable. The natural frequency is lowered by increasing the static deflection, i.e., by making the springs softer or by increasing the mass, or both.

It is interesting to note from Figure 36 that the addition of damping to a system actually decreases the isolation at a given frequency ratio. Damping tends to stiffen the system and allow easier transmission of forces. In a vibration isolation scheme, damping is primarily useful in smoothing out the peak at resonance. Since an isolated machine operates above its natural frequency, it must pass through resonance as it is turned on or off. The presence of damping in the isolators prevents excessive vibration levels at this point.

A more common use of damping is on vibrating machines or structures which have large thin panels. These panels can shake like a drumhead, radiating considerable acoustic energy. Viscoelastic materials with high internal damping may be applied to panels to substantially reduce the vibration levels and hence reduce the radiated noise. The damping properties of materials may be characterized in many ways. Two of the more common are the material loss factor (η) and the decay rate.

The loss factor is a dimensionless ratio of the amount of energy lost in each vibratory cycle to total energy stored in the material. It may be considered analogous to the absorption coefficient of acoustical materials. The loss factor generally varies with both frequency and temperature, and can range from 1×10^{-4} in a material such as steel, with poor damping, to as high as 0.5 in especially formulated viscoelastic materials.

The decay rate is analogous to a reverberation time measurement. The damping material is applied to a loosely supported steel plate. The plate is made to vibrate by a magnetic exciter and the vibration level is monitored by a microphone in the near field. When the excitation is removed, the damping rate is measured in decibels per second. The more effective damping materials cause the vibration to decay at a faster rate.

VIBRATION ISOLATORS

Anything which has resiliency may be used for vibration isolation. Steel springs are perhaps most common, especially for large heavy machinery. Rubber and other elastomeric materials with metal support housings are commercially available in a wide range of models and applications. Care must be taken that the deflection of the vibrating source on its isolators does not become so great that the stability of the source is affected. For small sources or less serious vibrations where small static deflections are indicated, pads of flexible material such as neoprene, cork, felt, etc., which fit under the entire base of the source present the most economical solutions. When large deflections are needed, pneumatic mounts resembling innertubes are available which lower the natural frequency without requiring excessive deflection.

In piping and ducting in which there is some fluid flowing, vibrations from the pump, blower, or fan may transmit far from the source. It is recommended that flexible pipe connections be inserted every so often in the pipe to prevent the passage of the pipe wall vibration to the next section of pipe. Prevention of such vibration paths, or short circuits, can be very helpful in reducing the amount of attenuation required in the succeeding section of piping.

Piping connected to vibrating machinery such as a compressor should be isolated by flexible couplings, or isolation hangers as shown in Figure 37. The use of additional mass to further reduce vibrations is also shown. The compressor itself is mounted on vibration isolators. Where this is insufficient, the floor itself should be isolated from adjacent building structures as shown in Figure 38. Other isolation may also be used for offices adjacent to production areas.

Figure 37. Vibration isolation of compressor piping

Figure 38. Vibration break in building structure to reduce transmission of vibrations.

VIBRATION DAMPING

The application of damping material to large panels can substantially reduce vibration-induced radiated noise. Polymer plastic materials are widely used today, although the older asphalt-based mastic materials are also common. The materials are typically available either as sheets which may be applied to panels with adhesive (some have adhesive backing) or as compounds intended for trowel or spray application. The thicknesses required are usually about 1.5240 mm (0.0625 inch) and rarely over 3,048 mm (0,125 inch), It is rarely necessary to cover the entire surface of a panel with damping material. Usually, a few strategically placed sheets on a panel will reduce the vibration levels sufficiently. The proper location of the sheets may be determined by trial-and-error or by extensive modal analysis. Modal analysis, the determination of the vibration geometry of a unit, is a complicated procedure best left to experts. Since the viscoelastic materials commonly appearing in dampers may change their characteristics radically at different frequencies and temperatures, it is essential to obtain knowledge of the frequency and temperature conditions associated with a specific problem before choosing a damping material. The choice boils down to selecting the material which provides the maximum loss factor or decay rate at the frequency and temperature of interest. The predominant vibration frequency of a panel may best be measured with accelerometers feeding through an octave or one-third octave filter, but useful data can be obtained by placing a microphone or sound level meter near to the surface of the panel while it is vibrating.

Constrained-layer damping materials can be very useful. These are typically sandwich panels consisting of a layer of damping material between two sheets of metal. Constraining the damping material in this manner places different and more efficient strain patterns in the material than simply affixing it to the outside of panel. These constructions form and work much like normal sheet metal, and may be considered as replacements for more common sheet material in particularly severe problems. Alternately, an existing panel may be made into a constrained-layer type by applying a layer of damping compound and adhering or bolting an outer layer of sheet metal over it.

BIBLIOGRAPHY

BOOKS ON ACOUSTICS AND NOISE CONTROL

American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). Guide and Data Book, Systems Chapter 35, Sound and Vibration (1973) Beranek, L. L. Noise and Vibration Control McGraw-Hill, New York (1971) Beranek, L. L. Noise Reduction McGraw-Hill, New York (1960) Beranek, L. L. Acoustics McGraw-Hill, New York (1957) Beranek, L. L. Acoustic Measurements McGraw-Hill, New York (1949) Berendt, R. D. et al. Quieting: A Practical Guide to Noise Control National Bureau of Standards, Washington, DC (1976) Berendt, R. D., Winzer, G. E. and Burroughs, C. B. A Guide to Airborne, Impact, and Structure-Borne Noise Control in Multifamily Housing prepared by National Bureau of Standards for Federal Housing Administration, U.S. Govt. Printing Office, Washington, DC (1967) Berendt, R. D. and Winzer, G. E. Sound Insulation of Wall, Floor, and Door Constructions National Bureau of Standards Monograph 77 (Nov 1964) Bolt, R. H., Lukasik, S. J., Nolle, A. W. and Frost, A. D. Handbook of Acoustic Noise Control WADC Technical Report 52-204 Vol. 1. USAF Wright Air Development Center, OH (Dec 1952) Bolt, R. H., Lukasik, S. J., Nolle, A. W. and Frost, A. D. Handbook of Acoustic Noise Control WADC Technical Report 52-204 Vol. 1, Supplement 1. USAF Wright Air Development Center, OH (1955) Broch, J. T. The Application of the Bruel and Kjaer Measuring Systems to Acoustic Noise Measurements Bruel and Kjaer Instruments (Jan 1971) Bruel, P. V. Sound Insulation and Room Acoustics Chapman and Hall Ltd, London (1951) Cheremisinoff, P. N. and Cheremisinoff, P. Industrial Noise Control Handbook Air Arbor Science, Ann Arbor, MI (1977) Close, P. D. Sound Control and Thermal Insulation of Buildings Reinhold Publishing Corp, New York (1966) Cremer, L., Heckl, M. and Ungar, E. E. Structure-Borne Sound Springer-Verlag, New York (1973) Crocker, M. J. (ed.) Reduction of Machinery Noise (revised edition) Purdue Univ. West Lafavette, IN (1976) Crocker, M. J. and Price, A. J. Noise and Noise Control CRC Press, Cleveland, OH (1975)

Egan. Concepts in Architectural Acoustics McGraw-Hill, New York Faulkner, L. L. (ed.) Handbook of Industrial Noise Control Industrial Press, New York (1976) Grundy, N. A. et al. Practical Building Acoustics Halstead Press, New York (1976) Harris, C. M. (ed.) Dictionary of Architecture and Construction McGraw-Hill, New York (1975) Harris, C. M. Handbook on Noise Control McGraw-Hill, New York (1957) Harris, R. W. and Ledwidge, T. J. Introduction to Noise Analysis Academic Press, New York (1974) Hunter. Acoustics Prentice-Hall, Englewood Cliffs, NJ (1962) Industrial Noise Control Manual, DHEW Publication (NIOSH) 75-183, U.S. Government Printing Office Industrial Noise Public Health Service Bulletin 1572, U.S. Government Printing Office (1967) Ingerslev. Acoustics in Modern Building Practice Architectural Press, London (1952) Kinsey, B. Y. Environmental Technologies in Architecture Prentice-Hall (1965) Kinsler, L. E. and Frey, A. R. Fundamentals of Acoustics (second edition) Wiley (1962) Knudsen, V. O. Architectural Acoustics Wiley, London (1947) Kryter, K. D. Effects of Noise on Man Academic Press, New York (1970) Kuttruff, H. Room Acoustics Halstead Press, New York (1974) Meyer, H. B. and Goodfriend, L. S. Acoustics for the Architect Reinhold, New York (1957) Miller, R. K. Handbook of Industrial Noise Management Fairmont Press, Atlanta, GA (1976) NBS Sound Section Staff. Sound Insulation of Wall and Floor Constructions Building Materials and Structures Report 144, National Bureau of Standards (Feb 1955) Northwood, T. D. (ed.) Architectural Acoustics Dowden, Hutchinson, and Ross, Stroudsburg, PA (1977) Olsen, H. F. Acoustical Engineering D. Van Nostrand, New Jersey (1957) Parkin, P. H. and Humphreys, H. R. Acoustics, Noise and Buildings F. A. Praeger Publishers, New York (1958) Parkin, P. H., Purkis, H. J. and Scholes, W. E. Field Measurements of Sound Insulation Between Dwellings Her Majesty's Stationery Office, London (1960) Peterson, A.P.G. and Gross, E. E. Jr. Handbook of Noise Measurement General Radio Company (1972) Petrusewicz, S. A. and Longmore, D. K. (ed.) Noise and Vibration Control for Industrialists American Elsevier, New York (1974)

Purkis, H. J. Building Physics: Acoustics Pergammon Press (1966)

Putnam, A. A. <u>Combustion Driven Oscillations in Industry</u> American Elsevier Publishing, New York (1971)

Rettinger, M. <u>Acoustics</u>, <u>Room Design and Noise Control</u> Chemical Publishing Company, New York (1968)

Richardson, E. G. (ed.) <u>Technical Aspects of Sound</u> Vol. 1, Elsevier Publishing Company, New York (1953)

Sabine, H. J. et al. <u>Acoustical and Thermal Performance of Exterior Residen-</u> <u>tial Walls and Windows</u> National Bureau of Standards, Building Science Series 77, Washington, DC (1975)

Sabine, H. J. Less Noise, Better Hearing The Celotex Corporation

Schaudinischky, L. H. <u>Sound, Man, and Building</u> Applied Science, Barking, England (1976)

Smith. Acoustics Elsevier, Amsterdam, New York

Stevens and Bates <u>Acoustics and Vibrational Physics</u> Edward Arnold Ltd, London (1966)

Thumann, A. and Miller, R. K. <u>Secrets of Noise Control</u> Fairmont Press, Atlanta, GA (1974)

Webb, J. D. (ed.) Noise Control in Industry Halstead Press, New York (1976)

Woods, R. I. (ed.) <u>Noise Control in Mechanical Services</u> Halstead Press, New York (1977)

Yerges, L. F. <u>Sound, Noise and Vibration Control</u> Van Nostrand Reinhold, New York (1969)

PERIODICALS (MATERIALS)

Wood

Godshall, W. D. and Davis, J. H. "Acoustical Absorption Properties of Wood-Base Panel Materials" Forest Products Journal 104, p 8 (1969)

Heebink, T. B. and Grantham, J. B. "Field/Laboratory STC Ratings of Wood-Framed Partitions" <u>S/V Sound and Vibration</u> 5(10), pp 12-16 (Oct 1971)

Fabric

"Acoustical Drapery" J. Acoust. Soc. Amer. 47(4), pp 971-972 (1970)

Kingsbury, H. F. and Wallace, W. J. "Acoustic Absorption Characteristics of People" <u>S/V Sound and Vibration</u> 2(12), pp 15-16 (Dec 1968)

Lebedeva, I. A. and Nesterov, V. S. "Acoustical Parameters of a Lightweight Perforated Membrane" Soviet Physics-Acoustics 10(3), pp 269-275 (1964)

Felt

Tyzzer, F. G. and Hardy, H. C. "The Properties of Felt in the Reduction of Noise and Vibration" J. Acoust. Soc. Amer. 19(5), pp 872-877 (Sept 1947)

Utley, W. A. et al. "The Use of Absorbent Material in Double-Leaf Wall Constructions" <u>J. Sound and Vib. 9(1)</u>, pp 90-96 (Jan 1969)

Foam

"Acoustical Foams for Sound Absorption Applications" <u>S/V Sound and Vibration</u> <u>11</u>(7), pp 12-16 (July 1970)

"Effect of Surface Films on Acoustical Foam Performance" <u>S/V Sound and Vibra-</u> tion 8(7), pp 24-29 (July 1974)

Gardinier, R. E., et al. <u>"Acoustical Foams for Sound Absorption Applications"</u> S/V Sound and Vibration 4(7) pp 12-16 (July 1970)

"S/V Observer; Noise Control in the F-111" S/V Sound and Vibration 2(8), p 4 (Aug 1968)

Concrete

Kihlman, T. "Sound Transmission in Building Structures of Concrete" <u>J. Sound</u> and_Vib. 11(4), pp 435-455 (April 1970)

Ward, F. L. and Randall, K. E. "Investigation of Sound Isolation of Concrete Slab Floors" J. Sound and Vib. 3(2), pp 205-215 (March 1966)

Kohasi, Y. "Sound Absorption Characteristics of a Hollow Concrete Block With a Slotted Face" Report in the 6th Intl Congr on Acoustics, Tokyo, Vol. III Paper E-3-5 (1968)

Lead

Holub, R. "Controlling Punch Press Noise with Lead/Vinyl Curtains" NOISEXPO, <u>Natl Noise and Vibration Control Conf Proceedings</u>, pp 58-66 (Apr 30-May 2, 1975)

"Lead-Vinyl Fabric Shuts out Noise" <u>Materials in Design Engineering 64(4)</u>, pp 27-29 (Oct 1966)

Martin, E. D. "Specifying Lead for Noise Control" <u>Constr Specifier 28(7)</u>, pp 34-41 (July 1975)

Meier, A. V. "Application of Lead for Sound Insulating Partitions" <u>S/V Sound</u> and Vibration 1(5), pp 14-19 (May 1967)

Meteer, C. L. "Application of Lead-Vinyl Noise Barriers in Transportation Equipment" SAE Paper 720222, pp 1-7

Ostergaard, P. B., Cardinell, R. L. and Goodfriend, L. S. "Transmission Loss of Leaded Building Materials" <u>J. Acoust. Soc. Amer.</u> <u>35</u>(6), pp 837-843 (June 1963)

Powell, M. "Uses of Lead Sheet in Noise Reduction" <u>Noise Control Vib Insul</u> 6(11), pp 357-361 (Nov 1975)

Schmidt, B. R. "Lead Sheet Sound Barrier: A Valuable in Noise Control" Constr Specifier 30(10), pp 44-48, 50-53 (Oct 1977)

Schmidt, B. R. "Use Lead to Block Noise" <u>Hydrocarbon Process</u> 55(10), pp 112-115 (Oct 1976)

Metal Fiber

Cimerol, J. J., Erickson, A. R. and Fisher, J. I. <u>Investigation of the Proper-</u> ties of Fiber Metal Acoustical Materials, Report NASA-CR-6643, 177 pp (Sept 1968)

Karplus, H. B. et al. "Noise and Vibration Control with Fiber Metallurgy" J. Soc. Japan 10(5) pp 209-217 (Nov 1964)

Composites

Braunisch, Von H. "Vibration Damping by Three-Layered Sandwich Systems" Acustica 22(5), pp 136-144 (1969)

Burns, J. J. "The Use of Asphalt-Mastics for Acoustical Damping" <u>S/V Sound and</u> <u>Vibration 6(10)</u>, pp 4, 6, 8 (Oct 1972)

Chen, Y. N. "Influence of the Space in the Acoustic Sandwich Sheet 'Rockwool, Foil, Perforated Plate' on the Sound Absorption Capacity" 7th Intl. Congr. on Acoustics, Budapest, p 241 (1971)

Cook, R. L. and Lovejoy, R. E. "Acoustic Properties of Epoxy-Fiberglass and Epoxy-Fiberglass-Pb Plates in the Frequency Range 100-700 KHz" <u>JASA</u> <u>57</u>, pp 1554-1558 (1975)

Emme, J. H. "Composite Materials for Noise and Vibration Control" <u>S/V Sound</u> and <u>Vibration</u> 4(7), pp 17-21 (July 1970)

Ganesan, N. "Composites for Noise Control" SAE preprint 730339, (April 3-6, 1973)

Higgs, R. W., Eriksson, L. J. "Acoustic Attenuation in Composite Materials" J. Acoust. Soc. Amer. 50(1), pp 306-309 (July 1971)

Miska, K. H. "Consider Composites to Cut and Control Cacophony" <u>Material Engr</u> 82(3), pp 82-84 (Sept 1975)

Profit, J. "Composites for Noise Control Sound-Deadened Steel" <u>Sheet Metal</u> <u>Indus 51(1)</u>, pp 44-50 (Jan 1974)

Toyoda, H. and Hayek, S. "Attenuation of Acoustic Waves by Composite Plates" J. Sound and Vib. pp 103-133 (Jan 1971)

General

Arctander, C. "Sound Absorptive Materials for Aircraft Noise Control" <u>Sound</u> and Vibration 5(8), pp 12-16 (Aug 1971)

Borisov, L. A. "Experimental Investigation of the Effectiveness of Sound-Absorbent Coatings" Soviet Phys Acoust 11(4), pp 366-372 (1966)

Brown, S. M. "Development and Testing of Vibration-Damping Materials" <u>S/V Sound</u> and Vibration 11(4), pp 28-33 (April 1977)

Callaway, D. B. and Ramer, L. G. "The Use of Perforated Facings in Designing Low Frequency Resonant Absorbers" <u>J. Acoust. Soc. Amer.</u> <u>24</u>(3), pp 309-312 (May 1952)

Cheremisinoff, P. N. "Noise Control Materials" Pollution Engr 7(11), pp 22-28 (Nov 1975) Duggar, B. C. "Special Sound Absorptive Materials in Noise Control" Amer. Industrial Hygiene Assn. J. 20, pp 447-452 (Dec 1959) Dunn, R. L. (ed.) "Specifications Chart for Noise Control Products" Plant Engr (Barrington, I11.) 26(25), pp 82-89 (Dec 14, 1972) "Grass Makes a Good Sound Absorber" S/V Sound and Vibration 3(5), p 10 (May 1969) "How to Select Acoustical Materials" Acoustical Materials Assn. 7, pp 187-188 (July 1965) Hyer, W. G. "Acoustic Materials" RD Research Development 28(2), pp 74-76, 78-79 (Feb 1977) Mangiante, G. A. "Active Sound Absorption" JASA 61(6), pp 1516-1523 (June 1977) Morris, A. J. "Flexible Noise Control Materials and Fire Safety" NOISEXPO, Natl Noise and Vib Control Conf Proceedings, pp 49-53 (April 30-May 2, 1975) Myles, M. M., Ver, I. L. and Henderson, H. R. "Effects of Outdoor Exposure on Sound Absorption Materials" S/V Sound Vib 11(6), pp 24-27 (June 1977) Pancholy, M. and Bindal, V. N. "Transmission Loss Studies in Granular Materials" Acustica 17(1), pp 51-55 (1966) Purcell, W. E. "Materials for Noise and Vibration Control" S/V Sound and Vibration 11(7), pp 4-29 (July 1977) Purcell, W. E. "Materials for Noise and Vibration Control" S/V Sound and Vibration 10(7), pp 6-33 (July 1976) Scott, H. L. "The Performance of Sound Absorbers in a Radial Diffuser Configuration" J. Sound and Vib. 19(4), pp 445-451 (Dec 1971) Stahovic, S. J. and Stone, E. W. "Use of Absorber/Barrier Materials for Noise Control Enclosures" S/V Sound and Vibration 10(9), pp 20-23 (Sept 1976) Wakefield, B. D. "Materials That Build a Box Around Noise" Iron Age 214(3), pp 53-54, 58-59 (July 15, 1974) Wald, B. "Right Materials for Wrong Noises" Design Engr 19(6), pp 40-41 (June 1973) Wald, B. "Choosing the Right Material for Noise Control" ASME Paper 73-DE-40, 4 pp (April 9-12, 1973) Waller, R. A. "The Performance and Economics of Noise and Vibration Reducing Materials in the Construction Industry" J. Sound and Vib. 8(2), pp 177-185 (Sept 1968) Wirt, L. S. "Sound-Absorptive Materials to Meet Special Requirements" JASA 57, pp 1·26-143 (1975) Yerges, L. F. "The Use of Acoustical Absorbents in Industrial Noise Control" S/V Sound and Vibration 6(9), pp 31-32 (Sept 1972)

PERIODICALS (SYSTEMS)

Houses and Buildings

"A Pitch for the Noiseless Home" Business Week, pp 87-88 (May 1971)

Bender, E. K. "Noise Source Impact in Construction/Buildings/Homes" <u>S/V Sound</u> amd Vibration 7(5), pp 33-41 (May 1973)

Bishop, D. E. "Reduction of Aircraft Noise Measured in Several Schools, Motel, and Residential Rooms" J. Acoust. Soc. Amer. <u>39</u>(5), pp 907-913 (1966)

Eijk, J.V.D. "The New Dutch Code on Noise Control and Sound Insulation in Dwelllings and Its Background" J. Sound and Vib. 3(1), pp 7-19 (Jan 1966)

"Engineering Outline 113; Sound Insulation in Buildings" Anon. Engineering 205(5314), pp 307-310 (1968)

Fricke, F. R. "Protection of Buildings Against Traffice Noise" <u>Noise Control</u> Eng 8(1), pp 27-32 (Jan-Feb 1977)

Hardy, A. D. and Lewis, P. T. "Sound Insulation Standards for Buildings Adjacent to Urban Motorways" J. Sound and Vib. 15(1), pp 53-59 (Mar 1971)

Ingemansson, S.P.N. "The Calculation of Sound Insulation in a Building" Reports of the 6th Intl Congr on Acoustics, Vol. III, Paper E-4-7, Tokyo (1968)

Kihlman, T. "Transmission of Structure-Borne Sound in Buildings" Natl Swedish Inst of Building Research, Box 27163, Stockholm 27, Report 9-1967

Kumar, S. "Analysis of Structural-Vibration Related Noise" <u>S/V Sound and</u> Vibration 11(4), pp 22-26 (April 1977)

Pretlove, A. J. "The Transmission of Outdoor Noises into Buildings" <u>Environmen-</u> tal Engineers 43, pp 7-10 (March 1970)

Quirt, J. D. "Insulating Buildings from Aircraft Noise" <u>JASA</u> <u>63</u>(3), p 823 (June 1978)

Sato, H. "On the Outdoor Noise Insulation of Dwellings Particularly on the Results of Field Measurements" Reports of the 6th Intl Congr on Acoustics, Vol. IV, Paper F-5-16, Tokyo (1968)

Siekman, W., Jr. "Architectural Acoustics (A Problem of Measurement)" <u>Frontier</u> 3, pp 16-21 (Autumn 1966)

Walker, K. W. "Estimating Indoor Sound Levels Produced by Outdoor Sources" S/V Sound and Vibration 9(6), pp 20-22 (June 1975)

Waller, R. A. "Building on Springs" <u>S/V Sound and Vibration</u> 9(7), pp 20-26 (July 1975)

Young, J. R. "Attenuation of Aircraft Noise by Wood-Sided and Brick-Veneered Frame Houses" Stanford Research Inst., NASA CR-1637 Rooms

(June 1978)

"Acoustical Drapery" J. Acoust. Soc. Amer. 47(4), pp 971-972 (1970) Banks, D. "Noise Reduction by the Use of Suspended Noise Absorbers and Acoustical Treatment" Noise Control Vibration Insul 6(10), pp 305-308 (Oct 1975) Barron, M. "Growth and Decay of Sound Intensity in Room According to Some Formulae of Geometric Acoustics Theory" J. Sound and Vib. 27(2), pp 183-196 (March 1973) Beranek, L. L. "Acoustics and the Concert Hall" JASA 57, pp 1258-1262 (1975) Berman, J. M. "Behavior of Sound in a Bounded Space" JASA 57, pp 1275-1291 (1975)Benasutti, R. "Noise Control in School Auditoriums, Gymnasiums and Multipurpose Rooms" JASA 57, p 517(A) (1975) Bhandari, P. S., Balachandran, C. G. and Krishnan, P. V. "Functional Sound Absorbers and Noise Reduction in a Cafeteria" Indian J. Technol. 3(11), pp 345-350 (1965) Eijk, J. van Den "The New Dutch Code on Noise Control and Sound Insulation in Dwellings and its Background" J. Sound and Vib. 3(1), pp 7-19 (Jan 1966) Harris, C. M. "Acoustical Design of the John F. Kennedy Center for the Performing Arts" J. Acoust. Soc. Amer. 51(4), pp 1113-1126 (April 1972) Joyce, W. B. "Sabine's Reverberation Time and Ergodic Auditoriums" JASA 58, pp 643-655 (1975) Kihlman, T. "Sound Radiation into a Rectangular Room. Applications to Airborne Sound Transmission in Buildings" Acustica 18(1), pp 11-20 (1967) Killery, P. "Acoustic Screens for Office Landscaping" Noise Control Vibration Insul 6(12), pp 370-371 (1975) Plenge, G. Lehmann, P., Wehschureck, R. and Wilkens, H. "New Methods in Architectural Investigations to Evaluate the Acoustic Qualities of Concert Halls" JASA 57, pp 1292-1299 (1975) Simpson, M. A. and Bishop, D. E. "Measurement of Classroom Noise Environments" JASA 57, pp 514(A) (1975) Warnock, A.C.C. "Studies of Acoustical Parameters in Open Plan Offices" JASA 63(3), p 832 (June 1978) Yerges, L. F. "Open-Plan School Revisited" Noise Control Engr 6(1), pp 22-29 (Jan-Feb 1976) Walls and Partitions Banuls-Terol, V. "Composed Airborne Sound Isolation of Partitions under Suspended Ceilings" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper E-4-5 (1968) Brown, S. U., Niedzielski, J. and Spalding, G. R. "Effect of Sound Absorptic Facings on Partition Airborne Sound Transmission Loss" JASA 63(6), p 1851

122

Donato, R. J. "Sound Transmission Through a Double-Leaf Wall" J. Acous. Soc. Amer. 51(3), pp 807-815 (March 1972) Ellwood, E. "The Anatomy of a Wall" S/V Sound and Vibration 6(6), pp 14-18 (June 1972) Fader, B. "Mass-Air Mass Resonance Monograph" S/V Sound and Vibration 4(8), p 25 (Aug 1970) Flynn, D. R. and Pallet, D. S. "Simplified Methods for Calculating the Transmission Loss of Two-Element Partitions" JASA 58, pp 1341-1342 (1975) Harris, C. H. "Reduction of Noise by Walls or Fences" Handbook of Noise Control, p 7, New York (1975) Heebink, T. B. "Sound Reduction of Windows in Exterior Wood-Framed Walls" S/V Sound and Vibration 9(6), pp 14-18 (June 1975) Heebink, T. B. and Grantham, J. B. "Field/Laboratory STC Ratings of Wood-Framed Partitions" S/V Sound and Vibration 5(10), pp 12-16 (Oct 1971) Hudson, R. R. and Mulholland, K. A. "The Measurement of High Transmission Loss (The Brick Wall Experiment)" Acustica 24(5), pp 251-261 (May 1971) Ingemanson, S. "Sound Insulation of Light Walls" 5th Intl Congr on Acoustics Proceedings, Liege (Sept 1965) Jones, R. E. "How to Accurately Predict the Sound Insulation of Partitions" S/V Sound and Vibration 10(6), pp 14-25 (June 1976) Jones, R. E. "Effects of Flanking and Test Environment on Lab-Field Correlations of Airborne Sound Insulation" JASA 57, pp 1138-1149 (1975) Junger, M. C. "Helmholtz Resonators in Load-Bearing Walls" Noise Control Engr 4(1), pp 17-25 (Jan-Feb 1975) Kihlman, T. "Sound Transmission in Building Structures of Concrete" J. Sound and Vib. 11(4), pp 435-445 (April 1970) Koval, L. R. "Effect of Airflow Panel Curvature, and Internal Pressurization on Field Incidence Transmission Loss" JASA 59, pp 1379-1385 (1976) Lindahl, R. "The Use of Insulation Board in Walls of Gypsum and Wood Studs to Improve Airborne Sound Insulation" 5th Intl Congr on Acoustics Proceedings, Liege (Sept 1965) Lord, P. "Improved Sound Insulation of Double Leaf Partitions Using Absorbent Cavity Linings" Insulation 10(3), pp 122-123 (1966) Nilsson, A. C. "Reduction Index and Boundary Conditions for a Wall Between Two Rectangular Rooms. Part I: Theoretical Results" Acustica 26(1), pp 1-8 (Jan 1972) Nilsson, A. C. "Reduction Index and Boundary Conditions for a Wall Between Two Rectangular Rooms. Part II: Experimental Results" Acustica 26(1), pp 19-23 (1972) Rettinger, M. "Acoustic, Room Design and Noise Control" New York, p 386 (1968) Siekman, W. "STC's and Room Dividers" Construction Specifier pp 51-54 (Dec 1971) Tseo, G. G. "Estimating the Noise Reduction of Wall Structures of Enclosures" J. Acoust. Soc. Amer. 52(6), Part 1, pp 1573-1578 (Dec 1972)

Utley, W. A., Cummings, A. and Parbrook, H. D. "The Use of Absorbent Material in Double-Leaf Wall Constructions" J. Sound and Vib. 9(1), pp 90-96 (Jan 1969) Velizhanina, K. A. et al. "Impedance Investigation of Sound Absorbing Systems in Oblique Sound Incidence" Soviet Physics-Acoustics 17(2), pp 193-197 (Oct/ Dec 1971) Von Meier, A. "Sound Insulation of Stiff Lightweight Partitions" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper E-4-4 (1968) Zaborov, V. I. "Normalization of the Acoustic Reduction in Buildings" Soviet Physics-Acoustics 16(1), pp 43-45 (July/Sept 1970) Panels Alers, G. A., Thomson, R. B., Thomson, D. O. and Tennison, M. A. "Dispersion of Flexural Elastic Waves in Honeycomb Sandwich Panels" JASA 57, pp 1119-1127 (1975)Awaya, K. and Miyazaki, Y. "A New Theory on the Edge Effect of Sound Absorbing Panels" 7th Intl Congr on Acoustics Proceedings 4, Budapest, p 245 (1971) Brilloin, J. "Sound Absorption by Structures with Perforated Panels" S/V Sound and Vibration 2(7), pp 6-22 (July 1968) Dym, C. L., Ventres, C. S. and Lang, M. A. "Transmission of Sound Through Sandwich Panels: A Reconsideration" <u>JASA</u> <u>59</u>, pp 364-367 (1976) Fang, G. T. "Influence of Internal and Boundary Damping on Response of Panels to Random Excitations" Reports of the 6th Intl Congr of Acoustics, Tokyo, Vol. IV, Paper F-4-9 (1968) Ford, R. D., Lord, P. and Walker, A. W. "Sound Transmission Through Sandwich Constructions" J. Sound and Vib. 5(1), pp 9-21 (Jan 1967) "Functional Panels Control Noise" S/V Sound and Vibration 3(7), pp 4, 6 (July 1969) Kuga, S. "On the Sound Transmission Loss of Sandwich Panels" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper E-4-6 (1968) Lang, M. A. and Dym, C. L. "Optimal Acoustic Design of Sandwich Panels" JASA 57, pp 1481-1487 (1975) Nordby, K. S. "Measurement and Evaluation of the Insertion Loss of Panels" Noise Control Engr 10(1), pp 22-32 (Jan-Feb 1978) Floors Allen, D. L. and Swallow, J. C. "Annoying Floor Vibrations-Diagnosis and Therapy" S/V Sound and Vibration 9(3), pp 12-17 (March 1975) Budds, D. E. "Engineered Floating Floor for Airborne and Impact Noise Control" Insulation (Lond) 18(2), pp 17-18 (Mar-Apr 1974) Choudhury, N.K.D. and Bhandari, P. S. "Impact Noise Rating of Resilient Floors" Acustica 26(3), pp 135-140 (March 1972) Choudhury, N.K.D. "Impact Noise Transmission Through Floors" Indian J. Technol.

124

6(7), pp 213-216 (1968)

Eijk, J.V.D. and Bitter, C. "Neighbour's Footsteps" 7th Intl Congr on Acoustics, Budapest (1971) Ford, E. "Floating Floor-A Versatile Noise Control Technique" Noise Control Vibration Reduction 5(4), pp 145-148 (June 1974) Heebink, T. B. "Upgrading the Sound-Insulating Efficiency of Wood Joist Floor-Ceiling Systems" S/V Sound and Vibration 11(6), pp 16-18 (June 1977) Lindblad, S. "Impact Sound Characteristics of Resilient Floor Coverings with Linear and Nonlinear Dissipative Compliance" 7th Intl Congr on Acoustics, Budapest (1971) Nelson, F. C. "Subjective Rating of Building Floor Vibration" S/V Sound and Vibration 8(10), pp 34-37 (Oct 1974) Northwood, T. D. and Clark, D. M. "Frequency Considerations in the Subjective Assessment of Sound Insulation" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper E-3-8 (1968) Svensson, J. "Impact Noise Reduction Predicted from Samples on Flooring Materials" 7th Intl Congr on Acoustics, Budapest, p 60 (1971) Ungar, E. E. "Design of Floated Slabs to Avoid Stiffness Effect of Entrapped Air" Noise Control Engr 5(1), pp 12-16 (July-Aug 1975) Ver, I. L. "Relation Between the Normalized Impact Sound Level and Sound Transmission Loss" J. Acoust. Soc. Amer. 50(6), pp 1414-1417 (Dec 1971) Ver, I. L. "Impact Noise Isolation of Composite Floors" J. Acoust. Soc. Amer. 50(4), pp 1043-1050 (Oct 1971) Ward, F. L. and Randadall, K. E. "Investigation of the Sound Isolation of Concrete Slab Floors" J. Sound and Vib. 3(2), pp 205-215 (March 1966) Wegscheid, E. L. and Smith, W. F. "Structure-Borne Noise of Concrete Floors on Grade" S/V Sound and Vibration 10(11), pp 30-36 (Nov 1976) Zaborov, V. I. "On the Transmission of Impact Noise Through Single-Layer Floors" Akust. ZH 14(1), pp 127-128 (1968) Zaborov, V. I. et al. "Reduction of Impact Noise by Flooring Materials" Soviet Physics-Acoustics 12(3), pp 263-265 (1967) Ceilings "Acoustical Ceilings" Constr. Spec. Inst. Monograph 09M531 (June 1970) Matsui, M. et al. "Sound Absorption Characteristics on an Acoustic Ceramic

Tile" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper E-3-7 (1968)

Windows

Yerges, L. F. "Windows, The Weak Link" <u>S/V Sound and Vibration 5(6)</u>, pp 19-21 (June 1971)

Doors

Larsen, J. "Transmission Loss of Double Door Constructions" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper P-0-14 (1968) Fences and Other Noise Barriers Ayeor, D. E. and Marks, L. E. "Perception of Noise Transmitted Through Barriers" JASA 59, pp 397-400 (1976) DeJons, R. and Stusnick, E. "Scale Model Studies of the Effects of Wind on Acoustic Barrier Performance" Noise Control Engr 6(3), pp 101-109 (May-June 1976) Fujiwara, K., Ando, Y. and Maekawa, Z. "Noise Control by Barriers-2. Noise Reduction by an Absorptive Barrier" Applied Acoust 10(3), pp 167-179 (July 1977) Harris, C. H. "Reduction of Noise by Walls or Fences" Handbook of Noise Control, New York (1957) Jones, P. E. and Royle, P. "Use of Plasterboard and Wood Wool in Industrial Noise Control" Noise Control Vibration Insul 8(4), pp 117-119 (April 1977) Maekawa, Z. "Shielding Highway Noise" Noise Control Engr 9(1), pp 38-44 (July-Aug 1977) Rettinger, M. "Fences and Other Noise Barriers", New York (1968) Scholes, W. E., Salvidge, A. C. and Sargent, J. W. "Field Performance of a Noise Barrier" J. Sound and Vib. 16(4), pp 627-642 (June 1971) Stahovic, S. J. and Stone, E. W. "Use of Absorber/Barrier Materials for Noise Control Enclosures" S/V Sound and Vibration 10(9), pp 20-23 (Sept 1976) NOISE CONTROL General Plant Noise Barger, J. E. "Noise Path Diagnostics in Dispersive Structural Systems Using Crosscorrelation Analysis" Noise Control Eng 6(3), pp 122-129 (May-June 1976) Bijl, L. A. "Noise Emission of Forced-Draft Refinery Furnaces" Noise Control Eng 5(3), pp 116-123 (Nov-Dec 1975) Bonvallet, G. L. "Noise Sources in Modern Industry" Noise Control 1(3), pp 30-33 (May 1955) Bonvallet, G. L. "The Measurement of Industrial Noise" Amer. Indus. Hygiene Assoc. Quart., Technical Guide Number 5 (Sept 1952) Buecher, J. P. and Thompson, E. P. "Noise Control Techniques for Existing Power Plants" IEEE Trans Power Appar Syst PAS-96(3), pp 1021-1026 (May-June 1977) Burkhardt, T. H., Roley, D. G. and O'Brien, M. "Investigating Isolated Noise Sources in Canneries" ASAE Pao Annual Meeting 67th, Okla State Univ, Stillwater, (June 23-26 1974) and Winter Meeting, Chicago, IL (Dec 10-13 1974) Paper 74-6002, 18 pp

Copley, L. G. "Engineering Approaches to Plant Noise Control" ASME Paper 73-DET-88 for Meeting (Sept 9-12 1973) 16 pp

DeBiase, J. L. "Criteria and Design Specifications for Plant Noise Control" S/V Sound and Vibration 6(9), pp 26-30 (Sept 1972)

Dennison, E. E. Maier, R. E., McGaughey, J. W. and Ying, S. P. "Environmental Noise-Study for a Nuclear Power Plant" <u>Noise Control Eng 10(1)</u> pp 33-39, (Jan-Feb 1978)

DiRita, R. A. and George, D. L. "How to Estimate Sound Levels in Industrial Environments" S/V Sound and Vibration 6(9), pp 33-36 (Sept 1972)

Dove, R. A. "Basic Principles of Noise Control" <u>Plast Rubber Int 3(1)</u>, pp 23-26 (Jan-Feb 1978)

Dym, C. L. "Sources of Industrial Impact/Impulsive Noise" <u>Noise Control Eng</u> 8(2), pp 81-89 (Mar-Apr 1977)

Edwards, R. G., Hauser, W. P., Moiseev, N. A., Broderson, A. B. and Green, W. W. "Effectiveness of Earplugs as Worn in the Workplace" <u>S/V Sound and</u> <u>Vibration</u> <u>12</u>(1), pp 12-20, 22 (Jan 1978)

Giardino, D. A. and Seiler, J. P. "Noise Dosimeters-Past, Present and Future" S/V Sound and Vibration 10(10), pp 26-30 (Oct 1976)

Goodfriend, L. S. "Noise Control Program for a Large Power Station" <u>IEEE</u> Trans Power Appar Syst PAS-96(3), pp 1036-1038 (May-June 1977)

Grabkowski, S. E., Sirota, S. R., Jenkins, S. III and Buechler, J. P. "Controlling Noise in a Large Steam Turbine-Generator Room" <u>IEEE Trans Power</u> Appar Syst PAS-97(2), pp 504-512 (Mar-Apr 1978)

Hall, W. E. and Saporita, R. "Design to Minimize Olefin-Plant Noise" Oil Gas J 76(14), pp 84, 86, 91-92 (Apr 3 1978)

Headon, D. "Coping with Noise Problems in the Gas Industry" <u>Gas Eng Manage</u> <u>14(9)</u>, pp 263-270 (Sept 1974)

Heitner, I. "How to Estimate Plant Noises" <u>Hydrocarbon Processing</u> <u>47</u>(12), pp 67-74 (Dec 1968)

Hersh, A. S., Kessler, R. A. and Seebold, J. G. "Refinery Auxiliary Stack Redesign to Eliminate Fluid Induced Resonance Tone" <u>Noise Control Eng</u> 4(1), pp 30-33 (Jan-Feb 1975)

Hillier, A. J. "Noise and Its Control in the Textile Industry" Noise Control Cent Ltd Text Mon, pp 52, 54 (June 1976)

Hoover, R. M. "Study of Community Noise Complaints Caused by Electric Power Plant Operations" Noise Control Eng 6(2), pp 74-80 (Mar-Apr 1976)

Hosey, A. D., et al. "Industrial Noise: A Guide to its Evaluation and Control" U.S. Dept. of Health, Education and Welfare, Publication 1572

Jacks, R. L. "Sound Suppression" <u>Chemical Process Industries</u>, pp 127-134 (Feb 1961)

. .

Jenson, J. E., Evenson, H. A., Lord, H. W. and Hendrickson, A. A. "Industry-University Approach to Forging Noise Control" <u>S/V Sound and Vibration</u> 8(11), pp 32-37 (Nov 1974)

Karplus, H. B. and Bonvallet, G. L. "A Noise Survey of Manufacturing Industries" Amer. Indus. Hygiene Assoc. Quart. 14(4), pp 235-263 (Dec 1953) Kessler, F. M. "Acoustic Impact Assessment Procedure Used in Industrial Plant-Site Selection" Noise Control Eng 6(1), pp 35-39 (Jan-Feb 1976) Lowery, R. L. "Noise Control: A Common-Sense Approach" Mech Eng 95(6), pp 26-31 (June 1973) Lyon, R. H., Cann, R. G. and Carpenter, G. D. "Application of Acoustical Modeling to Plant Noise Problems" S/V Sound and Vibration 10(5), pp 14-18 (May 1976) Mazoh, M. "Practical Noise Control Methods" Warner & Swasey Res Center, SME Tech Pap Ser MM for Annual Conf - Book 2, Cleveland, OH, (Apr 26-29 1976) Paper MM76-291, 13 pp Meteer, C. L. "Stop Plant Noise... At the Source or Along the Way" Ferro Corp, Norwalk, CT, Automation (Cleve) 21(7), pp 58-61 (July 1974) Miska, K. H. "Where to Turn for Help in Solving Noise Pollution Problems" Mater Eng 87(3), pp 19-23 (Mar 1978) "Noise Control of Metal Stamping Operations" S/V Sound and Vibration 5(11), pp 41-45 (Nov 1971) Padilla, M. "Ear Plug Performance in Industrial Field Conditions" S/V Sound and Vibration 10(5), pp 33-36 (May 1976) Putnam, A. A. "Combustion Noise in Industrial Burners" Noise Control Eng 7(1), pp 24-34 (Jul-Aug 1976) Seebold, J. G. "Source of Refinery Noise Key to Control Technique" Oil Gas J. 74(26), pp 146-148 (June 28 1976) Seebold, J. G. "Process Plant Noise Control at the Design Engineering Stage" ASME J. Engr Industry, pp 779-784 (Nov 1970) "Standards and Codes" S/V Sound and Vibration 5(2), pp 4-5 (Feb 1971) Storment, J. W. and Pelton, H. K. "Practical Noise Control in a Large Manufacturing Plant" S/V Sound and Vibration 10(5), pp 22-24, 26-32 (May 1976) Tatge, R. B. "Noise Control of Gas Turbine Power Plants" S/V Sound and Vibration 7(6), pp 23-27 (June 1973) Teplitzky, A. M. "Electric Power Plant Noise Emission Controls" S/V Sound and Vibration 10(9), pp 24-30 (Sept 1976) "Typical Factory and Office Noise Problems in an Aircraft Plant" Noise Control 2(2), pp 22-25, 90 (March 1956) Tyzzer, F. G. "Reducing Industrial Noise, General Principles" Amer. Indus. Hygiene Assoc. Quart. 14(4), pp 1-22 (Dec 1953) Wang, J. S. "Induced Draft Cooling Tower Noise and Its Control" Cool Tower Inst Annual Meeting, Houston, TX (Jan 31-Feb 2 1977) Sponsored by Cool Tower Inst, Houston, TX, 1977 Paper TP 161A, 23 pp Yerges, J. R. and Morris, A. J. "Machine Enclosures Versus Personnel Shelters" S/V Sound and Vibration 9(5), pp 36-38 (May 1975)

Machinery and Equipment

Applegate, S. L. and Crocker, M. J. "Reducing the Noise of a Rotary Lawn Mower Blade" Noise Control Eng 6(1), pp 30-34 (Jan-Feb 1976)

Badgley, R. H. "Mechanical Aspects of Gear-Induced Noise in Complete Power Train Systems", ASME Paper 70-WA/DGP-1

Bailey, J. R., Daggerhart, J. A. and Stewart, N. D. "Systems Approach for Control of Punch Press Noise" NC State Univ, Raleigh, ASME Paper 75-DET-49 for Meeting (Sept 17-19 1975) 8 p

Bernhagen, J. R. "Noise Control on a Heavy-Duty Mobile Crane" Harnischfeger Corp, Milwaukee, WI, SAE Preprint 760601 for Meeting (Aug 9-12 1976) 12 pp

Bourne, J. C. "Noise Control Hood for the Davenport Automatic" <u>S/V Sound and</u> Vibration 8(11), pp 22-24 (Nov 1974)

Brammer, A. J. and Muster, D. "Noise Radiated by Internal Combustion Engines" JASA 58, pp 11-21 (1975)

Callaway, D. B. "Reducing Noise in Machines" Machine Design, pp 1-8 (Dec 1951)

Carlson, D. R. and Evans, K. W. "Noise Control in Bevel Gears" Gleason Works, Rochester, NY, SAE Preprint 770563 for Meeting (Apr 18-20 1977) 11 pp

Cashmore, D. H., and Menzies, J. E. "Sound Level Prediction for Installed Rotating Electrical Machines" Westinghouse Electric Corp, Buffalo, NY, TAPPI 57(12), pp 130-133 (Dec 1974)

Chanaud, R. C., Kong, N. and Sitterding, R. B. "Experiments on Porous Blades as a Means of Reducing Fan Noise" JASA 59, pp 564-575 (1976)

"Circular Saw Noise Control" S/V Sound and Vibration 3(7), p 6 (July 1969)

Cook, G. C. "Noise Control for Power Presses" <u>Sheet Met Ind</u> 52(11), pp 653-656 (Nov 1975)

"Cost/Effectiveness Approach to Machinery Noise Control" <u>S/V Sound and</u> <u>Vibration</u> 8(7), pp 30-32 (July 1974)

Dennisen, E. E. "Sound Power Level Measurement of Small Fans" <u>S/V Sound and</u> Vibration 10(3), pp 44-45 (Mar 1976)

Diehl, G. M. "Comparison of Calculated and Measured Sound Power Levels of Large Machinery and Small Hand Held Tools" JASA 62(51) (Dec 1977)

Fried, K. Rheinhausen, Germany "Noise Abatement of Stranding Equipment Hulak WH" <u>Wire J. 3(7)</u>, pp 37-41 (July 1970)

Halvorsen, W. G. and Bendat, J. S. "Noise Source Identification Using Coherent Output Power Spectra" S/V Sound and Vibration 9(8), pp 15, 18-24 (Aug 1975)

Hardy, H. C. and Biship, D. E. "Evaluation of Equipment Noise" <u>ASHRAE Journal</u> Section Heating, Piping & Air Conditioning, pp 137-141 (Sept 1955)

Hillier, A. J. "Loom Noise and Its Control" R. S. Allsopp & Assoc Ltd, <u>Noise</u> Control Vib Reduct 5(8), pp 312-317 (Nov 1974)

Hirschorn, M. "Noise Control for Portable Air Compressors" <u>S/V Sound and</u> Vibration 9(8), pp 12-14 (Aug 1975) Holdsworth, T. M. and Morris, R. D. "Use of Induction Motors as Vibration Generators" S/V Sound and Vibration 10(11), pp 24-28 (Nov 1976)

Holub, R. "Controlling Punch Press Noise with Lead/Vinyl Curtains" Singer Part Inc., Chicago, IL, NOISEXPO: Natl Noise and Vib Control Conf. Proc of the Tech Program, Atlanta, GA (Apr 30-May 2 1975) pp 58-61, <u>Acoust Publ. Inc.</u> Bay Village, OH (1975)

Ige, M. T. and Finner, M. F. "Reduction of the Aerodynamic Noise Generated by Crop Drying Fans" Univ of Wis. Madison, <u>Trans Am Soc Agric Eng (Gen Ed)</u> <u>17</u>(6), pp 1177-1181 (Nov-Dec 1974)

Jensen, J. W. and Visnapuu, A. "Pneumatic Rock Drill Noise can be Reduced" Noise Control Eng 4(2), pp 54-63 (Mar-Apr 1975)

Keller, A. C. "Real-Time Spectrum Analysis of Machinery Dynamics" <u>S/V Sound</u> and <u>Vibration</u> 9(4), pp 40-48 (Apr 1975)

Koss, L. L. "Punch Press Load-Radiation Characteristics" <u>Noise Control Eng</u> 8(1), pp 33-39 (Jan-Feb 1977)

Lance, H. "Noise Reductions in Motors" Am Filter Co., Pulsco Div, <u>Water Sewage</u> Works 123(2), pp 76-77 (Feb 1977)

Marraccini, L. C. "Noise Control of Strip Mine Vehicles" Mine Enforcement & Saf Adm, Pittsburgh, PA, <u>U.S. Bur of Mines Inf Circ 8686 1975</u>, for Technol Transfer Semin, Pittsburgh, PA, pp 79-85 (Jan 22 1975)

Mellin, R. C. "Selection of Minimum Noise Fans for a Given Pumping Requirement" Noise Control Eng 4(1), pp 35-45 (Jan-Feb 1975)

Miller, T. D. and Fader, B. "Industrial Noise Control \$ and Sense" <u>S/V Sound</u> and Vibration 11(9), pp 16-19 (Sept 1977)

Miller, T. D. "Industrial Noise Control: Putting it All Together" <u>Noise Control</u> Eng 9(1), pp 24-31 (Jul-Aug 1977)

Niemiec, K. "Metal Sawing Noise: Potential Noise Controls" Bolt Beranek & Newman, Inc., Light Met Age 33(9-10), pp 13-16 (Oct 1976)

Ostergaard, P. B. "Machine Tool Noise Measurements" <u>S/V Sound and Vibration</u> <u>10</u>(10), pp 22-24 (Oct 1976)

Page, J. D. "Textile Machine Noise Control" Saco-Lowell, Clemson, SC, <u>IEEE</u> <u>Trans Ind Appl IA-8(4)</u>, pp 472-476 (Jul-Aug 1972)

Patsora, A. V., Mikhailov, V. V. and Scarton, H. A. "Diagnostic Technique for Slip Ring Failure Detection" S/V Sound and Vibration 9(11), pp 36-39 (Nov 1975)

Patterson, W. N. "Quieting Portable Air Compressors" <u>Noise Control Eng</u> 5(1), pp 41-47 (Jul-Aug 1975)

Pleeck, G. "Noise Control in the Turbine Room of a Power Station" <u>Noise Control</u> Eng 8(3), pp 131-136 (May-June 1977)

Potter, S. M. and Hardy, H. C. "General Principles of Reducing Noise in Machinery" <u>Noise Control</u> 1(5), pp 43-48 (Sept 1955)

Reethof, G. "Control Valve and Regulator Noise Generation, Propagation and Reduction" Noise Control Eng 9(2), pp 74-85 (Sept-Oct 1977)

Reid, I. Y. "Some Factors in the Estimation and Measurement of Airborne Noise from Centrifugal Pumps" Weir Pumps Ltd, Glasgow, Scotland, Vib and Noise in Pump, Fan, and Compressor Install. Conf. Proc. Univ of Southampton Engl. Sept 16-18 1975 pp 183-189, Publ for Inst of Mech Eng (CP9-1975), London, Engl by Mech Eng Publ Ltd, New York, NY 1975

Sanders, G. J. and Lawrie, W. E. "Low Frequency Combustion Noise in Oilburning Equipment" <u>ASHRAE Journal, Section Heating, Piping and Air Conditioning</u> (Oct 1958)

Sanders, G. J. "Noise Reduction in Machinery" <u>Noise Control 3</u>(6), pp 29-37 (Nov 1957)

Scherr, R. C., Ostendorf, R. G. and Shuler, B. F. "Noise Reduction Techniques for Paper Converting Machinery" Procter & Gamble Co. Jackson, TN, <u>TAPPI</u> <u>56</u>(6), pp 65-68 (June 1973)

Small, D. J. and Davies, P.O.A.L. "Computerized Valve Noise Prediction System" Noise Control Eng 4(3), pp 124-128 (May-June 1975)

Sperry, W. C. and Sanders, G. J. "Quiet Blades for 18-inch Rotary Type Power Lawn Mowers" <u>Noise Control 5(3)</u>, pp 26-31 (May 1959)

Stewart, J. S. and Hart, F. D. "Control Industrial Wood Planer Noise Through Improved Cutterhead Design" Noise Control Eng 7(1), pp 4-9 (Jul-Aug 1976)

Stewart, N. D., Bailey, J. R. and Daggerhart, J. A. "Study of Parameters Influencing Punch Press Noise" <u>Noise Control Eng</u> 5(2), pp 80-86 (Sept-Oct 1975)

"Taming Noisy Feeders" Automation (Cleveland) 18(7), pp 55-56 (July 1971)

"The First Quiet Portable Compressor" <u>S/V Sound and Vibration 3(5)</u>, pp 6-8 (May 1969)

Thompson, M. P. "Noise Control Techniques for Both New and Existing Stationary Engines and Compressors" White Mot Corp, Springfield, OH, ASME Paper 74-DGP-6 for Meeting (Apr 28-May 2 1974) 11 pp

Torpey, P. J. "Noise Reduction of a 115 kw Generator Set" <u>S/V Sound and</u> Vibration 1(11), pp 16-22 (Nov 1967)

Tree, D. R. and Hamilton, J. F. "Noise Analysis of Fractional Horsepower Compressors" <u>Noise Control Eng</u> 5(3), pp 100-107 (Nov-Dec 1975)

Tree, D. R. and Uffman, W. P. "Noise Reduction of a Household Vacuum Cleaner" S/V Sound and Vibration 7(3), pp 27-30 (March 1973)

Tsao, M.C.C. and Musa, R. S. "Noise Control in Home Appliances" <u>S/V Sound and</u> Vibration 7(3), pp 31-33 (March 1973)

Wilson, R. J. "Compressor Noise Control in Applications" Tecumseh Prod Co Purdue Compressor Technol Conf, Proc, Purdue Univ, West Lafayette, IN (Jul 10-12 1974) pp 208-213

Yerges, L. F. "Noise Reduction in Metal Cutting Operations" Yerges Consult Eng, Downers Grove, IL, <u>Natl Saf News 115(5)</u>, pp 59-62 (May 1977) Piping, Ducts, and Silencers

Audette, R. R. and McCormick, R. J. "Silencers for Corrosive Applications" S/V Sound and Vibration 5(2), pp 10-11 (Feb 1971)

Baade, P. K. "Effects of Acoustic Loading on Axial Flow Fan Noise Generation" Noise Control Eng 8(1), pp 5-15 (Jan-Feb 1977)

Bartenwerfer, M., Gikadi, T. Neise, W. and Agnon, R. "Noise Reduction in Centrifugal Fans by Means of an Acoustically Lined Casing" <u>Noise Control Eng</u> <u>8(3)</u>, pp 100-107 (May-June 1977)

Beckenmeyer, R. J. and Sawdy D. T. "Analytical and Experimental Studies of Folded Cavity Duct Acoustic Liners" JASA 60, pp 5-123 (Dec 1976)

Bokor, J. "A Comparison of Some Acoustic Duct Lining Materials According to Scott's Theory" J. Sound and Vib. 14(3), pp 367-373 (Feb 1973)

Callaway, D. B., Tyzzer, F. G., and Hardy, H. C. "Techniques for Evaluation of Noise-Reducing Piping Components" <u>J. Acoust. Soc. Amer.</u> <u>24</u>(6), pp 725-730 (Nov 1952)

Callaway, D. B., Tyzzer, F. G. and Hardy, H. C. "Resonant Vibrations in a Water-Filled Piping System" J. Acoust. Soc. Amer. 23(5), pp 550-553 (Sept 1951)

Chanaud, R. C. "Basic Mechanisms of Noise Generation by Fluids" Dyna-Syst, Inc. Denver, CO, Noise and Fluids Eng, Presented at the Winter Annual Meeting of ASME, Atlanta, GA (Nov 27-Dec 2, 1977) Publ by ASME, New York, NY 1977 pp 45-55

Cheng, I., Young, J. and Crocker, M. J. "Acoustical Analysis, Testing and Design of Flow-Reversing Muffler Chambers" JASA 60, pp 1111-1118 (Dec 1976)

Cheng, I., Young, J. and Crocker, M. J. "Prediction of Transmission Loss in Mufflers by the Finite-Element Method" JASA 57, pp 144-148 (1975)

"Coping with Control-Valve Noise" Chemical Engineering, pp 149-153 (Oct 1970)

Daggerhart, J. A. and Berger, E. "Evaluation of Mufflers to Reduce Punch Press Air Exhaust Noise" <u>Noise Control Eng</u> 4(3), pp 120-123 (May-June 1975)

Davies, H. G. and Williams, J.E.F. "Aerodynamic Sound Generation in a Pipe" J. Fluid Mech 32(4), pp 765-778 (1968)

Diboll. "The Measurement and Prediction of Exhaust Frequencies in Large Internal Combustion Engines" ASME Paper 72-DGP-2

Doak, P. E. "Fundamentals of Aerodynamic Sound Theory and Flow Duct Acoustics" J. Sound and Vib. 28(3), pp 527-562 (June 1973)

Hale, M. E. and Kugler, B. A. "Acoustic Performance of Pipe Lagging Systems" Bolk Beranek & Newman, Inc. Canoga Park, CA, ASME Paper 75-WA/Pet-2 for Meeting (Nov 30-Dec 4, 1975) 8 pp

Hall, H. H. "Laboratory Evaluation of Field Measurements of the Truck Exhaust Noise" J. Acoust. Soc. Amer. 26(2), pp 216-220 (March 1954)

Hirata, Y. et al. "Influence of Airflow on the Attenuation Characteristics of Resonator Type Mufflers" <u>Acustica</u> 28(2), pp 115-120 (Feb 1973)

Johnsen, G. E. "How to Select Effective Lagging Configurations" <u>S/V Sound and</u> <u>Vibration</u> <u>11</u>(4), pp 34-35 (Apr 1977)
Kennedy, W. C. and Young, F. J. "Chart for Estimating the Efficiency of the Broadband Sound-Power Radiation by Randomly Vibrating Pipe Walls" JASA 61(5), pp 1209-1212 (June 1977) Lord, H. W., Evensen, H. A. and Stein, R. J. "Pneumatic Silencers for Exhaust Valves and Parts Ejectors" S/V Sound and Vibration 11(5), pp 26-34 (May 1977) Sanders, G. J. "Silencers: Their Design and Application" S/V Sound and Vibration 2(2), pp 6-13 (Feb 1968) Scott, H. L. "The Performance of Sound Absorbers in a Radial Diffuser Configuration" J. Sound and Vib. 19(4), pp 445-451 (Dec 1971) Scott, H. L. "Optimization of Sound Absorbers in Circular Ducts" Simon-Carves Ltd, Cheshire, England, J. Sound and Vib. 16(2), pp 189-222 (May 22 1971) Sparks, C. R. and Lindgren, D. E. "Design and Performance of High-Pressure Blowoff Silencers" ASME Paper 70-WA-PET-1 Strumpft, F. M. "Water Piping Systems and Noise Control" S/V Sound and Vibration 3(5), pp 23-25 (May 1969) Young, C. I. and Crocker, M. J. "Finite Element Acoustical Analysis of Complex Muffler Systems With and Without Wall Vibrations" Noise Control Eng 9(2), pp 86-93 (Sept-Oct 1977) Vibration Control "Aircraft Noise and Structural Vibration" S/V Sound and Vibration 12(2), pp 24-28 (Feb 1978) Allen, D. L. and Swallow, J. C. "Annoying Floor Vibrations - Diagnosis and Therapy" S/V Sound and Vibration 9(3), pp 12-17 (Mar 1975) Bannister, R. L. "Structural Models for Vibration Control" Noise Control Eng <u>4(2)</u>, pp 84-92 (Mar-Apr 1975) "Design and Application of Pneumatic Vibration-Isolators" S/V Sound and Vibration 8(8), pp 24-27 (Aug 1974) Dym, C. L. "Attenuation of Ground Vibration" S/V Sound and Vibration 10(4), pp 32-34 (Apr 1976) Harbarger, W. B. "Vibration Signature Surveillance of Axial Flow Compressors" S/V Sound and Vibration 10(3), pp 38-43 (Mar 1976) "How to Select Vibration Isolators for OEM Machinery and Equipment" S/V Sound and Vibration 8(8), pp 14-23 (Aug 1974) Jones, D.I.G. "Damping Treatments for Noise and Vibration Control" S/V Sound and Vibration 6(7), pp 25-31 (July 1972) Junger, M. C. "Effectiveness of Resilient Elements for Noise Versus Vibration Control" Cambridge Acoust Assoc, Inc., MA, ASME AMD V 1 1973 for Meeting Cincinnati, OH, pp 173-191 (Sept 1973) Lang, G. F. "Understanding Vibration Measurements" S/V Sound and Vibration 10(3), pp 26-37 (Mar 1976) Liu, T. K., Kinner, E. B. and Yegian, M. K. "Ground Vibrations" S/V Sound and Vibration 8(10), pp 26-32 (Oct 1974)

Morrow, C. T. "Noise Control Versus Shock and Vibration Engineering" <u>J. Acoust.</u> <u>Soc. Amer.</u> <u>55</u>(4), pp 695-699 (Apr 1974)

Nelson, F. C. "Subjective Rating of Building Floor Vibration" <u>S/V Sound and</u> Vibration 8(10), pp 34-37 (Oct 1974)

Russell, R. H. "New Excitation Sources Simplify Dynamic Testing of Large Structures" S/V Sound and Vibration 8(10), pp 4-10 (Oct 1974)

Turner, A. E. "Development of Visco-Elastic Damping Materials for Applications Involving Large Temperature Fluctuations" ICI Ltd., Paints Div., Hyde, Cheshire, England, Environmental Engineering (49) pp 13-16 (June 1971)

Turner, A. E. "Use of Damping Materials for Noise Reduction on Passenger Ship" Petrochemical and Polymer Lab, Cheshire, England <u>J. Sound and Vib.</u> 10(2), pp 187-197 (Sept 1969)

Community Noise and Noise Effects on Humans

"Acceptable Noise Exposures" <u>S/V Sound and Vibration</u> 1(11), pp 4, 6 (Nov 1967)

Adams, J. V. et al. "S/V Status Report: 3 Community-Noise Programs" <u>S/V Sound</u> and Vibration 7(5), pp 42-44 (May 1973)

Attenborough, K. et al. "Large-Scale Noise Surveys: An Educational Experiment" Acustica 28(5), pp 290-295 (March 1973)

Berglund, B., Burglund, J. and Linduall, T. "Scaling Loudness, Noisiness, and Annoyance of Community Noises" JASA 60, pp 1119-1125 (Dec 1976)

Bragdon, C. R. "Environmental Noise Control Programs in the United States" <u>S/V Sound and Vibration</u> <u>11</u>(12), pp 12-16 (Dec 1977)

Bragdon, C. R. "City Noise Ordinances-A Status Report" <u>S/V Sound and Vibration</u> 7(5), pp 45-48 (May 1973)

Bragdon, C. R. "Urban Planning and Noise Control" <u>S/V Sound and Vibration</u> 7(5), pp 26-32 (May 1973)

Bullen, R. "Sound Scattering in an Urban Street" <u>Noise Control Eng 9</u>(2), pp 54-59 (Sept-Oct 1977)

Caccavari, C., and Schechter, H. "Background Noise Study in Chicago" <u>Air Pollution</u> <u>Control Journal 24(3)</u> (1974)

Carlson, J. P. "Impact of Noise Control Regulations on Electric Utilities" S/V Sound and Vibration 11(9), pp 20-23 (Sept 1977)

Cohen, A., Anticaglia, J. R. and Carpenter, P. L. "Temporary Threshold Shift in Hearing From Exposure to Different Noise Spectra at Equal dBA Levels" <u>51</u>(2), pp 503-507 (Feb 1972)

Connor, W. K. "Behavior of Noise Exposure Variables in an Urban Noise Survey Sample" <u>Noise Control Eng 10(1)</u>, pp 14-21 (Jan-Feb 1978)

Donley, R. "Community Noise Regulation" <u>S/V Sound and Vibration</u> <u>3</u>(2), pp 12-21 (Feb 1969)

Fidel, S. "Nationwide Urban Noise Survey" JASA 64(1), p 198 (1978)

Finkelman, J. M. "Effects of Noise on Human Performance" <u>S/V Sound and Vibra-</u> tion 10(9), pp 26-28 (Sept 1975)

Galloway, W. J. "Assessment of the Relative Importance of Sources of Urban Noise" <u>Noise Control Eng</u> 9(2), pp 68-73 (Sept-Oct 1977)

Guinter, J. M. "Action Plan for Product Noise Reduction" <u>S/V Sound and Vibra-</u> tion <u>6(12)</u>, pp 18-22 (Dec 1972)

Hardy, H. C. "Tentative Estimate of a Hearing Damage Risk Criterion for Steady-State Noise" <u>J. Acoust. Soc. Amer. 24(6)</u>, pp 756-761 (Nov 1952)

Jones, H. H. and Cohen, A. "Noise as a Health Hazard at Work, in the Community, and in the Home" 95th Annual Meeting of the American Public Health Assoc <u>83</u>(7), pp 533-536 (July 1968)

Karplus, H. B. "Mechanism of a Correlation Theory of Hearing" from Bionics Symp. 1962, J. Acoust. Soc. Amer. 35, p 809 (1963)

LaBreche, R. M., Mendias, M. L. and Putnicki, G. J. "Inexpensive Community Noise Assessments for Medium and Small Cities" <u>S/V Sound and Vibration</u> <u>10</u>(12), pp 12-14 (Dec 1976)

McFadden, D., Russell, W. E. and Pulliam, K. A. "Monaural and Binaural Masking Patterns for a Low-Frequency Tone" <u>J. Acoust. Soc. Amer.</u> <u>51</u>(2), pp 534-543 (1972)

Mintz, F. and Tyzzer, F. G. "A Loudness Chart for Octave-Band on Complex Sounds" J. Acoust. Soc. Amer. 24(1), pp 80-82 (Jan 1952)

"New Housing and Airport Noise (A Supplement to the Site Planning Handbook)" Central Mortgage and Housing Corporation, Ottawa, KIA, OP7, Canada

Northwood, T. D. and Clark, D. M. "Frequency Considerations in the Subjective Assessment on Sound Insulation" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper E-3-8 (1968)

Rice, C. G. and Marton, A. M. "Impulse Noise Damage Risk Criteria" <u>J. Sound</u> and Vib. 28(3), pp 359-368 (June 1973)

Safeer, H. B. "Community Noise Levels-A Statistical Phenomenon" J. Sound and Vib. 26(4), pp 489-502 (Feb 1973)

Schechter, H. "Creating Noise Level Limits Using Baseline Survey Results", Proceedings NOISEXPO 1974

Schechter, H. "Statistical Methodologies for Community Noise Sampling", Proceedings NOISEXPO 1974

Schechter, H. "Economic Solutions to Noise Control Programs", Proceedings NOISEXPO 1976

Schultz, T. J. "Synthesis of Social Surveys on Noise Annoyance" <u>JASA</u> <u>64</u>(2), p 377 (1979)

Schultz, T. J. "Comments of the Paper 'Errors Due to Sampling in Community Noise Level Distributions'" <u>J. Sound and Vib. 27</u>(2), p 261 (March 1973)

Schultz, T. J. "Some Sources of Error in Community Noise Measurement" <u>S/V Sound</u> and Vibration <u>6(2)</u>, pp 18-27 (Feb 1972)

Stempler, S., Sanders, H. Watkins, H. and Boronow, E. "Development of Environmental Noise Codes for the City of New York" <u>S/V Sound and Vibration</u> <u>11</u>(12), pp 18-22 (Dec 1977)

Teplitzky, A. M. "Community Noise Emissions from Enclosed Electric Power Plants" Noise Control Eng 6(1), pp 4-9 (Jan-Feb 1976)

Thiessen, G. J. and Olson, N. "Community Noise-Surface Transportation" S/V Sound and Vibration 2(4), pp 10-16 (April 1968) Von Gierke, H. E. "Noise-How Much is Too Much?" Noise Control Eng 5(1), pp 24-34 (July-Aug 1975) Traffic Noise Brasch, J. K. "Vehicular Traffic Noise Near High Speed Highways" S/V Sound and Vibration 1(12), pp 10-27 (Dec 1967) Campbell, R. A. "A Survey of Passby Noise for Boats" S/V Sound and Vibration 3(9), pp 24-26 (Sept 1969) Chalupnik, J. D. and Harper, C. R. "Can Correlation Techniques be Used for the Measurement of Vehicle Noise?" Noise Control Eng 8(1), pp 16-23 (Jan-Feb 1977) Close, W. H. "Should There be Truck Tire Noise Regulations" S/V Sound and Vibration 9(2), pp 24-27 (Feb 1975) Commins, D. E. "Directivity of Truck Noise in the Normal Plane" JASA 57, pp 121-125 (1975) Fricke, F. R. "Protection of Buildings Against Traffic Noise" Noise Control Eng 8(1), pp 27-32 (Jan-Feb 1977) Harris, C. M. and Aitken, B. H. "Noise in Subway Cars" S/V Sound and Vibration 5(2), pp 12-14 (Feb 1971) Kugler, B. A., Commins, D. E. and Galloway, W. J. "Highway Noise-A Design Guide for Prediction and Control" Bolt Beranek & Newman, Los Angeles, CA, Natl Coop Highw Res Program Rep 174 (1976) 194 p Leasure, W. A. "Tire Noise Regulations: Technical and Economic Implications" Noise Control Eng 7(3), pp 140-147 (Nov-Dec 1976) Maekawa, Z. "Shielding Highway Noise" Noise Control Eng 9(1), pp 38-44 (July-Aug 1977) "Noise in Mass Transit Systems" SRI Journal 16(1), pp 2-7 (Sept 1967) "Objective and Subjective Measurement of Truck Noise" S/V Sound and Vibration 1(4), pp 8-13 (April 1967) Peterson, A. G. "Motor Vehicle Noise Measurement" S/V Sound and Vibration 9(4), pp 26-33 (April 1975) Roberts, J. E. and Borthwick, J. D. "Florida's Approach to Motor Vehicle Noise Control" S/V Sound and Vibration 9(12), pp 18-22 (Dec 1975) Skeiber, S. C., Mason, R. L. and Potter, R. C. "Effectiveness of Audible Warning Devices on Emergency Vehicles" S/V Sound and Vibration 12(2), pp 14-22 (Feb 1978) Spencer, R. H. "Noise Control of the Standard Light Rail Vehicle" Noise Control Eng 10(1), pp 4-13 (Jan-Feb 1978) Thompson, J. W. "Engineering Approach to Diesel Truck Noise Reduction" White Motor Corp, SAE Prepr Paper 730713 for Meeting (Aug 20-23 1973) 13 pp Wesler, J. E. "Highway Traffic Noise Prediction: A State of the Art Review" S/V Sound and Vibration 11(2), pp 12-15 (Feb 1977)

MEASUREMENT AND STANDARDS

Standards

"AGMA Standard Specification for Measurement of Lateral Vibration on High Speed Helical and Herringbone Gear Units" S/V Sound and Vibration 7(6), p 20 (June 1973) Guinter, J. M. "Action Plan for Product Noise Reduction" S/V Sound and Vibration 6(12), pp 18-22 (Dec 1972) Heebink, T. B. and Granthan, J. B. "Field/Laboratory STC Ratings of Wood-Framed Partitions" S/V Sound and Vibration 5(10), pp 12-16 (Oct 1971) Heymann, R. W. and Sachs, F. Z. "Standards for Noise Measurement" S/V Sound and Vibration 10(10), pp 14-20 (Oct 1976) Keighley, E. C. "Acceptability Criteria for Noise in Large Offices" J. Sound and Vib. 11(1), pp 83-93 (Jan 1970) Kopec, J. W. and Williams, L. D. "Laboratory Reverberation Time Measurements" Proceedings of the Technical Program (NOISEXPO) National Noise and Vibration Control Conference, Chicago (1978) Kryter, K. D. "Acoustical Society of America Policy on Noise Standards" J. Acoust. Soc. Amer. 51(3), pp 803-806 (March 1972) Lang, W. W. "Status of Noise Control Regulations in the USA" Noise Control Eng 5(3), pp 108-115 (Nov-Dec 1975) Meyer, A. F. "EPA's Implementation of the Noise Control Act of 1972" S/V Sound and Vibration 9(12), pp 10-17 (Dec 1975) Meyer, A. F. "The Need for Standards on Noise" J. Acoust. Soc. Amer. 51(3), pp 800-802 (March 1972) Norman, R. S. and Williams, L. D. "Measurement of Absorptive Properties of Landscape Screens in a 10,300 ft³ (292 m³) Reverberation Room" Proceeding of the Technical Program (NOISEXPO) National Noise and Vibration Control Conference, Chicago (1978) Pallet, D. S. and Cadoff, M. A. "National Measurement System for Acoustics" S/V Sound and Vibration 11(10), pp 20-25, 27-31 (Oct 1977) Siekman, W. "STC's and Room Dividers" Construction Specifier, pp 51-54 (Dec 1971) Thoma, F. A. "Vibration Limits for High-Speed Gear Units" S/V Sound and Vibration 7(6), p 20 (June 1973) Van Houten, J. J. "California's Noise Insulation Standards" Noise Control Eng 5(2), pp 52-59 (Sept-Oct 1975) Test Facilities Applegate, S. L. and Nelson, D. K. "Qualification of Two 180-Cubic Metre Reverberation Rooms with Microphone Traversing and Low Frequency Absorbers" Noise Control Eng 7(2), pp 105-109 (Sept-Oct 1976)

Bies, D. A. "Uses of Anechoic and Reverberant Rooms for the Investigation of Noise Sources" Noise Control Eng 7(3), pp 154-163 (Nov-Dec 1976) Blake, W. K. and Maga, L. J. "Chamber for Reverberant Acoustic Power Measurements in Air and in Water" JASA 57, pp 380-384 (1975) Duda, J. "Basic Design Considerations for Anechoic Chambers" Noise Control Eng 9(2), pp 60-67 (Sept-Oct 1977) Dykstra, R. A., Baxa, D. E. and Stein, R. J. "Semi-Anechoic Testing Rooms: Some Sound Advice" S/V Sound and Vibration 11(5), pp 35-38 (May 1977) Hirschorn, M. and Singer, E. "The Effect of Ambient Noise on Audiometric Room Selection" S/V Sound and Vibration 7(2), pp 18-22 (Feb 1973) Holmer, C. I. and Lubman, D. "Comparison of Microphone Traverse and Microphone Array for Determining Space Average Sound Pressure Level in a Reverberation Room" Noise Control Eng 7(2), pp 64-70 (Sept-Oct 1976) Ingerslev, F., Pedersen, O. J., Moller, P. K. and Kristensen, J. "New Rooms for Acoustic Measurements at the Danish Technical University" Acustica 19(4), pp 185-199 (1968) Kolmer, F. and Wagner, G. "Several Physical Conditions at Measurements in Reverberation Rooms" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Papers E-5-6 (1968) McAuliffe, D. R. "Design and Performance of a New Reverberation Room at Armor Research Foundation" J. Acoust. Soc. Amer. 29(12), pp 1270-1273 (Dec 1957) Parking, P. H. and Stacy, E. F. "The Anechoic and Reverberant Rooms at the Building Research Station" J. Sound and Vib. 19(3), pp 277-286 (Dec 1971) Schultz, T. J. "New Acoustical Test Facilities of the National Gypsum Company" J. Acoust. Soc. Amer. 45(1), pp 20-36 (Jan 1969) "Test Room for Vocoder Research" S/V Sound and Vibration 2(7), p 4 (July 1968) Tichy, J. "Effects of Source Position, Wall Absorption, and Rotating Diffuser on the Qualification of Reverberation Rooms" Noise Control Eng 7(2), pp 57-63 (Sept-Oct 1976) Testing Techniques "AGMA Standard Specification for Measurement of Lateral Vibration on High Speed Helical and Herringbone Gear Units" S/V Sound and Vibration 7(6), pp 20-22 (June 1973) Anderson, A. L. and Hampton, L. D. "Use of Tubes for Measurement of Acoustical Properties of Materials" JASA 57 530(A), (1975) Bies, D. A. and Hansen, C. H. "Impedance Tube Calibration of a Reverberant Room for the Measurement of Sound Power in Tones" JASA 59, pp 1393-1398 (1976) Bruel, P. V. "Do We Measure Damaging Noise Correctly?" Noise Control Eng 8(2), pp 52-60 (Mar-Apr 1977) Burd, A. N. "The Measurement of Sound Insulation in the Presence of Flanking Paths" J. Sound and Vib. 7(1), pp 13-26 (Jan 1968)

Chien, C. S., Waterhouse, R. and Lubman, D. "Sperical Averaging in a Diffuse Sound Field" JASA 57, pp 972-975 (1975) Chu, W. T. "Comparison of Reverberation Measurements Using Schroeder's Impulse Method and Decay Curve Averaging Method" JASA 63(5), p 1444 (June 1978) Diehl, G. M. "Sound-Power Measurements on Large Machinery Installed Indoors: Two-Surface Method" JASA 61(2), pp 449-455 (1977) Donovan, J. "Noise Measurement Techniques" ASTM Stand News 2(5), pp 17-31, 61 (May 1974) Dowell, E. H. "Reverberation Time, Absorption, and Impedance" JASA 64(1), p 181 (1978)Enochson, L. "Digital Techniques in Data Analysis" Noise Control Eng 9(3), pp 138-154 (Nov-Dec 1977) Fahy, F. J. "Technique for Measuring Sound Intensity with a Sound Level Meter" Noise Control Eng 9(3), pp 155-162 (Nov-Dec 1977) Fearn, R. W. "Some Reverberation Time Measurements in English and Spanish Churches" J. Sound and Vib. 27(1), pp 134-135 (March 1973) Francois, P. "Characteristics and Calibration of Reference Sound Sources" Noise Control Eng 9(1), pp 6-15 (July-Aug 1977) Galaitsu, A. G. and Patterson W. N. "Prediction of Noise Distribution in Various Enclosures from Free-Field Measurements" JASA 60, pp 848-856 (Dec 1976) Halvorsen, W. G. and Brown, D. L. "Impulse Technique for Structural Frequency Response Testing" S/V Sound and Vibration 11(11), pp 8-21 (Nov 1977) Heebink, T. B. "The Field Measurement of Sound Insulation" S/V Sound and Vibration 3(5), pp 18-22 (May 1969) Higginson, R. F. "A Study of Measuring Techniques for Airborne Sound Insulation in Buildings" J. Sound and Vib. 21(4), pp 405-429 (April 1972) Hruska, G. R., Magrab, E. B. and Penzes, W. B. "Environmental Effects on Microphones of Various Constructions" JASA 61(1), pp 206-210 (June 1977) Huber, W. C. and Sikora, R. "Spectrum Analyzer Simplifies Operator Controls" S/V Sound and Vibration 11(12), pp 4, 6 (Dec 1977) Huntley, R. "The Effect of Room Characteristics on Sound-Power Measurements" Noise Control 5(1), pp 59-63, 77 (Jan 1959) James, R. R. and Thompson, K. L. "Computer Assisted Acoustical Engineering Techniques" Total Environ Syst Inc. East Lansing, MI, NOISEXPO: Natl Noise and Vib Control Conf, Proc of the Tech Program, Atlanta, GA, pp 82-84 (Apr 30-May 2 1975) Jorgen, G. O. "Technical Problems in Impact Noise Testing" 5th Intl Congr on Acoustics, Liege (Sept 1965) Kamperman, G. W. and Moore, M. "Real Time Frequency Analyzers for Noise Control" Noise Control_Eng 9(3), pp 131-136 (Nov-Dec 1977) Karplus, H. B. "Environment for Measuring Noise" Noise Control 3(2), pp 19-22 (March 1957)

Kartr, T. S. and King, D. B. "Noise Control Design Using Scale Model Tests" S/V Sound and Vibration 7(1), pp 14-21 (Jan 1973)

Kasteleijn, M. L. "The Statistical Spread of Measured Airborne and Impact Sound Insulation in the Field" <u>J. Sound and Vib. 3</u>(1), pp 36-45 (Jan 1966)

Kodaras, M. J. and Hansen, R. A. "Measurement Sound-Transmission Loss in the Field" J. Acoust. Soc. Amer. <u>36</u>(3), pp 565-569 (March 1964)

Koyasu, M. "Investigations into the Precision of Measurement of Sound Absorption Coefficients in a Reverberation Room" Reports of the 6th Intl Congr on Acoustics, Tokyo, Vol. III, Paper E-5-8 (1968)

Kundert, W. R. "Sound Level Meters: The State of the Art" <u>Noise Control Eng</u> 9(3), pp 120-130 (Nov-Dec 1977)

"Laboratory Measurements of Sound Transmission Through Suspended Ceiling Systems" J. Acoust. Soc. Amer. 33(11), pp 1523-1530 (Nov 1961)

Lavender, D. C. "Interpretation of Noise Measurements" J. Sound and Vib. 15(1), pp 1-9 (March 1971)

Maling, G. C. "Guidelines for Determination of the Average Sound Power Radiated by Discrete-Frequency Sources in a Reverberation Room" <u>J. Acoust. Soc.</u> Amer. 53(4), pp 1064-1069 (April 1973)

Marraccini, L. C. and Giardino, G. A. "Predicting Sound Levels from Sound Power Data" S/V Sound and Vibration 8(11), pp 28-30 (Nov 1974)

Moreland, J. B. "Measurement of Sound Absorption in Rooms" <u>JASA</u> <u>61</u>(2), pp 476-483 (June 1977)

Powers, W. R. and Rudinoff, C. D. "Noise Box Test: A Novel Method for Evaluating Sound Absorbers" Spec Compos Corp, SAE Prepr 750777 for Meeting (Sept 8-11 1975) 9 p

Rasmussen, G. "Measurement Microphones" <u>Noise Control Eng</u> 9(3), pp 109-119 (Nov-Dec 1977)

Raymond, R. W. "Automatic Measurement of Sound Power Level" <u>S/V Sound and</u> <u>Vibration</u> <u>8</u>(11), pp 12-16 (Nov 1974)

"Research Project on Impact Noise" <u>S/V Sound and Vibration 2(3)</u>, p 4 (March 1968)

Russel, R. H. and Deel, J. C. "Modal Analysis: Trouble-Shooting to Product Design" S/V Sound and Vibration 11(11), pp 22-38 (Nov 1977)

Scholes, W. E. "A Note on the Repeatability of Field Measurements of Airborne Sound Insulation" J. Sound and Vib. 10(1), pp 1-6 (July 1969)

Schneider, A. J. "Noise Measuring Instruments and Surveying Techniques" Light Met Age 33(9-10), pp 23-24 (Oct 1976)

Schultz, T. J. "Alternative Test Method for Evaluating Impact Noise" JASA 60, pp 645-655 (Dec 1976)

Sepmeyer, L. W. "Effect of Filter Bandwidth and Attenuation Characteristics on Sound-Transmission Loss Measurements" <u>J. Acoust. Soc. Amer.</u> <u>39</u>(2), pp 399-401 (Feb 1966)

Siekman, W., Yerges, J. F. and Yerges, L. F. "A Simplified Field Sound Transmission Test" S/V Sound and Vibration 5(10), pp 17-21 (Oct 1971)

۰.

Siekman, W., Jr. "Architectural Acoustics (A Problem of Measurement)" <u>Frontier</u>, pp 16-21 (Autumn 1966)

Starr, E. A. and Beranek, L. L. "Noise Measurements, 1977" <u>Noise Control Eng</u> 9(3), pp 100-108 (Nov-Dec 1977)

Steele, J. M. "Time/Accuracy Tradeoffs in the Analysis of Random Signals" S/V Sound and Vibration 6 (12), pp 23-27 (Dec 1972)

Svensson, J. "Impact Noise Reduction Predicted from Samples of Flooring" 7th Intl Congr on Acoustics, Budapest (1971)

Ten Wolde, T. "Reciprocity Measurement of Acoustical Source Strength in an Arbitrary Surrounding" Noise Control Eng 7(1), pp 16-23 (July-Aug 1976)

Tyzzer, F. G. and Hall, H. H. "An Evaluation Technique for Impact-Type Noises" Noise Control 2(2), pp 38-41, 98 (March 1956)

Utley, W. A., Cummings, A. and Parbrook, H. D. "The Accuracy of Laboratory Measurements of Transmission Loss" <u>J. Sound and Vib. 16(4)</u>, pp 643-644 (June 1971)

Van Zyl, B. G. and Anderson, F. "Evaluation of the Intensity Method of Sound Power Determination" JASA 57, pp 682-686 (1975)

Walker, B. and Delsasso, L. P. "Integrated Pulse Technique for the Measurement of Acoustical Absorption Techniques" 7th Intl Congr on Acoustics, Budapest (1971)

Wilkerson, R. B. "Sound Level Meter and Dosimeter Response to Unsteady Noise Levels" Noise Control Eng 4(2), pp 68-75 (Mar-Apr 1975)

Zaveri, K. "Estimation of Sound Pressure Levels at a Distance from a Noise Source" Testing Technique, pp 24-29

Zwieback, E. L. "Recording Aircraft Flyover Noise" <u>S/V Sound and Vibration</u> 1(9), pp 17-24 (Sept 1967) .

.

DESCRIPTION OF PERTINENT STANDARDS

The published standards that pertain to the many types of noise measurements are too numerous to be included here. While ASTM is by no means the only organization publishing standards, it is these standards which cover almost all of the tests reported in the data tables. It is therefore pointed out that since through the years standards have been changed, data obtained using older standards are somewhat different than they are today.

A user knows the year of the standard because the ASTM designation shows the year as the last digits of the code number. For example, for the present absorption test the code designation is C423-66 indicating standard number C423 first appeared as a standard in 1966. This does not necessarily mean that 1966 is the first year ASTM had a standard for absorption testing but that this form of the standard was published in 1966.

It should also be noted here that there are standards covering the measurement of these values under field rather than laboratory conditions. The procedures are basically the same in principle, but generally, tests performed in the field will yield poorer results than tests performed under controlled laboratory conditions. However if careful attention is given to detail during construction and good measurement practice is maintained, the field test can give values approaching the laboratory values.

ABSORPTION

The absorption standards are given, followed by a brief description of each.

ANSI/ASTM C423-77: American Society for Testing and Materials, plus American National Standards Institute Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method.

This method covers the measurement of sound absorption in a diffuse reverberant sound field by measuring the decay rate. Included in the specifications are the test methods, room and specimen requirements, sound source and detection limits. See text page 49.

There are primarily two methodologies of reporting data. If the specimen is an extended flat surface, then the data are usually reported as random incidence absorption coefficients (i.e., absorption per unit area). This is found by measuring the difference of the time decay of the empty room (without specimen) and of the room with the specimen. The absorption coefficients are given in sabins per square foot and/or metric sabins per square meter. This method sometimes requires a one-number rating called the noise reduction coefficients at (NRC). The NRC is an average of the values of the absorption coefficients at 250, 500, 1000, and 2000 Hz. These are the center frequencies of octave bands

143

Preceding page blank

having equal power per constant proportional bandwidth, called pink noise. Also, the 125 and 4000 Hz octave bands are recorded. The second technique is used when the specimen is a specific size or shape (unit absorbers, chairs, landscape screens). Then, the results are reported as sabins per object or metric sabins per object. The size, shape, number, and spacing of the objects used during the test must be stated exactly.

This test method allows the NRC to be reported above 1.0 but is still rounded off to the nearest 0.05. Techniques for calculating 95 percent confidence limits and percent of uncertainty are slightly revised from previous test methods. Also a proposed change in filtering techniques is pending as a requirement for this standard.

ASTM C423-66: American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms.

This method follows the same procedures as ASTM C423-77 except that the maximum NRC value is limited to 0.95. This was the recommended procedure even in cases where the NRC exceeded unity. However, the exact data were also reported.

ASTM C423-65T: American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms.

This test method and ASTM C423-66 are exactly alike. The number is different because the method was accepted tentatively in 1965, and then adopted officially in 1966.

ASTM C423-60T: American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms.

This standard covers the same tests as ASTM C423-66 but allows a choice of three different sound sources. The other portions of the test procedure are essentially the same and results obtained in accordance with either form are equivalent.

The current standard states that the test signals shall be one-third octave bands of random noise with a continuous frequency spectrum and with either equal energy per constant bandwidth, called white noise, or equal energy per constant proportional bandwidth, called pink noise.

This earlier version of the standard permitted swept frequency tones or "warble" tones. The tone was warbled at a rate of 5 to 10 times per second through a range of +11 percent to -11 percent of the center frequency giving a bandwidth of approximately one-third octave. In lieu of warbling the tone signal this standard also permitted the use of suitable multitones centered on the standard test frequencies with a bandwidth of one-third octave. Finally, it also permitted the use of white noise of one-third octave bands centered on the standard test frequencies.

One of the main reasons for rewriting the absorption standard was to eliminate the differences in test signals between testing laboratories. The newer standard specifies only the one type of test signal that may be used. While the test signals are quite different in these two test procedures, no problems are encountered when using the earlier data since the values obtained according to each standard compare well with each other.

ASTM C423-58: American Society for Testing and Materials Standard Method of Test for Sound Absorption of Acoustical Materials in Reverberation Rooms.

This standard preceded and is similar to C423-60T. It was one of the first modern standards dealing with the properties of absorption as measured in the reverberation room.

ASTM C384-58: American Society for Testing and Materials Standard Method of Test for Impedance and Absorption of Acoustical Materials by the Tube Method.

The methodology for computing normal incidence absorption coefficients is specified. The method uses a closed tube with the specimen mounted in one end. A pure tone of sound is generated within the tube and the maxima and minima of the sound pressure inside the tube are measured.

Normal incidence absorption coefficients, which this method determines are always lower than random incidence coefficients determined in a reverberation room. There is no simple way of relating these two values, especially since the relationship depends on the material itself.

TRANSMISSION LOSS, SOUND TRANSMISSION CLASS, AND IMPACT ISOLATION

The standards of transmission loss, determination of sound transmission class, and impact isolation are given, followed by a brief description of each.

ASTM E90-75: Standard Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions.

This method covers the laboratory measurement of airborne sound transmission loss of building partitions such as walls, floor-ceiling assemblies, doors, windows, and other space dividing elements. Refer to text (page 69). Basically, the procedure calls for mounting the specimen between two reverberation rooms. One room contains a calibrated noise source (source room) where its sound pressure level is measured at 16 frequencies. Then similar sound pressure levels are measured in the receiving room. The noise reduction qualities of the barrier are determined by the differences in sound levels. Special care in laboratory preparation is required, such as elimination of gaps and flanking paths.

Specific room qualifications are required. Sizing, conditioning, mounting and construction of the specimens are considered in the standard. Measurement precision requires a 95 percent confidence limit.

ASTM E90-70: American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions.

The same procedures as mentioned in E90-75 except fewer limits on room qualifications and a 90 percent confidence limit on measurements. ASTM E90-66T: American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions.

This standard which covers testing of sound barrier properties is the same as E90-70. It was in this standard that the test frequencies were fixed at one-third octave of either pink or white noise. Prior to this the transmission loss standard permitted the testing laboratory a choice of one of three different sound source signals.

ASTM E90-61T: American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions.

The same testing as in E90-66T and E90-70 is covered by this standard. However, the sound source is not as completely specified in this standard. Because of the different sound sources used, the data obtained under this standard sometimes showed values a few decibels higher in the lower frequencies. Also, this standard had provision for determining two different one-number ratings of the specimen.

One of these ratings is called the "Nine-Frequency Average". This number is simply the average decibel value of the transmission losses at the nine test frequencies of 125, 175, 250, 350, 500, 700, 1000, 2000, and 4000 Hz. It should be noted that the test frequencies, while they are approximately one-third octave wide, they are centered on the one-half octaves and are not the series used in today's test standards.

The other one-number rating was called the Sound Transmission Class (STC). STC obtained by this method are equivalent to STC computed by E413-70T to within the accuracy of the measurements, however the methods of computation are different.

The change made in 1966 for transmission loss testing was the same as the change made in the absorption standard. The choice of one-third octave wide warble tone bands, or multitone bands, as in absorption testing, were replaced with a continuous spectrum source, either white or pink noise in shape, and filtered with a one-third octave band filter. Whereas this change produced little effect in absorption coefficients, the values of transmission loss tested with the newer sound source showed values 2 to 3 dB lower in the first few bands leaving the higher frequency bands relatively unchanged. Normally, a 2 to 3 dB change would not be a matter of major concern, although this 2 or 3 dB could result in a lower value of STC for a particular product.

ASTM E90-55: American Society for Testing and Materials Standard Recommended Practice for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions.

This standard preceded and is similar to E90-61T. It was one of the first modern standards dealing with the properties of transmission loss of industrial materials.

ASTM E336-71: American Society for Testing and Materials Standard Method of Test for the Measurement of Airborne Sound Insulation in Buildings.

This standard establishes uniform procedures for the determination of field transmission loss, i.e., the airborne sound insulation provided by a partition already installed in a building. It also establishes a standard method for the measurement of the noise reduction between two rooms in a building. If the test structure is a complete enclosure out-of-doors, neither the field transmission loss nor the noise reduction is appropriate; instead, a method for determining the insertion loss is established.

Results from this method may then be reported in three ways: Field Sound Transmission Class (FSTC), which provides an evaluation of the performance of a partition in certain common sound insulation problems; Noise Isolation Class (NIC), which provides an evaluation of the sound isolation between two enclosed spaces which are acoustically connected by one or more paths; or Field Insertion Loss (FIL), which is a measure of the sound isolation between two locations, one of which is not enclosed.

ASTM E336-67T: American Society for Testing and Materials Standard Method of Test for the Measurement of Airborne Sound Insulation in Buildings.

This test method and ASTM E336-71 are exactly alike. The numbers are different because it was accepted as a tentative method in 1967 before the offical adoption in 1971.

AMA-I-II-1967: Acoustical Materials Association Ceiling Sound Transmission Test by the Two-Room Method for Measurement of Normalized Attenuation Factors.

The method of test is intended for the direct measurement of sound transmission through a suspended ceiling. This is a performance test for a configurational property of ceiling construction, without explicit reference to the sound absorption coefficients or sound transmission loss (TL) of ceiling materials. Performance is rendered independent of the total in situ absorption contribution of the receiving-room ceiling under test conditions by normalizing results with respect to separate measurements and thereby focusing attention upon the relative energy transmission of the ceiling configuration. The method of test is designed to reflect field conditions of ceiling erection under laboratory conditions of measurement control.

ASTM E413-70T: American Society for Testing and Materials Tentative Classification for Determination of Sound Transmission Class.

The purpose of this classification is to provide a standard method for determining the one-number rating of sound barrier items. The original intention of STC was to correlate measured sound reduction properties with subjective impressions of the specimen performance when used as a barrier against such sounds as speech, music, radio, television, etc., because these are the types of sounds that exist in most homes, apartments, offices, and schools. Consequently, the sounds of a factory, or of jet aircraft, or other transportation systems, whose noise spectrum is quite different from music or speech are not well treated by the STC value. It is therefore necessary to use the complete set of TL values to determine the performance of a partition against such noises.

Prior to the publication of E413 in 1970 the procedure for determining STC was published by ASTM as a recommended method (RM14-2) in 1966. This procedure is the same as E413 and first appeared in 1966 when E90 was revised. The procedure for determining STC before 1966 was a part of E90-61T and was different from the present method (see discussion of E90-61T).

This standard specifies the technique for comparing the TL values at each of the 16 one-third octave bands to the STC contours and the determination of the STC. The highest contour to which the specimen TL curve meets the requirements (see page 71) is the STC curve. The value of this curve at 500 Hz is the STC rating of the specimen. The numerical values for this set of standard contours are shown in Table 16.

ASTM E492-77: American Society for Testing and Materials Tentative Method of Laboratory Measurement of Impact Sound Transmission Through Floor-Ceiling Assemblies Using the Tapping Machine.

ASTM E492-73T (RM14-4): American Society for Testing and Materials Impact Sound Transmission Through Floor-Ceiling Assemblies Using the Tapping Machine.

These procedures were originally published in 1971 as a recommended method only (RM14-4). The method uses a standard tapping machine to produce impacts on a floor-ceiling assembly and the sound pressure levels produced by these impacts are measured in the room below the assembly. There is still much debate over the use of the tapping machine as to impact source because many feel that these impacts are not representative of noises produced by such occurrences as dropping objects on the floor, sliding objects across the floor, and in particular, the noises due to footfalls. Prior to the publication in 1971 of RM14-4 there was no American standard to cover impact testing. There is, however, an international standard which is very much the same which is published by the International Standards Organization (ISO) as R140. This standard does not provide for an IIC value but did specify normalization to 10 metric sabins (meter²) absorption.

FHA 750: Federal Housing Administration Guide to Impact Noise Control in Multifamily Dwellings.

This authority establishes a method of testing which makes it possible to evaluate the ability of different floors to impede the transmission of impact noise to the space below.

A tapping machine, which generates the impact noise, is set into operation on the floor. Sound pressure levels are then taken in the space below. These levels are normalized to a receiving room with a reverberation time of 0.5 second. The normalized levels are then compared to the standard FHA impact noise curve, allowing a single number, the Impact Noise Rating (INR), to be determined. INR numbers which are zero or greater meet the recommended FHA specifications; those less than zero do not. The higher the INR the better the impact isolation.

AMERICAN NATIONAL STANDARDS INSTITUTE

For the many other types of acoustic test data there is probably some type of standard which governs the procedure. While the above test standards and the many other standards that relate to specific types of items provide for the measurement of particular items, there is another series of standards that specifies general acoustic measurement methods, values for references, etc. These are the standards published by the American National Standards Institute (ANSI).

This institute was originally known as the American Standards Association and the published standards have the prefix ASA. In 1966 the name was changed to United States of America Standards Institute (USASI) and standards published by this group are prefixed with USAS. Again in 1969 the name of this organization was changed. Since American National Standards Institute is the current name, the following standards are shown with the prefix ANSI regardless of the year of publication. While some copies of earlier standards may bear the title of ASA standard or USAS standard, all of these have been adopted as ANSI standards. These standards specify how to make acoustic measurements, the characteristics of laboratory microphones, how calibrations shall be performed on these, test room characteristics, etc. This organization does not concern itself with the special procedures which must be followed when making these measurements on any special class of items.

ASA Z24.19-1957: Laboratory Measurement of Airborne Sound Transmission Loss of Building Floors and Walls

This recommended practice is intended to cover the random incidence or reverberant sound method for the laboratory measurement of airborne sound transmission loss of floors, walls, windows, doors, etc. It gives specifications for the test facility and testing equipment including the signal requirements of random noise or warble tone, sound sources, position of microphones, and format for the report. It also gives minimum conditions of the sample.

ANSI S1.1-1960: American National Standard Acoustical Terminology (Including Mechanical Shock and Vibration).

The purpose of this standard is to establish and define standard acoustical terminology.

ANSI S1.2-1962: American National Standard Method for the Physical Measurement of Sound.

Methods for measuring and reporting the sound pressure levels and sound power generated by a source of sound are established. This standard applies primarily to airborne sound produced by apparatus which normally operates in air. These sounds must not be impulsive and must be of sufficient duration to be within the dynamic measuring capabilities of the instruments used. ANSI S1.4-1971: American National Standard Specification for Sound Level Meters

The purpose of this standard is to maintain maximum possible accuracy of sound level measuring instruments and to maintain uniformity between instrument measured quantities.

Characteristics of sound level meters starting with the amplitude, frequency response, and directional properties of the microphone are specified. The frequency weighting filters are standardized both to shape of the weighting function and tolerances on these shapes. The tolerances are divided into three groups with Type I (Precision) the most stringent, then Type II (General Purpose) and Type III (Survey) the least stringent. Meter response time and output requirements are also covered.

ANSI S1.6-1967: American National Standard Preferred Frequencies for Acoustical Measurements.

To maintain uniformity and comparability among measurements this standard specifies which series of frequencies shall be used as the preferred octave, one-half octave, and one-third octave bandwidths. It is in this standard that the one-third octave series is modified so that they are actually one-tenth decade. This modification changes the bandwidths less than 0.1 percent and provides a series of frequencies where 10 successive one-third octave bands are in the ratio of 10:1 in center frequency.

ANSI S1.8-1969: American National Standard Preferred Reference Quantities for Acoustical Levels.

Values to be used as reference when acoustic quantities such as power, pressure, intensity, etc., are stated in the form of levels are specified. This standard does not specify that level shall be used but provides the reference to a convenient magnitude for any physical quantity that may be used in acoustics.

ANSI S1.10-1966: American National Standard Method for the Calibration of Microphones.

Techniques and principles involved for performing absolute calibration of microphones are described. Experimental procedures for determining pressure, free field, and diffuse field calibrations are standardized. These procedures provide for either absolute calibration based on the reciprocity principle or calibration by comparison with another microphone.

ANSI S1.11-1966: American National Standard Specification for Octave, Half-Octave, and One-Third Octave Band Filter Sets.

Just as ANSI S1.4 specifies the characteristics and tolerances on sound level meters, this standard specifies the characteristics of band pass filters for acoustical measurements. Some of the items specified are the features of the pass band and the slope and width of the skirts of the band. This standard assures the user of acoustic band pass filter sets that measurements made with one filter set will agree with those made with any other filter set providing each set conforms to the standard.

ANSI S1.12-1967: American National Standard Specification for Laboratory Standard Microphones.

The physical, electrical, and acoustical properties of microphones that are suitable for calibration by an absolute method, such as the reciprocity technique described in ANSI S1.10, are described. These microphones are intended to be used for acoustical standards or as comparison microphones for calibrating other microphones by the comparison technique.

ANSI S1.13-1971: American National Standard Method for the Measurement of Sound Pressure Levels.

This standard is a partial revision of ANSI S1.12-1962 and contains recommendations pertaining to the techniques of the physical measurement of sound. These techniques are applicable to a variety of environment conditions but are not intended to include measurements made for the purpose of determining the sound power level radiated from a source. This standard is applicable to the many different types of sound pressure level measurements that may be encountered in practice and is intended to provide assistance to those persons responsible for the preparation of test codes, ordinances, acoustical criteria, and effects of noise on people, etc.

ANSI S1.21-1972: American National Standard Method for the Determination of Sound Power Levels of Small Sources in Reverberation Rooms.

While the main purpose of this standard is to describe in detail the procedures for the measurement of sound power levels, its pertinence here is due to the lengthy and complete discussion of the quality and characteristics of the reverberation room for making the measurements. This standard describes both a direct method for determining sound power level and a comparison method which uses a calibrated reference sound source.

.

GUIDE TO THE DATA TABLES

While almost any porous material will absorb some sound energy, and any dense impermeable material will block sound transmission, the products listed in the following tables have been designed specifically to perform these functions efficiently and economically. While it is probably impossible to organize a listing such as this without categories, categorization implies a certain rigidity of purpose for a product which may be misleading. Within most of the tables, there are products with other potential uses which would place them in another category. Each product has been placed in the table corresponding to its prime function, and on occasion the same product is listed in more than one table. For each entry in the tables, contact with the manufacturer is recommended for information on other uses of the products, as well as for additional required data which are not included in this document.

The tables are divided into four broad groups: materials, systems, silencers, and miscellaneous. Materials are defined as single component products which may be composites of different substances. Systems are more complicated products of many components which often must be assembled by the end user.

> • Within the first two broad groups, the tables are arranged in a progression from strictly absorbing products, through products with both absorptive and barrier properties, to strictly barrier products. Where materials or systems have several types of properties, the appropriate table is divided into subtables.

• Products are arranged within a table in order of increasing single number descriptor (NRC, STC, NIC'). When no descriptor was provided, it was calculated from the data where possible. Such calculated descriptors are identified by (c). The most recent ASTM standard allows values of NRC equal to 1.0 whereas previously the highest allowed NRC was 0.95. The NRC of materials tested under older standards was not recalculated. This points out the necessity of examining the frequency band absorption coefficients and not choosing a material on the basis of NRC alone.

• Many products were tested for properties such as noise reduction, where there is no standard single number descriptor. In these cases, the data values were arithmetically averaged and arranged in order of increasing average value. This was done solely to provide a logical scheme for arranging the entries in the table. A product position in such a table says very little about the product acoustical properties. Again, refer to the frequency-dependent data.

Preceding page blank

• The weight or density of a product may be in terms of lb/ft^3 , lb/ft^2 , or lb/unit. The column headings show the units used in each table.

• Due to space limitations, the manufacturer of each product is denoted by a code number. The code numbers are identified in a list at the beginning of the book.

• The reference column identifies the laboratory where the acoustic test was performed and the test report number. The laboratory acronyms are explained in a list at the beginning of this book. Where no laboratory data were provided, the letters CR (company reference) appear, followed by the identifying number of the company publication from which the data were derived.

• Some products did not fit well into the format of the tables. The descriptive paragraph associated with each entry indicates any deviations from the table format.

DATA TABLES

Preceding page blank

CATEGORY 1. ABSORPTIVE BLOCK

The sound absorption of concrete blocks with built-in cavities are listed. The absorption techniques of plain and damped Helmholtz resonators are used.

A block can be tuned for high absorption around a given frequency by the proper sizing of cavities and openings (slots, cuts, holes), as shown in the illustrations. The addition of absorptive material (fiberglass, mineral wool, foam, etc.) to the interior of the cavity, can provide a wider frequency range of absorption. The block also acts as a sound barrier. Additional provisions to enhance barrier performance are available. A properly balanced block offers a composite absorptive-barrier system. Organizations contributing data to this table are: 101, 123, and 143.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

Table II mobolperie brock	Table	1.	Absorptive	block.
---------------------------	-------	----	------------	--------

NG $\frac{\pi}{2}$ π			A	bsorption	n Coeffic	ients							
C C S C S C A P A is an above with the 71.5% inch increases 44 4 4.1 .44 .42 .42 .44 .44 .12 Sound Control Bloc MAL 43 4 .44 .44 .12 .44 .44 .12 Sound Control Bloc MAL 43 4 .44 .44 .44 .12 Sound Control Bloc MAL 43 70 .44 .44 .12 .14 Sound Control Bloc MAL 43 70 .44 .35 .35 .36 .4 .4 101 Soundbloc Type 5 .44 43 70 .44 .35 .36 .4 .4 .101 Sound Control Bloc .4 44 .15 .14 .15 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14 .14	NRC	5 Hz	0 Hz	0 Hz	2H 00	00 Hz	2H 00	iickness (in.)	ensity b/ft ³)	unting	mpany	Product	Reference
44 8 a 16 and high with three J6.1000 paper. Sound Control Nuclear System Sound Control Nuclear System Sound Control Nuclear System 45 8 x 16 ind block with two J/4: nob //4: nob		12	25	50	10	20	07	4	AC	м щ	പ്പ പ്പ		
.08 .11 .41 .27 .26 .27 .8 4 143 Type 1 BAL .45 8, 16 and block with two 37-inhow vertical interesting the second control block with two 37-inhow vertical interesting the second control block with two 37-inhow vertical interesting the second control block with two 37-inhow vertical interesting the second control block with two 37-inhow vertical interesting the second control block with two 37-inhow vertical interesting the second control block with two 37-inhow vertical interesting the second control block with vertinteresting the second control blo	. 40	8 x 16 i tal slot range 0-	nch block s, 33/66 400°F, 0-	with th ratio co 100% hum	ree 3/8-i re spaces idity	inch hori: 5. Temper	zon- ature					Sound Control Bloc	
4.5 8 x 16 inch black with two 3/4 - 128 with vertical marked - 400°F. 01005 handles researce frequences in the second of th		. 08	. 41	. 44	. 32	. 50	47	. 8		4	143	Type Dl	RAL
	. 45	8 x 16 i slots, 5 range 0-	nch block 0/50 rati 400°F, 0-	with tw to core s 100% hum	o 3/4-inc paces. Te idity	ch vertica emperature	al e					Sound Control Bloc	
1.43 Two excits block, sended symptote the manufold of the sended se		.08	. 27	.94	. 39	. 28	. 38	4		4	143	Type GIA	RAL
	. 45	Two cavi mixture,	ty blocks one coat	s, standa paint,	rd expand two slots	led-shale		_					
 1.45 Two cavity blocks within comburthle fibrous filtrous filtrous		. 97	. 44	. 38		. 50	. 60	8	28 15	4	101	Soundblox Type A-1	G&H
.74 .57 .45 .36 .34 8 4 101 Soundblox Type B GGH 9.1 PR .45 8 x 16 inch face with four J74-inch barisontal slots. 39/65 ratio core paces. Temperature range 0-4007, 0-1000 humitify. .77 .41 .56 .26 .51 .46 8 4 143 Sound Control Bloc Type El RAL .45 8 x 16 inch block with six 1-1/2-inch and three there of the block with six 1-1/2-inch and three remerican the block with six 1-1/2-inch and three .19 .30 Sound Control Bloc Type El RAL .50 8 x 16 inch block with six 1-1/2-inch and three .19 .33 .41 .38 .42 .40 4 19 1b 4 101 Soundblox Type A G6H 9.1 PR .50 6 16 inch narrow slots. unfilled cavities, painted 	. 45	Two cavi filler,	ty blocks 8 inch, p	s within Dainted t	combustib wo slots.	le fibro	us						
 A5 8 x 16 inch face with four 3/8-inch horizontal temperature reme 0-2007; 0-100X humitie; remetation and three 2-inch diameter holes, 3/66 ratio core space. Temperature remetation rates 0-2007; 0-100X humitie; remetation rates 0-2007; 0-200X humitie; remetation rates 0-200X; 0-200X humitie; remetation ratex 0-200X; 0-200X humitie; remetation rates 0-200		. 74	. 57	. 45	. 35	. 36	. 34	8		4	101	Soundblox Type B	G&H 9.1 PR
.17 .41 .56 .26 .51 .48 B 4 143 Type Elministic Construction .45 B x 16 inch block with six 1-1/2-inch and three 2-inch diameter holes 300000 Control Bioc Factor Size Sound Control Bioc Factor Size .16 .59 .69 .27 .39 .37 8 4 143 Type Cl Factor Size .50 Narrow slots, unfilled cavities, unpainted surface .19 .83 .41 .38 .42 .40 4 191 6 101 Soundblox Type A G6H 9.1 PR .50 6 inch narrow slots, unfilled cavities, painted .62 .64 .3 .27 .50 6 23.4 1b 4 101 Soundblox Type A G6H 9.1 PR .50 6 inch narrow slots .41 .21/2 inch diameter holes .38 .25 .35 .45 .52 8 4 143 Turulation and Sound .23 .88 .25 .35 .52 8 4 143 Soundblox Type R G6H 9.1 PR .55 6 inch,	. 45	8 x 16 i slots, 3 range 0-	nch face 3/66 rati 400°F, 0-	with fou to core s 100% hum	r 3/8-inc paces. Te itidy.	ch horizon mperature	ntal e					Sound Control Bloc	
 A5 B x 16 inch block with six 1-1/2-inch and three preserves and the serves is the block with six 1-1/2-inch and serves and the serves is the serves and the serves is the serv		. 17	. 41	. 56	. 26	. 51	. 48	8		4	143	Type El	RAL
.14 .59 .49 .27 .39 .37 8 4 143 Type Cl RAL .50 Narrow slots, unfilled cavities, unpainted surface .19 .83 .41 .38 .42 .40 4 19 1b 4 101 Soundblox Type A G&H 9.1 FR .50 6 inch marrow slots, unfilled cavities, painted .62 .64 .36 .27 .50 6 23.4 1b 4 101 Soundblox Type A G&H 9.1 FR .50 5 x 16 inch block with sighteen 1-1/2-inch diameter holes. 50'50 ratio core spaces. with acoustical in-aert. Temperature range 0-400°F. .23 8 4 143 Insulation and Sound	. 45	8 x 16 i 2-inch d Temperat	nch block iameter b ure range	with si noles, 33 0-400°F	x 1-1/2-i /66 ratic , 0-100%	nch and i core sp humidity	three aces.					Sound Control Bloc	
 Narrow slots, unfilled cavities, unpainted surface 8.3 9.3 9.3 9.4 9.4 9.4 9.4 9.4 9.5 1.5 9.5 9.5 1.5 9.5 9.5 1.5 1		.14	. 59	. 49	. 27	. 39	. 37	8		4	143	Type Cl	RAL
 6 inch narrow slots, unfilled cavities, painted 62 ,84 ,36 ,43 ,27 ,50 6 23.4 lb 4 101 Soundblox Type A G&H 9.1 PR 8 x 16 inch block with eighteen 1-1/2-inch diameter material transmission of the state of the sta	. 50	Narrow s .19	lots, uni .83	filled ca .41	vities, u .38	mpainted .42	surface .40	4	19 lb	4	101	Soundblox Type A	G&H 9.1 PR
 50 8 x 16 inch block with eighteen 1-1/2-inch diameter boles, 50/50 ratio core spaces, with acoustical inners. Temperature range 0-4007F, 0-100 humdidty. .23 .88 .25 .35 .45 .52 8 4 143 Control Bloc Type Bl RAL .53 Glazed tile with borizontal cores filled with sin faces. 8 x 16 inch brick shaped tiles .19 .64 .73 .62 .20 .14 4 48.2 4 123 Starkoustic Acoustile Ral A66-19 .55 8 inch, narrow slots, metal septs (without fillows fillers) .107 .57 .61 .37 .56 .55 8 34 1b 4 101 Soundblox Type Q G6H 9.1 PR .55 8 inch, wide slots, incombustible fibrous fillers .70 .77 .61 .48 .44 .41 8 36 1b 4 101 Soundblox Type R G6H 9.1 PR .60 Glazed tile with borizontal cores filled with fibrous fillers .06 .66 .79 .62 .29 .16 4 .48.2 4 123 Starkoustic Acoustile Ral A64-128 .60 Sa 16 inch block with two 3/4 inch vertical slots. 30/60 ratio fore spaces. Temperature range 0-4007F, 0-1005 humdidy. .33 .97 .56 .40 .51 .54 8 4 143 Sound Control Bloc Type R G6H 9.1 PR .64 slots flarging invertical slots. Temperature range 0-400 F, 0-1005 humdidy. .77 .75 .83 .58 .49 .45 4 4 143 Sound Control Bloc Type R G6H 9.1 PR .64 slots flarging invert, incombustible fibrous fillers. Temperature range 0-400 F, 0-1005 humdidy. .77 .75 .83 .58 .43 .45 6 27 1b 4 101 Soundblox Type R G6H 9.1 PR .65 % x 16 inch block with two 3/4 inch vertical slots. 30/50 ratio core spaces. Temperature range 0-400 F, 0-1005 humdidy. .77 .75 .83 .58 .43 .45 6 27 1b 4 101 Soundblox Type R G6H 9.1 PR .65 % x 16 inch block with two 1-1/2/rinch vertical slots. 30/50 ratio core spaces. Temperature range 0-400 F, 0-1005 humdidy. .78 .43 .45 6 27 1b 4 101 Soundblox Type R G6H 9.1 PR .65 % x 16 inch block with two 1-1/2/rinch vertical slots. 30/50 ratio core spaces. Temperature range 0-400 F, 0-1005 humdidy. .65 % x 16 inch block with two 1-1/2/rinch vertical slots. 3	. 50	6 inch n .62	arrow slo .84	ots, unfi .36	lled cavi .43	ities, pa .27	inted .50	6	23.4 1b	4	101	Soundblox Type A	G&H 9.1 PR
 Glazed tile with horizontal cores filled with fiberglass pads. random perforations in faces. 8 x 16 inch bick shaped tiles19 .64 .73 .62 .20 .14 4 48.2 4 123 Starkoustic Acoustile Ral A66-19 8 inch, narrow slots, metal septs (without fibrous filler) in cavities107 .57 .61 .37 .56 .55 8 34 lb 4 101 Soundblox Type Q G6H 9.1 PR 55 8 inch, wide slots, incombustible fibrous fillers with metal septa in cavities, painted	.50	8 x 16 i holes, 5 sert. Te .23	nch block 0/50 rati mperature .88	with ei to core s range 0 .25	ghteen 1- paces, wi -400°F, C .35	1/2-inch th acous -100% hu .45	diameter tical in- midity. .52	8		4	143	Insulation and Sound Control Bloc Type Bl	RAL
 .19 .64 .73 .62 .20 .14 4 48.2 4 123 Rardom Pattern RAL A66-19 .55 8 inch, narrow slots, metal septa (without fibrous filler) in cavities 1.07 .57 .61 .37 .56 .55 8 34 lb 4 101 Soundblox Type Q G4H 9.1 PR .55 8 inch, wide slots, incombustible fibrous fillers with metal septa in cavities, painted70 .77 .61 .48 .44 .41 8 36 lb 4 101 Soundblox Type R G6H 9.1 PR .60 Glazed tile with horizontal cores filled with fiberglass pads, random perforation in faces, 5 x 12-inch brick shaped tiles06 .66 .79 .62 .29 .16 4 .48.2 4 123 Random Pattern RAL A64-128 .60 8 x 16 inch block with two 3/4-inch vertical slots, 33/66-ratio core spaces. Temperature range 0-400°F, 0-1007, humidity33 .97 .56 .40 .51 .54 8 4 143 Type FIA RAL .65 8 x 16 inch block with two 3/4 inch vertical slots, 50/50 ratio core spaces with acoustical inserts. Temperature range 0-400°F, 0-1007, humidity27 .75 .83 .58 .49 .45 4 4 143 Type G2A RAL .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, 50/50 ratio core spaces. Temperature range 0-400°F, 0-107, humidity27 .75 .83 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, .30 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5	. 55	Glazed t fibergla 8 x 16 i	ile with ss pads, nch brick	horizont random p shaped	al cores erforatic tiles	filled w ons in fa	ith ces,					Starkoustic Acoustile	
 8 inch, narrow slots, metal septa (Without fibrous filler) in cavities 0.07 57 1.07 57 1.08 50 1.07 51 1.08 51 1.08 52 1.06 1.07 1.06 1.07 1.08 1.06 1.07 1.08 1.06 1.07 1.08 1.06 1.07 1.08 1.08 1.08 1.08 1.09 1.09 1.000 1.000 1.0100 1.0100 1.0100 1.0100 1.01000 1.01000 1.01000 1.01000 1.01000 1.01000 1.01000 1.01000 1.01000 1.010000 1.010000 1.010000 1.010000 1.010000 1.010000000 1.010000000000000000000000000000000000		. 19	.64	. 73	. 62	. 20	.14	4	48.2	4	123	Rardom Pattern	RAL A66-19
 1.07 .57 .61 .37 .56 .55 8 34 16 4 101 Soundblox Type Q Gad 9.1 PR .55 8 inch, wide slots, incombustible fibrous fillers with metal septa in cavities, painted. .70 .77 .61 .48 .44 .41 8 36 1b 4 101 Soundblox Type R G6H 9.1 PR .60 Glazed tile with horizontal cores filled with fibreglass pads, random perforation in faces, 5 x 12-inch brick shaped tiles. .06 .66 .79 .62 .29 .16 4 .48.2 4 123 Random Pattern RAL A64-128 .60 8 x 16 inch block with two 3/4-inch vertical slots, 33/66 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .33 .97 .56 .40 .51 .54 8 4 143 Type FIA RAL .65 8 x 16 inch block with two 3/4 inch vertical slots, 50/50 ratio core spaces with acoustical inserts. Temperature range 0-400°F, 0-100% humidity. .27 .75 .83 .58 .49 .45 4 4 143 Type G2A RAL .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 1b 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch block with two 1-1/2-inch vertical slots, 510/50 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .39 .99 .65 .58 .43 .45 6 27 1b 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, 10 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5	. 55	8 inch, fibrous	narrow sl filler) i	lots, met in caviti	al septa es	(without		0		,	101		
 8 inch, wide slots, incombustible fibrous fillers with metal septa in cavities, painted. .70 .77 .61 .48 .44 .41 8 36 lb 4 101 Soundblox Type R G6H 9.1 PR 60 Glazed tile with horizontal cores filled with fibreglass pads, random perforation in faces, 5 x 12-inch brick shaped tiles. .06 .66 .79 .62 .29 .16 4 .48.2 4 123 Random Pattern RAL A64-128 .00 8 x 16 inch block with two 3/4-inch vertical slots. .33 .97 .56 .40 .51 .54 8 4 143 Type FIA RAL .65 8 x 16 inch block with two 3/4 inch vertical slots, 50/50 ratio core spaces with acoustical inserts. Temperature range 0-400°F, 0-100% humidity. .27 .75 .83 .58 .49 .45 4 4 143 Type FIA RAL .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots. .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots. .30 .69 .69 .62 .56 .45 .58 4 143 Type FIA RAL 		1.07	. 57	. 61	. 37	. 20		0	34 10	4	101	Soundslow Type Q	Gan 9.1 PK
 Glazed tile with horizontal cores filled with fiberglass pads, random perforation in faces, 5 x 12-inch brick shaped tiles. .06 .66 .79 .62 .29 .16 4 48.2 4 123 Starkoustic Acoustile Random Pattern RAL A64-128 .00 .66 .79 .62 .29 .16 4 48.2 4 123 Sound Control Bloc Type FIA RAL A64-128 .00 8 x 16 inch block with two 3/4-inch vertical slots, 33/66 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .33 .97 .56 .40 .51 .54 8 4 143 Type FIA RAL .65 8 x 16 inch block with two 3/4 inch vertical slots, 50/50 ratio core spaces with acoustical inserts. Temperature range 0-400°F, 0-100% humidity. .27 .75 .83 .58 .49 .45 4 4 143 Type G2A RAL .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 1b 4 101 Soundblox Type R G&H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots. .30 .69 .40 .51 .54 .45 .45 .45 .45 .45 .45 .45 .45 .45	. 55	8 inch, with met 70	wide slot al septa 77	ts, incom in cavit	bustible ies, pair	fibrous ited.	fillers	8	36 lb	4	101	Soundblox Type R	G&H 9.1 PR
 Glazed tile with horizontal cores filled with fiberglass pads, random perforation in faces, 5 x 12-inch brick shaped tiles								,	50 15				
 8 x 16 inch block with two 3/4-inch vertical slots. 33/66-ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .33 .97 .56 .40 .51 .54 8 4 143 Type FlA RAL 8 x 16 inch block with two 3/4 inch vertical slots, 50/50 ratio core spaces with acoustical inserts. Temperature range 0-400°F, 0-100% humidity. .27 .75 .83 .58 .49 .45 4 4 143 Type G2A RAL Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G&H 9.1 PR 65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, 33/66 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .0 89 69 42 54 45 8 4 143 Type G2A PAI 	.60	fibergla 5 x 12-i .06	ile with ss pads, nch brick .66	norizont random p shaped .79	al cores erforatio tiles. .62	n in face	.16	4 ·	48.2	4	123	Starkoustic Acoustile Random Pattern	RAL A64-128
 0-100% humidity. .33 .97 .56 .40 .51 .54 8 4 143 Type F1A RAL .65 8 x 16 inch block with two 3/4 inch vertical slots, 50/50 ratio core spaces with acoustical inserts. Temperature range 0-400°F, 0-100% humidity. .27 .75 .83 .58 .49 .45 4 4 143 Type G2A RAL .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G6H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, 33/66 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .10 89 69 47 54 45 8 4 143 Type F1R PAT 	. 60	8 x 16 i 33/66 ra	nch block tio core	with tw spaces.	o 3/4-inc Temperatu	ch vertic Tre range	al slots, 0-400°F,						
 .65 8 x 16 inch block with two 3/4 inch vertical slots, 50/50 ratio core spaces with acoustical inserts. Temperature range 0-400°F, 0-100% humidity. .27 .75 .83 .58 .49 .45 4 4 143 Type G2A RAL .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G&H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, 33/66 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .65 8 x 16 inch blocks with two 1-2-inch vertical slots, 33/66 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. 		0-100% h .33	umidity. .97	. 56	. 40	. 51	. 54	8		4	143	Sound Control Bloc Type FIA	RAL
.27 .75 .83 .58 .49 .45 4 4 143 Type G2A RAL .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G&H 9.1 PR .65 8 x 16 inch blocks with two 1-1/2-inch vertical slots, 33/6b ratio core spaces. Temperature range 0-400°F, 0-100% humidity. 30 89 69 42 54 45 8 4 143 Type G2A RAL	. 65	8 x 16 in 50/50 ra Temperat	nch block tio core ure range	with two spaces w 0-400°F	o 3/4 inc ith acous , 0-100%	tical in humidity	al slots, serts.				• • -	Sound Control Bloc	
 .65 Wide slots flaring inward, incombustible fibrous fillers with metal septa in cavities, painted. .39 .99 .65 .58 .43 .45 6 27 lb 4 101 Soundblox Type R G&H 9.1 PR .65 8 x 16 inch blocks with two l-1/2-inch vertical slots, 33/6b ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .30 .89 .69 .42 .54 .45 .8 4 .141 Type FIR		. 27	. 75	. 83	.58	. 49	. 45	4		4	143	rype G2A	KAL
.65 8 x 16 inch blocks with two 1-1/2-inch vertical .65 8 x 16 inch blocks with two 1-1/2-inch vertical .51 slots, 33/66 ratio core spaces. Temperature range 0-400°F, 0-100% humidity. .0 89 69 42 54 45 8 4 143 Tune F1R PAT	. 65	Wide slo fillers	ts flarin with meta	ng inward al septa	, incombu in caviti	stible f es, pain	ibrous ted.	٤	27 15	k	101	Soundbloy Ture P	CLH 9 1 PP
 slots, 33/6b ratio core spaces. Temperature range 0-400°F, 0-100% humidity. 30 89 69 42 54 45 8 4 141 Tuna F1R PAI 	. 65	. 39 8 x 16 ii	. 79 nch block	.up	 wo 1-1/2-	inch ver	.45 tical	U	27 10	4	101	country type r	oun 2.1 IN
	·	slots, 3 0-400°F, .30	3/66 rati 0-100% H .89	to core s numidity. .69	paces. 1 .42	Cemperatu:	re range .45	8		4	143	Sound Control Bloc Type F1B	RAL

Table	1.	Absorptive	block	concluded.

			Absorption	Coeffici	ients					· · ·	· · · · · · · · · · · · · · · · · · ·	
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	7000 Hz	Thitckness (in.)	Density (1b/ft ³)	Mounting	Company	Product	Reference
. 65	8 x 16 33/66 Tempera	inch bloc ratio core ature rang	k with two space, wi e 0-400°F	0 3/4-incl th acoust 0-100% 1	h vertica tical ins humidity.	l slots. erts.					Sound Control Bloc	<u> </u>
	. 62	1.02	. 63	. 47	. 45	. 48	8		4	143	Type F2A	RAL
. 65	8 inch fibrous .61	, three ca s fillers .91	and metal .65	septa, pa. .65	incombus ainted, w .42	ide slots .49	8	39 Ib	4	101	Soundblox Type RR	G&H 9.1 PR
. 65	8 x 16 slots, Tempera	inch bloc 1-1/2 inc ature rang	k with the h fibrous e 0-400°F,	filler in 0-100% t	nch horiz n cavity. humidity.	ontal	0		,	1/0	Insulation and Sound	
. 65	8 x 16	inch bloc	.00 k with eig io core st	.40 hteen 1-1	.42 1/2-inch	. 50 diameter cal	8		4	143	Control Bloc lype Al	KAL
	inserts .33	. Tempera 1.02	ture range	0-400°F, .61	, 0-100% .52	humidity. .63	8		4	143	Sound Control Bloc Type B5	RAL
. 70	Two cav paintec .20	ity block two slot .95	s with ind s. .85	ombustibl	le fibrou .53	s filler, .50	4	17 1Ъ	4	101	Soundblox Type B	G&H 9.1 PR
. 70	8 x 16 33/66 r Tempera	inch bloc atio core ture rang	k with two spaces wi e 0-400°F,	3/4-inch th acoust 0-100% H	n vertica tical ins numidity.	l slots, erts.					Sound Control Blog	
70	.79 8 x 16	.95	.79 k with two	.54	.49	.55.	8		4	143	Type F4A	RAL
. / 0	33/66 r Tempera .73	atio core ture rang .99	space wit e 0-400°F, .69	. 53	.49	.54	8		4	143	Sound Control Bloc Type F3A	RAL
. 70	8 x 16 holes, inserts .29	inch bloc 50/50 rat . Tempera 1.05	k with eig io core sp ture range .52	hteen 1-1 aces, wit 0-400°F, .59	/2-inch th acoust 0-100% 1 .54	diameter ical humidity. .66	8		4	143	Sound Control Bloc Type B3	RAL
. 75	8 x 16 33/66 r Tempera	inch bloc atio core	k with two spaces wi e 0-400°F	1-1/2-in th acoust 0-100% b	ich verti ical inso	cal slots, erts.						
	. 53	1.11	. 85	. 59	.54	. 51	8		4	143	Sound Control Bloc Type F4B	RAL
. 75	8 x 16 holes, tion. .49	inch bloc 50/50 rat Temperatu 1.16	k with eig io core sp re range O .82	hteen 1-1 aces with -400°F, 0 .58	./2-inch (acousti))-100% hum .53	diameter c insula- midity. .64	8		4	143	Sound Control Bloc Type B4	RAL
. 75	8 x 16 holes, inserts	inch bloc 50/50 rat . Tempera	k with eig io core sp ture range	hteen 1-1 aces with 0-400°F,	/2-inch (acoustic 0-100% 1	diameter cal humidity.						
80	.49 8 x 16	1.14	.76	.64	.55	.58	8		4	143	Sound Control Bloc Type B2	RAL
	33/66 r Tempera .66	atio core ture range 1.07	spaces wi e 0-400°F, .86	th acoust 0-100% h .66	ical inso umidity. .58	.52	8		4	143	Sound Control Bloc Type F3B	RAL
. 80	8 x 16 33/66 r Tempera	inch bloc atio core ture range	k with two spaces wi e 0-400°F,	1-1/2-in th acoust 0-100% h	ich vertio ical inse umidity.	cal slots, erts.					Sound Control Blog	
. 85	.72 8 x 16	1.03 inch block	.93 with six	.70 1-1/2-in	.58 ich and th	.51 hree	8		4	143	Type F2B	RAL
	2-1/2-i with ac 0-100% .62	nch diamer oustical : humidity. 1,15	ter holes, inserts. T 1.01	33/66 ra emperatur .68	tio core e range 0	spaces)-400°F, .51	8		4	143	Sound Control Bloc Type C2	RAL
. 85	8 x 16 ratio c	inch block	with thread with aco	ee 3/8-in ustical i	ch slots, nserts.	, 33/66 Temper-	-		-	- • •)r	
	ature r .57	ange 0-400 1.17	0°F, 0-100 1.01	% humidit .72	y. .58	. 69	8		4	143	Sound Control Bloc Type D2	RAL
. 95	8 x 16 i slots, 3 serts. .56	inch block 3/66 rati Temperatu 1.12	with four o core spa re 0-400°F 1.10	3/8-incl ices with , 0-100% .86	h thick h acoustic humidity .65	orizontal al in- 72	8		4	143	Sound Control Bloc	DAT
	. 20	1.12	1.10	. 00	. 0.3	. 12	o		4	¥⇒)	Type E2	RAL

CATEGORY 2. FOAM

The sound absorption properties of various types of foams are listed. Foam has excellent absorption, provides a fair amount of vibration isolation and damping, but is a poor sound barrier material. Ester types of polyurethane foams are the most commonly used for noise reduction. These flexible foams are available in reticulated open-pore construction or nonreticulated with a microporous integral skin left intact.

Foams with convoluted surfaces and compressed feltlike foams are also manufactured to maximize absorption in specific frequency regions. Flame retardants and protective films for dirty or oily environments are commonly available options.

The porosity, thickness, and surface of a foam as well as its absorption coefficients should be considered in selecting a foam for a particular application. The data in this section are absorption coefficents of foam. Barrier properties of composite materials employing foam may be found in Table 8.

Organizations contributing data to this table are: 4, 13, 33, 40, 47, 57, 66, 78, 82, 104, 109, 112, 117, and 130.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. ABSORPTION COEFFICIENTS ARE SHOWN EITHER AS PERCENTAGES (NORMAL INCIDENCE DATA) OR AS DECIMAL FRACTIONS (RANDOM INCIDENCE DATA). THE DIFFERENCES BETWEEN THESE TWO DATA ARE DISCUSSED ON PAGE 56.

.

Table 2. Foam.

								• • • • • • • •				
NRC	125 Hz	250 Hz	Absorptio H 000	n_Coeffi ₩ 0000	cients ™ 0007	2H 000	Thickness (in.)	Density (lb/ft ³)	founting	Company	Product	Reference
.20 (c)	Acoustica .05	.07	. 10	.20	e -45 E0 .43	.88	1/4			13	Hush Cloth	CR
.20 (c)	Cellular, Temperatu	nonfib re rang	rous foam ge -45 to 3	n, 24 x 4 275°F.	8 inch.							65 68 -
	. 05	.06	. 11	.21	.44	.81	1/4			33	Quietfoam	CR QF-TDS- 200R2
. 25	Acoustica	l foam										CR L-AM-
	. 05	. 08	. 14	.24	.61	. 96	1/4	2		40	dba sorb-"AF"	1-76
.25 (c)	Not an op the skele 80 pores/	en pore tal str	foam, th ands have	e membra not bee	nes conr n remové	necting ed,						
	. 30	.10	.12	. 22	.60	. 91	1/4	2		57	Scott Fine-pore Acoustical Foam	CR 3655
. 35	Flexible	polyure	thane foa	ım								
(0)	. 08	.10	. 20	. 30	. 70	1.00	1/4	2		4	Coustifoam	CR
.35 (c)	Embossed, Temperatu	cellul re rang	ar, nonfi ge -45 to	brous fo 275°F.	am 24 x	48 inch.						CR QF-TDS-
		.16	. 25	. 46	.60	. 68	1/4			33	Quietfoam Embossed	200R2
.40 (c)	Type CF f embossing	ormulat	ed polyur	ethanes ane film	with dee facing.	ep texture Temper-						
	ature ran	.16	.28	. 52	. 72	.76	1/4			13	Hushcloth Densified Embossed	CP
.40	Compresse	d foam	(a reticu	lated fu	lly oper	n pore foa	m).					
(0)	. 60	.10	.20	. 45	. 80	. 10	1/2			57	Scottfelt 3-900	CR 3655
. 45	Flexible	polyure	thane foa	um .60	. 88	. 94	1/2	2		4	Coustifoam	CR
45	Acoustics	1 form										
.45	. 06	.14	. 25	.60	.93	. 97	1/2	2		40	dba sorb-"AF"	CR L-AM - 1-76
.45	Acoustica	l foam.	Temperat	ure rang	e -45 to	250°F.						
(0)	.70	.10	. 25	. 60	.91	. 99	1/2			13	Hushcloth	CR
.45 (c)	Flexible made with	polyest materi	er polyur al in con	ethane f tagt wit	oam. Mea h backir	asurement ng plate.						
	. 15	.12	. 25	. 57	. 85	.90	1/2	2		57	Scott Pyrell Foam	CR 3665 R2
.45 (c)	Cellular, range -45	nonfib to 275	rous foam °F.	24 x 48	inch. T	Cemperatur	e					CR QF-TDS-
	. 06	. 12	. 25	. 57	. 89	. 98	1/2			33	Quietfoam	200R2
.50 (c)	Not an op skeletal	en pore strands	foam, th have not	e membra been re	nes conn moved, 8	ecting the	e nch				Scott fine-pore	
	. 70	. 12	. 30	. 62	. 95	. 95	1/2	2		57	Acoustical Foam	CR 3655
.60 (c)	Type CF f embossing	ormulat with t S°F	ed polyur ough uret	ethanes hane. Te	with dee mperatur	ep texture e range						
	-45 -66 27.	. 26	. 43	. 75	. 93	. 95	1/2			13	Hushcloth Densified Embossed	CR
. 60	Embossed, Temperatu	cellul	ar, nonfi e -45 to 2	brous fo	am 24 x	48 inch.						
(-)	remperatu	.25	. 44	.77	. 90	. 93	1/2			33	Quietfoam (Embossed)	CR QF-TDS- 200R2
.60 (c)	Formulate	d foam e -45 to	with a to 275°F	ugh poly	mer film	n. Tempera	-					
(-)	core rang	. 25	. 42	.78	. 90	. 93	1/2			33	Quietfoam - CAB	CR QF-C(TENT)
. 60	Acoustica	l foam	<i>c</i> -					-				CR
	. 08	. 20	. 38	.78	. 95	.97	3/4	2		40	dba sorb-"AF"	L-AM-1-76

-

			Absorpt:	ion Coeffi	cients							
NRC	5 H2) Hz) Hz	2H 00	2H 0(00 Hz	lckness (in.)	nsity o/ft ³)	unting	npany	Product	Reference
	12.	250	200	100	200	400	Th	De De	Mou	Con		
. 60	Polyureth	ane foa	m, alum	inized po	lyester	film face.						
	Temperatu:	re rang 37	e -60 t 69	o 275°F. 61	79	48	1	1.8	4	104	#2210 Film/Foam Matorial	RAL
			,			.40	1	1.0	-	104	Material	A/6-211
. 60	Polyuretha pressure s	ane foa sensiti	m, alum ve adhe	inized po sive back	lyester Temper	film face, ature						
	.10	.18	. 46	. 81	. 88	. 55	1	2.3	4	104	#2211 Film/Foam Material	RAL A76-212
. 60	Compressed	foam	(a ret	iculated f	fully ope	en pore fi	lm)					
(c)	. 10	. 22	. 39	. 72	.10	. 10	1			57	Scottfelt 2-900	CR 3655
60	Acoustical	foam	Temper	atura rana	- 40 t	250°₽						
(c)	. 08	. 23	. 45	.80	.95	1.00	1	2		82	Soundscreen Composites	CR
. 60	Foam with .09	alumin .26	ized My. .67	lar cover .70	. 67	. 41	1			87	Soundscreen Absorbing	CP
				1.10			•			01	Toam TOR-5	UK
.65 (c)	Foam with -40 to 250	polyme: °F.	r film :	surface. T	Cemperatu	ire range						
		. 25	.44	. 78	. 90	. 95	1/2		·	117	Cabfoam	CR 714C
65	Acoustical	form	Tompore	ture repo		250°F						
(c)	.10	. 25	.53	acure rang .81	.98	.96	3/4		•	13	Hush Cloth	CR
.65 (c)	Flexible p made with	olyest materi	er polyu al in co	urethane f ontact wit	oam. Mea h backir	isurements ig plate.						CR
	. 12	. 25	. 47	. 90	.95	. 88	1	2		57	Scott Pyrell Foam	3665-R2
. 65	Compressed	foam	(a retio	culated fu	lly open	pore foar	n)	6.5				
(c)	. 90	.20	.47	. 85	.10	. 10	1	to 6.0		57	Scottfelt 3-900	CR 3655
65	Acoustical	form										
. 05	. 10	. 25	. 47	. 93	. 97	. 97	1	2		40	dba sorb-"AF"	CR L-AM-1-76
30	*	,	<i>c</i>									
(c)	-40 to 250	°F	r Ilim s	surface. 1	emperatu	re range						
		. 32	. 59	. 89	. 95	.96	3/4			117	Cabfoam	CR 7143
. 70	Type CF fo	rmulate	d polyr	ethanes w	ith deep	texture						
(c)	embossing.	Temper .36	ature r	ange -45 89	to 275°F 95	95	374			13	Hushcloth Densified	CP
							574			15	Lindowsed	CK
.70 (c)	Formulated ature range	foam w e -45 t	ith a t to 275°F	ough poly	mer film	. Temper-						
	-	. 32	. 60	. 89	. 95	. 96	3/4			33	Quietfoam - CAB	CR QF-C
. 70	Embossed	cellula	r nonf	ibrous fo	am 24 x	48 inch						
(c)	Temperatur	e range	-45 to	275°F.		40 Inch.						CR QF-TDS-
		. 32	. 59	. 89	.95	. 96	3/4			33	Quietfoam Embossed	200R2
. 70	Polyuretham	ne foam	ι.									
	. 14	. 25	. 55	1.00	. 87	. 94	1	1.8		78	Noiseguard Foam	CR K60B
. 70	Flexible po	lyuret	hane fo	am.								
	. 22	35	. 6 0	. 98	. 94	. 99	1	2		4	Coustifoam	CR
70	Noise aben	bine l	iner T	emperature	a to 180	°F						
(c)	54 x 96 inc	sh.		emperature	2 10 100	1.					Eckousta Foam	CR
		30	.67	.91	. 98	. 94	1	0.9		47	Туре 1000В	SES 76081
.70	Noise absor	bing 1	iner. T	emperature	e to 180	F.						
(c)	512e 36 x 5	94 inch 30	.67	. 91	. 98	. 94	1	2		47	Eckousta Foam Plain	CR SES 76081
. 70	Plastic acc	oustica	1 foam.	Temperatu	ire range	e -45 to 2	50°F.	2&4		13	Hushcloth UL-94 Foam	CR

Table 2. Foam continued.

1

164

.

							80 25	<u>م</u>	8			
NRC	125 H2	250 Hz	500 Hz	1000 Hz	2000 H2	4000 Hz	Thickne (in.)	Densit (lb/ft ³	Mountir	Company	Product	Referenc
.70 (c)	Not an ope the skelet 80 pores/i	en pore al stra inch.	foam, the ands have	membran not been	es conne removed	ecting i,					Scott Fine-Pore	
	.10	. 28	. 50	. 95	.10	. 95	1	2		57	Acoustical Foam	CR 3655
. 70	Polyuretha .11	nne foan .22	n. Tempera .72	iture ran 1.09	.ge ⊷60 n .85	to 275°F. .88	1	2.6	4	104	#1200 Acoustic Foam	RAL A76-208
. 70	Acoustic f to flame r	oam (M/ resistar	AF) bonded ht, uretha	l, 1 mil me foam.	clear my	ylar						RAL
	. 21	. 56	. 62	. 79	.76	.54	1	3.5		112	Sound Stopper Mylar	A73-171
.70 (c)	Cellular, range -45	nonfibr to 275	ous foam 'F.	24 x 48	inch. Te	emperature						CR OF-TI
	. 13	.30	. 62	. 91	. 98		1			33	Quietfoam	20082
.70 (c)	Compressed	1 foam (.40	a reticul .73	ated ful. .86	ly open .86	pore foam) .93	1			57	Scottfelt 7-900	CR 3655
.70	Foam with .10	alumini .24	zed Mylar .77	cover. .80	. 91	.51	2		·	32	Soundscreen Absorbing Foam FOA-3	CR
. 75	Polyuretha Temperatur	ne foan e range	, perfora -30 to 2	ted viny	l film f	face.	1	3.8	4	104	#3220 Upholstery Mat	RAL
. 75	Polyuretha		, perfora	ited viny	l film i	Eace,	1	5.0	-	104	nac	A70-209
	range -30 .13	to 125	70 .70	1.05	. 80	. 38	1	4.2	4	104	#3221 Upholstery Mat	RAL A76-210
. 75	Foam with	polymen	film sur	face. Te	mperatu	re range						
(c)	-40 to 250)°F. .46	. 70	. 92	. 97	. 98	1			117	Cabfoam	CR 714C
.75 (c)	Acoustical .12	foam. .32	Temperatu .70	ire range .92	-45 to .99	250°F. .94	1			13	Hushcloth	CR
.75 (c)	Type CF fo embossing -45 to 275	with to "F.	ed polyure bugh ureth	thanes w ane. Tem	ith deep perature	e texture e range					Nucheloth Densified	
		. 43	. 66	.93	, 98	. 96	1			13	Embossed	CR
.75 (c)	Cellular, Temperatur	nonfibi e range	ous foam -45 to 2	24 x 48 275°F.	inch (wi	ith film).						CR OF-TI
	.08	.41	.77	.95	.85		I			33	Quietioam	20082
.75 (c)	Foam with -45 to 250	a tougi)°F. /6	polymer	film. Te Q7	mperatu: Q7	re range Q9	1			22	Ovietform - CAR	CR OF C
		. 40	.70	. 72	. 71	. 70	1			22	Anterioan - CMD	UN QF-C
.75 (c)	Embossed, Temperatur	cellula e range .46	er, nonfib -45to 27 .70	rous foa 75°F. .92	m 24 x 4	48 inch. .97	1			33	Quietfoam Embossed	CR QF-T 200R2
. 75	Acoustical	foam										CB
	. 15	. 36	. 74	.97	. 97	. 97	2	2		40	dba sorb-"AF"	L-AM-1-
.80	Absorbing .06	foam .44	. 80	. 99	. 99	. 99	1			82	Scundscreen Absorbing Foam FOA-1	CR
. 80	Foam with	impervi	lous facir	ug.								
(c)	. 25	. 50	. 81	. 95	. 85	.81	1			13	Hushcloth	CR
.80 (c)	Reliculate of polyure Temperatur	d, full thane f	y open po oam. 90 p -40to 2	ore, flex ores/lin	ible, es ear incl	ster type h.						
	20	. 44		. 10	. 10	. 10	2	1.8		57	Scott Industrial Foam	CR 3655

Table 2. Foam continued.

165

•

-

÷.

Table	2.	Foam	continued.

			Absorpti	on Coeffi	cients							
NRC	5 Hz	0 Hz	0 Hz	00 Hz	2H 00	2H 00	ickness (in.)	nsity 5/ft ³)	unting	npany	Product	Reference
	12	25	50	10	20	40	臣	<u> </u>	Moi	Co		
. 80	Flexible	polyure	ethane f	oam .95	. 98	. 97	2	2		4	Coustifoam	CR QF-TDS- 200R2
						_						
.80 (c)	Cellular range -4	5 to 275	"F.	am 24 x 48	5 inch.	Temperatu:	re					CR OF-TDS-
	. 25	.51	. 82	. 98	. 97		2			33	Quietfoam	200R2
. 80	Flexible	polyure	thane f	oam								
	. 36	. 54	.91	. 86	. 97	. 99	3	2		4	Coustifoam	CR
85	Standard	DOTOUS	acousti	c foam								
. 00	. 11	. 48	1.04	.90	. 89	. 97	1	1.8		112	Sound Stopper SAF	RAL A69-65
.85 (c)	Compress	ed toam	(a reti	culated fu .98	111y open 10	n pore foa .10	am) 2	4.5 to 6 0		57	Scottfelt 3-900	CR 3655
							-			57		0.0
.90	Flexible	polyure	thane f	oam	<u>.</u>	0.7	,	2		,	0	
	. 07	. 80	. 90	. 92	. 94	.97	4	2		4	Coustifoam	CR
. 90	Flexible	polyure	thane fo	oam								
	. 72	. 83	. 88	. 93	. 95	. 98	5	2		4	Coustifoam	CR
. 90	Flexible	polyure	thane fo	oam								
	. 72	. 83	. 88	. 94	. 97	1.00	6	2		4	Coustifoam	CR
. 95	Reticula	ted, ful	ly open.	pore, fle	xible e	ster type						
(c)	of polyu Temperat	rethane ure rang	foam, 90 ;e -40 t	D pores/li o 250°F.	near ind	ch.					Contt Industrial	
	. 41	. 83	.10	. 10	.10	. 10	4	1.8		57	Foam	CR 3655
1.00	Absorbin	g foam										
	. 36	. 99	. 99	. 99	. 99	. 99	2			82	Soundscreen Absorbing Foam FOA-2	CR
1 00	Poticula	tod ful	1	nove fle	wible e							
(c)	of polyu	rethane	foam, 90	pores/li	near ind	ster type sh.						
	. 80	. 10	.10	. 10	.10	. 10	6	1.8		57	Scott Industrial Foam	CR 3655
	D 1 6 '	<i>c</i> –										
	incidence	foam. Te e). Temp	sted by erature	ASTM C38 range -45	to 225°	F.					•	
	. 05	. 07	. 11	. 21	. 44	. 81	1/4	2	,	117	Sound Foam	CR 707D
	Plastic	foam. Te	sted by	ASTM C38	4-58 (no	ormal						
	incidenc	e). Temp .12	erature	range -45	to 225°	F. 98	1/2	2		117	Sound Form	CR 707D
								-				
	Plastic incidence	foam. Te e). Temp	sted by erature	ASTM C38 range -45	4-58 (no to 225°	ormal F.						
	. 13	. 30	.63	. 91	. 98		1	2		117	Sound Foam	CR 707D
	Plastic	foam Te	sted by	ASTM C38	4-58 (nr	rmal						
	incidence	e). Tem	perature	range -4	5 to 225	°F.						
	. 25	. 52	.83	. 98	.97		2	2		117	Sound Foam	CR 707D
	Urethane	foam fl	exible.	ASTM 384	-58 (nor	mal						
	. 07	.13	.33	range -4 .87	.64	. 73		2		104	#1100 Acoustic Foam	CR 7-11
	Polyester film face	r uretha ≥. ASTM	ne foam. 384-59 (aluminiz normal in	ed polye cidence)	ster . Temper-						
	ature ran .04	nge -30 t .09	:o 325°F		. 18	.16		2		104	#2110 Film/Foam	CP
								-	-	104	2 Ma U	UN
	A urea fo quencies	ormaldeh at 100,	yde foam 200, 40	n. Nonstan 0, 800, 1	dard tes 600, 320	t. Fre- O Hz						
	. 90	. 23	. 58	. 70	. 89	. 78	1-1/4	0.7		109	Rapco-foam	CR 7.14 RA

166

.

Table 2. Foam	concluded.
---------------	------------

		/	Absorptic	n Coeffi	cients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Referenc e
	A urea f Frequenc 3200 Hz.	formaldeh lies at 1	yde foam 00, 200.	. Nonstar 400, 800	ndard tes 0, 1600.	t. and						
	.10	. 34	. 78	. 85	. 93	. 86	1-1/2	0.7		109	Rapco-foam	CR 7.14 RA
	A urea f Frequenc 3200 Hz. .12	formaldeh cies at 1 .44	yde foam 00, 200, .83 ne foam	. Nonstar 400, 800 .92 Tedlar f	ndard tes), 1600, .95 film face	t. and .92	2	0.7		109	Rapco-foam	CR 7.14 RA
	Temperat coeffici conversi	ure rang lents fro lon (ASTM	e -40 to m normal C384-58	325°F. F incidend	Random in ce by gra	cidence phical		2		104	#2140 Film/Foam Mar	CR
	. 00	. 20	.00	.41	. 20	. 10		2		104	nac	CK
	Polyeste film. Te coeffici conversi	er uretha emperatur ents fro on (ASTM	ne foam e range m normal 1 C384 58	with perf -30 to 22 incidend).	forated v 5°F. Ran ce by gra	inyl dom incic phical	ience				42126 Helelee	
	.16	. 31	. 67	. 99	. 75	. 80		2		104	#3120 Opholstery Mat	CR
	Urethane	e foam wi	th perfo	rated vir	yl facin	g.				130	Noise Control Materi	al

CATEGORY 3. FELT

CATEGORY 3. FELT

Felt is made of various fibers formulated together by pressure, heat, chemical action, etc., without weaving or knitting. In some cases felt is saturated with a massive substance such as asphalt, alumina, or silica. This offers a more moisture resistant product, with better thermo characteristics and some barrier properties.

Table 3 is divided into two parts:

- 3A Absorption Properties of Felt
- 3B Barrier Properties of Felt

Organizations contributing data to this table are: 28 and 74.

CAUTION

THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

			Absorption (Coeffi	cients							
NRC	(25 Hz	250 Hz	2H 005	1000 Hz	2000 Hz	4000 Hz	Inickness (in.)	Density (1b/ft ³)	Mounting	Company	Product	Reference
											·	
. 15	Asphalt	saturate	ed rag fiber	s in	a felt form	ulation.				20	Conversed E-1s	CR 6011
(2)	. 02	. 02	.10	. 21	. 28	. 16				28	Saturated felt	CR OUT
.30 (c)	(Resinat cotton a	ted cotto and synth	on). High-lo hetic fibers	ft fe	lt composed	of						
	. 02	. 06	.17	. 37	. 57	.63				28	Noise Control Batting	CR 6011
. 80	Aluminur	n/silica	insulation;	heat	resistance	to 2400°F						CR IND-3075
	. 34	. 70	. 79	. 84	. 79	. 90	1	8		74	Cerafelt	10-77
.80	Aluminur	n/silica	insulation;	heat	resistance	to 2400°F		8		74	Cerafelt	CR IND-3075
	. 61	. 70	.17	.90	.90	. 90	2	0		74	ocratere	10-77
. 85	Aluminur	n/silica	insulation;	heat	resistance	to 2400°F	, ,	8		7.6	Cerafelt	CR IND-3075 10-77
	. 52	. 69	. / 0	. 92	. 75	. 90	5	0		74		
. 85	Aluminur	n/silica	insulation;	heat	resistance	to 2400°F						CR IND-3075
	, 63	.76	.81	.90	. 89	.90	4	8		74	Cerafelt	10-77
. 85	Aluminur	m/silica	insulation	heat	resistance	to 2400°F						CR IND-3075
	.65	. 79	. 80	. 94	. 91	. 90	5	8		74	Cerafelt	10-77
.90	Aluminum	m/silica	insulation;	heat	resistance	to 2400°F		8		74	Cerafelt	CR IND-3075
	. 70	. 84	. 6.2	. 94	.07		0	0				10 . ,

Table 3A. Absorption properties of felt.

Table 3B. Barrier properties of felt.

				_		Tr	ansm	issi	on Lo	oss,	dB										
STC	Hz	Hz	Ηz	Ηz	Hz	Ηz	Ηz	Hz	Hz	Ηz	Hz	Ηz	Ηz	Hz	Ηz	Ηz	kness n.)	ity ft2)	any	Product	Reference
	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	Thicl (i)	Dens (1b/	Comp		
3	A resinated cotton high loft felt composed of cotton and synthetic) fibers. Noise Control																				
(-)	4	3	2	2	3	2	2	3	2	2	3	3	4	4	5	5			28	Noise Control Batting	CR 6011
21	Asph	alt	satu	rated	d rag	; fib	ers	in a	fel	t foi	mula	ation	ı.								
(c)	12	12	12	11	13	15	16	18	19	21	23	24	25	27	30	31			28	Saturated felt	CR 6011

CATEGORY 4. GLASS FIBER MATERIALS

1 area when control with reacts of other hold in arts of a line of the second secon

CATEGORY 4. GLASS FIBER MATERIALS

Long glass fibers when bonded with resins or other bonding materials convert acoustic energy into heat through air friction within the porous body of the material. However, glass fiber products are rather poor sound barrier materials.

Table 4 is divided into six parts:

4A Glass Fiber Materials Tested With Number 4 Mounting
4B Glass Fiber Materials Tested With Number 6 Mounting
4C Glass Fiber Materials Tested With Number 7 Mounting
4D Glass Fiber Materials Tested With Number 7 Mounting (modified)
4E Glass Fiber Materials Tested With Other or Unspecified Mounting
4F Glass Fiber Materials With Barrier Properties

Number 7 mounting (modified) is a nonstandard mounting consisting of the material placed against 24 gauge sheet metal over a 16 inch air gap. Some materials in this table have data associated with several mountings. The organizations contributing data to this table are: 13, 20, 27, 29, 31, 40, 47, 73, 74, 85, 96, and 98.

CAUTION

THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

GLOSSARY

- ASJ: (All-Service Jacket) Embossed laminate of white kraft facing with glass fiber reinforcing and foil backing
- FRK: Foil-faced laminate with glass fiber reinforcing and kraft backing
- Facing: The outside surface of the specimen. In general, the side facing the sound source
- Backing: The other outside surface of the specimen. In general, the side away from the sound source.

Core: The region between the facing and the backing

			Absorpti	on Coeffi	cients		so.					
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	2H 0004	Thicknes: (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
40	Temperat	ure to 4	150°F									
.40	.61	. 45	. 35	. 32	. 48	. 31	` 2	6	4	96	705, ASJ Faced	OCRL
. 45	Temperat	ure to 4	450°F									
	. 66	. 46	. 47	. 40	,52	. 31	3	6	4	96	705, ASJ Faced	OCRL
. 45	Temperat	ure to 4	450°F									
	. 65	. 52	. 42	. 36	. 49	. 31	4	6	4	96	705. ASJ Faced	OCRL
. 50	Composed insulati	of glas on	s fiber.	, high ten	nperature							
	. 12	. 27	. 43	. 66	. 73	. 84	1	8	4	73	Birfelt Insulation	KAL 1724.7
. 55	Flexible Temperat	, bondec ure to 4	1, unface 450°F	ed fiberg	lass blan	iket.						
	. 12	. 28	. 51	. 67	. 76	. 70	. 1	. 75	4	74	Microlite	CT
. 5 5	.06	. 24	. 47	. 71	. 85	. 97	1		4	96	Aeroflex type 150	OCRL
. 55	Temperat	ure to 4	50°F									
	. 18	. 73	. 43	. 58	. 39	. 30	1	6	4	96	705. ASJ Faced	OCRL
60	Fibergla	ss mater	rial, tem	nperature	to 1000°	۲F.						
	. 15	. 23	. 49	. 78	. 94	. 85	3/4	2.5	4	73	Studio Blanket	KAL 439529
60	Flexible Temperat	, bonded	1. unface 350°F	ed fiberg	lass blam	iket.						
	.11	. 29	. 53	. 77	.87	. 85	1	1	4	74	Microlite	СТ
60	Semi-rig	id, bong	led, unfa	aced fiber	rglass bo	ard.						
	Temperat .15	ure to 8	. 56	.71	. 83	. 94	1	3	4	74	Springlass 1000 Board	CT
65	Fibergla	ss therm	nal and a	acoustical	l insulat	ion con-	i.e.					
()	resin ty	pe 1001.	Temper 62	ature to	450°F. 78	75	,	1	4	20	Universal Blanket	CR 30-31
		.20	. 02	.07	. / 0	. /)	1	1	4	29	Universal blanket	090
65	Flexible Temperat	, bonded ure to 3	l, unface 50°F	ed fiberg	lass blan	ket.						
	.11	.23	.60	. 82	.91	. 94	ì	1.50	4	74	Microlite	CT
65	Temperat	ure to 4	50°F									
	.12	. 74	. 72	. 68	. 53	. 24	1	3	4	96	703, FRK Faced	OCRL
65	.21	. 63	. 99	. 74	. 33	.17	2		4	96	Preengineered Bldg. Insulation	OCRL
70	m		5082									
70	. 12	.28	.73	. 89	. 92	. 93	1	1.58	4	90	701 Fiberglas	OCRL
. 70	Flexible	, bonded	l, unface	d fibergl	lass blan	ket.						
	Temperati .10	ure to 3 .23	.63	. 86	. 99	. 92	1	2	4	74	Microlite	CT
70												
/U	Temperati .03	ure to 4 .22	.69	. 91	. 96	. 99	1	3	4	96	703 Fiberglas	OCRL
.70	.08	. 28	. 65	. 89	. 99	. 99	1		4	96	Aeroflex type 300	OCRL
		÷					-				eyre 500	
. 70	Temperati	ure to 4 .65	.50°F .86	. 71	. 49	. 26	2	3	4	96	703, FRK Faced	OCRL
70	Fibercla	ss fared	with so	phalt and	I kraft n	aper 16						
. •	20, and 2	24 inch	wide, pa	per side	exposed	to sound	,		,	87	Fiberglas Bldg	OCDI

Table 4A. Glass fiber materials tested with number 4 mounting.

			Absorptio	on Coeffi	cients							
NRC	125 Hz	250 Hz	500 Hz	2H 0001	2000 Hz	2H 000	Thickness (in.)	Density (lb/ft ³)	founting	Company	Product	Reference
75	Temperat	ture to	450°F				•		~		,,	- <u>-</u>
.,,	. 08	. 25	. 74	. 95	.97	. 99	1	6	4	96	705 Fiberglas	OCRL
. 75	Plain, p .29	performa .54	ted metal .71	.95	. 93	. 83	1		4	96	Fiberglas Roof Form Board	OCRL
. 75	Plain .18	. 34	. 79	. 99	. 93	. 90	1		4	96	Fiberglas Roof Form Board	OCRL
. 75	Mat face .13	eđ . 32	. 81	. 99	. 97	. 90	1		4	96	Fiberglas Roof Form Board	OCRL.
. 75	Temperat	ture to -	450°F									
	. 84	. 88	. 86	. 71	. 52	. 25	3	3	4	96	703, FRK Faced	OCRL
. 75	. 38	. 98	. 99	. 62	. 42	. 24	3		4	96	Preengineered Bldg Insulation	OCRL
. 75	Fibergla	iss face	d with as	phalt an	d kraft p	aper, 16	,					
	20, and .38	24 inch .98	wide, pa .99	.62	exposed . 36	to sound .24	3-1/2		4	96	Fiberglas Bldg Insulation	OCRL
. 75	Temperat .88	ure to 4	450°F .84	.71	. 49	. 23	4	3	4	96	703, FRK Faced	OCRL
. 80	Fibergla facing c .24	ass core on one o .59	with 1/8 r two sid	inch gla ies. .85	ass fiber .79	substrat	1		4	27	Vicracoustic	CKAL
80	Fiberala	se mata	rial tom		to 1000*	F						
.00	. 29	.40	.86	. 98	1.01	1.02	1-1/2	2.5	4	73	Studio Blanket	KAL 439528
. 80	Fibergla silicate temperat	ss ther glass i ure to d	mal and a bonded ph 450°F.	coustica enolic r	l insulat esin) typ	ion (bord e 501,)-					CR 30-31
	. 23	. 52	. 88	. 98	. 90	. 87		. 6	4	29	Universal Blanket	090
. 80	Flexible Temperat	, bonded	d. unface 350°F	d fiberg	lass bian	ket						
	. 25	. 53	. 85	. 91	. 90	. 91	2	. 75	4	14,	Microlite	СТ
. 80	. 56	. 99	. 99	. 64	. 48	. 23	4		4	96	Preengineered Bldg Insulation	OCRL
. 85	. 14	. 57	. 99	. 99	. 89	. 65	1/8		4	96	Glastrate	OCRL
.85	. 18	. 53	. 89	. 92	. 96	. 99	1		4	96	HT-26	OCRL
. 85	. 16	. 49	. 99	. 99	. 99	. 99	1-1/4		4	96	HT-23	OCRL
. 85	Adhered .25	to gypsu .49	um slab .98	. 99	. 91	. 85	1-1/2		4	96	Fiberglas Roof Form Board	OCRL
. 85	Flexible Temperat	, bondec ure to 3	1, unface 350°F	d fibergl	lass blan	ket.						
	. 28	. 55	. 90	. 9 7	. 94	. 97	2	1	4	74	Microlite	CT
.85	Semi-rig Temperat	id, bond	led, unfa	ced fiber	glass bo	ard.						
	. 50	. 76	. 91	. 88	. 94	. 88	2	3	4	74	Spin-glas 1000 Board	CT
. 85	. 20	. 51	. 88	. 99	. 99	. 99	2		4	96	Aeroflex Type 150	OCRL
. 85	Fibergla facing o	ss core n one o	with 1/8 r two sid	inch gla les.	iss fiber	substrat	e					
	.47	.95	. 89	.77	. 75	. 76	2		4	27	Vicracoustic	OCRL
. 85	. 21	. 62	. 93	. 92	. 91	. 99	2-1/2		4	96	Fiberglas Noise Barrier Batts	OCRL

Table 4A. Glass fiber materials tested with number 4 mounting continued.

/

			Absorpti	on Coeff	lcients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	2H 0007	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 90	. 30	. 66	. 99	. 99	. 99	. 95	2	1.6	4	74	Hull Insulation	СТ
. 90	Adhered .33	to gypsu .67	um slab .99	. 99	. 94	. 90	2		4	96	Fiberglas Roof Form Board	OCRL
. 90	Temperat .21	ure to 8 .66	350°F .99	. 99	. 99	. 99	2		4	96	Intermediate Ser- vice Board	OCRL
. 95	. 36	. 85	1.09	. 97	1.01	1.02	2	2.9	4	74	Incombustible Hull Board	СТ
. 95	Temperat	ure to 4 .77	50°F .99	. 99	. 99	. 99	2	1.58	4	96	701 Fiberglas	OCRL
. 95	Temperat	ure to 4 .82	50°F .99	. 99	. 99	. 99	2	3	4	96	703 Fiberglas	OCRL
. 95	Glass fi method	ber mold	led via	thermo-se	tting bi	nder						CKAL
. 95	.31 Temperat	.87 ure to 4	1.14 50°F	1.17	1.09	1.04	2	6	4	73	I-C Pres-Glas	7701.33
95	. 19	.74	. 99	. 99	. 99	. 99	2	6	4	96 96	705 Fiberglas HT-23	OCRL
. 95	Flexible	fibergl	ass	. , ,	.,,,		2 272		-	,,,	Ultracoustic	CR 30-31-
. 95	.43 Temperat	.91 ure to 4	.99 •50°F	. 98	. 95	. 93	3	1.25	4	29	Blanket	010
0.5	. 43	.99	. 99	. 99	. 99	. 99	3	1.58	4	96	701 Fiberglas	OCRL
	.53	.99	.99	. 99	. 99	. 99	3	3	4	96	703 Fiberglas	CCRL
. 95	Semi-rig Temperat .68	id, bond ure to 8 .99	led, unfa 350°F .99	aced fibe .94	rglass b .98	oard. .99	3	3	4	74	Spin-glas 1000 Board	СТ
. 95	Temperat .54	ure to 4 .99	50°F .99	. 99	. 99	. 99	3	6	4	96	705 Fiberglas	OCRL
. 95	Fibergla 20, and sound	ss faced 24 inch	l with as wide, in	sphalt an nsulation	d kraft j side exj	paper, 16 posed to					Fiberalas Plda	
	. 34	. 85	. 99	. 97	. 97	. 99	3-1/2		4	96	Insulation	OCRL
. 95	. 38	. 88	. 99	. 99	. 97	. 99	3-1/2		4	96	Fiberglas Noise Barrier Batts	OCRL
. 95	Temperat .73	ure to 4 .99	.50°F .99	. 99	. 99	. 99	4	1.58	4	96	701 Fiberglas	OCRL
. 95	Temperat .84	ure to 4 .99	50°F . 99	. 99	. 99	. 97	4	3	4	96	703 Fiberglas	OCRL
. 95	Semi-rig Temperat	id, bond ure to 8 oo	ed, unfa 50°F	aced fibe	rglass bo	oard.	ι.	ъ	ι.	74	Spin-glas 1000 Board	CT
. 95	.93 Temperat	ure to 4	. 99 50°F	. נע	. 72	. 77	4	د	4	. 4		U1
95	. 75	. 99	. 99	. 99	.97 .97	. 98 99	4	6	4	96 96	705 Fiberglas HT-26	OCRL OCRL
. 95	Fibergla	ss faced	with as	sphalt and	d paper, side ev	16, bosed						_
	to sound .64	. 99	.99	.09	.99	.99	6		4	96	Fiberglas Bldg Insulation	OCRL

TADIC AN. OTADD IIDCI MACCITAID CONCO WICH HUMDEL A MOGNETHE CONCIA	Table 4A.	Glass	fiber	materials	tested	with	number	-4	mounting	conclud	ed
---	-----------	-------	-------	-----------	--------	------	--------	----	----------	---------	----

Table 4B.	Glass	fiber	materials	tested	with	number	6	mounting.

			Absorpti	on Coeffi	icients							
NRC	125 Hz	50 Hz	00 Hz	2H 000	2H 000	2H 0001	Thickness (in.)	Density (1b/ft ³)	founting	Company	Product	Reference
. 20	Temperat .15	ure to 1 .32	350°F .13	. 13	. 29	. 51	1/8	6	6	74	Exact-O-Board	СТ
. 35	Temperat	ure to 3	250°F									
	.16	. 37	. 25	. 34	. 51	. 73	1/4	3	6	74	Exact-O-Mat	СТ
.40	Temperat	ure to 3	350°F									
	. 1.6	. 37	. 27	. 40	. 54	. 59	1/4	3	6	74	Exact-O-Board	CT
. 45	Temperat	ure to 2	250°F									
-	.14	. 37	. 30	. 45	. 61	. 74	3/8	2	6	74	Exact-O-Mat	CT
. 45	Temperat	ure to 3	350°F									
	. 17	. 40	. 32	. 49	. 59	. 68	3/8	2	6	74	Exact-O-Board	CT
. 45	Temperat	ure to 2	250°F									
	.17	. 39	. 36	. 50	. 64	. 78	1/2	1.5	6	74	Exact-O-Mat	CT
. 50	Temperati	ure to 3	350°F									
	.18	. 43	.40	. 53	. 67	:78	1/2	1	6	74	Microlite B	CT
. 55	Temperati	ure to 4	450°F									
	.16	. 36	. 23	. 57	. 96	. 9 0	3/8	1.5	6	74	Microlite AA	СТ
. 55	Temperat	ure to 2	250°F									
	. 23	.41	. 41	. 58	. 72	. 85	1/2	1.9	6	74	Tuf-Skin Microlite	CT
. 60	Temperatu	are to 4	450°F									
	. 18	. 39	. 37	. 72	. 95	. 99	1	42	ь	74	Microlite AA	СТ
. 60	Temperatu	ure to 3	350°F									
	.22	. 46	. 51	. 64	. 74	. 78	1	. 5	6	74	Microlite B	CT
65	Temperatu	ire to S	350 °F									
	. 26	. 50	. 55	. 69	. 79	. 86	i	. 6	6	74	Microlite B	CT
65	Temporate		6095									
.05	.26	.51	. 56	. 67	. 77	. 79	1	. 75	6	74	Exact-O-Mat	СТ
					•							
.65	Temperatu	re to 3	350°F									
	. 32	. 56	. 58	.67	. 73	. 76	1	, 8	6	74	Spin-Glass SG-28	CT
. 65	Temperatu	ire to 2	250°F									
	. 24	. 53	. 59	.71	. 81	. 86	1	1	6	74	Exact-0-Mat	CT
. 70	Temperatu	ire to 2	250°F									
	. 26	. 51	.63	. 83	. 91	. 94	1	1.75	6	74	Tuf-Skin Microlite	СТ
70	Temperati	Te to /	50°F									
	, 18	. 41	. 50	. 92	. 99	. 9,6	1	. 60	6	74	Microlite AA	ст
70	Temperati	TA TO 3	150°F									
.70	. 31	. 52	. 59	. 79	. 81	. 92	1	1	6	74	Spin-Glass SG-26	СТ
70	Temperate	Te to 3	150°F									
	. 26	.51	. 59	. 77	. 88	.94	1	1	6	74	Microlite B	СТ
70	Temperatu	ITP to 7	150°F									
	.26	. 53	.60	. 77	. 84	.87	1	1.2	6	74	Spin-Glas SG-25	СТ
. 70	Temperatu	ire to 3	50°F									
-	.23	. 54	. 64	. 81	. 89	. 91	1	1.5	6	74	Spin-Glas SG-24	ст

	Absorption Coefficients											
NRC	15 Hz	0 Hz	2H 00	2H 000	000 Hz	2H 000	ifckness (in.)	ensity b/ft ³)	ounting	mpany	Product	Reference
	13	25	20	10	2(40	Ę.	AC	Ψ	3		
. 70	Flexible Temperat	, bonded ure to 3	, unface 50°F	ed fibergl	lass blar	iket.	1		<u>_</u>			07
	. 24		. 65	. 61	. 07	. 95	1	1.5	0	74	microlite	C1
. 70	Temperat	ure to 2	50°F									
	. 28	. 51	. 63	. 80	. 89	. 91	1	1.5	6	74	Exact-O-Mat	CT
70	Somissia	id bond	od unfr	and fibor	coloco be	and						
.70	Temperat	ure to 4	50°F	aced Tiber	giass Du	aru.					Spin-Glas 812	
	. 25	. 55	.63	. 78	. 84	.93	1	1.6	6	74	Board	СТ
. 70	Temperat	ure to 3	50°F									
	.27	. 51	. 62	. 83	.91	. 91	1	1.9	6	74	Spin-Glas SG-23	СТ
. 70	Fibergla -20 to 45	ss type 0°F	IB-420.	Temperat	ure rang	e					Industrial Incula-	CP 20-21-
	. 21	. 48	. 59	. 82	. 96	. 99	1	4.20	6	29	tion Board	120
76	01 <i>64</i>)											
. / 5	ture to	ers bond 450°F	ed with	an inert	resin.	Tempera-					MG Superfine	CR 30-31-
	. 17	.61	.67	. 91	. 87	. 82	1	1	6	29	Insulation	590
75	Temperat	ure to A	50°F									
.,,	.20	.42	. 52	. 99	. 98	. 95	1	1	6	74	Microlite AA	CT
. 75	Fibergla Temperat	ss therma	al and a 25°F	acoustical	insulat	ion.						00 00 01
	. 32	. 51	. 60	. 83	. 98	. 86	1	1.5	6	29	MG Ultralite	58U
. / 5	Temperat	are to 2	al and a 50°F	acoustical	. insulat	10n .						CR 30-31-
	. 32	.51	. 60	. 83	. 9 8	. 86	1	1.5	6	29	Ultralite 150	05Ľ
. 75	Fibergla	ss therm	al and a	coustical	insulat	ion						
	Temperat	are to 2	50°F						,	20		CR 30-31-
	. 41	. 58	. 65	. 89	. 90	. 86	1	2	6	29	Ultralite 200	050
. 75	Flexible	, bonded	, unface	ed fibergl	ass blan	ket.						
	Temperati 25	ire to 35	50°F 66	87	94	94	1	2	6	74	Microlite	СТ
	. 20	. 40	.00	.07		. 74		L	Ū	/4	merorite	01
. 75	Laminate	with lin	mp, flex	tible sept	um insid	e layers						
	.41	.58	.65	. 89	. 90	. 90	1	2	6	33	Quietfibre LGF	CR QF-LGF- 302/2C/7/77
. 75	Semi-rig: Temperatu	id, bonde ire to 4	ed, unfa 50°F	iced fiber	glass bo	ard.						
	. 25	.49	. 63	. 99	. 99	. 99	I	3	6	74	Spin-Glass 814 Board	ст
75	Comi nia	المسط		and fibom	alass be							
. / 2	Temperatu	ire to 85	50°F	iced ilber	grass DO	aru.					Spin-Glass 1000	
	. 29	. 50	. 65	. 93	. 97	. 99	1	3	6	74	Board	CT
. 75	Fibergla	s type]	LB-300.	Temperat	ure rang	e -20 to	450°F				• 1	CD 20 21
	. 2 3	. 51	. 64	. 91	. 98	. 99	1	3	6	29	tion Board	12U
				_								
. 75	.23	ss type 1	.64	.90	ure rang .99	e - 20 to -	450°F	6	6	29	Industrial Insula- tion Board	CR 30-31- 12U
				.,,,			-	•		- /		
:75	Flexible	bonded	unface	d fibergl	ass blan	ket.						
	.33	.61	. 72	. 82	. 88	. 85	1-1/2	. 60	6	74	Micrclite	СТ
			_									
.75	Flexible Temperatu	bonded, are to 35	unface 50°F	d tibergl	ass blan	Ket.						
	. 33	. 60	. 70	.82	. 87	. 86	1-1/2	. 75	6	74	Microlite	СТ
.75	Semi-ric:	d bonde	d. unfa	ced fiber	elass ho	ard						
	. 64	.43	. 81	. 80	.90	. 97	2	6	6	74	spin-Glass 860 PL Board	CT

Table 4B. Glass fiber materials tested with number 6 mounting contin
--

			Absorption	n Coeffic	ients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	zH 0004	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 80	Glass fi	pers bon	ded with	an inert	resín.	Tempera-				-		
	. 16	.63	. 70	. 95	. 89	. 84	1	1.5	6	29	MG Superfine Insulation	CR 30-31- 590
. 80	Fibergla: sisting o resin ty	s therm f borosi be 1501.	al and ac licate gl Tempera	oustical ass bonde ture to 4	insulat ed with 450°F	ion con- a phenolic	2					CD 20 31
	. 34	. 56	. 76	. 96	. 92	. 81	1	1.5	6	29	Universal Blanket	O9U
. 80	Glass fil ture to e	ers bon 450°F	ded with a	an inert	resín.	Tempera-					MG Superfine	CR 30-31-
	.17	.63	. 74	. 97	. 90	. 86	1	2	6	29	Insulation	59U
. 80	Temperat	ire to 3	50°F									
	. 29	.53	. 75	. 97	. 99	. 99	1	2.4	6	74	Spin-Glass SG-22	CT
. 80	Fibergla: Temperatu 38	s therm ire to 2	al and act 50°F 71	oustical 97	insulat 95	ion. 90	1	3	6	29	Illtralite 300	CR 30-31-
	. 50		. / 1		. , ,	. 20	-	2	v	27	orerarrie 500	050
.80	Temperatu .20	ire to 4 .50	50°F .76	. 99	. 99	. 99	1-1/2	. 60	6	74	Microlite AA	ст
.80	Semi-rig: .56	d, bond .50	ed, unface .85	ed fiberg .91	,92	ard .93	2	3	6	74	Spin-Glass 830 PL Board	СТ
. 80	Semi-rig: .58	d, bond .49	ed, unface .90	ed fiberg .89	glass bo .91	ard 1.06	2	4.2	6	74	Spin-Glass 840 PL Board	CT
. 85	Flexible	bonded	, unfaced	fibergla	ıss blan	ket.						
	Temperatu 31	ire to 3	50°F 80	44	97	97	1-172	1	6	74	Microlite	CT
			0-				1 1/-	-	0	, ,	hittorict	
. 85	Temperatu .33	.66	50°F .81	.91	. 96	. 94	2	. 5	6	74	Microlite B	СТ
. 85	Flexible	bonded	, unfaced	fibergla	ass blan	ket.						
	.40	.75	.85	. 89	. 94	. 96	2	.60	6	74	Microlite	СТ
95	Tomporati	ro to 3	50°F									
.05	. 39	.74	.83	. 93	.87	.91	2	. 8	6	74	Spin-Glass SG-28	СТ
85	Wall and	nanel er	nvelope ir	sulation	s WP-1	1						
	. 32	.68	. 94	. 94	.84	.80	2	1.10	6	29	WP WP-EES	CR 30-40- 28
. 85	Wall and .34	panel en	nvelope ir .96	sulation	s, WP-1. .86	6 . 83	2	1.58	6	29	WP WP-EES	CR 30-40- 28
90	Florible	honded	unfaced	fiborals	ec blom	kot						
	Temperatu	re to 3	50°F	ribergra		ACC .	2	34	,	7/	M	
	. 38	. 72	.86	. 96	. 96	.95	2	. / 5	6	74	Microlite	СТ
. 90	Temperatu .39	re to 35 .74	50°F .88	. 99	. 95	. 99	2	1	6	74	Spin-Glas SG-26	СТ
0.0					-	-	-	-				
. 90	Temperatu .43	re to 35 .74	.92	. 99	. 97	. 97	2	1.2	6	74	Spin-Glas SG-25	СТ
. 90	Wall and	panel er	nvelope in	sulation	is, WP-3	0						CD 20 (0
	. 32	.74	. 97	. 98	.87	.85 -	2	3	6	29	WP WP-EES	CR 30-40- 28
. 90	Semi-rigi Temperatu	d, bonde	ed, unface 50°F	d fiberg	lass bo	ard.						
	. 45	.72	.99	. 99	. 99	. 99	2	3	6	74	Spin-Glas 814 Board	СТ

Table 4B. Glass fiber materials tested with number 6 mounting continued.

Absorption Coefficients 0												
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 90	Wall and	panel e	envelope	insulatio	ons, WP-4	0						
	. 27	. 79	.98	. 99	. 88	. 86	2	4	6	29	WP WP-EES	22 22
. 90	Wall and	panel e	nvelope	insulatio	ons, WP-6	0	2	4	4	20	ID UD FDC	CR 30-40-
	. 40	. 82	.97	. 99	.90	. 00	2	0	0	29	WP WF-LES	28
. 95	Temperat	ure to 2	50°F									
	. 48	. 85	. 99	. 99	. 99	. 99	2	1.5	6	74	Tuf-Skin Microlite	СТ
95	Temperatu	TR to 3	ISO °F									
	. 48	. 75	.97	. 99	. 99	. 99	2	1.5	6	74	Spin-Glas SG-24	СТ
. 95	Semi-rig: Temperatu	id, bond ure to 4	led, unfa 50°F	ced fiber	glass bo	ard.					Spin-Glas 812	
	. 47	.77	. 96	.99	. 99	. 99	2	1.6	6	74	Board	СТ
0.5	·		FOR									
.95	.43	.76	.99	. 99	. 99	. 99	2	1.9	6	74	Spin-Glas SG-23	СТ
							-					
. 95	Temperate	ire to 3	50°F									
	. 59	.87	.99	. 99	. 99	.99	2	2 - 4	6	74	Spin-Glas SG-22	CT
. 95	Temperate	ure to 3	50°F									
	. 53	. 92	. 99	. 99	. 99	. 99	3	. 8	6	74	Spin-Glas SG-28	СТ
0.5	Tomporate		50.95									
. , ,	.57	.91	.99	. 99	. 99	. 99	3	1	6	74	Spin-Glas SG-26	СТ
. 95	Temperatu	ure to 3	50°F	00		0.0	2		4		6-i- 01 00 01	C.T.
	. 03	. 94	. 99	. 99	. 99	. 99	3	1-2	0	/4	Spin-Glas SG-25	CI
. 95	Temperatu	ure to 3	50°F									
	. 56	.94	. 99	. 99	. 99	. 99	3	1.5	6	74	Spin-Glas SG-24	CT
95	Temperati	ire to 3	50°F									
. / 2	. 72	.99	.99	. 99	. 99	. 99	3	1.9	6	74	Spin-Glas SG-23	ст
. 95	Semi-rigi Temperatu	id, bond ire to 8	ed, unfa 50°F	ced fiber	glass bo	ard.					Spin-Class 1000	
	.71	. 99	. 99	. 99	. 99	. 99	3	3	6	74	Board	CT
0.F	C ((((((((-1 1-	1						
. 95	Temperatu	ire to 8	50°F	ced liber	glass bo	aru.					Spin-Glas 1000	
	. 48	. 74	. 99	. 99	. 99	. 99	2	3	6	74	Board	CT
. 95	Temperatu	ire to 3	50°F									
	. 72	. 99	. 99	. 99	. 99	. 99	4	. 8	6	74	Spin-Glas SG-28	CT
95	Temporati	ro to 3	50°F									
. 73	.74	.99	.99	. 99	. 99	. 99	4	1	6	74	Spin-Glas SG-26	СТ
.95	Semi-rigi Temperatu	ld, bond ire to 8	ed, unfa 50°F	ced fiber	glass boa	ard.					c (0) (1000	
	. 89	.99	. 99	. 99	. 99	. 99	4	3	6	74	Spin-Glas 1000 Board	СТ

Table 4B. Glass fiber materials tested with number 6 mounting concluded.

-

			Absorptio	on Coeffic	cients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 35	Temperat .45	ure to 4 .30	•50°F .23	. 50	. 34	. 51	1	6	7	96	705, ASJ Faced	OCRL
. 40	Temperat .53	ure to 4 .40	50°F .31	. 54	. 33	. 51	2	6	7	96	705, ASJ Faced	OCRL
. 45	Temperat .54	ure to 4 .43	450°F .33	. 58	. 37	. 54	3	6	7	96	705, ASJ Faced	OCRL
.45	Temperat .62	ure to 4 .49	.50°F .33	. 54	. 35	. 50	4	6	7	96	705, ASJ Faced	OCRL
.65	Teflon c .60	oated gl .69	ass fabri	ic .70	. 72	. 75		ll oz/ sq yd	7	31	Fabrasorb	CR CFC-1002- 76
.70	Temperat .48	ure to 4 .60	50°F .80	. 82	. 52	. 35	1	3	7	96	703, FRK Faced	OCRL
. 70	Fibergla 20, and .78	ss faced 24 inch .87	l with asp wide, pap .90	ohalt and ber side .71	kraft pa exposed .40	aper, 16, to sound .32	3-1/2		7	96	Fiberglas Bldg Insulation	OCRL
. 75	Fibergla .72	ss with .66	PVC wrap .69	. 86	. 79	. 49	1	. 75	7	85	Poly Pad	CR
. 75	Equipmen thermose .73	t insula tting bi .66	ation C-8 inding for .69	CL-8 gl mulation .86	ass fibe: .79	r with .49	1	. 8	7	29	C-series	cr 30-40- 25u
.75	Equipmen thermose .74	t insula tting bi .68	ition C-11 inding for .71	L, CL-11 ; rmulation .86	glass fil .80	ber with	1	1.1	7	29	C-series	CR-30-40- 250
. 75	Fabric r .38	einforce .55	ed vinyl 1 .99	faced .94	. 50	39	1+1/2	. 6	7	85	Decorative Faced Acoustical Insulation	CR
. 75	Fabric r .38	einforce .55	ed vinyl i .99	aced rig: .94	id board .50	. 39	1-1/2	. 6	7	85	Decorative Faced Rigid Board Acoustica Insulation	l CR
. 75	Temperat .50	ure to 4 .61	50 F .99	. 83	5.	15	2	3	7,	96	705. FRK Faced	OCRL
. 75	Temperat .59	ure to 4 .64	50°F .99	.81	. 50	. 33	3	3	7	96	703, FRK Faced	OCRL
. 75	Temperat .61	ure to 4 .69	.50°F .99	. 81	. 48	. 34	4	3	7	96	703, FRK Faced	OCRL
. 75	Fibergla 20, and .84	ss faced 24 inch .92	with asp wide, pap .94	halt and er side e .64	kraft pa exposed t .45	aper, 16, to sound .34	6		7	96	Fiberglas Bldg Insulation	OCRL
. 85	Temperat .56	ure to 4 .85	.50°F .70	. 89	, . 93	. 99	1	1.58	7	96	701 Fiberglas	OCRL
. 85	Fibergla .72	ss with .86	PVC wrap .80	.86	. 84	. 57	1-1/2	. 75	7	85	Poly Pad	CR
. 85	Equipmen thermose .72	t insula tting bo .86	tion C-8, nding for .80	CL-8 gla mulation .86	ass fiber .84	with	1-1/2	. 8	7	29	C-series	CR 30-40- 250
. 85	Equipmen thermose .74	t insula tting bi .87	tion C-ll nding for .80	., CL-11 g mulation .86	glass fit .84	per with	1-1/2	1.1	7	29	C-series	CR 30-40- 25U
. 9 0	. 69	. 77	. 80	. 99	. 96	. 72	1/8		7	96	Glastrate	OCRL

Table 4C. Glass fiber materials tested with number 7 mounting.

			Absorpti	on Coeffi	cients							
NRC	2 HZ	ZH 0	2 Hz	ZH OC	zH OC	2H OC	lckness (in.)	nsity 5/ft ³)	unting	npany	Product	Reference
	12	251	500	100	20(400	Ë	De De	Mol	Cor		
. 90	Fiberglas	s with	PVC wrap .92	. 89	. 82	. 54	1	1.5	7	85	Poly Pad	CR
.90	Temperatu .65	.94	50°F .76	. 98	. 99	. 99	1	3	7	96	703 Fiberglas	OCRL
. 90	Temperatu .68	.91	50°F .78	. 9 7	. 99	. 99	1	6	7	96	705 Fiberglas	OCRL
. 90	Equipment thermoset	insula ting bi	tion C-8 nding fo	, CL-8 gl rmulation	ass fibe	r with						CP 20 (0
	.80	. 90	. 92	. 89	. 82	. 54	2	. 8	7	29	C-series	25U
. 9 0	Equipment thermoset	insula ting bi 92	tion C-1 nding fo	1, CL-11 rmulation	glass fi	ber with	2	1.1	7	29	C-series	CR 30-40-
	.05		. , ,		.05		-				0 001100	290
. 90	Equipment thermoset	insula ting bi	tion C-8 nding fo	, CL-8 gl rmulation	ass fibe	r with						CR 30-40-
	. 98	. 89	.97	. 94	. 82	. 53	2-1/2	. 8	7	29	C-series	25U
. 90	Equipment thermoset	insula ting bi	tion C-l nding fo	l, CL-ll rmulation	glass fi	ber with						CR 30-40-
	. 98	. 89	.97	. 95	. 83	. 54	2-1/2	1.1	7	29	C-series	250
. 90	. 59	. 84	. 79	. 94	. 96	. 99	2-1/2		7	9 6	Fiberglas Noise Barrier Batts	OCRL
. 95	Temperatu	re to 4	50°F									
	. 76	. 99	. 9ô	. 99	. 99	. 99	2	1.58	7	96	701 Fibergias	OCRL
. 95	Temperatu	re to 4	50°F									
	. 66	. 95	. 99	. 99	. 99	.99	2	3	7	96	703 Fiberglas	OCRL
.95	Temperatu	re to 4	50°F									
.,,,	. 62	. 95	. 98	. 99	. 99	. 99	2	6	7	96	705 Fiberglas	OCRL
. 95	Temperatu	re to	850°F								Intermediate	
	. 79	. 99	. 99	. 99	. 99	. 99	2	•-	7	96	Service Board	OCRL
. 95	Equipment thermoset	insula ting bin	tion C-8 nding fo	, CL-8 gl rmulation	ass fibe	r with					•	CR 30-40-
	. 99	. 95	. 99	. 94	.83	. 54	3	. 8	7	29	C-series	250
.95	Equipment	insula	tion C-1	1. CL-11	elass fi	her with						
	thermoset	ting bin	nding fo	rmulation	61000 01							CR 30-40-
	. 99	.95	. 99	. 95	. 84	. 55	3	1.1	7	29	C-series	250
. 95	Temperatu .77	re to 4 .99	50°F .99	. 99	. 99	. 99	3	1.58	7	96	701 Fiberglas	OCRL
.95	Temperatu 66	re to 41 93	50°F 99	.99	99	99	٦	з	7	96	703 Fiberolas	OCRI
		. , ,	.,,		.,,	.,,,	5	5	,		705 11001 g103	o o na
. 95	Temperatu	re to 4	50°F									
	. 66	. 92	.99	. 99	. 99	. 99	3	6	7	96	705 Fiberglas	OCRL
. 95	. 73	. 98	. 98	. 99	. 99	. 99	3-1/2		7	96	Fiberglas Noise Barrier Batts	OCRL
. 95	Fiberglas 20, and 2 sound	s faced 4 inch w	with as wide, in	phalt and sulation	kraft p side exp	aper, 16, osed to					n n	
	. 80	. 98	. 99	. 99	. 98	. 99	3-1/2		7	96	ribergias Bldg. Insulation	OCRL
. 95	Temperatu	re to 4	50°F									
	. 87	. 99	. 99	. 99	. 99	. 99	4	1.58	7	96	701 Fiberglas	OCRL

Table 4C. Glass fiber materials tested with number 7 mounting continued.

			Absorpti	on Coeffi	cients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 95	Temperat	ure to 4	450°F									
	.65	. 99	. 99	. 99	. 99	. 99	4	3	7	96	703 Fiberglas	OCRL
. 95	Temperat	ure to 4	450°F									
	. 59	.91	. 99	. 99	. 99	. 99	4	6	7	96	705 Fiberglas	OCRL
. 95*	Temperat	ure to 4	450°F									
	.61	. 99	.99	. 99	. 99	. 99	4	1.58	7	96	701 Fiberglas	OCRL
.95	Temperat	ure to 4	450°F									
	.62	. 99	. 99	. 99	. 99	. 99	4	3	7	96	703 Fiberglas	OCRL
. 95	Temperat	ure to 4	450°F									
	. 57	. 99	. 99	. 99	. 99	. 99	4	6	7	96	705 Fiberglas	OCRL
. 95	Fibergla 20. and sound	ss faced 24 inch	d with as wide, in	phalt and sulation	i kraft p side exp	aper, 16, oosed to					Fiberglas Bldg	
	. 86	. 99	. 99	. 99	. 99	. 99	6		7	96	Insulation	OCRL

Table 4C. Glass fiber materials tested with number 7 mounting concluded.

			Absorpti	on Coeffi	lcients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
35	Temperat	ure to 4										
	.60	. 39	. 34	. 29	. 47	. 30	4	6	7 mod	96	705, ASJ Faced	OCRL
	_											
. 40	Temperat 38	ure to 4	+50°F 39	37	56	38	2	6	7 mod	96	705 ASI Faced	OCRI
	. 50	. 50			. 50	. 50	4	0	7 1100	,0	NOS, NOS Faced	OCKE
.40	Temperat	ure to 4	450°F									
	. 48	. 44	. 40	.31	. 52	. 29	3	6	7 mod	96	705, ASJ Faced	OCRL
. 45	Temperat	ure to 4	50°F									
	. 25	. 48	. 28	. 57	. 39	. 30	1	6	7 mod	96	705, ASJ Faced	OCRL
	_											
. 55	Temperat	ure to 4	50°F	65	51	28	1	3	7 mod	96	703 FRK Faced	OCRI.
	46.	.45	. 02	.05	1	. 20	1	5	,	,0	Jost Hat Faces	JUNE
. 65	Temperat	ure to 4	50°F									
	. 38	.51	. 83	. 73	. 53	. 37	2	3	7 mod	96	703, FRK Faced	OCRL
.65	Temperat	ure to 4	50°F									
	. 56	. 74	74	. 67	. 48	. 23	3	3	7 mod	96	703, FRK Faced	OCRL
. 65	Temperat 70	ure to 4	50°F	67	4.6	24	4	з	7 mod	96	703 FRK Faced	OCRI
	. 70	. 70	. / J	.07	.40	. 24	4	,	,u	,,	, og, rak faced	JORE
. 70	Temperat	ure to 4	50°F									
	. 38	. 34	. 68	. 82	.87	. 96	1	1.58	7 mod	96	701 Fiberglas	GCRL
. 70	Temperat	ure to 4	50°F									
	. 33	. 28	. 62	. 88	. 96	. 99	1	3	7 mod	96	703 Fiberglas	OCRL
. 70	Temperat 32	ure to 4	50°F	90	95	99	1	6	7 mod	96	705 Fiberolas	OCRI
	. 52	. 50	.00		. , , ,	.,,,	•	Ũ	1 100	,,,	, of thereids	o dite
.90	Temperat	ure to 4	50°F									
	. 38	.63	.99	. 99	. 99	. 99	2	3	7 mod	96	703 Fiberglas	OCRL
. 90	Temperat	ure to 4	50°F									
	. 39	. 59	. 99	. 99	. 99	. 99	2	6	7 mod	96	705 Fiberglas	OCRL
	_											
. 90	Temperat 33	ure to 8	99 99	99	99	99	2		7 mod	96	Intermediate Service Board	OCBI
							-		,u	,,,	bervice board	UCINE
. 90	Temperat	ure to 4	50°F									
	. 44	. 66	. 99	. 99	. 99	. 99	2	1.58	7 r.od	96	701 Fiberglas	OCRL
. 95	Temperat	ure to 4	50°F									
	. 53	. 96	. 99	. 99	. 99	. 99	3	1.58	7 mod	96	701 Fiberglas	OCRL
.95	Temperat 45	ure to 4 98	.50°F	99	99	99	3	3	7 mod	96	703 Fiberglas	OCRI
	.45	. 70		. , ,			,	2				
. 95	Temperat	ure to 4	50°F									
	. 49	.93	. 99	. 99	. 99	. 99	3	6	7 mod	96	705 Fiberglas	OCRL

Table 4D. Glass fiber materials tested with number 7 mounting (modified).

۰.

A....

			Absorpti	on Coeffi	cients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	1000 Hz	Thickness (in.)	Density (lb/ft ³)	dounting	Company	Product	Reference
.35 (c)	Temperat .07	ure to 1 .10	.18	. 39	. 81	. 98	1/4		-	13	Hushcloth HT-NM	CR
.50 (c)	Temperat .09	ure to 1 .13	.200°F	. 66	. 91	. 99	1/2		-	13	Hushcloth HT-NM	CR
. 55	High den	sity gla	ss fiber	blanket	faced bo	th sides						
	nylon th	read, 24	x 48 in .41	ch stand .78	. 90	. 90	1	2.4	2	20	Studio Blanket	CR
. 60	Cloud-li glass co	te 12 x re. Fab	48 x l i ric cove	nch with red decor	1-1/2 lb	fiber-						
	. 11	. 30	. 53	. 74	.81	. 79	1		-	85	Cloud-Lite Acoustic Baffles	0.1 ME
.60	Smooth s .69	urface a .72	coustica .59	1 pad unp .68	erforate .36	d . 31	-	2	-	85	Shadow-Coustic	CR 9.1 ME
. 65	Textile 350°F	type fib	erglass	blanket,	tempera	ture to						
	.16	. 50	. 44	. 77	. 95	. 89	1/2	2.5	-	13	Fibracoustic SK	CR
. 65	Type 100 fibered Sizes 24	Eckoust fibrous x 48 in	a-Glas, glass. ich sheet	high temp Temperatu s	erature, re to 35	long 0°F.					Eckoustic Noise	CR SES
4 5	Tomponet	. 22	.62	.95	.90	. 82	1	3	-	47	Absorbing Liner	76081
(c)		.22	.62	.95	. 90	. 82	1	3	-	47	Eckousta-Glas Type 100	CR SES 76081
.65	12 x 48 : .39	(l inch .52	. 59	. 75	. 77	.71	1		-	85	Cloud-Lite Acoustic Baffles	CR 9.1 ML
.65	Acoustica	al fiber	glass									
	.06	. 20	. 64	. 90	. 95	. 97	1		-	40	dba Sorb-"AG"	CR
. 65	Smooth su .67	.83	coustica .68	1 pad, un .77	.35	ed .24	-	3	-	85	Shadow-Coustic	CR 9.1 ME
.70	High den: glass fil nylon th	sity gla per fabr read, 24	ss fiber ic and s x 48 in	faced bo titched t ch stand	th sides ogether	with with						
	.02	. 21	. 60	. 99	. 9 5	. 95	2	2.4	2	20	Studio Blanket	CR
. 75	Smooth su .61	rface a .83	coustica .59	1 pad, pe .79	rforated .86	. 80	-	2	-	85	Shadow-Coustic	CR 9.1 ME
. 75	Acoustica .16	1 fiber .34	glass .72	.97	. 97	. 97	2		-	40	dba Sorb-"AG"	CR
. 75	Temperatu	ire to 1	200°F									
(c)	. 25	. 46	. 68	. 85	. 95	. 99	1		-	13	Hushcloth HT-NM	CR
. 80	Fibergla: sistingo resin typ	s therm f borosi e 2001.	al and a licate g Tempera	coustical lass bond ature to	insulat ed with 450°F	ion con- a phenolic	e .					CR 30-31-
	. 33	. 56	. 68	. 95	. 93	. 88	1	2	-	29	Universal Blanket	09U
.80	Textile (350°F	ype fib	erglass	.95	.95	ure to	1	2.5	-	13	Fibracoustic SK	CR
. 80	Fiberglas	s_core	with 1/8	inch mol	ded glas	s fiber	-					
	substrate	facing	on one .90	or two si .83	des .73	. 72	1		8	27	Vicracoustic	CKAL

Table 4E. Glass fiber materials tested with other or unspecified mounting.

1

			Absorpti	on Coeffi	cients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	2H 0007	Thíckness (in.)	Density (lb/ft ²)	Mounting	Company	Product	Reference
. 80	Fibergla	iss core e facing	with 1/8 g on one	inch mo or two si	lded glas ides	s fiber						
	. 27	. 72	. 87	. 82	.74	.70	1		2	27	Vicracoustic	CKAL
.85	Fibergla substrat	iss core ce facing	with 1/8 g on one	inch mo or two s	lded glas ides	s fiber						
	. 57	. 98	. 92	. 76	. 71	. 78	2		2	27	Vicracoustic	OCRL
. 95	Acoustic	al fibe:	rglass									
	. 76	. 97	. 97	. 97	. 97	.97	4		-	40	dba Sorb-"AG"	CR
	Three pi mat. Te normal i .33	eces 1 : mperatu ncidence .40	inch thic re to 120 e by ASTM .46	k fabrica 0°F. Coe C384-58 .64	ated glas efficient .84	ss fiber s are .82	3	. 94	-	98	Temp-Mat Acous- tical Insulation	
	Two laye mat. Te normal i	ers of 1 emperatum .ncidence	inch thi re to 120 e by ASTM	ck fabric O°F. Co C384-58	cated gla efficient	ss fiber s are					Tema-Mar Acous-	
	. 32	. 44	. 47	. 65	. 76	. 89	2	. 94	-	98	tical Insulation	
	100% sel on mat i are norm	lect gra form. To mal incio	de type E emperatur dence by	glass f e to 120 ASTM C38	ibers fat D°F. Coe 4-58	oricated officients	_				Temp-Mat Acous-	
	. 09	.23	. 46	. 70	. 74	.99	1	. 94	-	98	tical Insulation	

Table 4E. Glass fiber materials tested with other or unspecified mounting concluded.

Table 4F. Glass fiber materials with barrier properties.

						Tr	ansm	issi	on L	085,	dB										
STC	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	2H 0007	Thickness (in.)	Density (1b/ft ²)	Company	Product	Reference
17	Glass	fibe	er mo	lded	via	the	rmose	ttir	ng me	thod	1							-			
	7	12	11	10	10	9	10	13	16	17	19	22	24	27	28	31	1	18	73	IC Pres-Glas	KAL 439294
20	Glass	fibe	er mo	lded	via	ther	rmose	ttin	ıg bi	nder	met	hod									
	14	13	11	12	13	13	13	13	19	22	24	27	29	32	34	36	1	. 35	73	IC Pres-Glas	KAL 439293

CATEGORY 5. MINERAL FIBER MATERIALS

CATEGORY 5. MINERAL FIBER MATERIALS

Open-cell absorptive materials can be divided into three classes: methane foams, glass fibers, and mineral fibers. Materials in the latter class are generally low density, flexible products which are available in sheet or roll geometries. Mineral fiber products are used as absorptive fillers for acoustic panels, enclosures, or partition walls.

Organizations contributing data to this category are: 12, 18, 28, and 45.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

			Absorptic	on Coeffi	cients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
.45 (c)	Mineral we	ool fibe ls.	ers and t	hermosett	ing res	ins formed						
	. 02	.11	. 38	. 67	. 70	. 65	1/4		••	28	Mineral Fiber Boards	CR 6011
. 75	Homogenous and acoust range belo 99%. Test	s, miner tical in ow ambie t method	al fiber sulation ent to 10 ASTM C4	insulati 24 x 48 50°F, rel 23-66	.ng boar inch. .ative h	d for therma Temperature umidity 0 to	11					RAL
	. 10	. 29	.73	. 97	. 97	1.00	1	6 to 8	4	45	MT Board	A 72-110
.85 (c)	Mineral we into pane	ool fibe ls.	ers and t	hermosett	ing res	ins formed	,			28	Mineral Fiber Board	CR 6011
	. 11	.47	.0/	.90	. 99		1			20	Hineral Fiber board	CK BUIL
. 85	Homogenous and acoust range belo 99%. Test .29	s minera tical ir ow ambie method .58	al fiber sulation ent to 10 ASTM C42 .88	insulatin 24 x 48 50°F, rel 3-66. 1.01	ng board inch. T ative h 1.01	for thermal emperature umidity 0 to 1.00	2	6 to 8	4	45	MT Board	RAL A 72-111
. 95	Homogenous and acous range belo 99%. Tes	s minera tical ir ow ambie t Method	al fiber sulation ent to 10 i ASTM C4	insulatin 24 x 48 50°F, rel 23-66.	g board inch. T .ative h	for thermal emperature umidity 0 to						PAT
	. 47	.85	1.03	1.04	1.03	1.00	3	6 to 8	4	45	MT Board	A 72-112
.95	Homogenous and acoust range belo 99%. Test	s minera tical ir ow ambie t Method	al fiber nsulation ent to 10 ASTM C4	insulatir 24 x 48 50°F, rel 23-66.	ng board inch. T ative h	for thermal emperature umidity 0 to	, ,	6 to 8	4	45	MT Board	RAL
	. 63	1.10	1.1/	1.00	1.04	. 77	4	0 10 0	4	4.5	ni board	A 12-113

Table 5A. Absorption properties of mineral fiber.

Table 5B. Barrier properties of mineral fiber.

						Tr	ansmi	ssic	on Lo	oss,	dB										
STC	Hz	Ηz	Ηz	Ηz	Нz	Ηz	Чz	Ηz	Ηz	zΗ	Hz	Ηz	Ηz	Hz	Ηz	Hz	knes(n.)	ity, ft3)	any	Product	Reference
	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	Thic (i	Dens (1b/	Сотр		
13(c)	Mir 2 >	eral 4 f	woo t	l fi	bers	and	ther	mose	ttin	g те	sins	for	med i	nto	pane	ls					
	12	12	8	8	9	9	10	11	12	12	13	14	16	17	20	23	1		28	Boards	CR 6011
15	2 i	nch	thic	k ro	ck m	inera	l wo	01												Alpro Book	PAT.
	12	9	11	9	9	10	11	12	14	15	16	18	19	20	21	23	2	9	12	Mineral Wool	TL 73-20
15	Mir mir	eral eral	woo fib	l, r er b	igid oard	boar	ds o	f 24	x 4	8 x	2 in	ch t	hick,	a l	2000	F.					DAT
	10	8	8	8	6	8	11	13	14	15	16	18	19	21	23	24	2	7.2	18	1080 Hilboard	TL 75-79
	Min met	eral hod	woo ASTM	l in E33	sula 6-71	tion, . Da	al tal	200 ⁰ iste	F.m. dar	iner e no	al f ise	iber redu	batt ction	, te	st						
	0.0	2.2	2.2	2.8	4.0	7.5	11.	8 16.	14. 0	8. 14.	19. 5	5 16.	20.5 0	18.	19. 0	5 19.5	2	8	18	Flexwhite Insulation	RAL NR 75-14

CATEGORY 6. SPRAY-ON MATERIALS

Sound absorption provided by spray-on coatings depends on the type of material used, thickness, and the substrate material. Different spraying techniques are usually centered around a nozzle-type delivery system. The data presented in this category relate to different spray-on materials applied to different base materials. Thus, direct comparisons are limited by base material corrections.

When a spray-on material is appropriately applied to a good barrier material, a composite absorptive/barrier system can be created. For related barrier data, see walls. Organizations contributing data are: 55, 90, and 91.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

GLOSSARY

Lath: Thin, lightweight structure used as groundwork for plastering, tiles, etc. It may be in a form of perforated metal, wire cloth, thin wood strips, etc.

Table b. Spray-on materials	able 6.	Spray-on mate	rials.
-----------------------------	---------	---------------	--------

							F = = 5					
			Absorpti	on Coeff	icients							
200	N	N	N	N	N	N) ((x)	gu	\$	Product	Reference
NRC	Ŧ	±	# •	н 0	н 0	H 0	th.	nsit o/ft	mti	ipan		Nerter energy
	125	250	500	100	200	400	трі Т	11 Der	Mou	Соп		
				ation fo		interio						······································
	applicat	ions, f	ire resis	stant, no	nwashable	, a chem-	- -					
	surface	reated and bon	ds to all	common	construct	s a durat ion	ble					
	material limits -	s. Appl prolon	ied to so ged expos	olid base sure abov	. Tempera e 150°F.	ture						
	. 05	. 16	. 44	. 79	. 90	. 91	5/8		4	90	K-13	RAL
. / 5	A chemic ble surf	ally tr ace, fi	eated cel re resist	lluiose f ant spra	iber, bon y-on. Teπ	dable, du perature	ura-					
	limits -	prolon 20	ged expos	sure abov	e 150°F.	76	ı			0.0	K-13	DAT
	.08	. 2 9		. 70	. 75	.70	1		4	30	K-10	KAL .
. 75	A chemic	ally tr	eated cel	lulose f	iber, bon	dable,						
	durable to 1/2 i	surface nch ply	, fire re wood base	sistant . Temper	spray-on, ature lim	applied its -						
	prolonge	d expos	ure above	150°F.					,			D 47
	. 10	. 30	. / 3	.92	. 98	. 98	1-1/4		4	90	K-13	RAL
. 95	A chemic	ally tr	eated cel	lulose f	iber, bon	dable,						
	durable to metal	surface lath b	, fire re ase. Temp	sistant	spray-on, limits -	applied prolonged	1					
	exposure	above	150°F.									
	. 47	. 90	1.10	1.03	1.05	1.03	1		4	90	K-13	RAL
. 60	Cellulos	e fiber	insulati	on appli	ed to 3/4	inch						
	thick pl	ywood.	Temperatu	re range	0-180°F.							
	. 05	. 19	. 58	. 80	. 89	.94	1	0,78	- 4	22	Energy Guard	RAL
	Spray-on	insula	tion test	ed under	ASTM C38	4-58 and						
	correcte incidenc	d to ra: e: lowe	ndom inci r line is	.dence; u random	pper line incidence	is norma	al					
		. 16	. 36	. 89	. 97		1-1/2			55	Fibron #1 Grey	CR 7/6/76
		. 29	.60	. 99	. 99							
		÷			10000 000							
	correcte	d to rai	ndom inci	dence.	Upper lin	e is norm	nal					
	incidence	e; lowe: 15	r line is 27	random 71	97	. ,	1-1/4			55	Fibron #? Grev	CB 7/6/76
		. 27	. 47	.94	. 99						ribion #1 oreș	
	Spray-on corrected	insula d to rai	tion test ndom inci	ed under dence.	ASTM C38 Upper lin	4-58 and e is norm	nal					
	incidence	e; lowe:	r line is	random	incidence							
		. 16	. 33	. 79	.99		1-1/2			55	Fibron #3 Grey	CR 7/6/76
				. 70								
	Spray-on	insula	tion test	ed under	ASTM C38	4-58 and	,					
	incidence	i to ran e; lowen	ndom inci r line is	dence. random	Upper lin incidence	e is norm	nal					
		.18	. 40	. 95	. 99		1-1/2			55	Fibron #1 White	CR 7/6/76
		. 33	.64	. 99	. 99							
	Sprav-on	insulat	tion test	ed under	ASTM C38	4-58 and						
	corrected	to ran	ndom inci	dence.	Upper lin	≥ is norm	nal					
	Incluence	.17	. 111110 113	. 92	. 99		1-1/2			55	Fibron #2 White	CR 7/6/76
		. 32	. 64	. 99	. 99							
	Spray-on corrected	insulat to rat	tion test ndom inci	ed under dence.	ASTM C38- Jpper lin	4-58 and ≥ is norm	nal					
	incidence	e; lower	line is	random	incidence							a n
		. 15	. 36	.89	. 99		1-1/2			55	Fibron #3 White	CR 7/6/76
		/										
	Spray-on	insulat	ion test	ed under	ASTM C38	4-58 and	1					
	incidence	; lower	line is	random	upper line	e is norm	141					
		. 33	. 85	. 99	. 96		2-1/2			55	Fibron #1 Tan	CR 7/6/76
		. 55	. 99	. 99	. 96							
	Sprav-on	insulat	ion test	ed under	ASTM C38	4-58 and						
	corrected	to rar	ndom inci	dence.	Jpper lin	e is norm	al					
	Incluence	. 26		1.00	. 98		2			55	Fibron #2 Tan	CR 7/6/76
		/ 5	07	0.0	00							

CATEGORY 7. BARRIER/FIBERGLASS COMPOSITES

WITH A PROTECTIVE FACING

Composite Mastic/Fiberglass With Pressure Sensitive Adhesive

FIBERGLASS

CATEGORY 7. BARRIER/FIBERGLASS COMPOSITES

Composite products consisting of fiberglass (absorption) and a dense backing material (barrier) mostly lead, asbestos, felt, mastic, etc, are listed. The absorption parameters are dependent upon the type, thickness, density, and surface characteristics of the fiberglass. The transmission loss is dependent upon the mass and rigidity of the barrier material. The absorptive barrier can also offer good thermal properties. Precautionary measures to control problems of moisture and soiling are also available in various forms (wraps, coatings, encapsulations, chemical treatments, etc).

The composite absorptive barrier can be adapted for a variety of uses such as machine and room enclosures, vehicle and heavy equipment quieting, pipe and duct wrapping, or as space absorbers. Organizations contributing data are: 10, 13, 26, 33, 40, 55, and 117.

CAUTION

NOISE REDUCTION AND TRANSMISSION LOSS VALUES MAY HAVE BEEN SUBSTANTIALLY INCREASED DUE TO THE MATERIAL ON WHICH THE PRODUCT WAS MOUNTED.

GLOSSARY

Facing:	The outside surface of the specimen. the sound source	In general the side facing
Backing:	The other outside surface of the spec: not facing the sound source	imen. In general the side

Core: The region between the facing and the backing

Mastic: Any of various quick-drying pasting cements. For sound barrier application this is usually a dense flexible asphalted product.

Scrim: A light, loosely woven cotton or woolen cloth.

			Absorptio	n Coeffi	cients		60				•	
NRC	Hz	2H -	Hz	2H 01	0 Hz	0 Hz	ckness in.)	nsity /ft3)	inting	ipany	Product	Reference
	125	250	500	100	200	400	Thi	Del (1b	Mou	Соп		
.40 (c)	Three pl adhesive density	y; pape: 1 1b/ 1/2 inc	r facing f ft ² masti h thick.	on pressu c, fiberg	ire sensi glass 1.5	tive 1b					Acoustigard	
	. 03	. 09	. 26	. 57	. 75	. 75				65	L 24-49(100)	G&H
.40 (c)	G-49P ma 1.5 lb d	stic co lensity	re mastic fiberglas:	with a l s.	l/2 inch	thick and	1					CR D-G-1-76
	. 03	. 10	. 14	. 60	. 75	. 75				40	dba damp-'G'	Test 3
.50 (c)	Acoustic fibergla	al ther ss. Tem	mal wrap o perature i	of solid to 350°F.	lead bar	rier and						
	. 03	. 17	. 42	. 63	. 73	. 89	1/2			13	Hushcloth Vl	CR
.55 (c)	Acoustic with a d	al Marin lual den	ne mat, se sity fibe:	olid lead rglass. 1	d barrier Gemperatu	coupled are to 350)°F					
	. 48	. 48	. 47	. 55	.75	. 79	1/2		•	13	Hushcloth V	CR
.60 (c)	Three pl hesive, l inch t	y; pape on mast hick, f	r facing ic (1 lb/ iberglass	on pressu ft ²) and	ure sensi l lb den	tive ad- sity,					Acoustigard	
	. 08	. 23	. 55	. 80	. 86	. 80				65	L 24-48(100)	G&H
.60 (c)	G-48P ma fibergla	istic co iss	re with a	l inch :	thick l l	b density	<i>.</i>					CR
	. 07	. 24	. 58	. 82	. 86	. 80		1		40	dba damp-'G'	D-G-1-76
.75 (c)	Acoustic fibergla	al ther iss. Tem	mal wrap perature	of solid to 350°F	lead bar	rier and						
	. 08	. 36	. 78	. 92	. 95	. 95	1	••		13	Hushcloth Vl	CR
.75 (c)	Acoustic with a c	al Mari iual den	ne mat, s sity fibe	olid lea rglass. '	d barrier Temperatu	coupled are to 350)°F.					~
	. 50	. 55	. 69	. 85	. 89	. 89	1			13	Hushcloth V	UK
(c)	Septum s to 400°F	andwich Dens	ed by ine ity shown	rt glass is lb/f	fiber. 1 t?	[emperatu]	re					
	41	. 58	.65	. 89	. 90	. 90	1	ì	6	117	Soundmat LGF	CR 716
.95 (c)	Acoustic fibergla	al ther ass. Tem	mal wrap perature	of solid to 350°F	lead bar	rier and						
	. 82	. 92	. 96	. 98	. 99		4			13	Husheloth Vl	CR
.95 (c)	Acoustic fibergla	al ther ass. Tem	mal wrap perature	of solid to 350°F	lead ban	rrier and						
	. 28	. 82	. 97	. 98	. 99		2			13	Hushcloth Vl	CR

.

...

Table 7A. Absorption properties of barrier/fiberglass composites.

•

	Transmission Loss, dB																				
STC	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ²)	Company	Product	Reference
23	Wov	en t	extu	re.	leade	ed vi	nyl	with	a f:	iberg	lass	clo	th.								
	12	14	11	14	15	16	19	20	22	24	25	28	30	32	32	33	. 075	. 75	10	Alpha-Sonic #75	RAL TL78-9
28	Wov	en t	extu	re le	eaded	l vin	v1.	fiber	rela	ss cl	oth.										
	15	16	16	19	20	22	24	26	28	29	31	33	35	37	38	39	.15	1.56	10	Alpha-Sonic #150	RAL TL78-8
	Noi con 2 i met mac cit 18	se c stru nch hod: hine ed a	iontro iction fiber NCI encl ire no	n, 1 rglas 11: Losun Dise 23	roduc lb/s ss. l was re 24 redu	t 11 A .0 A .0 s app x 2 ictio	1 co (1/ 04 v lied 4 x n. 24	mposi 64 ir inyl to t 30 ir	ite 1 nch) shee the 1 nch.	tor c thic et is insic 30 28	ioubl k sh the le of dB (e wa leald n ap a s lin)	ll a lam plie teel 34 43	nd ca linat d. (24 dBA.	ed t Test gau Da	o ge) ta 43	2-1/64		26	Sheald NCP 111	CR
	G-4 den	9P sity	masti fibe	ic co ergla	ore m ass.	nasti Dat	c wi a ci	tha teda	1/2 are i	inch inser	thi tion	ck a los	nd l s.	.51	ь						
	10			15			21			28			35			41			40	dba damp-"G"	CR D-G-1-76
	G-4 Dat	8P a ci	masti ted a	ic co are i	ore w inser	ith tion	a l los	inch s.	thic	ck l	lb d	ensi	ty f	iber	glas	s.					CP D-C-1-76
	12			15			23			32			39			45			40	dba damp-"G"	Test G-L-97
	Lam fib	inat ers,	e wit firm	h li nly b	imp, bonde	flex	ible	sept	um,	insi	de l	ayer	is	of g	lass						CR
	22			21			27			30			36			39	1	1	33	Quietfibre LGF	20/7/77

Table 7B. Barrier properties of barrier/fiberglass composites.

CATEGORY 8. BARRIER/FOAM COMPOSITES

CATEGORY 8. BARRIER/FOAM COMPOSITES

Composite materials utilizing an acoustical foam (absorption) combined with a barrier (septum) material such as lead, vinyl, barium, steel, wood, etc., are listed. These materials may be formulated into a sandwich type array (foam/ barrier-septum/foam) with the septum position varying. Usually in this type of array, one side of the foam acts as a sound absorber and the other side acts as a vibration damping material. However, in some freestanding acoustical barriers, both foam sides act as sound absorbers. The septum usually acts as a sound (transmission loss) barrier, but it also may provide strength. In some cases, only a barrier/foam arrangement is needed as in some enclosures.

Variations in design offer a wide assortment of applications in vibration and sound control. The type thickness, density, and surface of the foam should be considered for specific purposes of vibration and/or absorption. The thickness, rigidity and mass qualities of the septum influence barrier performance.

Organizations contributing data to this table are: 13, 26, 33, 40, 43, 47, 66, 73, 117, and 130.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.
- 3. ABSORPTION COEFFICIENTS ARE SHOWN EITHER AS PERCENTAGES (NORMAL INCIDENCE DATA) OR AS DECIMAL FRACTIONS (RANDOM INCIDENCE DATA). THE DIFFERENCES BETWEEN THESE TWO DATA ARE DISCUSSED ON PAGE 56.
- 4. NOISE REDUCTION VALUES MAY HAVE BEEN SUBSTANTIALLY IN-CREASED DUE TO THE MATERIAL ON WHICH THE PRODUCT WAS MOUNTED.
- 5. VALUES PRESENTED ON PAGE 199 ARE NOISE REDUCTIONS; ON PAGE 200, INSERTION LOSSES; ON PAGE 201, NOISE REDUCTIONS. SEE PAGES 70 AND 94 FOR EXPLANATION OF DIFFERENCES.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing
- Loaded: A foreign substance added to the base material. In noise control materials this usually means addition of a dense material to a fabric type material to increase sound transmission loss.
- Lead loaded: Lead added to a base material such as vinyl to increase sound transmission loss.

			Absorpti	on Coeffi	cients							
NRC	Hz	Hz	Hz	zH C	zh C	ZH O	ckness in.)	sity /ft ²)	nting	pany	Product	Reference
	125	250	500	100	200	400	Thi	Den (1b	Mour	Com		
. 20	Combinati	ion of Q	uietdamp	sheet and	d Quietfo	oam bonde	d					
(-)	. 05	. 06	. 10	. 20	. 45	. 82	1/4	. 37		33	Quietfoam Damping Sheet 102	CR QD-TDS- 102-R2
. 25	Pigskin p	attern	vinyl fac	ed, nonle	ad-fille	ed barrie	r					
(0)	. 05	.08	.14	. 24	. 61	. 96	. 375	1.04		40	dba spec-"FM"	CR S-FM-1-76
.25 (c)	Foam and lead shee for 1/4 i	mass mar t/1/4 in nch foar	terial. 1 nch foam. m oply	1/4 inch f 3 x 4 ft	oam, 1/2 panel.	2 lb/ft ² Data						
	. 05	. 08	. 14	. 24	.61	. 96	. 52	. 625		40	dba Lam-"AM"	CR L-AM-1-76
. 30	Rubber, f	oam 1/2	inch. 7	ſemperatur	e range	0 to 200	°F.					
	. 05	. 10	. 22	. 36	. 60	. 72	.606	1.03	4	66	Acousta Sheet 500	RAL 77-159
.50 (c)	Foam and lead shee	mass mai t/1/2 in	terial, 1 nch foam.	1/4 inch f Data fo	oam/1/2 or 1/2 ir	lb/ft ² ich foam	only.					CP
	. 06	.14	. 25	. 60	. 93	. 97	. 77	. 67		40	dba Lam-"AM"	L-AM-1-76
. 60	l inch th	ick foar	n, rubber	, Tempera	iture rar	ige 0 to 2	200°F.					RAI.
	. 10	. 24	. 54	. 79	. 95	. 78	1.106	1.17	4	66	Acousta Sheet 1000	A-77-158
.65 (c)	Acoustica l lb/ft ² l inch fo	l foam a lead/l : am only	and mass inch foam	material n, 3 x 4 f	(lead). t panel.	1/4 inch Data fe	foam/ or					(P
	.10	. 25	. 47	. 93	. 97	. 97	1.276	1.25		40	dba Lam-"'AM"	L-AM-1-76
.70	Fabricate tical foa layer, 54 Data read	d from h m, fused x 96 in from gr	high stre d to a no nch sheet raph.	ength, hig bise atter is. Tempe	h perfor luating b rature t	mance acc arrier to 180°F.	ous-				Eckoustic Noise	CD.
		. 30	. 67	. 91	. 98	. 94	1	. 9		47	Type 1000B	SES 76081
. 80	Tedlar co	vered.									Absorbing	
	.60	. 54	. 95	. 85	. 91	. 51	1			82	Foam FOA-4	CT
	Polyureth middle. T incidence	ane foar emperatu coeffic	n on outs ire range cients by	ide, thin -45° to ASTM C38	layer c 225°F. 4-58.	f lead in Normal	n					
		.16	. 26	. 47	. 60	. 68	1/4	. 04		117	Soundfoam Embossed	CR 702D
	Polyureth Temperatu coefficie	ane foan re range nts by A	n, thin 1 2 -45° to ASTM C384	ayer lead 225°F. -58.	in midd Normal i	lle. ncidence						
		.25	. 44	. 77	. 90	. 95	1/2	.08		117	Soundfoam Embossed	CR 702D
	Polyureth Temperatu coefficie	ane foan re range nts test	n, thin 1 e -45° to ted by AS	ayer of 1 225°F. TM C384-5	ead in m Normal i 8.	iddle. ncidence						
		. 32	. 58	. 89	. 95	. 96	3/4	. 06		117	Soundfoam Embossed	CR 702D
	Polyureth range -45 by ASTM C	ane foan ° to 225 384-58.	n, lead l 5°F. Nor	ayer in π mal incid	iddle. T ence coe	emperatur fficient:	re s					
		. 46	.70	. 93	. 97	. 98	1	. 08		117	Soundfoam Embossed	CR 702D

Table 8A. Absorption properties of barrier/foam composites.

.

			-				Tr	ansm	issio	on Lo	585 ,	dB						-	80 80				
100 Hz	125 Hz	160 Hz	200 Hz	711 0007	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH 0007	5000 Hz	Thicknes (in.)	Density (1b/ft ²)	Company	Product	Reference
Rein 7	nfo 5	rced 6	lea	ad v 7 J	/iny L2	1 on 12	fi: 14	lled 15	fibe 18	rgla 19	ss f 22	abrio 24	wit 25	h 1/ 28	4 in 30	ch ur 32	ethar 32	ne foa 30	m. .28	. 46	43	Dura-Sonic 4729	RAL TL73-203
Rei: 8	nfo 8	rced 7	lea	ad y 9 1	viny 12	1 on 12	fi 14	lled 15	fibe 17	rgla 20	ss f 22	abric 24	wit 25	h 1/ 28	4 in 31	ch ur 34	ethan 34	e foa 32	m. .27	. 25	43	Dura-Sonic 4840	RAL TL73-201
Rein 15	nfo 12	rced 12	le: 11	ad v 3 1	/iny 27	1 wi 18	th 20	1/4 i 22	nch 23	foam 25	27	29	31	33	36	37	37	37	. 3	. 875	43	Dura-Sonic 4848	RAL TL73-49
Non 11	rei 11	nfor 12	ced 14	fi) 4]	lled 17	vin 18	yl (20	vith 21	1/4 23	inch 25	foa 27	m. 29	31	34	36	39	40	40	. 34	1	43	Dura-Sonic 5332	RAL TL73-211
1 11 0 t	ь 1 о 2	imp 00°F	mas	s ba	irri	er b	onde	ed to	1/4	inc	h la	yer f	oam.	Tem	pera	ture	range						
	12			1	18			22			29			35			41		3/8	1	117	Soundmat FV	CR 713C
Pig	ski 16	n pa	tte	rn v I	viny L7	l fa	ced	, nor 23	lead	fil	led 27	barri	er l	amin 33	ated	to l	/4 in 39	ch fo	am. .375	1.04	40	dba spec-"'FM''	CR FM-144
Foar 17	m . 18	5 in 14	ch, 10	ruł 5 2	ober 20	. 10 20	06 in 23	nch.1 25	empe 26	ratu 27	re r 29	ange 30	0 to 31	200 33	°F. 36	38	41	43	. 606	1.03	66	Acoust Sheet 500	RAL A-77-159
Mas	s m 9	ater	ial	foi	; co 9	mpos	ite	usag 12	e (1	ead	shee 17	t), f	oam	face 26	d.		30		. 02	. 5	40	dba Lam -''AM''	CR
Mas	s m 16	ater	ial	foi	с со L7	mpos	ite	usag 18	e (1	ead	shee 21	t), f	oam	face 35	d .		35		.021	1	40	dba Lam-"AM"	CR
Mas	s m m f	ater aced	ial	for	co	mpos	ite	usag	e (M	-fil	led	vinyl	, go	ld c	olor	ed),							
	12			1	13			16			21			27			32		.067	. 5	40	dba Lam-"AM"	CR
Mas	s m 12	ater	ial	for	r co 13	mpos	ite	usag 16	;e (C	-fil	led 21	vinyl	, bl	ack) 27	foa	m fac	ed. 32		. 067	. 5	40	dba Lam-"'AM"	CR
Mas foar	sm m f 12	ater aced	ial	foi	с со 18	mpos	ite	usag 20	e (M	-fil	led 27	vinyl	. go	ld c	elor	ed),	40		13	1	40	dba Lam-"AM"	CR
								20							6	6				-			
mas	s m 13	ater	181	101	r co 19	mpos	ite	24 24	e (C	-111	31	vinyi	., DI	аск) 36	IOa	m iac	41		.13	1	40	dba Lam-"AM"	CR
Lim	p m per	ass atur	1 11 e ra	b ba ange	arri 2 -4	er 1 5° t	ayer o 22	r bor 25°F.	ded	to a	1/4	inch	foa	m la	yer.	Foa	m					Quietform	CR OF/FV-
	12			1	18			22			29			35			41		3/8	1	33	MAT-FV	TDS-202
Fle lay is	×ib er als	le, of b O av	oper laci aila	n ce c vi able	e11 iny1 e.)	poly and Foam	ure a ter	thane 1/8 i mp era	foa nch ture	m sa thic ran	ndwi k la ge -	ched yer c 45° t	betw f vo c 22	een lara 5°F.	a 1/ . (A	8 inc lead	h thi sept	ck um				Quietfoam	CR QF-FVP 203/26/7/
	11			1	15			18			24			28			28		1/2	13	33	MAT FVP	77
Typ foar Tem	e 1 m, per	000B fuse atur	fal d to e to	oria o a o 18	ate noi 30°F	d fr se a	om l tter	nigh Nuati	stre ng b	ngth arri	, hi er l	gh pe ayer,	rfor 54	manc x 96	e ac inc	ousti h she	cal et.		1	0	<i>,</i> 7	Eckoustic Noise Absorbing	CR
			_	1				20			20			32		_	20		1	. 9	41/	Liners	323 /0081
Iso	1at 15	10N	foar	n, 1 1	lead 18	bar	rie	21 21	oust	ıcal	to a 23	m.We	ight	is 31	give	n for	lead 36	l only		1	13	Hushcloth	CR
Iso	lat 16	ion	foar	n, 1 2	lead 21	bar	rien	c, ac 25	oust	ical	foa 32	m.We	ight	is 36	give	n for	lead 40	only		2	13	Hushcloth	CR
Den per	se for	plas ated	tic vi	ban nyl	rie fac	r sa ing.	ndw:	iched	bet	ween	two	laye	rs o	fur	etha	ne fo	am,				130	Noise Control Material	CR
Den	se	plas ski	tic d-r	ban	rie	r sa r fl	ndw:	iched mat	bet	ween	two	laye side	rs o	f ur	etha	ne fo	am,				130	Noise Control Material	CR

.

Table 8B. Barrier properties of barrier/foam composites (transmission loss).

							Ins	ertio	n Los	s, d	B						8				
STC	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	2H 004	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH 0007	Thicknes (in.)	Density (lb/ft ²)	Company	Product	Reference
	Fle	xibl	e, ba	ariu	m-loa	ded	viny	ls on	1/4	inch	ı pl	ужоос	l en	clos	ure.	•					
	1em 15	pera	ture	ran 12	ge (I	oam)	17	- to .	1	8		2	22			25		1	78	Noiseguard Laminates	CR K60B
	F1e 20	xible	e, ba	ariu 12	m-loa	aded	viny 19	ls on	18 g 2	auge 2	st	eel e 2	ncl 6	osur	e .	31		1	78	Noiseguard Laminates	CR K60B
	Fle enc foa	xibl losu m on	e, te re. ly.	edla Foa	r fil m tem	.m wi npera	th a ture	coust: range	ical e -40	foaπ °tc	n on 30	1/4 0°F.	inc We	h pl ight	ywoo is	d		10			
	29			21			24		2	3		2	5			26	1-1/4	to.23	78	Noiseguard Laminates	CR K60B
	Fle tem	xible perat	e, ac ture	ran	tical ge 40	foa ° to	m on 300	°F. 1	inch √eigh	plyw t gi	ood ven	encl is f	osu	re. onl	Foam y.			18			
	28			20			25		2	6		2	9			31	1-1/4	to 23	78	Noiseguard Laminates	CR X60B
	Fle enc foa	xible losum m on:	e, ac re. ly.	ous Tem	tical perat	foa ure	m wi rang	th teo e -40'	ilar °to	film 300°	on F.	18 g Weig	auge ht:	e sto is	ee l	•		18			
	16			18			28		3	1		3	4			42	1	to.23	78	Noiseguard Laminates	CR K60B
	Fle per	xible ature	e, ac e ran	ous ige	tical -40°	foa to 3	m on 00°F	18 ga . We:	uge ight	stee is f	l e oam	nclos only	ure	Foa	m te	m-		. 18			
	15			16			28		3	3		3	8			45	1.	to.23	, 78	Noiseguard Laminates	CR K60E
	Fle atu	xible re ra	e, ba ange	riu -40	n-loa ° to	ided 300°	viny F. 1	ls wit Weight	ch ac	oust foam	ica on	l foa ly.	m.F	oam	temp	er-		18			
	29			25			29		3	3		3	1			41	1	to.23	78	Noiseguard Laminates	CR K60B
	Fle: gau 300	xible ge st °F.	e, ba teel Weig	enc:	n-loa Losur is fo	ded e. am o	viny Foam nlv.	ls wit tempe	th ac eratu	oust re r	ica ang	1 foa e -40	n or ° to	18				10			
	18			20			32		3	8		3	6			45	1	to.23	78	Noiseguard Laminates	CR K60B
	Fle: foa Foa	xibl∉ m-vir m tem	e, ba nyl-1 npera	riur /4	n-loa inch e ran	.ded foam ge -	viny) on 40° 1	ls wit 1/4 j to 300	h ac inch)°F.	oust plyw Wei	ica ood ght	l foa encl is f	ms (osum oam	(l in re. only	nch y.			10			
	30			26			29		2	8		3	6			45		to.23	78	Noiseguard Laminates	CR K60B
	Fle: foar Temj	xible m-vir perat	e, ba nyl-l ture	riur /2 1 rang	n-loa inch ge fo	ded foam am -	viny:) on 40° 1	ls wit 1/4 i to 300	h ac nch)°F	oust plyw Wei	ica ood ght	l foa encl is f	m (] osum oam	ind re. only	ch y.			19			
	30			27			28		2	7		4	1			49		to.23	78	Noiseguard Laminates	CR K60B
	Fle: foar Temp	kible n-vir perat	e, ba Nyl-l ture	riur /4 j rang	n-loa inch ge -4	ded foam 0°t	viny:) on o 300	ls wit 18 ga)°F.	h ac uge Weig	oust stee ht i	ica lei s fo	l foa nclos cam o	ms (ure. nly.	(l in	nch			19			
	18			21			32		3	1		4	7			54	1-1/4	to.23	78	Noiseguard Laminates	CR K60B
	Fle: foar Tem	kible n-vir Derat	e, ba 1y1-1 ture	riun /2 j rang	n-loa Inch ge -4	ded foam 0° t	viny)) on o 300	ls wit 18 ga)°F. W	h ac uge : leigh	oust stee t is	ica: l et foa	l foa nclos am on	ms (ure, ly,	(1 ir	nch			10			
	18			22			28		3	8		5	0			56	1-1/2	.18 to.23	78	Noiseguard Laminates	CR K60B

Table 8C. Barrier properties of barrier/foam composites (insertion loss).

. •

						Voise	Red	ucți	on, i	dB											
STC	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1 0 00 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	zH 0007	Thickness (in.)	Density (lb/ft ²)	Company	Product	Reference
	Cor	ntinu	iousl	у са	st t	hin 1	lead	shee	t us	ed i	n coi	njun	ction	n wit	h va	rious	;				
	ce	iling	ass	embl	ies.					25			20			25		0 .	37	Sheald	en 13 300
	14			12			16			20			30			20		2 to 3	20	(HIL Cellings)	CR 13-300
	Dou abs	uble sorpt	sept ion	um i foam	sola	ted b	oy 1/	4 in	ch a	cous	tica	l fo	ann an	nd 1	inch						
	15			20			24			30			39			38	1-1/2		13	Hushcloth DS	CR
	Noi to Tes mac	lse c l in st me chine	ontr ich c thod enc	ol p f po NCP losu	rodu lyure 1 wa: re 24	ct l. ethar s app 4 x 2	1 1 ne fo lied 4 x	b/sq am. to 36 in	ft. Wei the nch.	1/6 ght insi	4 ind given de of	ch t n is f a	hick for steel	shea lead l (24	ld l onl gau	amina y. ge)	ted				
	19			22			24			27			36			41	1-1/64	1	26	Sheald NCP1	CR
	Hig Ten cer	gh ma npera	ss, ture of	limp ran octa	trea ge -4 ve ba	ated 45° t ands	lead o 27 used	sep 5°F. in 1	tum 1 Fre test	betw eque	een 1 ncies	two s ar	surfa e app	ices proxi	of f mate	oam.		83			CR ME-TDS-
	17			18			25			26			33			38		to 1	33	Quietfoam Mat	300R2
	Noi 11 abs on 1 (24	lse c lb/sq sorpt ly. • gau	ontr ft, ion Test ge)	ol p 1/6 laye met mach	rodu 4 in 7 wi hod 1 ine 4	ct 11 ch th th p1 NCP11 enclo	l, sa nick, lasti was sure	ndwi she c fa app 24	ch c ald cing lied x 24	ombi sept W to x 3	natio um, i eight the i 0 inc	on, l in t gi insi ch.	l ind ch fo ven i de of	ch fo Dam n Is fo E a s	am d oise r le teel	ampin ad	g				
	17			22			26			37			45			47	2-1/64	1	26	Sheald NCP11	CR
	Hig Ten cer	gh ma npera	ss, ture of	limp ran octa	trea ge -4 ve ba	ated 45°t ands	lead o 27 used	sep 5°F. in 1	tum i Fre	betw quen	een t cies	two are	sur fa appr	aces oxim	of f ate	oam.		81			CR ME-TDS-
	18			24			38			48			53			59		to l	33	Quietfoam Mat	300R2
	Hig Tem	h ma npera	ss. ture	limp ran;	trea ge -4	ated 45 t	lead	sept 5°F.	tum l Fre	bet wi	een t ncies	two : s are	surfa e app	roxi	of f mate	uam					
	21	icer 5	01	28 28	ve Di	anus	43	1 n 1	rest	52			55			r. 9		.83 to 1	33	Quietfoam Mat	CR MF-TDS- 300R2

Table 8D. Barrier properties of barrier/foam composites (noise reduction).

1.

CATEGORY 9. MASTICS

Mastics are normally quick-drying cements which are used for sound barrier applications. They are usually dense, flexible, asphaltic products with reliability varying from elastic to semirigid. Mastics are applicable as barrier, deadening, or damping materials used in vehicles, doors, appliances, metal enclosures, etc.

The following data include absorption, insertion loss and transmission loss qualities of different mastics. Organizations contributing data to this table are: 28, 40, 65, 73, and 81.

CAUTION

NOTE THAT BARRIER VALUES SHOWN ON PAGE 204 ARE TRANSMISSION LOSSES AND THOSE SHOWN ON PAGE 205 ARE INSERTION LOSSES. REFER TO PAGES 70 AND 94 FOR DISCUSSION.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing
- Creped Kraft: Crinkled, strong paper
- Mastic: Any of various quick-drying pasting cements. For sound barrier application this is usually a dense flexible asphalted product.

		. 1	Absorptio	n Coeffic	ients					-		
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
.05 (c)	Formulate	ed aspha skin co	lt with i vering la	nert fill wers.	lers betw	een.	<u></u>					
	. 02	. 02	. 02	.10	.12	. 02				28	Mastic (asphalt)	CR 6011
. 30	G-60P ma:	stic cor	e with 28	gram co	tton pado	ling.						CR D-G-1-76
(c)	. 04	. 06	.20	. 42	. 60	. 68				40	dba damp-"G"	Test l
.30 (c)	Three pl sive, l padding data	y; paper lb/ft ² m l/4 inch	facing c astic, ar thick.	on pressu: nd 28 gran Refer to	re sensit m resinat insertio	tive adhe ted cotto on loss	- n				Accusticand	CEN
	. 04	.07	. 20	. 41	.61	. 68				65	L24-60(100)	CR 25-6-75
. 60	G-75P ma:	stic cor	e with 85	gram co	tton pado	ling.						
(c)	. 06	. 20	. 55	. 83	. 85	. 82				40	dba damp-"G"	CR D-G-1-76
.60 (c)	Three pl sive, l padding data.	y; paper lb/ft ² m 3/4 inch	facing o astic, 8 thick.	on pressu gram re Refer to	re sensia sinated o insertio	tive adhe cotton on loss	-				Acoustigard	G&H
	. 07	.20	. 55	. 83	. 85	. 82				65	L24-75(100)	CR 25-6-75

Table 9A. Absorption properties of mastic.

Table 9B. Barrier properties of mastic (transmission loss).

						Tr	ansm	issi	on L	oss,	dB						-					
STC	Ηz	Hz	Hz	Hz	Ηz	Hz	Hz	Ηz	zΗ	ZH 0	2H 0	C Hz	ZH 0	0 Hz	0 Hz	0 Hz	ckness in.)	sity /ft2)	pany	Product	Reference	
	125	160	200	250	315	400	500	630	800	100	125	160	200	250	315	400	тн г	Den (1b	Com			
24	Gra	ıy, 1	ead	free	, el	asto	mer t	ased													CKAL	
	15	14	14	15	16	20	16	18	20	27	30	33	36	38	40	43		1	73	575 NCS Mastic	7604.36	
25	Creped kraft, mastic tissue, KW-003-100 sheet with amberlite.																		PAI			
	10	11	13	17	18	19	20	22	23	26	28	31	33	35	36	38	. 125	1	81	KW Series	TL73-195	
27(c)	For cov	Formulated asphalt with inert fillers between selected skin covering layers 16 17 17 17 19 21 22 24 26 27 30 32 32 34 37 38 28																				
	16	17	17	17	19	21	22	24	26	27	30	32	32	34	37	38			28	Mastic (asphalt)	CR 6011	
27	Cre	ped	kraf	t, m	asti	c ti:	ssue	KW- 0	03-1	00 s	sheet	wit	h aml	berli	te.						RAT	
	13	14	15	17	17	19	21	24	28	30	32	35	38	41	45	46	. 625	1.3	81	KW Series	TL73-196	
47	Con fac cot	sist ed w ton.	s of ith Dat	11 121 are	b/ft b ti ad f	2 ssue rom g	stic , and graph	core la 1	bac /4 i	ked nch	with thic	40 k 28	lb c: grai	repec n res	kra inat	ft, ed				Acoustigard	G&H GL-115T CR	
	26			35			47			54			54			58			65	L02-60(100)	25-6-75	
	Mas fac	Mastic core with 40 lb creped kraft backing and 12 lb tissue facing.																	Acoustigard	CR		
	23			32			45			50			50			52		1	65	L02-30(100)	25-6-75	
	Mastic core, data read from graph.																Acoustigard	CR				
	29			45			50			53			53			60		1	65	L02-30(100)	25-6-75	
	_						Ins	erti	on Lo	oss,	dB						50					
-----	-------------------	----------------------	--------------------	-----------------------	-----------------------	------------------------	------------------------	---------------------	-------------	--------------	---------------	--------------	----------------	----------------	----------------	-------------------------	-----------	-------	---------------------	---------	--------------	----------------------
STC	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	2H 004	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	zH 0007	Thickness	(in.)	Density (1b/ft3)	Company	Product	Reference
	Th	ree p)ly;	p	aper	fac	ing c	on pr	essu	re s	ensi	tive	adh	esive	e, 1	lb/ft	2					
	of fre	mast om gr	ic, aph.	and	. 000	75 in	nch p	olye	thyl	ene	film	. ST	C 26	. Dat	ta re	ad					Acquationed	
	11			15			22			27			34			36				66	L24-80 (100)	G&H GL-1T
	G-1	BOP a	ispha olve	ilt π thvle	asti ene f	c con ilm	re fa	iced	with	pap	er,	adhe	sive	on	000	75						
	10	p.		15			22			28			34			37				40	dba damp-"G"	CR D-G-1-76
	G-1	75P m	asti	c .co	re w	ith S	25 07	am w	eich	t co	tton	nad	ding									
	14			17			24		****	30		puo	35			43				40	dba damp-"G"	GL-5T CR D-G-1-76
	G- (50P m	asti	c co	re w	ith 2	28 gr	an c	otto	n pa	ddin	g.,										
	10			15			24			30			37			44				40	dba damp-"G"	CR D-G-1-76
	Thi mas NRC	ree p stic,	ly; fib . Da	pape ergl ita r	r fa ass ead	cing 1.5 1 from	on p ib de grap	ress nsit	ure y, l	sens /2 i	itiv nch	e ad thic	hesi k, S	ve, 1 rc 26	15/),	ft ²					Accustioned	
	10			14			22			28			35			40				65	L24-49(100)	G&H GL-8T
	Thr mas NR(ee p stic 5 60	1y; 85 . Da	pap gram ata r	er fa res read	acing inate from	g on ed co grau	pres tton	sure pad	sen ding	siti , 3/4	vea 4 in	dhes: ch tì	ive, nick,	1 11 ST(/ft ² 26,					Acoustigand	
	10			15			23			27			37			44				65	L24-75(100)	G&H GL-5T
	Thr mas NRC	ee p tic,	1y; 28	pape gram Jata	r fa res: read	cing inate from	on p ed co n gra	ress tton ph.	ure pad	sens ding	itiv , 1/4	e ad 4 in	hesi ch tì	ve, l nick,	1Ь/ STC	ft ² 25,				•	Accustioned	CP 25 6 75
	13			17			23			30			35			43				65	L24-60(100)	G&H GL-4T
	Thr mas Dat	ee p tic,	ly; 1 1 ad f	pape b de rom	r fa nsit grapi	cing y, l	on p inch	ress thi	ure ck f	sens iber	itiv glas:	≘ad s,S	hesi TC 21	7e, I 7, NF	. 1Ъ/ КС. 6	ft ² 5.						
	11			14			23			32			38			44				65	L24-48(100)	G&H GL-9T

Table 9C. Barrier properties of mastic (insertion loss).

CATEGORY 10. QUILTED MATERIALS

CATEGORY 10. QUILTED MATERIALS

With the availability of various sandwich type configurations, quilted materials are very versatile for sound control. They have good thermal properties and are resistant to moisture, many chemicals, and abrasion.

The facing material may be aluminized glass cloth, a fiberglass scrim type cloth, or other impervious facing materials. The absorption material can be foam but usually consists of a glass fiber material to achieve higher fire ratings. The quilt composite may be simply a facing material encapsulating an absorption material. It may include a barrier septum (usually lead) or a barrier-type backing (lead vinyl) for improved transmission loss properties.

This pliable composite can be used for barriers or enclosures, equipment or wall liners, duct or pipe covering, machinery quieting, or source isolation. Both absorption and sound transmission data are supplied. Organizations contributing data to this table are: 4, 20, 73, and 93. For related sections, see curtains and unit absorbers.

			Absorptic	on Coeffi	cients							
NRC	25 Hz	50 Hz	2H 00	000 Hz	000 Hz	2H 000	hickness (in.)	Density 1b/ft ²)	ounting	ompany	Product	Reference
	-	2	Ś		5	4	4		Σ	U		
. 55	Fiberglas tion, and -65° to 4	ss scrim 1 alumin 50°F.	cloth, 3 um glass	/4 inch cloth. T	fibergla emperatu	ss insula re range	-					KAI
	. 23	. 41	. 43	. 63	. 68	. 58	3/4	2.5	4	73	Insul-Quilt	439127
. 65	Fiberglas and alumi to 450°F.	s cloth inized g	, 1-1/2 i lass clot	nch fibe: h. Temper	rglass in rature ra	nsulation ange -65°						CVAL
	. 32	. 60	. 65	. 68	. 58	. 35	1-1/2	2.5	4	73	Insul-Quilt AGS	7701.37
. 65	Fiberglas tion, and -65° to 4	s scrim alumin 50°F.	cloth, l um glass	-1/2 incl cloth. Te	h fiberg emperatu:	lass insu re range	la-					CKAL
	. 32	. 60	. 65	. 68	. 58	. 35	1-1/2	2.5	4	73	Insul-Quilt ASG	7701.37
. 70	Quilted b	lanket.	Temperat	ure range	e -30° to	5 250°F.					Sorba Glas	RAL
	. 05	. 46	. 92	. 83	. 58	. 27	3/4	. 28	4	5	AK-1F/1	A 76-142
. 70	Laminate, aluminum to 450°F.	medium fibergl	density ass fabri	fibergla: c. Tempe:	ss. Glas rature ra	s cloth, ange -65°						KAT
	. 26	. 43	. 84	. 79	. 70	. 56	3/4	1.5	4	93	Quilt/Teez	428457
. 70	Fiberglas fiberglas glass clo	s scrim s insul th. Tem	cloth on ation and perature	undersio a cover: range -6	de, 3/4 ing of a 5° to 450	inch luminized)°F.						KAI
	. 22	. 43	. 89	. 74	. 69	. 66	3/4	2.5	4	73	Insul-Quilt AGC	439128

Table 10A. Absorption properties of quilted materials.

Table 10B. Barrier properties of quilted materials.

						Tr	ansm	issio	on Lo	oss,	dB										
STC	5 Hz	2H 0	0 Hz	0 Hz	5 Hz	0 Hz	0 Hz	0 Hz	0 Hz	2H 00	50 Hz	00 Hz	2H 00	2H 00	50 Hz	00 Hz	ickness (in.)	nsity, b/ft2)	mpany	Product	Reference
	12	16	20	25	31	40	50	63	80	10	12	16	20	25	31	40	th Th	(II) Dei	Col		
18	Fitalu	ergl mini	ass zed	clot glas	h win sclo	:h 1- :h	1/2	inch	fib	ergl	ass	insu	latio	n an	d						KAL
	2	4	7	14	12	13	15	12	17	19	20	21	24	26	29	34	1-1/2	2.5	73	Insu-Quilt AGS	428460
26	Fib alu rar	ergl mini ige -	ass zed 650	scri glas to 4	m clo sclot 50°F	oth w char	vith nd 1	1-1/ 1b/f	2 in t 2 1	ch f ead	iber sept	glas um,	s ins tempe	ulat eratu	ion, re						KAL
	10	12	17	22	22	22	23	19	21	27	33	34	39	44	51	58	1-1/2		73	Insu-Quilt AGS	428459
26	Qui der fit	lt/T sity ergl	eez fib ass	cont ergl fabr	ainim ass; ic	ng a 1 11	1 1) /ft	/ft ² lea	lea d se	d se ptum	ptun . C	n. L Slass	amina clot	ate: :h:a	medi lumi	um num					KAL
	10	12	17	22	22	22	23	19	21	27	33	34	39	44	51	58	1-1/2	1.5	93	Quilt/Teez	1703-74
27	Qui	ilted	l bla	inket	, ter	npera	iture	e ran	ige -	30 ⁰	to 2	250 ⁰ F	•.								
	15			19			21			28			33			37	3/4	. 28	4	Sorba-Glas AK-1F/1	CR
27	Fle	xibl	le bl	lanke	t of	mine	eral	wool	fil	ler	and	asbe	stos	a	lumi	num				Plenum Sound	
	10	-		15			26			41			53			56	2	1	20	Barrier I	CR

CATEGORY 11. PLAIN AND MASS LOADED PLASTICS

CATEGORY 11. PLAIN AND MASS-LOADED PLASTICS

Mass-loaded plastics are formulated from lead or nonlead fillers and vinyl in order to increase noise reduction capabilities. The composition may include a reinforcing material such as fiberglass to increase toughness. Such materials offer flame, oil, chemical, and moisture resistance. These plastics are used primarily as thin pliable barrier materials. They may be draped, wrapped, or framed into versatile noise reduction materials.

These plastics may be combined with absorptive materials to form effective absorptive barriers. Data in this section relate to acoustical barrier properties only. These properties are noise reduction (NR), sound transmission loss (TL), and insertion loss (IL). Organizations contributing data to this table are: 5, 13, 30, 33, 40, 42, 43, 48, 53, 60, 78, 96, 111, 112, and 117.

CAUTION

TRANSMISSION LOSS VALUES MAY HAVE BEEN SUBSTANTIALLY INCREASED DUE TO THE MATERIAL ON WHICH THE PRODUCT WAS MOUNTED. WHEN THE TEST SPECIMEN DESCRIPTION IS NOT CLEARLY SHOWN IN THE TABLE, THE MANUFACTURER MAY BE CONTACTED IF NECESSARY.

GLOSSARY

Loaded: Foreign substance added to the base material

Leaded or

Lead Loaded: Lead was added to the base material--usually fabric type materials--to increase the sound transmission loss

							Tr	ansm	issi	on Lo	oss,	dB							8				
STC	100 · Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	ZH 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	5000 Hz	Thickne: (in.)	Density (1b/ft ⁷	Company	Product	Reference
14	F14 3	exibl l	er 1	einfo 3	rced 5	lead 6	l vin 8	nyl c 10	on fi 12	11ed 13	fibe 16	rgla 17	ass f 19	abri 20	22	23	24	25	. 02	. 21	43	Dura-Sonic Style 2304	RAL TL 73-200
15	No: 8	ise b 8	arr 6	iers/ 9	enclo 11	osure 12	s c 14	lear 14	stri 16	рси 15	rtain 15	ban 14	rier 14	16	16	17	17	18	2	1/2	47	Eckousta-Clear 2mm Strip	CKAL SES 77095
17	Two 14	o she 14	ets 13	of 1 15	ead v 15	vinyl 14	ma 13	teria 12	ıl wi 11	th 1 13	/4 in 16	ich a 19	air b 22	etwe 26	en t 31	hem: 35	38	42	1/4	. 33	111	Lead Vinyl with Air Space	RAL TL 73-45
18	Lea 12	aded 7	ving 9	yl ma 10	teria 10	al 11	12	13	14	16	18	19	21	23	23	25	26	27	. 035	. 33	111	Lead Vinyl Acoustic Barrier	RAL TL 73-45
19	F1.	exibl 5	er 5	einfo 7	rced	lead 11	vin 13	nyl w 14	vith 16	fill 18	ed fi 20	berg 22	31ass 23	fat 26	oric 27	30	32	33	. 03	. 42	43	Dura-Sonic Style 4758	RAL TL 73-202
19	Fat	oric 6	rei	nforc	еd, т 10	nass-	fil	led v 15	vinyl	, te	mpera 23	ture	e ran	ge - 27	-40 t	o 18) ⁰ F. 30		. 045	. 40	4	Sound-gard SG-400	CR
19	No: 12	ise b 13	arr 12	ier c 15	lear 15	stri 16	ps 18	17	16	15	17	17	20	21	21	22	24	25	. 12		47	Eckousta-Clear 3mm Strip	CKAL SES 77095
20	Lir fi 12	np de Lled 9	nse vin 8	soun yl 10	d ban 12	rrier 12	, f: 14	iberg 15	glass 17	mat 19	erial 20	соа 22	ated 24	both 26	27	les w 28	ith 1 30	ead 32	. 04	1/2	112	Sound Stopper Lead Vinyl	RAL TL 72-232
20	No 8	nreir 5	nfor 6	ced f 7	ille ll	d vir 12	14 14	15	17	19	21	23	24	26	28	30	32	34	. 05	. 5	43	Dura-Sonic Style 5345	RAL TL 73-206
20	Fle	≥xibl 9	e,	límp,	dens 1J	se no	nlea	ad lc 16	aded	vin	yl re 20	info	orced	wit 26	h fi	berg	lass 32		. 96	0.48	40	dba bar-"FM" SM Series	CR B-FM-1-76
20	No: 10	ise B 8	arr 8	ier c 11	lear 9	shee 12	t ba 13	arrie 16	er 17	18	21	21	24	25	26	28	30	32	. 08	1/2	47	Eckousta-Clear 2mm Sheet	CKAL SES 77095
20	Vi: uns	nyl s suppo 9	hee rte	ts av d, su	ailat pport 10	ble i ted	n ba	arium 16	n sul	fate	load 20	led,	lead	fi1 26	led,	nont	oxic 32		. 120	1/2	78	Noiseguard Flexible Vinyls	CR K60B
20	C1. 10	ear v 9	iny 9	1 9	11	12	14	16	18	19	22	23	25	27	27	30	32	33		1/2	73	l-C Clear Vinyl	CKAL 7604.40
20	10 an	0 set d nor 9	ies lea	. a f d fil	lexi lers 10	ble i	limp	mas: 16	s.av	vaila	ble w 20	vith	lead	3 26			32			. 5	78	Noise Guard Flexible Vinyls	CR K60B
21	Lin	np fl 12	exil	ble P	VC st 13	heet	vis	ible 16	acou	stic	al cu 21	rtai	In	27			33		. 08	0.6	40	dba bar-"FM" CP-60	CR 8 - FM - 1 - 76
22	Acc rei	ousti infor 11	cal ced	curt with	ain, a hi 12	limp igh s	. to trei	ough, ngth 18	vin fabr	yl. ic	loade 22	d wi	th n	onle 29	ead f	ille	r, 34		082	0.75	40	dba bar-"FM" BS-Series	CR B-FM-1-76
23	Nor 9	nrein 8	for 9	ced f 10	illeo 13	d vin 14	yl 17	(embc 18	ssed 20	vin 22	yl fa 24	ce) 26	27	30	32	34	35	36	. 06	. 60	43	Dura-Sonic Style 5129	RAL TL 73-204
23	Noi 12	ise b 10	arr 11	ier c 14	lear 13	shee 17	ts 16	· 19	21	22	- 24	26	27	29	30	32	33	34	. 16	1	47	Eckousta-Clear 4mm Sheet	CKAL SES 77095
24	Nor foa 10	nrein m 9	for	ced f	illec 15	d vin 15	yl (17	embos 19	sed	viny 23	1 fac 25	ed w 28	vith 30	1/4 33	inch 34	ure 34	thane 34	35	. 31	. 65	43	Dura-Sonic Style 5225	RAL TL 73-205
25	Fat	oric 10	rei	nforc	ed, n 16	nass-	fil	led v 23	vinyl	, tei	mpera 28	ture	e ran	ge - 31	40°	to l	80 ⁰ F. 37		. 095	. 75	4	Sound-gard SG-750	CR

Table 11. Plain and mass-loaded plastics.

211

۰.

-

						_		Tr	ansm	issic	on Lo	oss,	dB											
STC	100 Hz	125 Hz	160 U-	211 001	ZN NAZ	250 Hz	315 Hz	ZH 00≯	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	2H 6007	5000 Hz	Thickness (in.)	$\begin{array}{c} \texttt{Density} \\ (1b/\texttt{ft}^2) \end{array}$	Company	Product	Reference
25	Lit lea 18	np, adf 13	den ill 1	se s ed v 4 1	our iny 5	nd ba 71 16	lTTIE	r, f 18	20	glas 22	s ma	26	al co 27	29	1 bot 31	:h si 33	des 34	with 35	36	. 06	. 75	112	Sound Stopper Lead Vinyl	RAL TL 73-67
25	F1.	exib 12	le 1	rein 21	for 3	cced 18	1ead 18	vir 20	nyl a 21	ndf 22	ille 25	d fi 27	berg 27	lass 29	fabı 32	ic 34	35	36	38	. 06	. 83	43	Dura-Sonic Style 4825	RAL TL 73-48
25	Not 11	nrein 11	nfo 1	rced 1 1	f 3	ille 17	d vin 18	nvl 19	20	22	25	27	29	30	32	35	36	38	39	. 09	1	43	Dura-Sonic Style 5216	RAL TL 73-210
25	Mas sui -20	face	non	lead rein 80°F) l for	.oade .ced	d ne flex	opre ible	ene, e noi	rein se b	forc arri	ed w er ma	ith ș attei	oolye rial.	ester Te	fat mper	ríc, atur	smoo e ran	th					
	13	10	1	2 1	0	16	18	21	22	23	24	27	29	31	33	35	36	37	39	. 12	. 94	42	Fairprene ND-0004	RAL TL 75-111
25	Cle 13	ar 14	vin 1	yl 3 1	4	14	16	18	20	23	23	26	27	29	30	32	34	36	37		1	73	l-C Clear Vinyl	CKAL 7604.42
26	Fle cal	xib cui	le rt a	limp in	, ć	lense	e, no	nlea	id lo	aded	vin	ylun 28	nsupp	porte	ed, h 36	angi	ng a	coust 40	i-	125	1.0	40	dba bar-"FM" DK Series	CR B-FM-1-76
26	Lin tar	ap, o nt su	ien: urf	se, 1 ace,	nor hi	lead igh t	l loa empe	ded rati	viny re c	l ca urta	st o in	nto a	an ai	lumir	ium s	cri	n fir	e res	is-	105			dba bar-"FM"	CR
26	Fle	12 exib:	le,	lim	p,	17 dens	e no	nlea	19 1d 1c	aded	vin	28 .yl re	einfo	orced	36 ! wit	h fi	berg	40 lass		. 125	1.0	40	DK-FR Series dba bar-"FM" SM Series	B-FM-1-76
26	Fab pre 13	orica ssul 13	ate ce :	d le sens 3 l	ad iti 4	free ve a 19	she dhes 18	et m ive. 21	ater Te 21	ial mper 23	A atur 25	limp e ran 27	, der nge - 29	nse. -200 31	mast to 1 32	ic 1 80°F 34	mater 35	ial v 35	with 36	1/8	1	112	Sound Stopper Damp Sheet	RAL TL 72-213
26	Nor 12	rein 12	nfo: 1	rced 2 1	f: 4	illeo 18	d vir 19	iyl, 20	embo 22	24	vir 26	nyl f 29	ace 31	32	35	37	39	41	42	36	1.15	43	Dura-Sonic Style 5155	RAL TL 73-209
26	Fle ret 12	arda 12	le l ant 1	high foan 2 1-	ma mw	iss 1 vith 18	oade viny 19	d sH 1 fa 20	eet cing 22	with , te 24	at mper 26	ough atur 29	skin e ran 31	n lan nge C 32	ninat) to 35	ed t 200 37	8 a F. 39	fire- 41	42	3/8	1	112	Sound Stopper VBF	RAL TL 73-249
27	Fat	ric 15	re	info	rce	ed, π 17	ass-	fi11	.ed v 21	inyl	, te	mpera 28	ature	e rar	nge - 33	40 ^{c.}	to l	80 ⁰ F. 37		. 094	1.01	4	Sound-gard SG 1000	CR
27	Acc for	ced 16	ca wi	l cu th a	rta hi	in, gh s 17	limp tren	, to gth	ugh, fabr 23	vin ic	yl 1	oade 27	d wi	th no	onlea 33	ıd fi	ller	rein 39	-	. 110	1.0	40	dba bar-"FM" BS Series	CR B-FM-1-76
27	Nor 13	rein 12	ifo: 1	rced 3 1	4 f	ille 19	d vi 18	ny1, 21	emb 22	osse 24	d vi 26	nyl : 28	face 30	32	34	35	37	38	38	. 11	1.10	43	Dura-Sonic Style 5517	RAL TL 73-208
27	Vir uns 14	uppo 17	she ort 1	ets ed, 1 5 1	ava sup 8	nilab port 17	le i ed. 20	n ba Tem 19	arium apera 23	sul ture 25	fate ran 26	10a ge -4 27	ded 40 ⁰ 1	1eac to 18 . 32	1 fil 30°F. 33	.led, 36	non 38	toxic 39	41	.120	1	78	Noiseguard Flexible Vinyl	CKAL
27	100 and) sei nor 17	ie: le:	s.a. adf:	f1 i11	exib ers 17	le l	imp	mass 23	. av	aila	ble w 27	with	lead	33			39			1	78	Noiseguard Flexible Vinyls	CR K60B
31	Sou 20	ind (18	con 1	trol B 1	ь1 9	anke 20	t us 22	ing 23	afc 24	rmul 27	ated 30	pla: 32	stic 34	barı 34	ier 33	32	32	35	38	1		13	Whispermat	CR
19-27	Nor est	lead er 1	ded rei	, lin nfor	mp, cec	fle vin	xibl yl,	e, f or w	forma vover	ble, gla	ver ss r	sati	le, v g or	weath Beta	ner 1 1 gla	esis iss f	tant abri	, pol c	.y-			58	Flexible Noise Barrier Material	CR
12-29	Mas	s 10	ad	ed,	fit	ergl	.885	reir	ford	ed,	viny	1 co	ated	fabı	ric					t	.5 o 1.0	58	Loaded Vinyl Fabric	CR

Table 11. Plain and mass-loaded plastics continued.

212

.

.

	_						T	[ransmi	issic	n Los	s, dB											
STC	100 Hz	125 4-		200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz 1250 Hz	1600 Hz		2000 Hz 2500 Hz	3150 Hz	ZH 0007	5000 Hz	Thicknes: (in.)	Density (1b/ft ⁷)	Company	Product	Reference
15-21	Tou clo	ugh oud	, te ing	ar res	ista	nt PV	νĊ,	light	weigt	nt, re	esistan	t to	ye	llowir	ng, f	ading	 ;,			58	Transparent Noise Barrier Material	CR
	F1e 14	exil l	ble 6 1	reinfo 3 14	rced 18	lead 18	2 2	inylaı 123	nd fi 24	illed 26 2	fiberg 28 29	1ass 31	fa 3	ibric 13 35				.077	1	43	Dura-Sonic Style 5144	RAL TL 77-105
	Ch l to	lor a l	osul base	fonate fabri	d po c of	lyeth nylo	yle n	ene (hy (plain	ypald weav	on) fi ve)and	illed w d 1/4 i	ith p nch p	oow ool	dered yuret!	lead Nane	appl Eoam	ied		. 45	30	Hypalon/Foam/ Fabric Speci- fication 21828	CR 3 CRP 21789
	Loa	ade	d vi	nyl fa	bric	s for	cı	urtain	s and	d encl	losures									60	Attenu-Son	
	Cle dus	ear str:	or ial	yellow plants	PVC	flex esist	ib] ani	le str: t to m	ip cu ost a	urtain acids	ns, for tempe	nois ratur	se	isolat range	ion 0° t	in in 5 200	1- 90 F .			60	Saf-T-Strip	
	Enc	- 10:	sure	const	ruct	ion l	14	inch 1	olvwo	ood. o	composi	te li	ine	r is l	16/	ft ²						
	vir	y1 1	. T 5	empera	ture 12	rang	e -	-40° t 17	o 300	O ^o F.	Data a 18	re in	nse 2	rtion 2	loss	25				78	Composite Enclosure	CR 60B
	Gla to	ass 201	fib D ^o F.	er rei Data	nfor are	ced l nois	ead e 1	d weig reduct:	hted ion	plast	ic she	et, t	em	peratu	ire r	ange	0 ⁰					CR QM-
		1	2		13			16		1	23		2	6		31		. 025	. 42	33	Quietfab	TDS-300-R1
	Le <i>a</i> Dat	ad/r	viny are 1	l barr noise	ier redu	with ction	glá	ass fil	ber,	tempe	erature	rang	ze	0 ⁰ to	200 ⁰	F.						CR
		1	2		13			17		2	23		2	6		32		.025	. 42	117	Sound Fab	708D
	Enc Vir	210) 1y1	sure . T	const empera	ruct	ion l rang	.8 g ;e -	gauge : -40° ti	steel o 300	l, cor) ⁰ F.	nposite Data a	line re it	er nse	is 1] ertion	b/ft loss	2					C	CP.
		2	0		12			19		2	22		2	6		31				78	Enclosure	Кбов
	Gla to	ass 201	fib DOF.	er rei Data	nfor are	ced 1 nois	ead e 1	d weig reduct	hted ion	plast	ic she	et, t	∶em	peratu	ire r	ange	00					
		1	1		14			17		2	22		3	9		40		1.025	. 42	33	Quietfoam	300-Ri
	Dat	a a	are	insert	ion	loss															Fiberglass Reinforced	
		1	>		18			25		4	26		2	9		36		1/8		96	Plastic	OCKL
	Le <i>a</i> are	ad/r e no	viny bise	l barr reduc	ier tion	and g	las	ss fib	er, t	emper	ature	range	e 0	1 ⁰ to 2	200°F	Da	ita					CR
		1	5		18			20		2	29		3	3		37		.050	. 83	117	Sound Fab	708D
	Gla to	ass 200	fib D ^O F.	er rei Data	nfor are	ced l nois	ead e 1	d weig reduct:	hted ion	plast	ic she	et, t	∶em	perati	ire r	ange	0 ⁰					CP 0M-
		1	5		17			20		2	29		3	4		37		.050	.83	33	Quietfab	TDS-300-R1
	Dat	aa	are	insert	ion	loss															Fiberglass	
	-	19	Ð	-	22			28		3	31		3	2		25		1/4		96	Reinforced Plastic	СТ
	Dat	aa	are	insert	ion	loss		20						-		24		1.42			Fiberglass Reinforced	
		2	L		27			29		2	54		2	/		36		1/2		96	Plastic	CT

Table 11. Plain and mass-loaded plastics concluded.

CATEGORY 12. GLASS AND PLASTIC SHEETS

A broad category of materials which are linked because they are available as transparent sheet materials. They can exist as independent or as composite barrier systems. Their usefulness is augmented whenever visibility plus noise control is desired. Structurally, they can be rigid or flexible. Glass or plastic barriers are usually mounted in a fixed location.

Composite panels of glass separated by a plastic type layer, such as polyvinyl butyral are frequently used. In some cases, an air space is also provided. This total combination offers increased thermal and acoustical isolation.

Other related sections are curtains, panels, operable partitions, windows and enclosures. Organizations contributing data to this table are: 46, 64, 79, 89, 107, 110, and 140.

Table 12. Glass an	nd plastic sheets	
--------------------	-------------------	--

	_						Tr	ansm	issi	on L	oss,	dB											
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	2H 004	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH CUO4	5000 Hz	Thickness (in.)	$\frac{\text{Density}}{(1b/\text{ft}^2)}$	Cumpany	Product	Reference
18	Ext 11	rude 7	ed s 8	heet 7	of c 10	ellu 12	lose 13	acet 14	ate 15	buty 16	rate 17	plas 19	stic 21	23	25	26	28	29	1/16	0.38	46	Uvex	RAL TL 76-110
26	Ex t 16	rude 14	d s 15	heet 16	of c 18	ellu 20	lose 22	acet 22	ate 23	buty 24	rate 26	plas 27	stic 29	31	33	33	35	36	3/16	1.16	46	Uvex	RAL TL 76-109
27	Ple	exig 16	ass 18	, te 18	mpera 17	ture 20	ran 21	ge up 22	24	190 ⁰ 25	F. 28	30	31	33	33	35	35		1/4	1.45	107	Plexiglass Acrylic Sheet	KAL 1481-1-73
30	Ext 17	rude 18	d si 15	heet 17	of c 23	ellu 22	lose 24	acet 25	ate 28	buty 29	rate 30	plas 31	stic 33	35	38	39	41	42	.220	1.4	46	Uvex	RAL TL 77-161
30	Ext 17	rude 19	d si 15	heet 16	of c 23	ellu 23	lose 25	acet 26	ate 28	buty 29	rate 31	plas 33	stic 35	37	39	41	41	42	1/4	1.5	46	Uvex	RAL TL 77-162
30	Ple	xíg] 21	as s 21	, ten 24	mpera 23	ture 25	ran 27	ge up 26	to 28	190 ⁰ 31	F. 32	33	34	32	26	31	37		1/2	2.9	107	Plexiglass Acrylic Sheet	KAL 1481-2-73
32	Ple	25	ass 26	, ten 27	mpera 28	ture 29	ran 32	ge up 32	to 33	190 ⁰ 34	F. 32	38	31	34	36	40	46		1	5.82	107	Plexiglass Acrylic Sheet	KAL 1481-3-73
34	P1a g1a 120	istic iss -)°F. 30	ize 0. 26	d po 30 in 26	lyvin nch, S 28	yl b afle 30	utyr. × - 30	al in 1/8 i 31	iter] .nch 33	layer glas 34	bet s, t 35	ween empei 36	glas ratur 36	s pl e ra 33	ies, inge 33	1/8 -20 ⁰ 37	inch to 41		1/4	3.3	89	Saflex Laminated Glass	RAL TL 77-150
34	P1a g1a 120	istic iss -)°F. 27	ize 0.	d po 60 in 23	lyvin nch S 30	yl b afle 29	utyr x - 30	al in 1/8 i 32	nch 33	laver glas 34	bet s, t 35	ween emper 36	glas atur 36	s pl e ra 36	ies, inge 35	1/8 -200 36	inch to 39		5/16	3.38	89	Saflex Laminated Glass	RAL TL 68-202
35	Pla str rar	istic rengt ige - 29	ize hg 200 29	d po lass to 25	1yvin - 0. 120°F 27	yl b 03 i 29	utvra nch 29	al in Safl 31	terl ex - 32	layer - sin 34	bet gle 34	ween strer 34	glas ngth 34	s pl glas 35	ies, s, t 33	sin empe 36	gle ratur 39	e	. 235	2.8	89	Saflex Laminated Glass	RAL TL 77-194
36	Lan 350	nina:), 70 25	ed 0, 28	glass 1400 *	s, 2 , and 28	F ¹ y 280 30	glas: D Hz *	s wit 33	h pl 35*	lasti H	c la 36	yer, 36*	star K	red 35	data 35*	are	at 1 39	75.	9/32	3.4	64	Acousta Pane 36	RAL TL 65-27
36	Two	1ay 27	ers 25	of 27	1/8 i 28	nch 29	glas: 30	s wit 31	h 0. 33	060 35	inch 37	plas 38	stic 39	core 41	41	41	38		9/32	3.7	110	Shatterproof Sound Control Glass	RAL TL 72-9
36	Pla gla 120	istic iss - PF. 29	ize 0.0 30	d po: 03 in 31	lyvin nch 34	yl b Safl 32	ut vra ex - 33	al in 1/4 35	inch 35	layer gla 35	bet ss, 35	ween tempe 34	glas eratu 35	s pl re r 34	ies, ange 38	1/8 -20 42	inch to 45		3/8	4.63	89	Saflex Laminated Glass	RAL TL 68-206
36	Pla gla inc	stic ss - h gl 28	izec 1/3 ass 26	d pol 2 ind , ter 22	lyvin ch a npera 27	yl b irsp ture 31	ace rang 33	al in - 1/8 ge -2 35	terl inc 0° t 36	ayer h, g o 12 37	bet lass O ^O F. 39	ween - 0. 40	glas 30 i 39	s pl nch 36	ies, Saf 36	1/4 lex 41	inch - 1/8 46		1	6.4	89	Saflex Laminated Glass	RAL TL 78-2
37	Pla gla 120	istic Iss - I ^O F. 29	ize 0.3	d po 30 ir 31	lyvin ich S 34	yl bi afle: 33	utvra < - 3	al in 1/4 i 35	terl nch 35	ayer glas 35	bet s, t 35	ween emper 33	glas atur 35	s pl e ra 39	ies, inge 42	1/4 -20° 45	inch to 46		1/2	5.95	89	Saflex Laminated Glass	RAL TL 77-192
37	1/4	inc 33	h g: 30	lass 30	- 0. 32	030 34	Lnch 34	Lami 35	nate 36	e, 1/ 36	4 in 35	ch g1 35	ass 37	40	43	46	49		. 51	6.1	:40	Sound Control Glass	RAL TL 77-174
37	Pla gla 120	stic ss - oF. 31	izea 0.0	d po] 045 i 31	lyvin Inch 33	yl bi Safle 36	utvra ex - 35	al in 1/4 36	terl inch 36	ayer gla 37	bet ss, 35	ween tempe 34	glas ratu 36	s pl re r 38	ies, ange 42	1/4 -20 45	inch to 50		9/16	6.3	89	Saflex Laminated Glass	RAL TL 77-153
38	2 p	1y 1 29	/4 : 29	inch 31	floa 33	t/0.0 34)45 35	vinyl 36	Lап 37	inat 37	e 36	34	36	39	41	44	47		1/2	6.1	79	Hushlite	RAL TL 76-133

	_						Tra	insa	issi	on La	<u>)\$8</u> ,	dB						_	8				
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	2H 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH ()∪07	5000 Hz	Thicknes (in.)	Density (1b/ft ²)	Company	Product	Reference
38	Pla	stic ss -	ize 0.0	d pol	yvín ch S	yl bu aflex	tyra - 1	1 ír /4 i	ter l	ayer glas	bet s, t	ween emper	glas	is pl e ra	ies, nge	1/4	inch to		~~~~~~			Soflor	
	120	°F. 32	26	31	33	36	34	36	37	36	36	35	36	39	43	46	50		9/16	6.4	89	Laminated Glass	RAL TL 77-154
38	Pla gla	stic ss -	ize 0.	d pol 30 ín	yvin ch S	yl bu aflex	ityra : - 3	1 in /8 i	nterl Inch	ayer glas	bet s, t	ween empei	glas ratur	s pl re ra	ies, nge	1/4 -200	inch to					Saflex	
	120	29	30	31	36	35	36	35	35	35	35	37	40	43	45	47	49		5/8	7.55	89	Laminated Glass	RAL TL 68-210
39	Lan	inat 34	ed (33	glass 34	, 2 36	ply 1 36	/4 i 36	nch 37	glas 36	s, 0 37	. 045 37	incl 37	n pla 38	stic 41	cor 45	е 49	52		1/2	6.3	64	Plate Glas«	RAL TL 76-15
39	Two	lay 21	ers	of 1	/4 i	nch g	lass	wit	:h 0.	045	inch	plas	stic	core	1.3	1.5	47		140	£ 0	110	Shatterproof Sound Control	RAL
		21	29	11	32	34	30	çc	36	20	20	39	39	40	43	45	47		1/2	0.0	110	Glass	12 72-105
39	Pla gla 120	stic ss - °F.	ized	l pol 30 in	yvin ch S	yl bu aflex	tyra - 1	l ir /2 i	nterl nch	ayer glas	bet s, t	ween empei	glas	s pl e ra	ies, nge	200	inch to		• • •			Saflex Laminated	RAL
		35	33	33	34	36	36	37	36	35	34	39	41	46	48	50			3/4	9.6	89	Glass	TL 77-193
10	are	at 31	22 175 32	350 k	, 70 34	0, 14 36*	,74 1 00,	ncn and 38	2800 40*	s, w Hz	40	piasi 40י	510 C	ore. 37	5t 41*	arre	46 46	a	1/2	6.7	64	Acousta Pane 40	RAL TL 66-293
÷0	Pla gla	stic ss -	ize 0.1	i pol 30 in	yvin ch S ure	yl bu aflex	tyra - 1	l ir /4 j	nterl inch	ayer glas	bet s-	ween 0.30	glas inch	s pl Saf	ies, lex	1/4 - 1/	inch 4 inc	h				Saflex	
	0	34	30	32	35	37	37	37	37	36	35	38	42	45	48	50	53		13/16	9.1	89	Laminated Glass	RAL TL 77-151
¥1	Pla gla gla	stic ss - ss,	ize 0.0 temp	d pol 06 in perat	yvin ch S ure	yl bu aflex range	tyra - 1 -20	l ir /4 i ° to	nch 120	ayer glas ^o F.	bet s-	ween 0.06	glas inch	s pl Saf	ies. lex	- 174 - 17	inch 4 inc	h				Saflex	PAL
		33	30	33	35	38	37	39	35	37	37	39	42	44	47	49	53		13/16	9.6	89	Glass	TL 77-155
¥2	Two	1 ay 33	ers 32	of 3 35	/8 i 35	nch g 36	lass 38	wit 38	:h 0. 39	045 40	inch 42	plas 42	stic 43	core 45	47	49	50		3/4	10.2	110	Shatterproof Sound Control Glass	RAL TL 72-104
43	Lar	inat	ed	glass	, 3	ply 1	./4 i	nch	glas	s, p	last	ic co	ore.	Sta	rred	l dat	a are						
	at	175, 34	35	J. 70 K	36 36	.400, 39*	and	280 41	нz 43*		43	437	۲	41	45*		50		3/4	10.1	64	Acousta Pane 43	RAL TL 66-294
35	2 p	ly 1	/8 :	inch	floa	t/.04	5 vi	nyl	Lami	nate									9/32	3.4	79	Hushlite	CR
36	2 p	1y 3	/16	inch	flo	at/0.	045	viny	/l La	mina	te												
																			7.16	5.2	79	Hushlite	CR
•0	3 р	ly 1	/4 :	nch	floa	t/2 p	ly.	045	viny	1									3/4	9.4	79	Hushlite	CR
	Ext	rude	d ac	ryli	c/PV	C she	et i	n th	ickn	esse	s fr	om .()28 t	ο.2	50 i	nch				•	107	Kydex 100	CR
	Ext	rude	d po	lyca	rbon	ate s	heet	in	thic	knes	ses	from	. 005	to	. 500	inc	h				107	Tuffak	CB

Table 12. Glass and plastic sheets concluded.

. •

.

CATEGORY 13. OTHER BARRIER MATERIALS

Items listed in this category are separated from specific categories because of designated purpose, special application, or slight fabrication changes. These items as well as all items listed in other categories should be considered with respect to particular acoustical performance and not limited to the designated use.

Organizations contributing data to this table are: 13, 30, 66, 90, 97, and 117.

. .

							Tr	ansm	issid	on Lo	oss,	dB										-	
STC	00 Hz	25 Hz	60 Hz	2H 00	50 Hz	15 Hz	00 Hz	2H 00	30 Hz	00 Hz	000 Hz	250 Hz	600 Hz	000 Hz	500 Hz	150 Hz	2H 000	000 Hz	hickness (in.)	Density [lb/ft ²]	ompany	Product	Reference
22 (c)	Flo vol	oor	cover base	~ ing: 2 1/8	~ 1/8 incl	inch h. 1	vir Tempe	yl f	ace, are r	no 1/4 ange	incl -45	foa to	am 1a 225°	ver,	lea	id se	ptum,					<u> </u>	·
	13	11	13	15	15	17	18	19	21	23	24	26	28	28	29	28	28	33	1/2	14	117	Soundmat -FVP	CR 702D
26	Rut 13	ber 11	12	12	17	19	21	22	25	26	28	29	31	34	36	38	39	41	. 106	. 89	66	Acousta Sheet 200 and 300	RAL TL-75-118
30 (c)	Fle	22	le se	eptum	san 21	dwich	ed t	y la 27	yers	of	inert 29	gla	ass f	iber 36			39			1	117	Soundmat - LGF	СТ
	Sou	ind i	barrí	er f	loor	mats	for	tru	icks,	bus	es, e	etc.							7/16	1	13	Hushcloth	CR
	A h ozo	nypa one	lon s and a	speci age r	al co esis	ompou tance	ind π	nade	of o	il r	esist	ant	synt	heti	c ru	ibber	with		. 033		30	Chem-Tone CRP 21789	CR
	Int lea	erla ad o:	acing r fel	g of t pa	cell per l	ulose backi	fib ng	ers	lami	nate	d to	poly	/ethy	lene	4 x	:8£	t she	et,		. 25	90	K-13 Acoustical Blanket	
	Gla use hum AST	ass in nidi IM C	ceram high ty to 384-5	nic m n tem 5 100 58 at	ater: pera %. 1 free	ial i tures Data quenc	n ho or are ies	neyc adve norm of 1	omb rse al i 400.	or m envi ncid 149	atri) ronme ence 5, 16	geo ents abso 606,	metr Te orpti 1614	y mper on c	Nonf atur oeff 19,	lamm e to icie 1745	able 2000 nts b . 200	for °F. 5 Hz.		1 7			
		83			84	•		98			99			99			92		1	to 3.1	3 9-	CER-VIT R	CR

.

.

Table 13. Other barrier materials.

.

CATEGORY 14. CEILING TILES

STANDARD PANELS

Test Configuration for AMA-1-II

CATEGORY 14. CEILING TILES

Ceiling tiles vary acoustically from highly reflective to very absorbent and can have from poor to good barrier properties. Typical tile parameters include texture, type of perforation, pattern, structural integrity, and appearance. Descripters such as embossed, fissured, plain, facing type, backing material, edge type (beveled, rabbeted, square, etc.), light reflectance, fire rating, moisture resistance, and asthetic value are usually included with the overall acoustical performance. The well-designed acoustical ceiling is an essential part of sound control.

Organizations contributing data to this table are: 4, 5, 15, 28, 34, 74, 85, 92, 96, and 113. Related categories are panels, unit absorbers, and open plan systems.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing

ſable	14A.	Absorption	properties	of	ceiling	tile.
-------	------	------------	------------	----	---------	-------

/

			Absorption	Coeffic	ients					-		
NRC	125 Hz	250 Нг	500 Hz	1000 Hz	2000 Hz	2H 0005	Thickness (in.)	Density (lb/ftŽ)	Mounting	Сотрану	Product	Reference
.40 to .44	Acoustica .37	l tile. .34	fire rated	. 65	. 75	. 78	5/8			34	Conwed Fissura Tile and Panels	CR A-4
.40 to .44	Protectone reveal edg	e panels ge 2 x 2	s, natural ft.	fissure	d, foil-	back,	3/4	1.4	7	28	Celotone Tile	CR 5033
. 45	Acoustical and inorga surface.p .45	l grid p anic cer painted .43	eanels comp ment binder or unpaint .31	osed of exhibit ed, edge .42	long wo ting coa es are s .56	ood fibers arse fiber quare. .79	r l	1.8	7	92	Gold Bond Tectum Grid Panels	RAL A75-87
. 50	A substant scrubable kerfed, ar .39	finish finish nd rabbe .32	igid tile surface e ted: 12 x .45	of miner dges are 12 inch. .59	al comp bevele .63	osition, d,	5/8	. 9	7	92	Gold Bond Solitude Tile Fissured	NGC 8458
. 50	Substantia compositio	ally rig on 2 x 4	id grid pa ft.	nel of t	basic mi	neral					Gold Bond Solitude	
50	.30 Rigid tile	.34	.53	.64	.52	. 38	5/8	.91	7	92	Grid Panel (TXMP)	RAL A71-91
	.43	erfeda . 32	.46	.58	12 x 12 .68	inch. .66	5/8	. 94	7	92	Gold Bond Solitude Tile Nondirectional	NGC 7457
. 50	Texture mi panel of t rated asse surfaces, .28	cro-per asic mi mblies, edges a .36	forated su neral comp fine perf re square : .65	ostantia osition orated, 2 x 4 ft .62	illy rig used fo spatter .44	id grid r fire effect .33	5/8	1.21	7	92	Gold Bond Fire Shield Solitude Grid Panel (TXMP)	RAL A73-133
.55 (c)	Acoustical .37	tile, .34	fire rated .42	. 65	. 75	. 78	5/8			34	Conwed Fissura Tile and Panels	CR A-4
. 55	Substantia compositio tions, edg .20	elly rig on, surf ges are .29	id grid par ace contain square 2 x .49	nel of b ns small 4 ft. .68	asic mi . random .74	neral perfora- .58	5/8	. 81	7	92	Gold Bond Solitude Grid Panel Needle Perforated	NGC 7472
. 55	Substantia nondirecti .29	ally rig Ional fi .28	id grid pan ssures, ed; .57	nel of m ges are .72	nineral square, .67	compositi 2 x 4 ft .67	lon. 1. 5/8	.86	7	92	Gold Bond Solitude Grid Panel Nondirectional	RAL A75-180
. 55	Substantia sition, su square, 2	illy rig irface f x 4 ft.	id grid pan as linear	nel of b fissured	asic mi l patter	neral com n, edges	are					
	.23	. 28	.50	. 63	. 75	. 71	578	. 87	7	92	Gold Bond Solltude Grid Panel Fissured	NGC 7468
	12 x 12 17 ing tile. .34	.34	.47	.69	.73	.59	5/8	1.16	7	4	Acousti-Clad "S"	RAL A74-64
. 55	12 x 12 in ceiling ti 35	ich meta .le. 31	l clad mine	eral fit	er acou	stical 56	578	1.2	7	4	Acousti Clad	RAL A74-62
.55 (c)	Acoustical .35	. tile, .31	standard. •	vinyl ac .63	rylic c	oating. .75	5/8		, 7	34	Conwed Fissura Tile and Panels	CR Form A-4
.55 (c)	Lightweigh .31	it acous .37	tical pane: .51	1. .68	. 55	. 37	5/8		7	34	Conwed Pebbled Panels	CR Form A-7
.50 to .60	Safetone N	I-D perf	orated stip	opled 2	x 4 ft.		5/8	1	7	28	High Density Lay-In Panel	CR 5033
.50 to .60	Safetone S	itrata 2	x 2 ft.				5/8	1	7	28	High Density Lay-In Panel	CR 5033
.50 to .60	Protectone	N-D pe	rforated s	ippled.			5/8	1.1	7	28	High Density Lay-In Panel	CR 5033

Table 14A. Absorption properties of ceiling tile continue

			Absorpti	on Coeffic	cients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft2)	Mounting	Сотралу	Product	Reference
.50 to .60	Fire rat sizes 24	ed lay-ir x 48 inc	panel h, 24 x	square edg 24 inch,	ge. Ava 30 x 60	ailable) inch.	5/8			34	Rockface	CR 902-47
.50 to .60	Standard	lay-in p	anel, so	quare edge	24 x 2	4 inch	5/8			34	Rockface	CR 902-47
.50 to.60	Standard rabbeted	conceale , bevelec	d tile, l edge 12	butted, k 2 x 12 inc	erfed a	ind	3/4			34	Rockface	CR 902-47
.50 to .60	Standard accent e	accent s dge 24 x	ystem t: 24 inch	lle, squar	re rabbe	ted	3/4			34	Rockface	CR 902-47
.50 to .60	Standard able siz	reveal t es 24 x 2	ile, squ 4 inch,	are revea 24 x 48 i	al edge, nch.	avail-	3/4			34	Rockface	CR 902-47
.50 to .60	Fire rat 24 x 24	ed reveal inch.	tile so	luare reve	al edge		3/4			34	Rockface	CR 902-47
.50 to .60	Fire rat rabbeted	ed concea , bevelec	led tile ledge, i	e, butted, L2 x 12 ir	. kerfed nch.	l, and	3/4			34	Rockface	CR 902-47
. 60	Absorpti film fin .12	ve minera ish 4 x 6 .19	l fibert ft and .63	ooard pane 4 x 4 ft 94	ls. wít .73	h vinyl .58	5/8	1.1	4	15	Armstrong Armashield Acoustical Wall Panel	AAL T56181
. 60	12 x 12 ceiling .33	inch meta tile. .32	1 clad m .52	nineral fi .85	.ber aco .80	ustical .59	5/8	1.1	7	4	Acousti-Clad "S"	RAL A-74-63 C 423-66
. 60	Substant position rated as are squa .25	ially rig . Used as semblies, re 2 x 4 .29	id grid fire pu needle ft. .60	panel of otective perforate .83	basic m ceiling d surfa .71	ineral com in fire ice edges .53	- 5/8	1.2	7	92	Gold Bond Fire Shield Solitude Grid Panel Needlepoint	RAL A-73-134
. 60	Substant position rated as edges are .23	ially rig Use as semblies, e square, .31	id grid fire pro nondire 2 x 4 1 .54	panel of otective c ctional f t. .68	basic m eilings issured .78	ineral com in fire surface .82	- 5/8	1.2	7	92	Gold Bond Fire Shield Solitude Grid Panel Nondirectional	NGC 7441
. 60	Substant Used in edges ar .28	ially rig fire rate e square. .32	id grid d assemb .65	panel of lies, lin .73	mineral ed fiss .73	compositi ured surfa .75	on. ce 5/8	1.21	7	92	Gold Bond Fire Shield Solitude Grid Panel Fissured	RAL A-73-132
. 60	For use 1 .69	behind un .72	perforat . 59	ed ceilin .68	igs. Den .36	sity is lb .31	/ft ³	2		85	Shadcw-Coustic	CR 9.1 Me
.55 to .65	Grande, s	textured.	2 x 4 f	t.			1/4	.50	7	28	Acoustiform Lay-in Panels	CR 5033
.55 to .65	Vinyl co fiber su	ated embo bstrate 2	ssed alu x 4 ft.	minum bon	ded to	a mineral	5/8			34	Conwed Metal Face Panels	CR 866R-977
55 to .65	Safetone	Fissuret	one 2 x	4 ft.			5/8	. 9	7	28	High Density Lav-in Panel	CR 5033
.55 to .65	Safetone	fissuret	one reve	al edge 2	x 2 ft		5/8	. 9	7	28	High Density Lav-in Panel	CR 5033
.55 to .65	Safetone	N-D fiss	uretone	2 x 4 ft.			5/8	. 9	7	28	High Density Lav-in Panel	CR 5033
.55 to.65	Fissuret	one 2 x 4	ft.				5/8	1	7	28	High Density Lav-in Panel	CR 5033
.55 to 65	Protector	ne N-D fi	ssureton	e 2 x 4 f	t.		5/8	1	7	28	High Density Lavin Panel	CR 5033

...

			Absorptio	n Coeffici	ents							
NRC	125 Hz	250 H z	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ftŽ)	Mounting	Company	Product	Reference
.55 to .65	Protecto	ne N-D I	Perforated	1 2 x 4 ft			5/8	1.1	7	28	High Density Lay-in Panel	CR 5033
.55 to .65	Safetone	N-D per	forated 2	2 x 4 ft			5/8	1.1	7	28	High Density Lay-in Panel	CR 5033
. 65	Rigid gr cement b applied .67	id panel inder, p thin men .85	composed erforated brane, 2 .57	i of asbest l and backe x 2 ft. .65	os fib d with .58	pers and factory .41	3/16	1.5	7	92	Gold Bond Asbestibel Grid Panel Random Perforation	RAL A-74-98
. 65	Duratone forced a rugged, .32	2 x 4 f luminum durable, .32	t lay-in facing fo stain re .59	panel, gla or use in a sistant pa .94	ass fib areas w anel is .71	per rein- where a needed. .52	5/8	1.1	7	4	Alumiclad	RAL A-74-65 C423-66
. 65	l inch th forated n .22	hick fib marine v .35	erglass f eneer; mc .77	aced with Disture res	3/16 i sistant .60	nch per- .41	1-3/16	1.7	2	74	Marine Acoustical Unit	CR IND-3089 7/76
. 65	For use l is lb/ft .67	behind u 3. .83	nperforat	ed ceiling	s. Den .35	isity .24		3		85	Shadow-Coustic	CR 9.1 Me
.60 to .70	Fissured	Grande,	painted	face, 2 x	4 ft.		1/4	. 5	7	28	Acoustiform Lay-in Panels	CR 5033
.60 to .70	Safetone	N-D tex	turetone	reveal edg	e 2 x	2 ft.	3/4	1.1	7	28	Celotone Tile	CR 5033
.60 to .70	Natural :	fissured	protecto	me tile 12	x 12	inch.	3/4	1.4	7	28	Celotone Tile	CR 5033
.60 to .70	Safetone	texture	-tone rev	eal edge,	2 x 2	ft.	3/4	1.4	7	28	Celotone Tile	CR 5033
.60 to .70	Safetone	tile ch	ase 12 x	12 inch.			3/4	1.5	7	28	Celotone Tile	CR 5033
. 70	Rigid gri cement bi a factory .75	id panel inder, p / applie .90	composed erforated d thin me .61	of asbest through a mbrane. .66	os fib nd bac .67	ers and ked with .55	3/16	1.28	7	92	Gold Bond Asbestibel Grid Panel Uniform Perforation	RAL A-73-196
. 70	Shasta pa .76	attern. .77	Sizes 2 x .59	2 ft, 2 x	4 ft, .74	2 x 5 ft. .77	5/8	•••	7	96	Fiberglas Film Faced Ceiling Board	OCRL
. 70	Textured .66	pattern .72	. Sizes 2 .59	x 2 ft, 2 .62	x 4 f .82	t, 2 x 5 f .83	t. 5/8		7	96	Fiberglas Film Faced Ceiling Board	OCRL
. 70	l inch th forated n .67	nick fib marine v .72	erglass f eneer; mo .64	aced with isture res .75	3/16 i istant .63	nch per- .45	1-3/16	1.7	7	74	Marine Acoustical Unit	CR IND-3089 7/76
.65 to .75	Design (p	laid, r	iviera, s	triated) t	ile 12	x 12 inch	3/4	1.1		28	Safetone Tile	CR 5033
.65 to .75	Safetone	marquis	, reveal e	dge panel	2 x 2	ft.	3/4	1.2	7	28	Celotone Tile	CR 5033
.65 to .75	Safetone	N-D tex	ture-tone	12 x 12 i	nch.		3/4	1.3	7	28	Celotone Tile	CR 5033
.65 to .75	Safetone,	textur	e-tone, f	oil-back,	12 x 1	2 inch.	3/4	1.3	7	28	Celotone Tile	CR 5033
.65 to .75	Safetone	texture	-tone, 12	x 12 inch			3/4	1.3	7	28	Celotone Tile	CR 5033
.65 to .75	Le Baron,	2 x 2	ft.				3/4	1.3		28	Safetone Panels	CR 5033

Table 14A. Absorption properties of ceiling tile continued.

			Absorptic	on Coeffic	ients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	2H 000	Chickness (in.)	Density (lb/ft ²)	foun ting	Company	Product	Reference .
.65 to .75	Safetone	tile nat	ural fis	sured, 12	× 12 i	nch.	3/4	1.4	7	28	Celotone Tile	CR 5033
.65 to .75	Safetone	natural	fissured	foil-bac	k 12 x	12 inch.	3/4	1.4	7	28	Celotone Tile	CR 5033
.65 to 75	Safetone edge 2 x	natural	fissured	, foil-ba	ck, rev	eal	3/4	1.4	7	28	Celotone Tile	CR 5033
.65	Safetone,	texture	e-tone, f	oil-back,	reveal	edge,	377	1.4	7	28	Celctone Tile	CR 5043
. 65	Protector	ne tile,	natural	fissured,	foil-b	ack,	5/4		-	20		CR 5033
to .75	12 x 12 i	Inch.					3/4	1.5	7	28	Celctone Tile	CR 5033
. 75	Ranier pa .76	attern. A .78	Aizes 2 x .60	2 ft, 2 .71	x 4 ft, .86	2 x 5 ft. .79	5/8		7	96	Fiberglas Film Faced Ceiling Board	OCRL
. 75	For use t 1b/ft ³ .	∍ehind p€	erforated	ceilings	. Densi	ty is						
	.61	. 83	. 59	. 79	. 86	. 80		2	••	85	Shadow-Coustic	CR 9.1 Me
. 80	Fissured.	. paintec	finish. .68	Sizes 2 .86	x 2 ft, .83	2 x 4 ft .57	5/8		7	96	Painted Ceiling Board	OCRL
. 80	Random fi .70	.ssured.	Sizes 2 .62	x 2 ft, 2 .78	x 4 ft .91	, 2 x 5 ft. .92	5/8		7	96	Fiberglas Film Faced Ceiling Board	OCRL
80	Frescor	nainted	finish	Sizes 2 x	2 fr	2 x 4 ft						
	2 x 5 ft.	. 76	. 67	. 84	. 84	. 71	3/4		7	96	Painted Ceiling Board	OCRL
. 80	Monterey .71	or carme	l patter	m. 2 x 4 .75	ft, 2 x .87	2 ft. .93	l		-	90	Archi Texrure Ceiling Board	OCRL
.75 to .85	Protector	ne, mat i	faced, 2	x 4 ft.			1	. 75	7	28	Acoustiform Lay-in Panels	CR 5033
. 85	Alpha pat .64	.79	x 4 ft, .69	2 x 2 ft. .85	. 99	1.03	3/4 .		7	96	Archi Texture Ceiling Board	OCRL
. 85	Fissured	and rand	dom fissu	red, pain	ted fin	ish.						
	Sizes 2 3	< 2 ft, 2 78	2 x 4 ft. 72	93	94	74	374		7	96	Painted Jeiling Board	OCBI
			.,.	. , 5			5/1		,		othing board	COME
.85	Textured, 2 x 5 ft.	painteo	finish.	•Sizes 2	x 2 ft,	2 x 4 ft,					Painted	
	. 76	. 73	. 78	. 92	. 92	. 83	3/4		7	96	Ceiling Board	OCRL
. 85	Fissured 2 x 2 ft,	and rand 2 x 4 f	lom fissu ft.	red, viny	l coate	d. Sizes					Painted	
	. 61	. 88	. 69	. 90	. 96	. 82	5/8		7	96	Ceiling Board	OCRL
. 85	Fissured 2 x 2 ft,	and rand 2 x 4 f	iom fissu t	red, pain	ted fin	ish. Sizes					Painted	
	. 66	. 85	. 68	. 93	. 87	. 69	5/8		7	96	Ceiling Board	OCRL
. 85	Frescor, 2 x 5 fr	painted	finish.	Sizes 2 x	2 ft,	2 x 4 ft,						
	. 69	. 86	. 68	. 87	. 90	. 81	5/8		7	96	Painted Ceiling Board	OCRL
. 85	Frescor f	finish, v	/inyl coa	ted. Size	s 2 x 2	ft, 2 x 4	ft.					
	2 x 5 ft. .60	. 85	. 68	. 88	. 92	. 79	5/8		7	96	Painted Ceiling Board	OCRL
<u>و</u> د	Texturad	finich	vinvl c-	ating C:	795 7 -	2 fr					-	
	2 x 4 ft, .65	2 x 5 f	.72	.86	.93	.98	5/8		7	96	Painted Ceiling Board	OCRL

Table 14A. Absorption properties of ceiling tile continued.

		4	Absorptio	n Coeffi	cients							
NRC	Hz	Нz	Чz	Нг	Hz	Hz	kness n.)	ft2)	ting	any	Product	Reference
	125	250	500	1000	2000	4000	Thic (i	Den: (1b/	Moun	Сотр		
. 85	Textured, 2 x 5 ft.	painte	d finish.	Sizes 2	x 2 ft,	2 x 4 ft,					Painted	
	. 63	. 90	.68	. 90	. 96	.91	5/8		7	96	Ceiling Board	OCRI.
. 85	Textured, 2 x 5 ft,	painte 4 x 4	d finish. ft.	Sizes 2	x 2 ft,	2 x 4 ft,					Painted	
	.72	.70	.82	. 98	.94	. 84	1		7	96	Ceiling Board	OCRL
. 85	Frescor, 2 x 5 ft,	painted 4 x 4	finish. ft.	Sizes 2	x 2 ft,	2 x 4 ft.					Painted	
	. 69	. 80	. 73	. 96	.93	.79	1		7	96	Ceiling Board	OCRL
. 85	Sculpture	d. Size	s 2 x 2 ±	ft, 2 x 4	ft, 2 x	5 ft.					Fiberglas Film	
	. 65	.86	. 95	.88	. 72	.61	3		7	96	Faced Ceiling Panel	OCRL
.90	Alpha pat	tern. 2	$\mathbf{x} \neq \mathtt{ft}$.	2 x 2 ft							Archi Texture	
	.63	. 82	. 75	. 95	1.01	1.11	1		7	96	Ceiling Board	OCRL
.95	Alpha II									0.0	Glass Cloth	0.041
	.68	.87	. 87	.99	.99	, ġġ			(90	Celling Board	UCKL
.95	Nubby II	67				0.0			-	37	Glass Cloth	OCD1
	. /8	.97	.88	.99	. 99	. 99			/	90	Celling Board	UCKL
. 95	Omega II .67	. 89	. 89	. 99	. 99	. 99			7	96	Glass Cloth Ceiling Board	OCRL
. 95	lextured	. 90	. 85	. 99	. 99	.99			7	96	Glass Cloth Ceiling Board	OCRL

Table 14A. Absorption properties of ceiling tile concluded.

•.

Table 14B. Barrier properties of ceiling tile.

	Attenuation Factor, dB					
STC	1125 Hz 160 Hz 200 Hz 250 Hz 400 Hz 500 Hz 630 Hz 630 Hz 1000 Hz 1250 Hz 1600 Hz 1250 Hz 3150 Hz 3150 Hz 4000 Hz	Thickness (in.)	Density (lb/ft ²)	Company	Product	Reference
38	Texture micro-perforated substantially rigid of basic mineral com- position. Used for fire rated assemblies. Fine perforated, spatter effect surface; edges are square. 2 x 4 ft. Test method: AMA-1-11. 28 36 35 28 28 31 32 35 39 41 44 48 50 50 50 51	5/8	1.23	92	Gold Bond Fire Shield Solitude Grid Panel	G&H NG-358FT
39	Substantially rigid grid panel of basic mineral composition. 2 x 4 ft. Test method: AMA-1-11. 24 27 32 29 29 32 34 36 39 42 44 43 42 43 45 47	5/8	. 86	92	Gold Bond Solitude Grid Panel (TXMP) Texture Micro-Perf.	NGC 6143
35 to 39	Acoustical tile, standard and reveal. Test method: AMA-1-11. 28 34 36 27 27 30 29 31 33 36 39 46 54 56 58 59	5/8		34	Conwed Fissura Tíle and Panels	CR Form A-4
35 to 39	Lightweight acoustical panel. Test method: AMA-1-11. 26 33 34 26 24 28 29 33 34 35 40 46 50 49 48 47	5/8		34	Conwed Pebbled Panels	CR A-7
35 to 39	Fire rated lay-in panel, square edge. Test method: AMA-1-11.	5/8		34	Rockface	CR 902-47
15 to 39	Fire rated concealed tile. Butted, kerfed and rabbeted edge. 12 x 12 inch. Test method: AMA-1-11.	3/4		34	Rockface	CR 902-47
15 to 39	Fire rated reveal tile, square reveal edge, 2 x 2 ft. Test method: AMA-1-11.	3/4		34	Rockface	CR 902-47
35 to 39	Standard reveal tile, square reveal edge, 2 x 2 ft and 2 x 4 ft. Test method: AMA-1-11.	3/4		34	Rockface	CR 902-47
5 to 39	Standard concealed tile, butted, kerfed and rabbeted beveled edge. 12 x 12 inch. Test method: AMA-1-11.	3/4		34	Rockface	CR 902-47
15 to 39	Vinyl coated embossed aluminum bonded to a mineral fiber substrate constellation or fire rated style, 2 x 4 ft. Test method: AMA-1-11.	5/8		34	Conwed Metal Face Panels	CR 866R- 977
15 to 39	Standard lay-in panel, square edge, 2 $\mathbf x$ 2 ft. Test method: AMA-1-11.	5/8		34	Rockface	CR 902-47
40	Substantially rigid grid panel of basic mineral composition. Surface contains small random pertorations, edges are square, 2 x 4 ft. Test method: AMA-1-11. 24 28 33 30 30 32 35 37 38 40 46 44 46 49 52 54	5/8	081	92	Gold Panel Solicude Grid Panel Needle Purfurated	NGC 6145
40	Duratone 2 x 4 ft lay-in panel, glass fiber reinforced aluminized facing for use in areas where a rugged, durable, stain resistance panel is needed. 30 37 37 31 31 34 35 37 38 42 45 50 54 52 52 53	5/8	1.2	8	Alumiclad	CR JM-77-FT
41	Substantially rigid grid panel of basic mineral composition. Surface has linear fissured pattern; edges are square. 2 x 4 ft. Test method: AMA-1-11. 25 29 32 31 31 34 36 38 41 43 44 44 44 47 49 51	5/8	. 87	9 2	Gold Bond Solitude Grid Panel Fissured	NGC AMAI-II
41	Substantially rigid grid panel of mineral composition. Nondirec- tional fissures, edges are square, 2 x 4 ft. Test method: AMA-1-11. 27 29 34 31 32 35 37 39 41 42 45 45 45 50 52 54	5/8	89	92	Gold Bond Solitude Grid Panel Nondirectional	NGC 7477
41	Substantially rigid grid panel of basic mineral composition. Use as fire protective ceiling in fire rated assemblies; needle perforated surface edges are square, 2×4 ft. Test method: AMA-1-1.				Gold Bond Fire- Shield Solitude Grid	G&H
	31 38 36 30 30 33 36 38 40 43 46 49 51 52 50 53	5/8	1.22	92	Panel Needlepoint	NG-360FT
42	Substantially rigid grid panel of mineral composition. Use in fire rated assemblies. Linear fissured; surface edges are square. Test method: AMA-1-11. 32 39 38 32 31 36 37 39 42 44 48 50 52 53 53 51	5/8	1.2	92	Gold Bond Fire- Shield Solitude Grid Panel Fissured	G&H NG-359FT
44	Substantially rigid tile of mineral composition, scrubable finish, surface edges are beveled, kerfed, and rabbeted, 12 x 12 inch. Test method: AMA-1-11. 26 29 37 35 35 39 41 42 43 46 49 51 53 55 56 57	5/8	. 93	92	Gold Bond Solitude Tile Fissured	NGC 6139

....

•

Table	14B.	Barrier	properties	o£	ceiling	tile	concluded.
-------	------	---------	------------	----	---------	------	------------

						At	tenua	ation	n Fac	tor,	dB										
STC	μz	Чz	Нz	Ηz	Чz	Hz	Ηz	Ηz	μz	Ηz	Rz	Hz	Hz	Hz	zH	Hz	ches:	tty)	'ny	Product	Reference
	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	Thic) (ir	Densi (1b/1	Compe		
44	Su as ti me	fir fir onal thod	ntia e pro fise AM/	tly r otect sured A-1-1	igid ive su	gria ceili rfaca	d par ings e edg	nel c in f ges a	of ba ire are s	rate quar	mine d as e; 2	ral semb x 4	compo lies ft.	non Tes	on. dire t	Use c-				Gold Bond Fire-Shiel Solitude Grid Panel	d .
	33	36	38	34	35	37	41	43	44	46	49	48	50	53	50	44	5/8	1.2	92	Nondirectional	NGC 6131
44	Di	agon	al pe	rfor	ared	patr	tern	12 x	: 12	inch	. Fe	lted	mine	eral	core	tile					CB
	33	38	· 39	33	34	38	38	41	42	45	47	51	54	54	54	56	5/8	1.2	5	Acousti-Clad	JM-74-FT
40 to 44	Ace	Acoustical tile, semiconcealed. Test method: AMA-1-11.													Conwed Fissura						
	31	41	41	32	32	36	38	40	42	47	55	60	60	60	60	60	5/8		34	Tile and Panels	CR Form A-4
40 to 44	Vin Pla AMA	nyl ain A-l-	coate squar 11.	ed em re ed	iboss ige o	eda] rfi1	lumir re ra	um b ited	onde styl	d to es,	ат 2 х	iner 4 ft	al fi . Tes	lber st me	subs thod	trate. :	5/8		34	Conwed Metal Face Panels	CR 866R-977
40 to 44	Fin	re r	ated	Acou	sti	Clad	12 ×	: 12	inch	dia	gona	l pa	tterr	ì.			5/8	1.2	5	Acousti Clad	CR JM-75-FT
45	Rig rab	gid obet	tile ed ec	of b lges,	asic 12	mine x 12	eral inch	comp	osit st π	ion v etho	vith d: A	beve MA-l	led. -11.	kerf	ed a	nd				Cold Road Solitude	
	28	29	37	35	35	39	40	43	43	47	49	51	53	56	58	60	5/8	0.94	92	Tile Nondirectional	NGC 6138
45	De	Lta	patt€	ern m	iner	al co	ore t	ile													CR
	32	35	39	36	35	37	40	41	43	46	48	51	54	53	54	54	5/8	1.2	5	Acoustí Clad	JM-76-FT
45 to 49	Sta Tes	anda st m	rd ac ethod	cent i: A	sys MA-1	tem t -11.	ile,	squ	are	rabb	eted	acc	ent e	dge .	2 x	4 ft.	3/4		34	Rockface	CR 902-47

.

CATEGORY 15. CURTAINS

CATEGORY 15. CURTAINS

The acoustical properties of curtains are dependent upon the curtain material, surface texture, backing material and placement. All these factors produce variation in curtain acoustical performance. Curtains may contain a thick absorptive material for added absorption or simply be mass-loaded for barrier use only. Curtains may overlap and rely only on surface contact for scaling or may use mastic sealing agents. They may be hung as combined overlapping units or as a single acoustical curtain. Guide rails for variable placement are also used.

Organizations contributing data to this table are: 23, 40, 47, 58, 76, 82, 86, 104, 112, 116, and 119. Other related categories are panels, quilted materials, operable partitions, unit absorbers, and open plan systems.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing
- Lead Loaded: Lead was added to the fabric type material to increase its sound transmission loss.

											-			
			Absorptic	n Coeffi	cients									
NRC	2 Hz	2H (0 Hz	2H 00	2H 0(2H 00	ickness (in.)	nsity 5/f(²)	unting	npany	Product	Reference		
	12.	25(50(100	20(40(Th.	ЗĘ	Mou	Cor				
.20 (c)	20 Flexible curtain barrier 54 inch wide x 20 inch long (c) of acoustical polyurethane foam fused to high density polyvinyl. Data read from graph. 20 Eckoustic Noise CR 20 SES 72091 21 CR 22 A8 85 5/16 1.1 47 Barrier Type 250 SES 72091 22 CR 23 CR 24 CR 25 CR													
		. 05	.10	. 22	. 48	. 85	5/16	1.1		47	Barrier Type 250	SES 72091		
.20 (c)	20 Chemically treated fabric, pleat width 30 inch. May (c) be mounted over acoustical batts Pleated													
	. 03	.07	. 15	. 23	. 33	. 41	. 55	.11	2	119	Wall System	IATL		
.45 (c)	5 Flexible curtain barrier 54 ft wide x 20 ft long of acous-) tical polyurethane foam fused to high density polyvinyl. Data read from graph.													
		.10	. 28	. 50	. 85	. 95	9/16	1.1		47	Barrier Type 500	SES 72091		
. 45	High dens layers of	ity poly heavy o	vester fo duty viny	am sandwi 1. One vi	ched bet nyl laye	ween two r perfor	ated.							
	. 59	. 39	. 29	. 42	. 74	. 62	19/32	. 33		86	Soft-R Sound	RAL		
. 80	Sound abs	orbing o	draperies	, hung 2	inch fro	m wall.								
	. 11	. 48	1.04	. 90	. 89	. 97	1	. 15		112	Foam Curtain	RAL		

Table 15A. Absorption properties of curtain systems.

٠. ·

-0

	-						Tr	ansm	issi	on Le	oss,	dB										<u> </u>	
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	2H 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH (U07	5000 Hz	Thickness (in.)	Density (lb/ft ²)	Company	Product	Reference
12	C1e	ear, 8	ove 7	rlapp 7	ing 7	plast 7	ic : 8	trip 10	os, e 11	each 11	12 i 12	Inch 12	wide 13	13	13	13	14		1/8	1.23	86	Model DF-300 Pendador	RAL
15	Hig	gh-d	ensi	ty po	lyes	ter f	oam	sand	wich	ned b	etwe	en ta	v o 1a	ayer	s of	heav	y-dut	y					
		8	3	4	7	9	11	11	12	13	14	15	16	19	22	25	29		19/32	. 33	86	Soft~R Sound	RAL
19	Wov 8	ven 11	fibe: 8	rglas 6	s, c 12	oated 12	i bo 15	th si 15	des 16	viny 17	1 20	22	24	26	28	29	30	31	. 040	. 469	104	Style 23096	RAL TL-76-153
19	Wo 8	ven 9	fibe: 6	rglas 7	s, c 12	oated 11	i bo 14	ch si 15	des 16	viny 18	1 19	21	24	26	27	28	30	31	. 050	. 469	104	Style 23082	RAL TL 76-151
19.	Won 8	/e n 10	fiben 5	rglas 6	s, c 12	oated 11	l boi 15	h si 15	. des 16	viny 17	1 19	21	24	26	27	28	30	32	. 042	. 469	104	Style 23071	RAL TL 76-149
19	Sty ft	le len	#820! gth :	5 fib x 49	ergl inch	ass r	ein	force	d le	aded	vin 20	yl Ve	elcro	o jo: 26	ints	8, 1), or 32	12		1/2	23	Sound Coated Curtains and	CR 8205
		5			10			14			20			20			52			1/2	23	Liciosares	01 0209
19-25	Cou sty	isti /le -	-curi avai	tain lable	nois	e bar	rie	- 4 f	t wi	de 8	or	12 ft	lor	ng.	Tra	nspar	ent				58	Flexible Noise Barrier Curtains	CR
20	Lea	ided 9	viny 8	/1 10	12	12	14	15	17	19	20	22	24	26	27	28	30		.037	. 44	112	Sound Stopper lead vinyl curtain	RAL
20	SL	ser	ies a	acous	tica	l cur	tair	i, fi	berg	lass	rei	nford	ed π	nodii	Eied	lead	load	ed					
	VIN	9 9	94 11	icn w	1de 10			16			20			26			32		. 055	.48	40	dba bar-"FM"	CR SL 70
20	1/2	іь 11	ft ²	load	ed v: 12	inyl	with	1/2 15	inc	h fo	am 20			26			32		. 5	. 53	82	SSC-4	RAL
21	Cle	ar 12	viny	L	13			16			21			27			33		. 08	. 60	82	SSC - 5	RAL
21	Ext tra inc	rud ffi h w	ed, t c doo ide,	ough brs c temp	, cle ontro erat:	ear P ollin ure r	VC c g du ange	lesig 1st, 2 -40	ned nois OF t	to b e, t	e ve empe 0°F.	rtica	illy Ce, A	sus; nd i	ende fumes	d, u i, st	ed f	or 2					PAT
	13	15	15	16	17	18	18	19	17	17	18	22	27	24	25	28	29	30	. 25	1.4	76	Kelflex 303	TL 78-106
23	Wov 11	en : 14	fiber 12	glas 12	s, co 16	bated 16	bot 18	h si 19	des 20	viny 21	1 22	24	24	25	27	28	29	29	. 064	. 797	104	Style 23097	RAL TL 76-154
23	Wov 11	en : 13	fiber 12	rglas 11	s, co 16	bated 15	bot 18	h si 19	des 20	viny 21	1 23	25	28	29	30	32	33	36	. 066	. 781	104	Style 23072	RAL TL 76-150
23	Ext lap 120	rud pin oF	ed, t gsti	ough	, cle faci:	ear P litat	VC c ing	lesig 2 wa	ned y tr	to b affi	e ve c.	rtica Tempe	lly ratu	susp ire 1	ende ange	d in -40	over PF. t	-					D 4 T
	14	17	16	17	17	18	16	16	19	22	25	24	27	29	30	32	33	33	. 30	2.0	76	Kelflex 404	TL 78-107
24	Wov 11	ren : 13	fiber 11	glas 12	s, ca 16	bated 16	bot 19	h si 19	des 20	viny 22	1 24	26	28	30	31	33	35	37	.086	. 813	104	Style 23086	RAL TL 76-152
24	SL	ser	iesa 14 ir	icous	tica) ide	l cur	tair	, fi	berg	lass	rei	nford	ed π	nodii	fied	lead	load	ed					
		12			14			19			25			31			36		. 090	. 83	40	dba bar-"FM"	CR SL-120
25	Lea	ded 13	viny 14	-1 15	16	17	18	20	22	24	26	27	29	31	33	34	35		. 064	. 76	112	Lead vinyl curtain	RAL
25	Sty 12	le i ft i	8208 Lengt	fib ths x	erg14 49 1	ass r inch	einf wide	orce	d le	aded	vin 27	yl, \	/elcr	o ja 32	oints	8,	10, o 36	r		75	23	Sound Control Curtains and Enclosures	CB 8208

Table 15B. Barrier properties of curtain systems.

.

(

232

.

.

	Transmission Loss, dB												_	on.									
STC	Hz	Ηz	Hz	Hz	Hz	Hz	Hz	Ηz	ЯZ	Hz	zH (Hz I	ZH (zH 4	zH (CH C	zH (ZH (knes n.)	sity ft ^Z)	any	Product	Reference
	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	Thio (i	Den (1b/	Comp		
26	C16	ear	curta	ains																		Reinforced	
	14	13	13	14	19	18	20	21	25	26	27	28	30	33	34	36	37	39	.120	0.9	116	Hush-view	CT .
26	C1.	ear	curta	ains			·															Superclass	
	14	13	13	15	18	17	19	20	24	26	27	28	31	32	34	35	37	38	.120	0.9	116	Hush-view	CT
26	Sty	vle	#8210	0 fit	ergl	ass	reiní	orce	d le	aded	vin	yl-no	omina	al 1	1b/f	[t ² ,	Velcr	0				Sound Control	
	101	11	0, 1	10, 0	17	IU.	lengt	21	49	1000	27	e		34			40			1	23	Curtains and Enclosures	CR 8210
27	Sty	yle	#841(Juns	uppo	rted	víny	1 10	aded	wit	h hí	gh de	ensit	y no	nlea	d fi	ller					Courd Contract	
	Vel	lcro	joir	nts 8	3, 10	, or	12 f	t le	ngth	S X	49 i	nch v	vide	· 								Curtains and	
		15			19			21			28			33			37			1	23	Enclosures	CR 8410
27	SL vir	ser nyl	ies a 54 ir	acous nch w	tica vide	l cui	rtair	, fi	berg	lass	rei	nford	ed m	nodif	ied	lead	-load	led				11 -	
		17			17			23			27			33			39		.110	1.0	40	dba bar-"FM"	CR SL-144
27	Vir	nvl -	curta	ain J	. 15/	ft ²																	
		15			19			21			28			33			37		. 125	1.18	82	Soundscreen Curtains SSC-1	RAL
27	1 1	lb/f	t ² 16	adec	l vín	yl wi	ith l	inc	h fo	am												Soundscreen	
		15			16			19			25			31			36		1.0	1.18	82	Curtains SSC-2	RAL
27	1 1	16/f	t ² 10	adeo	l vin	y1 w3	íth 1	inc	h Te	dlar	cov	er fo	am										
		15			16			19			25			31			36		1.0	1.18	82	SSC-3	RAL
	Fle	exib	le cu ne fo	urtai	n ba	rrie	rs 54	inc	h wi	de x	20 Vipv	ft lo	ong c	of ac	oust	ical	poly	/-				Eckoustic Noise	
				Juni 1	15	20 1	.+6.1	20	209	pory	26	-		32			36		5.16 to 9.16	1.1	47	Barrier Type 250 & Type 500	CR SES72091

...

Table 15B. Barrier properties of curtain systems concluded.

CATEGORY 16. PANELS

Prefabricated sound barrier panels can be used in machinery enclosures, walls, facings, etc. They are usually composite products using sound barrier materials for facing and backing and a sound absorbent material in the core. The exposed surfaces of the panels are available in different colors, textures, and materials to suit the requirements of a specific application.

The organizations contributing data to this table are: 2, 4, 5, 7, 11, 12, 21, 40, 47, 49, 50, 52, 61, 70, 71, 77, 78, 82, 120, 125, 128, 131, and 142. Other related categories are walls, barrier materials, and enclosures.

GLOS SARY

Facing:	The outside surface of the specimen. In general the side facing the sound source										
Backing:	The other outside surface of the specimen. In general the side not facing the sound source										
Core:	The region between the facing and the backing										
Septum:	A layer that separates two surfaces										

		Absorption Coefficients											
NRC	Hz	чzн	Hz	zh	zh (C Hz	ckness (n.)	sity /ft ²)	nting	pany	Product	Reference	
	125	250	500	1001	200	400	Thic	Den (1b.	Moui	Сощ			
. 65	12 x 108 fiberglas	inch pass, foi	anels, l l faced	-1/2 inch insulation	of 1-1/2 , faced w	lb/ft ³ with					- <u>.</u> .		
	20 gauge .27	steel. .56	1.03	. 77	. 29	.18	1-1/2	1.5	7	125	Acousti-Panel	RAL A74-225	
. 75	Transpare with lin	ent acou	ustical petical	panels, 3/3	16 inch t	thick Uve	x						
	. 32	. 39	. 64	1.10	. 92	. 92	5	2.03		21	Clear & Quiet	RAL	
. 85	22 gauge steel bac Insulatin	perfora k. Coat	ted stee ed with bsorbing	el face, le Korfund V: z core.	ó gauge d Ibradamp	cold roll	ed						
	. 29	. 60	. 95	. 99	. 87	. 80	2			78	Korfund Noiseguard Panel	RAL	
.85	Two ply s mineral w perforate	teel, c ool acc d steel	outside : oustical	surface 16 filler, in	gauge, w nside sur	ith glas face 22	s or gauge						
	. 29	. 60	. 95	. 99	.87	. 80	2			78	Noiseguard Metal Panel	CR	
. 85	26 gauge fiberglas	exteric s insul	r panel. ation.	, 24 gauge	liner, l	-1/2 inc	h				RW9-36	PAT	
	. 63	. 94	. 96	. 78	. 65	. 62	10	3.88	4.	71	Acoustical Panel	A73-228	
. 90	22 gauge 4-1/2 lb/ tum, l6 g heights,	perfora ft ³ ins auge st	ted stee ulation eel back	el face, wi divided by c, 2 ft 4 i	re grid, 16 gaug nch wide	l mil P e steel s by vario	VC, sep- ous						
	. 33	. 69	. 99	1.05	. 90	. 76	4		4	61	Gyro-Kleen PGS Panel	RAL	
. 95	Layered o 22 gauge 4 lb/ft ³	uter fa perfora mineral	ce 8 gau ted galv wool.	ige galvani Vanized ste	zed stee el, fill	l, inner ed with	face						
	. 68	1.13	1.23	1.06	1.00	. 93	2	6.1	4	142	Sonoshield Std-216	RAL A73-121	
.95	22 gauge zinc-coat	zinc-co ed stee	ated per 1 back,	forated st fiberglass	eel face or mine	, lò gaug ral wool	ge core.				TEC Noise		
	. 15	.66	1.07	1.06	. 97	.86	2	6.5		47	Barrier Panels	CKA!.	
. 95	Modular metal acoustical panels, 16 gauge galvanized steel back, 22 gauge perforated galvanized steel face, insulating and absorbing material in core.												
	. 40	. 80	. 99	. 99	. 99	. 99	2			40	dba bar-"RE"	CR	
. 95	l6 gauge g galvanized	galvani: d steel	zed stee face, 4	l back, 22 lb/ft3 mi	gauge p neral wo	erforated ol core.	2			142	Sonoshield Std-216	RAL	
. 95	l6 gauge ga galvanized	alvaniz d steel	ed steel face, 4	back,3 ²² 1b/ft ^{mi}	gauge per neral woo	rforated ol core.	2			142	Sonoshield Std-416	RAL	
. 95	12 x 108 : inch of 1- with 1-1/2 fiberglass	inch 20 -1/2 1b. 2 inch p s insula	gauge s /ft ³ foi perforat ation of	teel panel l faced fi ed face pa l lb/ft ²	, contain berglass nel conta density.	ning l-l/ insulati aining	2 on,						
	. 49	. 88	1.12	1.07	. 96	. 93	3	3.7	7	125	Acousti-Panel	RAL A74-226	
. 95	L-21 acous	stical :	liner wi	th 1W21A e	xterior p	oanels.						RAL	
	. 58	. 90	1.11	1.01	. 83	. 64	3		4	71	L-21 Acousti-wall	A76-53	
. 95	L21 liner, insulation .44	. M7-35	exterio	r, 1-1/2 in	nch fiber 88	rglass 74	3-1/2		4	71	L21 Acoustical Liner with M7-35	RAL	
05	2 - 0	-		····			/-		7	/1	Paterior ranet	C0-C1A	
. 7)	core, 22 g	auge ba	ick.	22 gauge :	steel, fi	oo ergiass	4	5 22	,				
	. / 0	1.19	1.1/	1.02	. 90	.87	4	5.33	4	77	Noise Control Panel	RAL	
. 95	Standard p 22 gauge p diameter h framing 16 4 lb/fr3	anel, l erforat oles sp gauge.	6 gauge ed sheet aced 3/3 Acoust	zinc-coate t zinc-coat l6 inch sta tical fill	ed solid ed, 3/32 aggered o not less	sheet, inch center, than							
	.75	1.01	1.11	1.06	1.02	. 95	4	6	4	139	Vanec Acoustical Systems	RAL A73-74	

Table 16A. Absorption properties of panels.

•

			Absorptio	on Coeffi	ients	· · · · · · · ·		·····					
				N	N N		sss (~	8				
NRC	Hz	Hz	Hz	0 Hz	0 Hz	0 Hz	ckne in.)	sit, ft ²	ntir	pan)	Product	Reference	
	125	250	500	100	200	400	Thi (Der (1b	Mou	Com			
. 95	22 gauge fibergla Temperat	galvani ss or mi ure rang	zed stee neral woo e to 800	l face, le bl core, 2 °F.	6 gauge 10 x 4 f	back, t.					Noiseguard	CKAL	
	. 77	. 99	. 99	. 99	. 93	.77	4	7		78	Metal Panels	704-21	
. 95	22 gauge back, 4- and 42 in heights.	perfora 1/4 lb/f nch widt	ted stee t ³ minera hs with 1	l face, 16 al wool co 7, 8, 10 a	5 gauge ore. 18 and 12 f	steel , 30 t					Eckoustic	CR	
	. 71	1.14	1.16	1.06	1.04	1.13	4			47	Modular Panels	SES 77051	
. 95	20 gauge zinc-coa mineral v	zinc-co ted stee wool not	ated peri l back, c less tha	forated st core of fi an 4-1/4 1	ceel fac ibrous g lb/ft ³ .	e, 16 gaug lass or	ge -				Fakoustia Madular	CKAI	
	. 51	1.10	1.12	1.06	1.05	.93	4		• -	47	Panels Type HD	SES 69102	
. 95	22 gauge 4-1/2 lb 4 inch wi	perfora /ft ³ ins ide by v	ited steel ulation, arious he	l face, wi 16 gauge ights.	ire grid steel ba	, 1 mil PV ack, 2 ft	/с				Cure-Kloop		
	. 63	. 95	1.06	1.05	. 93	. 74	4		4	61	WPG Panel	RAL	
. 95	l6 gauge steel fac insulatio	cold ro ce, coat ng and a	lled stee ed with H bscrbing	el back, 2 Korfund Vi core.	22 gauge Ibradamp	perforate compound	ed.				Korfund		
	. 77	. 99	. 99	. 99	.93	. 77	4			78	Noiseguard Panel	RAL	
. 95	Industria 3/4 inch glass fil plastic forated Used on	al sandw subgirt per insu film. liner sh interior	ich wall, s, 1-1/2 lation wi 032 inch eet. Ten and exte	Bold Rit inch thic th 1 mil finish sh mperature erior wall	o II alum ck 1.65 thick for meet, 12 range 40 ls.	minum sidi lb density pam saran inch per- C° to 2009	ing, 7, °F.				Bold Rib II with Rib Liner Panel	RAL	
	. 51	1.04	1.12	. 96	. 82	. 64	4-1/8	1.3	4	7	(Curtain Wall)	A75-57	
. 95	Perforate glass, l- glass, 20	ed steel -1/2 inc) gauge	face, 4- h thick 1 steel bac	1/2 inch -1/2 1b/f ck, 1 x 9	thick 1 t foil- ft.	lb/ft ³ fi -faced fit	ber- ber-		_			RAL	
	. 78	1.11	1.12	1.14	1.06	1.05	6	4.1	/	125	Acousti-Panel	A74-227	
. 95	22 gauge 22 gauge 1.05	perfora steel b 1,20	ted steel ack, 2 x 1.16	face, fi 9 ft. 1.04	iberglas: 1.00	s core, 1.01	6	6.28	4	77	Ncise Control Panel	RAL A62-243	
. 95	L13 lines	r, M9-36	exterior	, 1-1/2 i	nch fibe	erglass					L13 Acoustical		
	insulatio .46	on. . 82	1.11	. 93	. 84	. 81		4.04	7	71	Liner with M9-36 Exterior Panel	RAL A77-176	
. 95	LZI linei insulatio	r, M9-36 on.	exterior	, 1-1/2 1	nch Iibe	erglass					L21 Acoustical Liner with M9-36	RAL	
	. 58	. 81	1.05	97	. 86	. 82			4	71	Exterior Panel	A76-233	
1.00	Acoustic filled w:	modular ith acou	panels, stical ma	sandwich terial.	type con	nstruction	۱,					CR	
	. 74	. 88	1.11	1.01	1.02	1.06	4			71	Type 22-HT-4	NCD-7559	
1.00 (c)	22 gauge eter hole fiberglas	galvani es on 3/ ss core,	zed perfo 16 inch c 2 x 9 ft	enters), Tested	e (3/32 3 lb der to ASTM	inch diam nsity 1 C423-601	ı-				Modular	RAL	
	. 79	1.19	1.17	1.02	. 90	. 89	4	5.33	4	4	Acoustical Panels	A62-242	
1.00 (c)	Minimum 2 16 gauge verminpro	20 gauge galvani: pof, inco	galvaniz zed steel ombustibl	ed, perfo face, no e-acousti	nhygroso cal-ther	teel facir copic, rmal core.	ig,			2	Sound		
	. 70	1.10	1.11	1.04	1.02	. 90	4	¢.0	•-	2	SUAKET PANEIS	· UK	
1.00 (c)	22 gauge diameter gauge gal	galvani: holes o vanized	zed, perf n 3/16 in steel ba	orated st ich stagge ick, insul	eel faci red cent ating-ab	ing (3/32 ters), 16 osorbing c	inch ore.						
	.76	. 99	. 99	. 99	. 99	. 99	4			40	dba bar-"RE"	CR	

Table 16A. Absorption properties of panels continued.

۰.

•

.

[able	16A.	Absorption	properties	of	panels	concluded.

			Absorptio	on Coeffi	cients										
NRC	25 Hz	50 Hz	00 Hz	2H 000	000 Hz	000 Hz	Thickness (in.)	Density (lb/ft ²)	lounting	Company	Product	Reference			
(c)	steel face, 18 gauge galvanized steel back, 16 gauge galvanized channel form, 16 gauge channel separators, bonded mineral wool core. Also available with inset window. .69 1.08 1.11 1.06 1.01 .98 4-1/4 6.1 50 Enelco Sound Metal CR 7014														
	. 69	1.08	1.11	1.06	1.01	. 98	4-1/4	6.1		50	Enelco Sound Metal	CR 7014			
1.00 (c)	22 gauge steel bac	Enelco Panel	RAL.												
	. 69	1.08	1.11	1.06	1.01	. 98	4-1/2	6.86	4	50	TP-4, TP-6, TP-7	A76-224			
1.00 (c)	22 gauge galvanized perforated steel facing (3/32 inch diameter holes on 3/16 inch staggered centers), 22 gauge galvanized steel back, 3 lb density fiberglass core, 2 x 9 ft. Tested to ASTM C423-60T.														
	1.05	1.20	1.16	1.04	1.00	1.01	6	6.28	4	4	Acoustical Panel	A62-243-60T			
1.00 (c)	Fabricated with facings and stiffeners of 22 gauge zinc-coated paintable steel. Facings are perforated with 3/32 inch holes on 5/32 inch staggered centers. with 2 inch thick fine fibered fibrous glass core, 30 inch widths and 4, 5, 6, 8 or 10 ft lengths. 22 98 155 126 126 126 108 109 100 100 100 100 100 100 100 100 100														
1.00 (c)	l6 gauge steel fac inch stag rial, 6 l	galvani ce, .093 gered c	zed steel inch diam enters, 4 protected	back, 2 beter hold inch th by 2 mi	2 gauge es, loca ick abso 1 polyet	galvanized ted on .15 rptive mat hylene.	d 56 te-				Mad Jan Darah				
	.94	. 96	. 98	1.01	1.02	1.07				82	and Enclosure	DS 4200			
	Noise con	trol for	r industr	ial equip	pment.					72	I C Panel				

Table 16B. Barrier properties of panels.

	_						T	ansn	nissi	on I	.oss,	dB											
STC	2H 00	25 Hz	60 Hz	- 2	50 Hz	15 Hz	00 Hz	00 Hz	30 Hz	00 Hz	000 Hz	250 Hz	600 Hz	2H 000	500 Hz	150 Hz	2H 000	000 Hz	hicknes: (in.))ensity lb/ftŽ)	ompany	Product	Referenc
					N N	<u>_</u>	4	<u>, v</u>	0	60	A			N	3	س	4	<u>~</u>	н				
9	cei	nter	ateo S. of a	lii	nch o	m fac f lig foil	ht d	ensi:	ty fi	iber	glass	s wei	ghin	g 0.	18 1	b/ft	and	a					
	9	5	3	1	5 4	4	5	4	7	7	9	10	10	12	13	14	16	17	1-3/8	. 52	12	Alpro	RAL TL73-19
10	Per 1/8	rfor B in	atec ch b	alu	uminu s on f	n fac 9/32	e ty inch	pe F stag	, foa ggere	am co ed co	enter enter	, al s.	uminu 1/8 :	um fo inch	pil pol	back. yuret	Perf hane	forat foam	ed				
	a 11 7	ית מחו 5	1 mL	011	5 5	1nch 5	th1 5	ск. 6	7	8	10	11	11	14	15	17	18	19	1/2	. 45	12	Alpro	RAL TL73-16
18	Peralu	for	ated um f	alu ace	uminum , per:	n fac forat	e, l ed w	/8 in ith 1	nch f 1/8 i	oam nch	cent hole	er, s on	lead 9/32	foil 2 inc	l ba ch s	ck, t tagg€	ype H	ente:	rs,				
	178	15 ind	2h t 12	hick 15	c pol: 5 15	yuret 15	hane 15	foar 14	n and 15	1 lea 16	ad fo 17	20 20	20	22	thi 21	ck. 22	24	25	33/64	1.41	12	Alpro	RAL TL73-18
22	Per fac	fora	ated 1/8	alu inct	uminur hole	n fac es on	e, f: 9/3	iberg 2 inc	glass ch st	cer agge	nter, ered	lea	d foi ers.	il ba 1 ir	ick, ich	type layer	F al of 1	uminu ight	um				
	der 13	nsity 15	7 fi 11	berg 14	31ass 4 15	and 15	1/64 16	inc) 17	n thi 20	.ck 1 22	23 23	foil 23	24	25	25	26	27	28	1-25/64	1.48	12	Alpro	RAL TL73-17
25	18	gaug 8	ge L	- 10 ;	20 g	gauge 15	1W2	1A; 1 20	L-1/2	ind 27	ch fi 27	berg	lass 28	insu 31	lat:	ion. 37	30	30	35	3 3	71	L-10 Steel Line with 1W21A	r RAL TI 72-122
74	T						• /		 /1				20				.,,			J. 4	/1	Aldwings Faller	16/2-122
20	foa 21	an spa ann. 22	Con 21	t co volu 19	nvolu utions) 16	15e0 55i 14	pane. nch 1 17	ts of thick 20	c 3/1 c ove 23	ral]	100 C 1. 31	.h1ck 34	Uve>	(W10	:n 1 35	1ncr 35	36	37	al 5	2 03	21	Clear & Ouiet	RAL TL76-163
27	2.	. , ,			. 10					,	,	54	, ,					,,	. '	2.05	21	cieal à Quier	12/0-105
.,	2 s bas 22	ie wi 23	12	foan 15	n wedg b 16	ges. 17	18 IS	21	27	31	35 at ac	37	38	38	40	44 44	ate 45	47	4.25		11	Alphasonic	CR 11771-I
31	Ind	lustr	ial	san	dwict	wal:	1 0.0	032 i	.nch	thic	:k Bo	ld Ri	ib I	alum	inur	n sid	ing;						
	3/4 thi 12 16	inc inch inch	th s foam so 12	ubgi sar lid 15	rts, an pl liner 20	1-1/: asti shee 25	2 ind c fil et. 27	ch th lm fa Temp 28	ick, icing erat 32	1.6 ; fi ure 34	5 lb nish rang 36	dens shee e -50	sity et of D° to 37	glas 0.0 200	s fi 32 i °F. 43	lber Inch 44	with thick 44	1 mil	4-1/8	2 1	7	Bold Rib I exterior with 12 inch Rib Liner	RAL T175-28
1	Ind										022		,].,				311		- 1/0		,	Direct.	10
	sub pla Tem	girt stic	fi fi	l-1/ lm f e ra	2 inc acing	h, 1 , fir 50° t	65 1 nish to 20	shee 00°F.	nsit t of	y gl 0.3	ass 2 an	fiber d 12	r, l inch	mil sol	thic id 1	k fo iner	am Sa shee	ran ts.	I			Curtain Wall Bold Rib II with 12 inch Rib Liner	RAL
	16	14	13	17	22	24	25	27	31	33	37	36	38	40	41	42	44	45	4-1/8	2.1	7		TL75-27
13	Gau 1/4 cea	ge m inc led fr 1	eta h t joi	l C- hick nts T	liner subg and l	, 12 irt. -1/2	inch Gau inch	wid Ige m thi	le wi metal .ck f	th s 12 iber	inch	ing i wide s con	inter e flu re.	lock ted Sing	ing char le ι	side mél mits	join with up t	t, con- o				C-Liner with	
	18	18	16	18	20	23	26	29	33	36	38	41	42	40	40	43	45	48	3-1/4	4.6	49	Channelwall VI Exterior	RAL TL72-66
14	20	gaug 18	e 1 19	iner 22	pane 22	ls wi 23	1th 1 27	1 8 ga 30	uge 34	exte 37	rior 38	38	39	41	44	47	51		3	5.27	71	L-21 Acoustiwall	RAL
\$4	Ind bac ste	ustr ked el s	ial by ept	san 1-1/ um w	dwich 2 on ith 1	wall cente /2 x	l. 12 er fi l in	l inc berg	h pe lass 8 ga	rfor wit uge	ated h fo subg	rib am sa irts.	pane aran Te	l fa faci mper	cing ng. atur	; and 20 re ra	line gauge nge -	r 50°				Type II Acousti	_
	to 17	200° 15	F. 15	20	25	28	29	31	34	36	40	43	46	48	50	52	53	54	3	3.45	7	cal Draft Curtain Panel	RAL TL74-244
5	2 x rea	4 f r su	t p rfa	anel ce s	, slo ealed	tted with	1.5 10.4	inch 6 1b	on /ft ²	cent dam	er, ping	1.5 i comp	inch Dound	deep L	anc ow c	i .25 lensi	inch ty	wide	÷,				
	cei	24	rg 18	22	25	27	29	33	33	38	37	40	42	44	46	49	50		3.5	2.76	98	Geocoustics Panel	CR
5	Ind thi 18	ustr ck f 16	ial ibe: 17	san rgla 22	dwich ss wi 27	wall th fo 29	, .0 am s 30	32 i aran 32	nch fac 34	perf ing. 36	orac Te 39	ed fa mpera 41	ace a ature 44	nd l ran 47	iner ge - 48	1- 50° 49	1/2 i to 20 51	nch 0°F. 51	3	3.45	7	Type I Acous- tical Draft Curtain Panel	RAL TL74~245
15	Gau 1/4	ge m inc	etai h_ti	l C- hick	liner subg	12 i irt.	nch Gau	wide ige m	, wi etal	th s 12	tand inch	ing i flut	inter ted p	lock rofi	ing le v	side vith	join stand	t. ing					
	int up 19	erlo to 3 17	cki 0 f 17	ng s 10 20	idej ng 24	oints Tempe 27	ratu 30	n 1- ire r 33	1/2 ange 36	inch -30 39	thi to 42	ck fi 200° 44	iberg PF. 45	1ass 45	co1 45	е. 43	Singl 45	e uni 48	lts 3-1/4	4.9	49	C-Liner with Shadewall Exterior	RAL TL75-5

with

							Tr	ansm	issic	on L	oss,	dB							8	_			
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH 0007	5000 Hz	Thicknes (in.)	Density (1b/ft ²)	Company	Product	Reference
36	18 17	gau 19	ge 2 19	L41, 20	20 g 22	auge 27	M9-1 31	36, 3 33	1-1/2 35	inc 38	h fi 42	berg 44	lass 47	insu 49	lat: 47	ion. 51	54	55	4.1	5.5	71	2L41 Acoustical Liner with M9-36 Exterior Panel	RAL TL76-148
37	22 573 or 19	gau; 32 in min 17	ge z nch eral 24	inc- stag woo 23	coate gered l cor 23	d st cen e. 27	eel f ters: 30	ace 16 34	perf gaug 38	orat e zi 42	ed w nc-c 47	ith oate 48	3/32 d ste 51	inch el t 55	dia ack; 56	amete ; fib 55	r hol ergla 57	es on iss 58	2	6.5	47	TEC Noise Barríer Panel	CKAL 7604.26
37 .	Dot 4 j 15	uble inch 16	wal fib 17	l she ergla 21	eet m ass c 25	etal ore. 29	pane 33	21, p 35	oerfo 39	rate 42	d me 47	tal : 49	facir 51	ng, 2 54	0 ga 55	auge 57	backi 58	.ng, 59	4	5.1	131	Uni-Housing	RAL TL71-39
37	0.0 3/4 wit 12 21	032 : in: in: 19	inch ch s mil n pe 17	Bold ubgin thic rfor 22	d Rib rts, ck fo. ated 26	II 1-1/ am s line 30	alumi 2 ind aran r. Te 34	inum ch th plas mper 35	sidin nick, stic aturn 37	ng, 1.6 faci e ra 40	5/8 5 1b ng, nge 42	inch den: fini: -50° 45	thic sity sh sh to 2 48	k gy glas eet 200°F 48	psum s fi of (46	n boa lber).032 49	rd, insul inch 53	ation thick 54	č-5/8	4.5	7	Bold Rib II	RAL TL75~29
38	Lay fac 18	verecting 16	i ba 4 18	ck 8 1b/ft 24	gaug 3 min 27	e ga nera 31	lvani l woo 33	zed bl cc 36	stee re. 40	1, 2 43	2 gan 45	uge p 48	perfo 50	52	dga 53	ilvan 53	ized 54	steel 54	2	6.1	142	Sonoshield	RAL TL73-127
39 (c)	Alu alu 24	minu minu 23	um 0 um r 19	r ste efled 21	el e tor 23	xter laye: 23	ior, r, 3 27	lead x 3 31	l trea inch 37	atme dia 41	nt co mond 42	ore, wasi 43	wire ners. 44	mes 46	h re 48	tain 49	er, 50	52	2	3.1	128	Noisecon-12 Panel	RAL TL72-74
40	Lay 4 1	vered .b/ft 24	iba 3 m	ck lé inera	b gau; al woo 30	ge g. ol ci	alvar ore.	izeć 37	l stee	el,	22 ga 46	auge	perf	orat 54	ed s	teel	faci 56	ng.	2		142	Sonoshield Std-216	RAL
40	20 ste 21	gaug el t 18	je p Jack 19	erfor 24	ated 29	stee 33	el fa 37	се, 42	4 ind 46	ch f 50	iberg 54	glass 56	s cor 57	e, 1 59	8 ga 60	iuge 62	sheet 64	65	4	5.6	131	Uni-Housing	RAL TL71-327
40 (c)	Sta she	ndar et s 22	d 4 tee 25	inch I fac 28	thic c. ir 30	ck pa norga 33	mel, inic 38	16 fill 40	gauge er (f	e sh b lb ⊸8	eet38 /ft3) 52	steel cor 53	l bac re	k, 2 Vary 54	2 ga ing 56	uge size 5	perfo s ava ob	rated ilathc	-		ö.	Soundscreen Modular Panels	CR
40 to 44	22 3/1 fib	gaug 6 ir ergl 23	e g ch ass	alvar stagg core	ized ered 32	peri cent	orat ers)	eds , 22 40	teel gaug	fac ge g	e (37 alvar 50	/32 i nized	inch 1 ste	diam el b 57	eter ack,	hol 3 1	es on h den 63	sity	4	5.33	5	Modular Acoustical Panel	CR
41	Lay fac	ered ing, 23	ba 4	ck 16 lb/ft	3 gaug 3 mir 32	ge ga neral	lvan woo	ized 1 co 40	stee re.	el, :	22 ga 50	uge	perf	orat 57	ed g	alva	nized 63	steel	2	••	142	Sonoshield Std-416	RAL
41	.22 sta and	gaug gger abs 24	e pe ed orb:	erfor cente ing m	ated rs), ateri 31	stee 16 g al c	l fa auge ore.	cing col Te 40	(3/3 d-rol mpera	32 in led itur	nch d stee e ran 49	liame l fa ige t	ter icing to 80	hole . Ví O°F. 53	s on brad	3/1 атр	6 inc compo 58	h und	2	•-	78	Korfund Noiseguard Panel	CR K16G
41	Lay fac 1/2 21	ered ing, inc 26	fa 4 h w 23	ce 16 lb/ft ire m 25	3gaug mir esh a 30	e ga ieral ind l 33	lvan woo /4 i 37	ized l co nch 39	stee re wi sound 39	1, 1 th d bo 41	22 ga optic ard. 43	uge mal 46	perf 4 mi 49	orat 1 pl 52	ed g asti 55	alva c sh	nized eet, 57	steel 58	2	6.2	142	Sonoshield	RAL TL77-47
41	Sta zin fra 23	ndar c-co ming 22	d pa ateo 16 21	anel, 3/3 gaug 25	16 g 2 inc e, ac 29	auge h di oust 34	zin amet ical 37	c-co er h fil 40	ated oles 1 not 44	sol spac le: 47	id sh ced 3 ss th 50	neet, 3/16 Nam 4 52	22 inch 1b/ 54	gaug sta ft ³ . 55	e pe gger 58	rfor ed c 59	ated enter 57	sheer s, 58	4	6	139	Vanec Acoustical Systems	RAL TL73-81
41	22 min	gaug eral 24	e pe woo	erfor ol co	ated re. 31	stee 10 x	1 fa 4 f	cing t. 42	, 16	gau	ge st 52	eel	back	ing, 59	fib	ergl	ass o [.] 62	r	4	7	78	Noiseguard Metal Panels	CKAL 704-21
41	22 tio	gaug n, 1 20	e pe 6 ga	erfor auge	ated steel 30	stee bac	1 fa k, 2	cing ft 37	, wir 4 inc	e gi h wi	rid, ide b 49	l mi y va	l PV riou	C, 4 s he: 55	-1/2 ight	1b/. s.	ft ³ in 60	nsula-	4		61	Gvro-Kleen WPG Panel	RAI.

Table 16B. Barrier properties of panels continued.

240

•. •
								Tr	ansm	issi	on L	0 <u>s</u> s	dB							-	øņ				
STC	100 Hz	125 H 2		ZU 001	200 Hz	250 Hz	315 Hz	ZH 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 H-	211 CO 112		4000 HZ	5000 Hz	Thicknes (in.)	Density (lb/ft ²)	Company	Product	Reference
41	22	ga	uge	pe	rfor	ated	ste	el f	ace	(1/1	6 in	chet	oles	on 3	3/16	inc	h st		Ter	1					
	ce an	nte d 4	rs) 2 it	'l hch	6 ga wid	uge ths	stee by 7	1 ba . 8,	ck, 19	4.25 and	1b/ 12 f	ft t he	mine	ral w s.	001	cor	e.	18,	30	•				Eckoustic	
		1	9			30			39			50)		5	8			60		4	•	47	Modular Panels Series C	CR SES 77051
42	Pat	nel	18	e a	1186	valv	anize	e he	teel	hac	k n	orfo	rate	4 22	a 211		teel	fac	0						
	3.	5 1	b/ft	37	mine	ral	wool	cor	e.	buc.	., р				gau.	ge 5		+ ac	с.					Enelco	RAL
	21	2	5 2	2	24	29	34	38	41	45	48	52	54	+ 56	5	86	1 6	4	66	67	4	6.3	50	TP-3 Panel	TL77-21
42	22 16	ga ga	uge uge	ga ga	lvan lvan	ized ized	peri	Eora	ted hann	steel el fa	l fa	cing	, 18 Paus	gaug	e g	alva	nize	d st	eel	back					
	min	nēr 2	alw 2	юõ	1 co	re. 27			61				0(Sep		cors.				Enelco	
		2	-			61			41			1			2	6			00		4-1/4	b.1	50	Soundmetal	CR 7014
42	Mir gal	im Iva	um 2 níze	0 d	gaug stee	ega 1 ba	lvani ck. n	zed	per	forat	ed	stee verm	l fac	ing,	min	nimu ombu	n 16 stib	gau	ge						
	abs	sor 2	bing 2	c	ore.	32			4.0		,	50		,							,			Sound Soaker	
		1	~			2			40			30			01	U			62		4	¢.⊃	ź	Panels	CR
42	16 (.(ga)93	uge ínc	ga h	lvan diam	ized eter	stee hole	l b. s or	ack,	22 g 56 in	aug	e ga stag	lvani gerec	lzed l cen	per: ter:	fora	ted s 4 inc	stee sh ti	l f	ace k					
	abs	01 2	ptiv 2	e t	mate	rial 30	. 6 1	b/fi	t ³ pi	otec	ted	by	2 mil	. pol	yet	hýle:	ne in	1 00	re.					Modular Panel	CR
		-	2			50			40			52			.ر	-			20				82	and Enclosure	DS 4200
43	Aco mat	ous er	tic ial.	moo	dula	r par	nels,	sat	ndwid	ch ty	pe (cons	truct	ion,	fil	lled	with	ace	ous	tical					
		2	6			32			38			47			49	9		!	57		4		70	Type 22-HT-4	CR NCD 7559
44	16	gai	lge	ste	eel :	back	. 22	gau	ze De	erfor	ate	d st	eel f	ace	4 3	25 11		mi	1er	a]					
	woo	، آر ع	core	. 1	Avai	lable	e wit	h 3-	-5/8	inch	dou	uble	glaz	e wi	ndov	vs.	5/10	,		a 1				Eckoustic Modular Panels	CR
		2.	0						73			40			57	,		,	51				4/	Series CD	SES 77051
44	Gau thi	ige .ck	met sub	al gin	C-1	iner Timv	l2 i √all	nch 12 i	wide inch	e wit wide	h si wit	tand th f	ing i lush	nter surf	lock ace	cing and	joir	nt, 4	4 i ki	nch					
	joi and	nt: l uj	s. D to	Gau 30	ige i) ft	netal long	l wit 2 as	h gl sing	lass (le]	fibe	r in hs a	nsul any	ation	l f t wi	t wi th l	de t	o ar Ten	iy wi Ibera	ldt	h re					
	ran 22	ige 2	-30 2 2	°t 3	:o 20 28	00°F. 35	37	39	41	45	4.0	ڊ م د م	5.5	5.5	5						· ·			C-Liner Trimwall	RAL
					20		J.	5,	-1	•)	4,	1.	54	J.4		،ر.				2	3 4	4.9	49	Exterior	1L/3-8
+4	Gau 1/4	ge ir	meta	al thi	C-li ck s	.ner ubgi	12 i rt.	nch gaug	wide e me	, wi tal	th s 12 i	tand nch	ding wide	inte: flut	rloc ted	king prof	sid ile	e jo with	int st	t, tand-					
	ing 1 f	ir tu	nter vide	loc by	king 30	ft 1	le jo .ong	ints to a	wit ny h	h mi eigh	nera t wi	l fi th I	iber Lap	insu) Temp	lati bera	on. ture	Sin -30	gle to	un: 20	its DO°F.				C-Liner	D.1.
	21	20) 2.	3	30	35	39	44	48	50	53	54	55	54	52	51	51	5	3	55	3-1/4	6.1	4 Ç	Exterior	TL70-231
•4	Gau	ge	meta	al	C-1i	ner	12 i	nch	wide	wit	h st	andi	ng i	nterl	lock	ine	side	iei	nt.						
	1/4 con	in cea	ich i led	:hi jo	ck s ints	ubgi and	rt, min	gaug eral	e me fib	tal er c	12 i ore.	nch Si	wide ingle	flut unit	ted ts u	chan p to	nel 30	wall ft l	w: ong	ith 2.				C. Lines	
	Tem 22	per 20	atu:	ce 5	rang 31	;e -3 36	0° to 39	o 20 42	0°F. 45	49	51	52	54	56	57	59	59	6	0	61	3-174		45	C-Liner Channelwall VI Exterior	RAL
																				•••				DALETTOT	12/1 05
* ~ *	coa	ted	ste	e l	bac	± 20 k, 4	. 25	ge z lb/f	t m	iner	ed p al w	ool	core	d ste	el	face	. 16	gau	ğе	zinc-				Eckoustic Modular Panels	CKAL
		25				32			38			49			56			6	2		4	•	47	Type HD	SES 69102
4	20	gau	ge I	.21	, 1-	1/2	inch	fib	ergl	ass	core	, fi	rewa	ll ra	ated									L21 Acoustical	RAI.
	19	22	23	•	27	32	37	43	48	54	57	60	61	60	60	63	66	6	8	70	5-1/8	9.2	71	Exterior Panel	TL77-19
5 to	22	gau	geje	al	vani	zed	stee	l fa	ce (3/32	inc	h di	amet	er ho	les	ona	3.116	inc	h					Modular	
.9	sta	gge 28	red	¢e	nter	s), 47	22 ga	auge	gal 55	vani	zed	stee 58	l ba	ck, 3	3 15 59	/ft ⁻	fib	ergl 6	as: 6	s core	. £	6 28	5	Acoustical Panel	G&H
																							2		oun
6	Gauş 1/4	ge iŋ	meta ch_t	l hi	C-li ck s	ner ubgi	12 in rt. (ich Saug	wide e me	, wi tal	th s 12 i	tand nch	ing flut	inter ≘d pr	loc ofi	king le w	joi ith	nt. stan	cir	ıg				Calipor	
	inte laye	eri	ocki	ng 5/	sid 8 in	e jo ch g	ints ypsur	wit n bo	n 1- ard.	Ter	mper	thi atut	ck f e ra	iberg nge -	;1as -30°	s co to	re a 200°	nd t F.	wo					Shadowall Exterior	RAL
	22	24	25	ŀ	31	36	39	44	49	53	54	55	55	56	57	57	57	5	8	58	4-3/4	11	49	l hr Firewall	TL70-230
7	22 div	gau ide	ge p d by	er 1	fora 6 ga	ted uge	steel steel	l fa l se	ce, ptum	wire , 16	gri gau	d, 1 ge s	mil teel	PVC, back	4- ; 2	1/2 ft	lb/f 4 in	t ³ i ch w	nsu ide	ulation 2 by	n				
	var	23	s ne	чg	1165.	41			49			56			60			5	0		4		61	Gyro-Kleen PGS Papel	RAI

Table 16B. Barrier properties of panels continued.

241

						Tr	ansmi	ssio	n Lo	ss,	dB							ø				
2H 00	25 Hz	50 Hz	00 Hz	50 Hz	L5 Hz	2H 00	2H 0(30 Hz	2H 00	2H 000	250 Hz	500 Hz	2H 000	500 Hz	150 Hz	2H 000	2H 000	licknes (in.)	ensity lb/ft ⁷)	mpany	Product	Referenc
 <u> </u>	7	-F	50	5		¥	2	تة 	80	<u> </u>	-11	Ĕ	3	5		4	2	7	PC	<u> </u>		
Pane 42 i wire plat	elin inch e me :e.	sh r	plie ters etai	d to . Pa ner,	3/16 ineli alum	inci ng: a inum	n ste alumi refl	el p num ecto	late or s r la	, 2 teel yer.	x 6 exte Weig	inch erior ght g	cha , l ive	nnel ead t n inc	stif reat lude	fene ment s ba	ss on core, cking				Noisecon-12	Ral
40	42	44	46	51	53	54	56	58	61	64	68	69	68	68	68	70	72		15.6	128	on duct	TL72+205
in p 22 0	10	e, c	over	ing <u>1</u> 14	perf	f mac	hine 15 d st	. Da	ta c	ited 17 (3/	are	nois	ie ro 18	educt	ion.	19 5.00	3/16			11	Alphasonic	CR
inch	yaug N st	e ga agge:	red -	cente	ers),	l6 g	auge	gal	vani	zed	stee	l bac	irann ck, a	absoi	bing	cor	e.					
	13			23			32			44			52			53		2		40	dba bar-"RE"	CR
22 g inch	gaug 1 st	e ga agge	lvan red	ized cente	perf ers),	orate 16 g	ed st gauge	eel gal	face vani	(3/ zed	32 in stee	nch d 1 bac	liame :k, ;	eter absor	hole bing	s on cor	3/16 e.					
	25			30			41			51			58			61		4		40	dba bar~"RE"	CR
Stee verm	el b nin,	ack, and	per fir	forat eproc	ed g of, c	alvar hemia	nized Cally	fac	e, s rt.	ound	abso	orbin	ug co	ore i	s mo	istu	re,			70		CR NCD 7554
Galv	vani	zed	stee 4 lb	1, p1 /fr ²	imed	or f	inis	h-pa	inte ound	d. 4 bar	to i rier	30 ft for	ler wal	ngths 1 cor	. De stru	nsit ctio	y n.			71	L21 Acoustiwall	CR

Table 16B. Barrier properties of panels concluded.

. .

CATEGORY 17. ROOF DECKS

Perforated Facing and Fiberglass Core

Roof Deck and Concrete

CATEGORY 17. ROOF DECKS

A roof deck is structurally designed to support dynamic loads and to provide the base for a roof system. Acoustically, roof decks act as a sound barrier or as an absorptive barrier system. Roof decks are usually arranged in an interlocking sandwich array consisting of prefinished, prefabricated, modular type panels. Basically, these panels include a backing layer (solid), a facing material (perforated metal) and a core area. The core area incorporates an integral channeling network which enhances overall structural rigidity, and eliminates self-excitation (vibrating panel). The geometry permits addition of an absorptive insulation material (fillers, batts, etc) for improved sound absorption.

Thickness may vary but usually range from 1 to 10 inches. Large offices, schools, churches, factories, etc, typically use a primary roof deck system. Modified roof decking can also be used in existing areas where improved thermal and acoustical properties are needed. Organizations contributing data to this table are: 45, 51, 71, 84, 87, 108, 113, 134, and 138.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 53.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing
- Roof Deck: A platform or a surface covering the structural framework to form a roof
- Reverberation Time: Defined as the time required for the sound pressure level of a room to decay 60 decibels, this quantity is an indirect measure of the total sound absorption provided by the room.

		· · · · · · · · · · · · · · · · · · ·		174.	, AUS							
			Absorpti	on Coeffi	cients		ŝ	~	60			
NRC	μz	Hz	Чz	Ηz	ZH	ZH	kne: n.)	ft)	ting	any	Product	Reference
	125	250	500	1000	2000	4000	Thic (i	Dens (1b/	Moun	Comp		
. 55	8 inch s	ection,	4 feet w	ide, pres	tressed fit. and	concrete zonolite						
	core fil	1 / 8	51	55	61	77	8	47	4	113	Concrete Plank	RAL A 62-188
		.40			. 01	, ,	9			,		
. 65	24 inch w deep rib: wide fib with 1-7.	vide per s 6 inch erglass, (8 inch	forated les o.c., bagged fibergla	steel dec filled w in 1/2 mi ss insula	k with 1 vith 2-1/ 1 PVC. tion	1-1/2 inch 72 inch Tested	I					RAL
	. 55	. 81	. 80	. 59	. 31	. 20	1-1/2	1.74	4	51	B30 Acoustic Deck	A 77-71
. 65	Structur: urethane	al cemen facing	it-wood f	iber. Al	so avail	able with.						RAL
	.18	. 30	.67	1.00	. 66	. 82	2	6.92	4	84	Fibroplank	A 75-208
. 70	16-16 to 1-1/2 ind wide, th:	20-20 g ch deep ickness	a perfor cells fi shown is	ated stee berglass of glass	l deck; filled, fiber f	four 24 inches iller		3.7			Turne BEC1 1/2	CR
	. 14	. 35	. 77	. 99	. 75	. 47	1	6.1	4	108	Acoustical Deck	5.5/ROL
. 70	Perforate	ed steel on, 6 to	. 6 inch 30 foot	es o.c., span	ribs fil	led with						
	.19	.76	1.02	. 73	. 37	. 21	1-1/2	2.5	-	71	B Acoustideck	RAL
. 70	Perforate	ed steel	, 6 inch	es o.c.,	ribs fil	led with		5				
	insulatio .37	on, 6 to .49	45 foot .68	span .98	. 58	. 39	1-5/8	to 9	-	71	NF Acoustideck	CR 24 : 120M
						••••						
. / 5	insulatio	ed steel on, 6 to	45 foot	nes o.c., span	ribs fi	lied with						6 13
	. 60	.90	. 95	. 78	. 34	. 22	3	6.33	-	71	H Acoustideck	RAL
. 75	Acoustica lb/ft ³	al roof	slab sys	teus. We	ight sho	wn is						
	. 21	. 43	. 97	. 82	.83	. 80		40	4	44	DuLite	RAL
. 80	18 to 22 6 inches Tested wi backing,	ga perf o.c. fi ith l in thickne	orated s berglass ch rigid ss shown	teel; l-l filled, fibergla is thick	/2 inch 30 inche ss roof ness of	deep ribs s wide. insulatio glass fib	n er	1.7				
	. 25	59	1.07	. 91	. 56	. 20	1	to 2.7	4	105	Type B Acoustical Deck	CR 5.5/ROL
. 80	l6 to 22 8 inches Tested wi	ga perf o.c. fi th l in	orated s berglass ch thick	teel deck filled, fibergla	3 inch 24 inche ss roof	deep rib s wide. insulatio	s n	2.2				
	. 31	. 75	1.01	.92	. 55	. 33	1	to 4.3	4	108	BP3 Acoustical Deck	CR 5.5/ROL
.80	16-16 to	20-20 =	a perfor	ated stee	l deck	three 3-i	nch					
	deep cell ness show	ls, fibe m is of	rglass f fibergl	illed. 24 ass fille	inches r	wide. thi	ck-	4.1			Type RFC3	CR
	.19	.47	. 96	. 92	. 75	. 53	1	6.8	4	108	Acoustical Deck	5.5/ROL
. 80	24 inch w deep ribs fiberglas	vide per 6 inch 5 insul	forated es o.c. ation.	steel dec filled wi Tested wi	k with 1 th 1-1/2 th 1-7/8	-1/2 inch inch wid inch fib	e er-					
	.44	. 99	1.00	. 84	. 43	. 21	1-1/2	1.74	4	51	B30 Acoustic Deck	RAL A 77-72
. 80	24 inch w deep ribs	ide per 6 inch	forated es o.c.	steel dec filled wi	k with l th fiber	-1/2 inch glass in-						
	sulation. .51	Teste .90	d with l .93	-7/8 inch .81	fibergl .52	ass backi .28	ng 1-1/2	1.9	4	51	IB Acoustic Deck	RAL A 75-45
.80	Perforate insulatio	d steel n, l in	, 6 inch ch rigid	o.c. rib insulati	s filled on 6 to	l with 30 foot						
	. 19	. 69	1.12	. 88	. 52	. 27	1-1/2	2.5	-	71	S Acoustideck	24:120M
. 80	2 inch wi block mat	de flut face,	es fille flutes p	d with fi erforated	berglass with si	with x holes						
	,61	1.02	. 91	. 78	. 42	. 23	1-1/2	4.36	-	138	Type B Metal Deck 1.5 pcf Batts	RAL A 77-162

Table 17A. Absorption properties of roof deck

245

		IaD.		. ADS	orpri	Lon pr	opert	TES OF	1001	aeck		
			Absorptio	on Coeffic	ients							
NRC	H2 H2	Нz	Rz	Чz	ZH	Чz	.)	ity t ²)	ing	Уп	Product	Reference
	~ ~	0	-	00	00	00	ícki (in	nsi b/fi	En C	npaı		
	12	25(501	10	20(40	Th	(11 De	MON	Cor		
. 80	2 inch w	ide flu	tes fille	d with fil	erglass,	flutes						
	perforat	ed with	six holes	per squa	reinch	• •				1 2 0	Type B Metal Deck	RAL
	. 66	. 99	. 92	. 79	.43	. 23	1-1/2	4.36	-	130	0.75 pcf Fiberglass	A //-163
. 80	Structura	al ceme	nt-wood f:	iber. Als	so availa	ble with						
	urethane	facing				<u>.</u>	2	0.05	,	87	P/1	RAL
	. 29	. 48	1.01	. 92	. 88	. 91	3	9.25	4	04	ribropiank	A /5-206
. 80	Perforate	ed stee	1, 12 incl	h o.c. rit	s filled	with						
	Owens-Con	rning f	, backed v iberglass	, 6 to 45	foot spa	in in						CR
	. 69	. 97	1.00	. 73	. 40	. 32	4-1/2	5.9	4	71	4-1/2 inch H Panel	24:120M
••												
.80	insulatio	ed stee on, 6 t	0 45 foot	span	s filled	WICh						
	79	1.02	.82	. 66	.61	.61	7-1/2	6.33	4	71	H Acoustideck	RAL
	16 50 22		E		1 1 / 2 -							
. 00	6 inches	ga per o.c. f	iberglass	filled, 2	1-1/2 i 4 inches	ncn ribs wide						
	Tested wi backing,	thickn	nch rigid ess shown	tiberglas is of gla	ss roof i ass fiber	nsulation filler	1	1.8 to			Type BP1-1/2	CR
	. 19	. 58	1.14	1.00	. 59	. 25	1	3.6	4	138	Acoustical Deck	5.5/ROL
.85	deep ribs	wide pe s 6 inc	rforated s hes o.c.	steel decH filled wi	th 2-1/2	inch						
	wide fib inch fib	erglass erglass	; insulati ; backing	on. Test	ed with	1-7/8						PAT
	. 50	1.01	1.00	. 84	. 46	. 26	1-1/2	1.74	4	51	B30 Acoustic Deck	A 77-70
					•							
. 85	Perforate	ed stee on, 1-7	l, 6 inch /8 inch r:	o.c. rib Lgid insul	s filled ation, 6	with to 30						
	foot spar	n 1 01	1 01	90	5.2	24	1-1/2	2 5		71	S Acoustideck	CR 24 - 12011
	. 47	1.01	1.01	. 90		. 24	1 1/2	2.5		71		-
. 85	16 to 22	ga per	forated si	eel deck	3 inch	deep ribs	:					
	8 inches Tested wi	o.c. f ith 2 i	iberglass nch thick	filled; 2 fiberglas	4 inches s roof i	wide. .nsulatior	1					
	backing,	thickn	ess shown	is of gla	iss fiber		2	to		100	BP3 Acoustical Deck	CR 5 5/ROI
	.54	.9/	1.04	.91	. 55	. 31	2	4.3	4	108	DIS ACOUSCICAT DECK	5.57 KOL
. 85	2-1/2 inc	ch wide	flutes f:	illed with	fibergl	ass with						
	block mat per squa	re inch	g, perfora	ated flute	es eight	holes						DAT
	. 69	1.01	1.02	. 86	. 56	. 32	3	4.31	-	138	Type N Metal Deck	A 77-161
. 85	Perforate insulatio	ed stee on batt	 12 incl 2 inches 	nes o.c. r thick	ibs fill	ed with						PAT
	. 83	1.16	1.06	. 68	. 49	. 46	8	6.17	4	71	H Acoustideck	A 70-22
. 9 0	2-ply 20 o.c., rit	ga ste os 2 in	el, perfo: ches wide	ated ribs, fibergla	s spaced	6 inches in rib						
	channels	•••						2.07	,		Type B Acoustical	RAL
	. 47	.93	1.06	. 96	. 56	. 23	1-1/2	2.05	4	134	Deck	A /0-125
. 90	Steel roo	of deck	with peri	forated ri	.bs and i	nsula-						
	tions bat	ts whi	ch are pla	aced from	the top	side	1 1 / 0	2.6		07	Type Bl Acoustical	RAL
	. 53	1.01	1.06	. 94	. 58	. 30	1-1/2	3.5	-	ð/	KOOI DECK	A /0-)/
.90	.18 to 22	ga per	forated si	teel deck;	1-1/2 i	nch ribs						
	6 inches Tested wi	o.c. f ith 2 i	iberglass nch rigid	filled, a fiberglas	0 inches s roof i	wide. nsulation	L					
	backing, fiber	thickn	ess shown	is thickr	ness of g	lass		1.7			Des Die 1	C D
	. 52	.96	1.05	. 91	.61	. 30	2	to 2.7	4	100	Type B Acoustical Deck	CR 5.5/ROL
	-		-									
.90	24 inch w	vide pe	rforated s	steel deck	with 3	inch						
	insulatio	on. Te	sted with	1-7/8 inc	h fiberg	lass						_
	.58	1.00	1.05	.93	.57	. 33	3	2.2	4	51	E300 Acoustic Deck	RAL A 75-44
							-	. –		-		
.90	2-ply 20	gaste	el, perfor	rated ribs	space 8	inches						
	o.c., rit insulatio	on laid	in channe	el, 8 x 9	foot	Jergrass					Type N Acoustical	RAL
	. 59	1.00	1.05	. 95	. 60	. 34	3.	2.65	4	134	Deck	A 76-124

Tob10 174 ۸ L tion

246

•

			Absorpti	on Coeffi	aionta						- · · · ·	
			AUSOIPLI	on coerri	creates		s					
NRC	2H	Hz	Hz	Hz	Hz	Hz	knes n.)	sity ft2)	ting	any	Product	Reference
	125	250	500	1000	2000	4000	Thic (i	Dens (1b/	мои	Сотр		
. 90	3 inch and ins from th	deep ste sulation se top si	el roof d batts (1. de	leck with 5 lb/ft ²)	perforat which a	ed ribs re place	d				Ture N A	
	.65	1.02	1.02	. 90	. 56	. 29	3	3.91	4	87	Roof Deck	A 76-322
. 90	Perfora insulat	ted stee ion, 6 t	1, 12 inc o 45 foot	ch o.c. ri span	bs fille	d with						C P
	. 73	1.13	1.06	. 89	. 52	. 31	3	3.97	4	71	N Acoustideck	24.120M
. 95	16-16 t inch de wide, t	o 20-20 ep cells hickness	ga perfor , fibergl shown is	ated stee ass fille of fiber	l deck; d; 24 in glass fi	three 3 ches 11er		4.1			Type PEC1 Accustion1	CP
	. 34	. 80	1.15	1.00	. 84	.61	2	6.8	4	198	Deck	5.5/ROL
. 95	Perfora with in	ted stee sulation	1; 12 inc , 6 to 45	h o.c. ri foot spa	bs fille n	1						CR
	. 65	1.08	1.14	. 99	. 79	.61	4-1/2	6.5	4	71	HF Acoustideck	24:120M
. 9 5	Perfora with in	ted stee sulation	1, 12 inc , 6 to 45	ho.c. ri foot spa	bs filled n	1						CR
	. 68	1.13	1.11	. 95	. 78	. 58	6	7.38	4	71	HF Accustideck	24 : 120M
. 95	Perfora with in	ted stee sulation	1, 12 inc , 6 to 45	h o.c. ri foot spa	bs filled n	1						CP
	.91	1.23	1.07	1.00	. 79	. 64	7-1/2	7.55	4	71	HF Accustideck	24:120M

•••

Table 17A. Absorption properties of roof deck concluded.

						Trans	nissi	on Lo	oss,	dB						50				
STC	125 Hz	160 Hz	200 Hz	250 Hz 315 Hz	- H 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH 0007	Thicknes (in.)	Density (1b/ft2)	Company	Product	Reference
45	Ste 29	el r	oof	decking 38	, 22	gaug 45	je .		48			49			49	1-1/2	1,71	71	S Acoustideck	CR 24-1 20M
45	Ste 29	el r	oof	decking 38	, 22	gaug 45	e		48			49			49	1-1/2	1.82	71	B Acoustideck	CR 24-1 20M
46	Ste 30	el r	oof	decking 39	. 20) gaug 46	е.		49			50			50	1-1/2	2.06	71	S Acoustideck	CR 24-1 20M
46	Ste 30	el r	oof	decking 39	, 20	gaug 46	e		49			50			50	1-1/2	2.18	71	B Acoustideck	CR 24-1 20M
46	Ste 30	el r	oof	decking 39	. 20	gaug 46	e		49			50			50	3	2.57	71	N Acoustideck	CR 24-1 20M
47	Ste 31	el re	oof	decking 40	, 18	gaug 47	e		50			51			51	1-1/2	2.75	71	S Acoustideck	CR 24-1 20M
47	Ste 31	el ra	oof	decking 40	, 18	gaug 47	e		50			51			51	1-1/2	2.91	71	B Acoustideck	CR 24-1 20M
47	Ste 31	el ro	oof	decking 40	, 20	gaug 47	e		50			51			51	4-1/2	3.06	71	H Acoustideck	CR 24-1 20M
48	Ste 30	el ro	oof	decking 39	, 18	gaug 46	e		49			50			50	3	3.43	71	N Acoustideck	CR 24-1 20M
49	Ste 33	el ro	oof	decking 42	, 20	-18 g 49	auge		52			53			53	1-5/8	4.16	71	NF Acoustideck	CR 24-1 20M
49	Ste 33	el ro	oof	decking 42	, 18	gaug 49	e		52			53			53	4-1/2	4.08	71	H Acoustideck	CR 24-1 20M
50	Ste 34	el ro	oof	decking 43	, 18	-18 g 50	auge		53			54			54	1-5/8	4.80	71	NF Acoustideck	CR 24-1 20M
50	Ste 34	el ro	oof	decking 43	, 20	-18 g 50	auge		53			54			54	3	4.66	71	NF Acoustideck	CR 24-1 20M
50	Ste 34	el ro	oof	decking 43	, 20	-18 g 50	auge		53			54			54	4-1/2	4.74	71	HF Acoustideck	CR 24-1 20M
50	Stee 34	el ro	oof	decking 43	. 18	gaug 50	2		53			54			54	6	4.57	7 1.	H Acoustideck	CR 24-1 20M
51	Stee 35	el ro	oof	decking 44	, 16	gaug 51	2		54			55			55	4-1/2	5.12	71	H Acoustideck	CR 24-1 20M
51	Stee 35	el ro	oof	decking 44	, 18	gaug 51	2		54			55			55	7-1/2	5.05	71	H Acoustideck	CR 24-1 20M
52	Stee 36	el ro	oof	decking 45	, 18	-18 g 52	auge		55			56			56	4-1/2	5.58	71	HF Acoustideck	CR 24-1 20M
52	Stee 36	el ro	oof	decking 45	, 16	-18 g 52	auge		55			56			56	1-5/8	5.44	71	NF Acoustideck	CR 24-1 20M
52	Stee 36	el ro	oof	decking 45	, 18	-18 g 52	auge		55			56			56	3	5.47	71	NF Acoustideck	CR 24-1 20M

Table 17B. Barrier properties of roof deck.

1

.

248

						Tr	ansm	issi	on Lo	oss,	dB						<i>(</i> n				
STC	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	2H 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	Thickness (in.)	Density (1b/ft2)	Compan y	Product	Reference
52	Ste 36	eel 1	roof	deck 45	ing.	16	gauge 52	8		55			, 56			56	6	5.72	71	H Acoustideck	CR 24-1 20M
53	Ste 37	≥el 1	coof	deck 46	ing,	16	gauge 53	2		56			57			57	7-1/2	6.32	71	H Acoustideck	CR 24-1 20M
53	Ste 37	eel 1	roof	deck 46	ing,	18-	18 ga 53	auge		56			57			57	7-1/2	6.57	71	HF Acoustideck	CR 24-1 20M
53	Ste 37	eel 1	roof	deck 46	ing,	16-	18 ga 53	auge		56			57			57	4-1/2	6.41	71	HF Acoustideck	CR 24-1 20M
53	Ste 37	eel 1	oof	deck 46	ing,	18-	18 ga 53	auge		56			57			57	6	6.08	71	HF Acoustideck	CR 24-1 20M
53	Ste 37	eel 1	oof	deck 46	ing,	16-	18 ga 53	auge		56			57			57	3	6.27	71	NF Acoustideck	CR 24-1 20M
54	Ste 38	el r	oof	deck 47	ing,	16-	18 ga 54	auge		57			58			58	7-1/2	7.66	71	HF Acoustideck	CR 24-1 20M
54	Ste 38	el r	oof	deck 47	ing,	16-	16 ga 54	auge		57			58			58	7-1/2	8.21	71	HF Acoustideck	CR 24-1 20M
54	Ste 38	eel 1	oof	deck 47	ing,	16-	16 ga 54	auge		57			58			58	6	7.60	71	HF Acoustideck	CR 24-1 20M

Table 17B. Barrier properties of roof deck concluded.

CATEGORY 18. UNIT ABSORBERS

CATEGORY 18. UNIT ABSORBERS

Sound absorption in a room can be increased by adding unit absorbers. They are easy to install and available in various shapes and sizes. The amount of absorption that can be obtained depends on the unit absorber spacing. The amount of sound energy absorbed by a particular unit absorber is proportional to the area exposed to the incident sound energy. For this reason, many absorbers are suspended from ceilings using wires to expose all surfaces to the sound. For efficient usage unit absorbers should be placed as close to the noise source as practical.

Organizations contributing data to this table are: 4, 15, 20, 40, 73, 82, 85, 90, 96, 98, 101, 115, and 133.

CAUTION

ABSORPTION DATA PRESENTED ARE TOTAL ABSORPTION FOR EACH ITEM (SABINS/UNIT). THE TERM UNIT REFERS TO THE MANUFACTURER'S STANDARD SIZE UNIT AS DESCRIBED IN THE TABLE. FOR EXPLANATION OF SABINS SEE PAGE 50.

					Tabl	e 10.	Unit	absor	bers.			
			Absorpt	ion sab	ins/unit		50		20			
RC	5 Hz	0 H2	0 Hz	2H 00	00 Hz	00 Hz	ickne: (in.)	nsity b/ft ³)	unting	mpany	Product	Referenc
	12	25	20	10	201	40	f	E B	W	Ŝ		
	Perfora block	ted 12	x 18 inch	low dens	sity cell	ular glass						KAT
	. 83	1.18	1.09	1.01	. 98	1.20	2	8	4	98	Geocoustic Blocks	2141-77
	Tedlar blocks Testing	covered with 1/	12 x 18 8 inch di on cable	inch low ameter ho s	density bles side	cellular by side.						KAT
	. 94	1.00	1.15	. 96	1.01	1.35	2		-	98	Geocoustic Blocks	2088-77
	Perfora blocks	ted 12	x 18 inch	low dens	ity cell	ular glass						
	1.07	1.18	1.26	1.23	1.21	1.37	4	8	4	98	Geocoustic Blocks	KAL 2141-77
	12 x 18 spaced cables	inch le 1/2 incl	ow densit h apart i	y cellula n both di	r glass rections	block, on						KAT
	. 95	1.18	1.12	1.28	1.36	1.14	2	8	-	98	Geocoustic Blocks	2000-76
	12 x 18 spaced cables	inch le 6 inche:	ow densit s apart i	y cellula n both di	r glass rections	block, on						2 41
	1.03	1.16	1.20	1.31	1.45	1.59	2	8	-	98	Geocoustic Blocks	2000-76
	Perfora	ted 12 :	x 18 inch 2 inches	low dens	ity cell	ular glass						
	. 93	1.39	1.33	1.47	1.28	1.33	2	8	4	98	Geocoustic Blocks	KAL 2141-77
	12 x 18	inch lo	ow densit	y cellula	r glass	blocks,						
	spaced 1.15	2 feet 0 1.16	o.c. both 1.22	directic 1.31	ns on ca 1.56	bles 1.66	2	8	-	98	Geocoustic Blocks	KAL 2000-76
	16 inch	o.c., 1	11-1/2 x	16 x 1/8	inch res	onant						
	cavity .2	in back .8	. Low der 2.0	nsity cel 2.2	lular gl. 1.8	ass 1.2	2	9.42	-	98	Geocoustic II Unit	RAL
	12 10	inch 1			-	blacks						
	spaced	3 feet o	bu densicj b.c. in bi	oth direc	tions on	cables	n	Q		09	Concentra Planka	KAL
	1.17	1.34	1.20	1.91	1.71	1.08	2	8	-	90	Geocoustic Biocks	2000-78
	Low den inch wi	sity cel th 1/8 : 24 inch	llular gla inch reson	ass block nant cavi	, 11-1/2 ty in ba	x 16 ck,						
	. 2	.7	2.0	2.2	2.0	1.7	2	9.42	-	98	Geocoustic II Unit	RAL
	Perfora	ted 12 >	k 18 inch	low dens	ity cell	ular glass						
	blocks . 1.14	spaced 6 1.53	inches a 1.53	apart 1.40	1.63	1.71	2	8	4	98	Geocoustic Blocks	KAL 2141-77
	Tedlar glass b 2 feet	covered locks wi o.c. one	12 x 18 : ith 1/8 in directio	inch low nch diame on and 3	density ter hole: feet o.c	cellular s. Spaced . the						
	other, 6 1.07	on cable 1.45	es 1.55	1.43	1.69	1.87	2		-	98	Geocoustic Blocks .	KAL 2088-77
	Slotted	12 x 18	3 inch los	w density	cellula	r glass						
	1.23	1.50	1.59	1.70	1.65	1.70	4	8	4	98	Geocoustic Blocks	KAL 2141-77
	12 x 18 covered	inch lo , spaced	ow density i 2 feet o	y cellula D.c. both	r glass, directio	Tedlar ons on						
	1.24	1.30	1.63	1.63	1.72	1.91	4	8.75	-	٩٩	Geocoustic Blocks	KAL 2000-76
	12 x 18 spaced :	inch lo 2 feet o	w density	y cellula directio	r glass i ns on cai	blocks, bles						KAL
	1.27	1.38	1.55	1.56	1.77	2.02	4	8		98	Geocoustic Blocks	2000-76
	Perforat	ted 12 x	18 inch	low dens	ity cellu	ular glass						
	1.24	1.59	1.82	1.61	1.60	1.74	4	8	4	98	Geocoustic Blocks	KAL 2141-77

Table 18. Unit absorbers.

		Absorpti	ion, sabir	ns/unit							
125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	zH 0004	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
 32 inch	o.c., l	1-1/2 x	16 inch w	ith 1/8	inch reso-					<u> </u>	
blocks	.6	2.6	2.4	2.2	1.8	2	9.42	-	98	Geocoustic II Unit	RAL
 D		10 30-5									
spaced	6 inches	apart 1.78	10w dens	1.81	2 00	4	8	4	98	Geocoustic Blocks	KAL 2141-77
12 19	4h 1-		****		thi de		Ť				
slotted cables	, spaced	2 feet o	p.c. both	directi	ons on						KAL
1.09	1.42	1.73	1.73	2.02	2.49	2	8	-	98	Geocoustic Blocks	2000-76
Slotted blocks	12 x 18 spaced 2	inch los inches a	w density apart	cellula	r glass						KAL.
1.27	1.69	1.99	1.91	1.95	1.99	4	8	4	98	Geocoustic Blocks	2141-77
Slotted	12 x 18 spaced 6	inch low	w density apart	cellula	r glass						V AT
1.21	1.79	1.99	2.36	2.26	2.32	4	8	4	98	Geocoustic Blocks	XAL 2141-77
11-1/2	x 16 inc	h low der	nsity cel	lular gl	ass,						
.2	.9	2.4	3.6	2.8	2.5	4	9.4	-	98	Geocoustic Unit	RAL 74-197
12 x 18	inch lo	w density	y cellula	r glass	block,						
tions of	cables	2 20	ivet o.c	. both u	11ec-		a		93	Concoustin Blocks	KAL
1.27	1.02	2.29	2.50	2.03	2.04	4	8		,,,	Geologicit Biocks	2000 70
12 x 18 slotted	inch lo on both	w density sides, s	y cellula: suspended	r glass 24 inch	block, es o.c. be other						
. 93	1.43	1.86	2.87	3.14	3.22	4	8	-	98	Geocoustic Hanging Absorbers	KAL 2152-77
12 x 18 suspend 52 inch	inch ab ed 24 in es o.c.	sorber, s ches o.c in other	slotted of in one Low de	n both s directio nsity ce	ides, n and llular						
. 92	1.38	2.25	3.44	3.72	3.80	4	8	-	98	Geocoustic Hanging Absorbers	KAL 2152-77
2 x 2 fo plastic o.c.	ot mine film, s	ral fiber paced l 1	r blanket foot apar	encased t in row	in white s 3 feet						
1.5	2.7	5.7	6.7	5.4	3.8	2	7.5	-	133	Units	RAL.
Pipe in long hu spacing	sulation ng verti . May b	, l inch cally in e used as	I.D. x 3 a single s unit ab	inch 0. row 6 in sorbers	D., 9 feet nch o.c.						
0.3	1.2	3.5	5.9	7.4	8.9	-		-	96		OCRL
18 x 24 slotted	inch lo both si	w density des, spac	y cellula ced 3 fee	r glass t o.c. b	block, oth ways						
0n cabi 1.61	es 3.64	5.00	6.62	7.65	7.28	4	8	-	98	Geocoustic Hanging Block	KAL 2000-76
Pipe in long, he	sulation ung vert Mav b	, l inch ically it e used as	I.D. x 3 n single : s unit ab.	inch 0.1 row 12 in sorbers	D., 9 feet nches o.c.						
0.2	1.1	3.7	7.8	9.5	10.3	-		-	96		OCRL
T-egg c 4.5	rate arr 5.5	ay; fibe: 5.4	rglass bo 6.5	ard, pai 6.0	nted 5.2	1-5/8		-	115	Series 100 Ceiling Baffles	CKAL 7701.42
T-egg c	rate arr	ay; fiber	rglass, f	abric co	ver					Series 400 Ceiling	CKAL
4.8	5.7	5.8	6.8	5.6	4.6	2		-	115	Baffles	7701.44
Plastic with 1-	Industr 1/2 inch	ial type: fibergl	s cloud-l ass	ite 24 x	28 inch				9 5		ab
1.8	3 4	5 3	7 0	8.8	8.4	1		-	60	Cloud-Lite Acoustic Baffles	CR 9 1 ME

Table 18. Unit absorbers continued.

÷

...

				Table	10.	UNIL	absor	Ders	conti	nuea.		
			Absorpt	ion, sabins/	unit							
	Чz	Ηz	Чz	μz	Ηz	2H	.)	t ³)	ing	'ny	Product	Referenc
	125	250	500	1000	2000	4000	Thíck (in	Dens: (1b/f	Mount	Сотра		
	Fibergl x 24 in	ass and t ch long,	nineral density	wool cyling shown is w	ier, 12 veight	inch diam of unit	1					
	2.9	5.2	6.5	8.4	8.5	8.2		4.5	-	20	Sonosorber	CR
	24 x 48 Noise c	inch bai ontrol fo	ffle str or halls	ung on 3 fo , arenas, a	oot cen auditor	ters. iums						
		3.35	7.59	8.80	9.50	4.0	1-1/2	12.8	-	4	Type A Baffles	G&H
	Plastic inch wi 2.4	th 1-1/2 4.4	inch fi 6.9	berglass 9.1	lte 24	x 48 10.9	1-1/2		-	85	Cloud-Lite Acoustic Baffles	CR 9.1 ME
	Molded	fibergla	ss cylin	ders, 12 x	24 inc	h					I-C Drum Sound	KAL
	4.35	6.40	7.50	8.62	9.58	9.43	~~	2.75	-	73	Absorber	428458
	Noise b swimmin concent and dur foot ce	affles 2 g pools, rations, able rein nters	x 4 foo areas o glass f nforced	ot for facto of high humi iber core, coated fabr	ories, dity o thin f ic fra	gymnasiums r vapor ilm facing me on 4	•					
	2.18	4.65	9.23	10.35 1	10.63	9.68	、 3	1.24	-	4	Echo-Sorb	G&H
	12 x 24 units e ate low	inch sou nclose to or frequ	und abso wo tuned uent sou	orbing cylin metal reso md	ndrical onators	fiberglas to attenu	s 				Noisemaster Perena-	V 4 1
	3.65	5.84	8.48	9.51	9.98	9.90		3	-	101	tor Sound Absorbers	438552
;	23 x 48 film, h May be	x 1-1/2 ung vert: used as u	inch fi ically i unit abs	berglass wr n rows 4 fe orbers	apped et o.c	in plastic . spacing.						
	2.1	5.9	9.8	13.3 1	1.6	7.6		4.7	-	96		OCRL
	Noise b swimmin concent and dur centers	affles 2 g pools, rations, able rein	x 4 foo areas o glass f forced	t for facto f high humi iber core, coated fabr	dity o thin f ic fra	gymnasiums r vapor ilm facing me, 6 foot	,					
	2.17	5.43	9.30	11.13	.1.75	10.55	3	1.24	-	4	Echo-Sorb	G&H
i	24 x 48 halls,	inch typ arenas, a 3.85	be A bar auditori 8.82	ums, strung 10.87]	contr on 4	ol for foot cente	rs 1-1/2	12.8	-	4	Type A Baffles	G&H
	24 x 48	x 1-1/2	inch th	ick fibergl	ass						UNA-1 Unit	
	1.5	7.0	11.5	16.0 1	.2.0	7.8	1-1/2		-	82	Absorber	CR
	Absorpt opaque 3.2	ive pane: white fi 5.2	l, miner Lm 2 x 4 10.4	al-fiber co foot 14.3 1	ore enc	ased in 10.1	1-1/2	8	_	15	Armstrong Shrink- Wrapped Vertical Baffle Absorbers	AAL T52552 T56965
	Fibergl	ass board	is encas	ed in plast	ic						I. C. National State	241
	4.30	6.55	9.75	13.30	3.60	13.30	1-1/2	4.2	-	73	I-U NOISE STOP Baffles	KAL 1376-2-3
	24 x 48 arenas,	inch typ auditor:	oe A baf iums, st	fles, noise rung on 6 f	contr oot ce	ol for hal nters	ls,				-	A 415
		4.43	9.97	13.37	13.55		1-1/2	12.8	-	4	Type A Baffles	G&H
	24 x 48 arenas,	inch typ auditor: 5.80	pe A baf Lums, st 10.41	ries, noise rung on 8 f 15.22]	e contr Toot ce 14.82	oi ior hal nters	1 - 1/2	12.8	-	4	Type A Baffles	G&H
	4 x 6 f	oot panel	l of cel	lulose fibe	er mate	rial on						
	lightwe 8.4	ight meta 17.1	al lath 30.0	39.7 4	1.6	41.6			-	90	K-13 Panel System	CR
	Absorbi grommet	ng space s 2 x 4	unit en foot	closed in m	nylar w	ith				•		
							1	2 25	_	40	dBA Spec-SA	CR

254

ladie 18. Unit absorbers conciu

			Absorpti	on Coeff:	icients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	2H 000†	Thickness (in.)	Density (1b/ft ³)	Mounting	Company	Product	Reference
	32 inch 1/8 inch	o.c. (pa cavity	atch), 11 in back.	-1/2 x 1 Data g	6 inch. v iven are	vith absorp-						
	. 03	. 08	. 37	. 34	.31	. 25	2	9.42		98	Geocoustic II Unit	CR
	24 inch block	o.c. (pa Data giv	atch), lo ven are a	w densit; bsorptio	y cellula n coeffic	r glass ients						
	. 05	.17	.50	. 55	. 50	. 42	2	9.42	-	98	Geocoustic II Unit	CR
	16 inch 1/8 inch tion coe	o.c. (re 1 cavity efficient	ectangle) in back. s	, 11-1/2 Data g	x 16 inc iven are	h, with absorp-						
	.11	. 44	1.00	1.00	1.00	.66	2	9.42	-	98	Geocoustic II Unit	CR
	22 ga ga wool ins through coeffici	lvanized sulation, 3 x 10 f ents	l perfora varying foot. Da	ted stee sizes, ta given	l face mi 2 x 4 foc are abso	neral et erption	2			6.2	Providencial Alexandre	c b
	.8	./	. 9	./	.8	. 6	د		-	82	Functional Absorber	CK
	2 x 4 fo encased absorpti of unit	ot absor in opaqu on coeff in lb	ptive pa ne white icients.	nel, mine film. Da Density	eral-fibe ata given y given i	r core are s weight			,		Armstrong Shrink-	
	. 34	. 55	. 89	. 99	. 98	.72	1-1/2	8	7	15	Wrapped Vertical Baffle Absorbers	T52584
	12 x 18 x 18 ind cellular Data giv	inch, s ch, space r glass, ven are a	even slot ed 1-1/2 can be u absorptic	inch o.c ised for coeffi	it, 1/4 x ., low de unit abso cients	c 1-1/2 ensity orbers.						
	41	67	98	1 04	97	76	3-1/2	9 94	4	88	Geocoustic	RAL A 75-19

CATEGORY 19. ENCLOSURES/QUIET ROOMS

Quiet rooms are either constructed as complete units or prefabricated modular sections. Uses for Quiet rooms include viewing stations, study areas, audiometric testing rooms, music practice areas, recording studios, supervisory control centers, etc. Quiet room data are related to the finished product or a prefabricated section.

Enclosures are usually configured for a particular piece of equipment or machinery. Designs for enclosures are influenced by operator accessibility, thermal environment, chemical and moisture resistance, and overall maintenance. Data are presented for fabricated materials which can be used for enclosures. Since many installations are unique, a detailed analysis is required in determining the effectiveness of a proposed enclosure system.

Organizations contributing data to this table are: 5, 32, 47, 70, 72, 77, 78, 82, 112, 114, 120, 125, 127, and 139. Other related categories are: panels, unit absorbers, walls, and operable partitions.

CAUTION

- 1. NOISE REDUCTION DATA ARE SOMETIMES OBTAINED BY COMPUTA-TIONS BASED ON DATA FOR INDIVIDUAL PANELS WHICH ARE USED TO CONSTRUCT THE ROOM. ALSO, SPECIAL CUSTOMER OPTIONS (WINDOWS, VENTS, ETC.) MAY AFFECT THE PERFORMANCE OF A ROOM.
- 2. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 3. VALUES PRESENTED ON PAGE 260 ARE TRANSMISSION LOSSES AND THOSE PRESENTED ON PAGE 262 ARE NOISE REDUCTIONS. SEE PAGE 70 FOR EXPLANATION OF DIFFERENCES.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing

Anechoic: Echo free

Anechoic Wedges: Wedge-shaped sound absorbing units commonly used to create a free field type environment

			Absorpti	on Coeffi	icients							
	N	N	N	и	N	N	ess)	27	gu	ž	Product	Reference
NRC	×	н	π.	H Q	н О	но	ckn in.	/ft	nti	neq	. roduce	Reference
	125	250	500	100	200	400	Thi)	Der (1b	Моц	Сош		
. 85	Standard	panel m	odel 2P								Silent Room	
(2)	. 50	. 70	.95	. 95	.90	. 82	2			5	Model OBCF	CR B-135
. 90	Standard	panel m	odels 4P	4PH, 4P	HT.						Silent Room	
(0)	. 69	. 99	. 96	. 89	. 83	.81	4			5	Model OBCF	CR B-135
. 95	Four met and two metal ap of unper	al wall were 85- proximat forated	panels: t 1/2 by 15 ely 4 inc metal. H	two were inch. O th absorb for use i	85-1/2 x ne layer ent mate n musíc	30 inch perforated rial, layer rooms.						RAI
	. 57	.97	1.09	1.10	1.08	1.02	4	10.25	4	120	Acoustical Panels	A 72-167
. 95	Type 1 p and leng gauge pe filler i	refabric ths of 4 rforated n core.	ated pane 8 to 144 face wit	els, widt inch, 16 ch 4 inch	hs of 16 gauge b thick a	to 48 inch ack, 22 coustical					Acoustic Modular	CR
	. 62	1.08	1.12	1.06	1.03	. 97	4			127	Enclosure System	ME 400C
. 95	Type II lengths gauge ba thick ac	prefabri 48 to 14 ck, 22 g oustical	cated par 4 inch, g auge peri filler i	ypsum bo orated f	h 16 to ard barr ace with	48 inch, ier, 16 4 inch					An end of Medular	
	. 62	1.08	1.12	1.06	1.03	. 97	4			127	Enclosure System	ME 400C
. 95	Panel 6P	HT, heav	y duty, ł	igh temp	erature.						Silent Room	
(c)	. 85	. 9 9	. 97	. 92	. 85	.83	6			5	Model OBCF	CR B-135
. 95	Portable modular heavy du ally int	enclosu panels, ty floor act, 16	re, prefa with full s, quiet standard	bricated view wi ventilat sizes	Type 1 ndows, s ion, and	acoustical ealed doors, electric-						CP
	. 62	1.08	1.12	1.06	1.03	.97				127	Personnel Enclosures	ME 401B-1978
.95	Prefabri 4 inch t forated 16 gauge 7 ft 8 i 1 inch,	cated pa hick, 16 face. Fl steel. nch to 2 panel we	nels of s gauge st oor panel Sizes fro l ft 8 in ight 8.5	ingle wa eel back s 4-3/16 m 4 ft x ich x 10 lb/sq ft	ll confi , 22 gau inch th 3 ft 8 ft 4 inc	guration, ge per- ick, ll and inches x h x 8 ft					DF & DS Socias	
	. 48	1.01	1.11	1.05	. 97	. 83				127	Audiometric Rooms	RAL
. 95	Enclosur zinc-coa steel pe 3/16 inc 4 lb/cu nents an	e modula ted stee rforated h stagge ft windo d ventil	r panels l backing facing w red cente ws, doors ating sys	and syst g, 22 gau with 3/32 ers. Acou g, floor, stems.	ems. Pan ge zinc- inch ho stical f connect	el 16 gauge coated les on ill ing compo-					Vanec	CR
	. 75	1.01	1.11	1.06	1.02	. 95	4			139	Acoustical Systems	B-900-1-0
1.00	Two pane by 10 ft	ls conne 10 inch	cted by s wide.	pecial b	attens,	7 ft high						CKAL
	. 58	. 73	1.10	1.09	1.00	1.00	4	454	4	47	Room Panels	7501.76

Table 19A. Absorption properties of enclosure systems.

۰.

-

							Tra	insmi	ssic	n Lo	ss,	dB											
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	2H (1007	5000 Hz	Thicknes (in.)	Density (lb/ft ²)	Company	Product	Reference
23(c)	511	din	g or	bi-f	old d	door,	cov	vered	wit	h 26	gau	ge st	eel,	ure	thar	ne co	re,						
	14 15	x 1 17	7 in 22	ch do 21	uble 22	pane 23	d wi 24	ndow. 25	. F 25	or u 25	se i 24	n Sou 19	ndso 22	reen 30	mod 34	lular 36	syst 37	ems 38	2		82	Soundscreen Doors	CR GP-4200
23(c)	Air 9	r op 10	enin 11	g 6 x 12	14 : 13	inch, 14	duc 17	t li 19	ned 21	with 23	fib 24	ergla 29	ass, 35	4 ft 48	107 46	ig vei 44	nt pa 43	nel 40	4		82	Soundscreen Ventilation Panels	CR GP-4200
30	12	× 1	08 i	nch 2	0 gan	uge s	teel	con	tain	ing	1-1/	2 inc	ch of	1-1	/2 1	b/ft	³ fib	er-					
	g1. 17	185 15	foil 18	face 20	d 22	22	21	25	28	32	36	39	40	41	41	40	43		1-1/2	1.5	125	Acousti Panel	RAL TL 74-238
30(c)	6 1 12	Et 1	ong 14	vent	pane	1 20	25	30	32	34	36	40	44	50	54	56	57	53	4		82	Soundscreen Ventilation Panel	CR GP-4200
		13	14	10	10	20		50	52	54		40											
31(c)	Swi pei	ngi for	ng s ated	ingle stee	doo: 1, w	r, 34 ith 1	8 x 7	'6 in 18 i	ch, nch	16 g doub	auge le p	stee anel	el e> wind	teri low	or,	22 g	auge					Soundscreen	CR
	19	21	20	23	25	27	30	30	28	29	31	33	32	32	33	35	38	41	4		82	Doors	GP-4200
31(c)	St. 22	anda 27	rd u 25	retha 24	ane p 24	anels 24	s, va 23	arvin 23	g si 28	.zes 38	43	45	47	49	50	53	56	57	4		82	Soundscreen Modular Panels	CR GP-4200
33	Acc tia alu	oust es w umin	ical ith ized	encl airfl stee	osur low 1 an	e and capab d acc	l wal ilit usti	ies.	stem Co mate	n pro nstr rial	vidi ucte 30	ng ti d out inch	rans of wide	nissi .028 2 x 9	on 1 inc 6 ir	loss ch nch l	quali ong.	- So					
	art	rang 12	ed t	o be	desi; 22	gnate	das	32 32	e Br	eath	47	Panel		58			59		2		32	Muffl-wall	CKAL 7804.19
34(c)	8 s 13	fr 1 15	ong 17	vent 19	pane 21	1 23	31	40	43	46	47	48	50	52	55	56	58	56	4		82	Soundscreen Ventilation Panel	CR GP-4200
		_					_										. 3						
36	12 fił	x 1 perg	08 i 1ass	nch 2 and	0 ga 1/2	uge s inch	gyps	um b	ntai oard	ning l	; 1-1	/2 ir	ich d	of 1-	1/2	16/1	t -						RAL
	21	22	23	24	25	28	28	29	32	35	39	42	44	44	43	44	46	48	1-1/2	3.5	125	Acousti Panel	11 74-239
36	12 of	x 1 1-1	00 <u>1</u>	nch 2	0 ga	uge s ihera	teel	l, co	ntai anc	ning	$\frac{1/2}{1/2}$	inch	n gyp	sum	boar	rd 1- rd	1/2 i	nch					RAL
	23	22	21	20	21	29	35	38	39	40	42	44	43	43	42	41	43	45	1-1/2	5.5	125	Acousti Panel	TL 74-240
36(c)	2 : 19	4 21	ft p 23	anel, 25	tw o 27	18 × 28	: 30 30	inch 32	acr 34	ylic 36	win 38	dows 39	1/4 40	inct 41	th: 41	ick 41	41	42	4		82	Soundscreen Modular Panels	CR GP-4200
38(c)	10	ft	long	vent	pan 25	el 30	3.8	40	43	48	51	52	52	53	54	55	58	58	4		82	Soundscreen Ventilation Panel	CR GP-4200
42	Typ to acc	pe I 14 oust	pre 4 in ical	fabri ch. fill	lcate 16 g ler i	d par auge n com	els baci e	, wid	ths gau	of 1 1ge p	.6 to erfo	48 : rated	inch d fao	with ce wi	th 4	ngths 4 inc	of 2 h thi	ið .ck	,		127	Acoustic Modula Enclosure System	r CR 1974 MT-400C
		22			20			40			49			14			J,		4		12,	Dyb cen	112 1000
44	Tyj gyl th:	pe I psum ick	l pr boa acou	efabi rd ba stica	ricat errie el fi	ed pa r, 16 11er	inel: gau in d	s, wi uge b core	dth ack,	16 t 22	o 48 gaug	incl e per	h, le rfora	engti ated	ns 48 face	B to e wit	144 i h 4 i	nch nch				Acoustic Modula Enclosure	r CR
		24	•		31			41			50			56			57		4		127	System	ME-400C
	St.	anda ft i	rd p	anels	s mad	e of 11 78	ste ind	el an ch hi	d fi gh i	berg	lass le. 1	(Mo)	del 3 nch 6	2P), outsi	4 x de	6 ft	up	In				Silent Boom	CR
		20)		25			31	0		37			43			46		2		5	Model OBCF	B-135
	11	ft	6 in	ch lo	ong x	8 ft	2	inch	wide	e x 8	3 ft	11 i:	nch l	high	enc	losur	e wi	:h					
	fo	ur (26	loubl	e-wii	ng do 36	ors	3 ft	wide 40	•		44			50			50		3		70	1 DE-100-21	CR NCD-7560.2
	He	avy	duty	pane 100/	≥l Mo)°F	del 4 4 v	ЪРН, 6 f	and	high in 1	n tem L fr	npera	ture	pan ts -	el Mo all	de1	4PHT inch	, ten high	ap -					
	in	side	, 10	0 in	ch ou	tsid	e •	41	•		46		-	52	-		55		4		5	Silent Room Model OBCF	CR B-135

Table 19B. Barrier properties of enclosure systems (transmission loss).

1

.

Table 19B. Barrier properties of enclosure systems (transmission loss) concluded.

÷.

		_	~~~				Tr	ansm	issio	n Lo	ss,	dB											
STC	Hz	Hz	Hz	ZH	Ηz	ZH	Ηz	μz	Ηz	Hz	O Hz	O Hz	2H 0	0 Hz	0 Hz	0 Hz	J Hz	G Hz	ckness in.)	/ftZ)	pany	Product	Reference
	100	125	160	200	250	315	400	500	630	800	100	125	160	200	250	315	400	500	Th <u>r</u>	Der (15	Con		
	Sta	andar reme	d pa nts	nels - al	made 1 78	e of incl	stee hig	l fi h in	berg side	lass , 100	Mod in	el 4F ch ou	, 4 itsid	x 6 e	ft u	p in	l ft					Silent Room	
		23			29			37			42			48			54		4		5	Model OBCF	CR B-135
	Hea 4 o out	avy d 6 f side	uty t up	pane in	l hig l ft	gh te inci	emper remen	atur ts -	e Moc all	del 6 78 i	5PHT inch	, tem high	pera ins	ture ide,	to 100	1000 ⁰ incl	°F.					Silent Pro-	
		31			37			44			49			55			58		6		5	Model OBCF	CR B-135
	End bac hol wir	closu cking les o ndows	ire m (, 22 (n 3/	odul gau 16 i ors,	ar pa ge z: nch s floo	anels inc-c stagg or co	s and coate gered onnec	sys d st cen ting	tems eel p ters comp	, par perfo , acc	nels brat bust nts	16 g ed fa ical and v	gauge scing fill venti	zin wit 4 l lati	h 3/ b/cu on s	ated 32 in ft yster	stee ich	21				Vanec Acoustical	CR
		22			29			40			50			55			57		4	20	139	Systems	B-900-1-0

 T	at 	1	e	19	JC	•	B	a1	rj	Ler		ro	per		es	01	: e	en o	210	sui	ce	sy	ster	ns (nois	e reductio	n).
										Jise	Ket			<u></u>	••				·		_		50 50	~~			
100 Hz	125 H-		160 Hz	-4 000	20 007	250 Hz	315 Hz		2H 005	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	-n 0002	211 0007	2500 Hz	3150 Hz	ZH 0005	5000 Hz		Thickne (in.)	Density (1b/ft2	Company	Product	Referen
Fre by	e me 9	ata al	nd: f: 6	ing am 6	en e	clo 7	sure 9	. 7	2 x 11	96 13	× 84	inc 19	h hi 21	gh. 21	Lea 19	ded	vin 1 2	1y1 23	supp 26	orte 26	d				112	Sound Stopper free standing enclosure	RAL
5-0			nd	no	e 7	c10	0.11 7 6	. 7	2 v	96	v 8/	inc	h hi	ah	دمآ	hoh	vin	111	611D7	orte	d						
by	me! 1	al	f: 8	am. 7	e	10	10)	14	16	19	19	20	20	21	. 2	2 2	22	22	23	•				112	Sound Stopper free standing enclosure	RAL
Enc men ted Doc	lo: sid s: r, 10	ur ns ee wi	e 7 84 1 : nda	vit 4 x Eace 5w,	h i 84 e w ve	nsi x ith nti 24	de d 89 i a d lati	im nc or	ensi h hi e oi , ai	ions igh. f 4- nd e 25	of 10 3/4 elect	80 x gau , lb trica	80 ges dens 1 su 29	x 84 teel ity ppli	inc bac abso ed	h h k, orpt 3	igh, 22 g ion 4	ou gaug mat	itsid ge pe teria	rfor 1. 37	- a-		2		78	Noise Guard Portable Office Enclosure	CR K44
22 15/ S.V (13	ga cu . R 50	ft 1b	84 1:).	alv ou S	ani rpt tsi .V.	zed ion de R.	ste mat dime -2:	el er ns ou	bad ial ions tsid	ck, cor 6 ie d	22 g fr 2 imer	auge 1/8 j inc nsion	gal nch h x s 6	vani stru 6 ft ft 6	zed ctur 4 i inc	per al nch	fora stee x 7 10	ted 1 f ft	floor 1001 6 i 4 ir	e, 6							
0 1	19) 1	nei	1 (.	230	21	5)			26			32			3	6			38			2		82	Versacoustic Rooms	CR DS4202
OCE ins	F id	ab	yr : 10(int)) i	h m hch	ode ou	ls, tsid	4 le	x 6	ft	up i	in 1	ft i	ncre	ment	s,	a11	78	inch	hig	F.				ŗ	Silent Room	CR
OCB	F	000	r 1	node	- 1	21 4 x	6 6	÷.	110	28 in 1	fr	incr	30 emen	ts	all	78	o inch	hi	øh f	nsid	e .				J	FOLTADIG	6-133
100	1 2(ich)	01	its	Īđe	23			ωр .	28		1	36	,		3	6			35	- 1				5	Silent Room Portable	CR B-135
Pre and gau	fal pe	ri ga	cai oni 1vi	ted nel ani:	, a sa zed	cou fet st	stic y. eel	al Co ou	ly i nst: ter	trea ruct and	ted ed 1 22	room from gaug	des trac e pe	igne oust rfor	d fo ics ated	l, l, st	axin 2 in eel	um ich int	visi pane eric	bili ls. rs.	ty 16						
501	2	5				17		14		30			39			4	2			45					127	RC 200 Series Control Rooms	CR ME-402
Por win ard	tal dov	le s,	pi se	ef: al	abr ed	ica doo	ted rs,	ty he	pe] avy	i ac dut	oust y fl	ical loors	mod , qu	ule iet	pane vent	ls ila	with tion	ı fu	111 v 16 s	iew tand	-					Personnol	CP ME.
	2	i				17				30			39			4	2			45					127	Enclosures	401B-197
53 win	x : dov	8 7,	x i th:	38 ree	inc pe	h o rfo	utsi rate	.de	, 49 wali	5 x Ls,	30 x	80 betec	inch flo	ins or	ide,	on	c 30) x	24 i	nch			_			25M Hearing	RAL
21	2:	3	22	2	9	32	36	•	36	36	36	37	39	41	41	. 4	1 3	9	39	41	42		8		120	Test Booth	NR 76-8
Out x 8 24	si 6 2	le inc	is h w 24	83 /in 2	x dow 6	113 29	x 9 34	1	incl 36	ı, i 38	nsic 39	le is • 37	75 37	x 10 40	5 x 42	86 4	inch 0 3	i, w 18	vith 42	one 45	30 46		8		120	Model 802 Practice Module	RAL NR 76-7
4 i on	nc) 3/3	1 t .6	hi in	ck j ch :	pan sta	els gge	, ou red	te ce	r si ntei	ırfa çs,	ice 1 10 g	l6 ga gauge	uge inn	CRS, ers	CRS urfa	pe ice;	rfor flc	ate	ed 3/ is c	22 i ne	nch						
pie inc 21	ce h d 2	wi out	th si 22	toj 1e, 2'	9 30 9	x 32	ace 45 x 36	an 8	d 10 0 in 36	nch 36	insi 36	lowe Ide 37	r, b Dat 39	ooth a ar 41	e in 41	iser 4	ions tior 1 4	: 38 : 10 :1	5 x : 5ss 41	3 x 42	90 44		4		77	Hearing Test Booth	RAL
Aud wit pan woo	ion h el	so co	ric lai nsi	bo or ru	oth s o cti 16	6 nc on, gau	ft 1 aste 22 ge s	0 rs ga	incl , wi uge el l	n hi indo per back	gh) ws, fora	3 f jack ated	t 4 pan zinc	inch el, coa	wid vent ted	le x ila ste	3 f tor. el f	t 6 2 ace	inc inc , mi	h de h th nera	ep ick 1						CKAI.
27	24	•	16	2	7	31	30)	32	34	39	40	43	46	49	5	2 5	52	53	54	53				47	Model 442	738-02
A11 38	 x (2(:ee 50)	l d ind	con: ch.	str A	uct vai 32	ion, labl	e	uts: in s	ide seve 38	dime ral	ensic vari	ns 3 atio 44	2 x nsa	42 x nd m	: 71 10de 5	inc 1s 2	:h,	insi	de 2	8 x		2		114	Mini Booth	CR V7B IC3
Por hig inc	tal h i h i	le vit hi	au h: ck ut:	udio Iso Par sid	ome lat nel e o	tri ors co f 1	c bo or nsti 6 ga	ca ca	h 29 ster tion e st	9-1/ rs. h, p	2 ir Als erfc , mi	nch w so wi brate inera	ide ndow d in 1 wo	x 40 , ja side ol c	inc ck p of ore	h d ane 22	eep 1, v gaug	and vent ge z	1 62 ilat inc	inch ion. coat	2 ed					4B200HD	CKAI
13	1	5	24	2	4	35	35	;	38	40	43	44	44	47	52	5	2 5	53	52	53	51				47.	Type 1	77-08.01
Pre gau 4-3 inc	fal ge 710	ori ou i 7	can ter ncl	ed sin tl	pa urf hic in	nel ace k o çh	s of and f 11 to 2	s 2 4 1	ing 2 g nd ft	le w auge L6 g Β iπ	all per auge ch >	conf fors ste 10	igur ted el. ft 4	atio inne Siz inc	ns4 rsu esf hx	in rfa rom 8 f	cht ce. 4 f t 1	hic Fl t x inc	ck. loor < 3 i ch.	16 pane t 8 Pane	ls, 1					RE & RS Sprips	
wei	.gh	: 8	.5	1Ь.	/ft	4	<u>.</u> .			<i>, ,</i>	,.	/ •	E ^							- 0					10-	Audiometric	

							No	oise	Redu	ctic	n, di	B							m				
	DU HZ	25 Hz	60 Hz	ZH 00	50 Hz	15 Hz	2H 00	2H 00	30 Hz	2H 00	2H 000	250 Hz	2H 009	2H 000	500 Hz	150 Hz	2H 000	2H 000	hicknes: (in.))ensity 1b/ft ²)	ompany	Product	Reference
	-			2	7	ŝ	4	ŝ	9		1		-	2	2	<u>۳</u>	4	~	4	<u> </u>	Ū		
۲ 2	lod 0	e1 8 20	885 p 15	orefa 28	abric 31	ated 36	pane 42	1s, 46	fina 50	1 as 52	semb 54	lyat 55	: 100 55	catic 58	n 58	59	59				47	Single Wall Examination Room	CKAL 75-01 76
									20				55	50	50								
E 9 c a	nc 1 ore nd	losu inch e of ele	nre v hig 4-3	with gh. 3/4 ical	insi 16 g 15. d supp	de d auge densi lied	imens stee ty.	ions l ba Door	of ck, , wi	76 x 22 g ndow	76 : auge , ver	x 84 peri ntila	inch Torat Itior	hig ed s	h an teel	d 84 fac	x 84 wit	x ha				Noise Guard	
		27			36			45			50			55			59		4	• -	78	Enclosure	CR K44
1	6 g 00	gaug l cc	e st re,	eel dime	back	, 22 ns 2	gaug 9 x 3	est 19 x	eel 74 i	perf nch	orate	ed fa	icė,	nonf	lamm	able	mine	ral				Model AR-18 Audiometric	CR
								40			47			52			56		2		82	Rooms	DS4203
i Π π	wo	32 module	lel 8	302	36 pract	ice i	modul	46 .es.	The	mea	58 .sure	ment	was	64. made	fro	m not	66 lule	to	4		120	Single Walled Audiometric Rooms Model 802	RAL NR 71-56
3	8	42	45	51	51	56	56	57	61	68	74	81	84	78	85	90	92	95	8		120	Modules	NR 76-6
M a 4 3	ode sse in 6	≥1 8 ≥mb1 nch 34	8D, ed 1 air 39	inn from spac 50	er ro 4 ir ce 62	om w ich ti 71	as a hick 80	mode pane 85	1 88 1s c 89	-Sa onne 90	udior cted 90	metri toge 88	c ro ther 90	oom, : by 92	the spec 89	outer ial l 87	was atte: 84	ns, 79			47	Double Wall Audiometric Room	CKAL 75-08-03
P b l i	rei acl 6 g nci	fabr kar gaug n x	icat d 22 e st 10 f	ed gau 2 gau 2 eel 5 t 4	anel ge p Si inch	s of erfo zes x 8	dout rated from ft]	le w l fac 4 ft . inc	all e. x3 h.	conf Floo ft Pane	igura r pan 8 inc 1 we:	atior hels ch x ight	4-3/ 4-3/ 7 ft 8.5	inch 16 i 8 i 16/\$	thi nch nch c ft	ck, thic to 2	6 ga 11 ft	uge and 8				RE & RS Series	
4	1	49	46	55	61	71	73	74	82	84	87	90	9 0	92	92	98	98	98			127	Rooms	RAL
I	nsi	de	is 7	2 x	76 x	78 ±	inch	and	outs	ide	is 96	5 x l	0.0 x	. 94	inch							Double Walled	
		49			56			70			100			>107			>108				110	Augiometric Room	KAL NR71-58
																					77	Portable Shop Office	

Table 19C. Barrier properties of enclosure systems (noise reduction) concluded.

.....

CATEGORY 20. DOORS

CATEGORY 20. DOORS

A door is basically an operable partition used for privacy and security purposes. Acoustically, it is primarily a noise barrier. There may be instances where a door has a perforated side and has absorptive qualities. Absorption materials may also be applied to a surface. The data presented are primarily sound transmission values.

The acoustical performance of a door is dependent upon surface material, filler material in the cavity area, and the sealing capability. The cavity area may be hollow, but for improved barrier results different mass related configurations are used. The seal design is the critical parameter for doors. Various seals and sealing techniques are available which can be pressure sensitive, magnetic, spring loaded, or contact type. Organizations contributing data to this table are: 4, 8, 35, 52, 54, 95, 105, 122, 126, and 145.

GLOSSARY

- Facing: The outside surface of the specimen. In general, the sound source side
- Backing: The surface of the specimen opposite the facing. In general, the side opposite the sound source
- Core: The region between the facing and the backing.

Table 20. Doors.

						Tr	ansm	issi	on L	oss,	dB											
STC	100 Hz 125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	ZH 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH CUO7	5000 Hz	Thickness (in.)	Density (lb/ft ²)	Company	Product	Reference
26	35-3/4 contair 22 25	x 83 ed g 27	5/8 aske 26	inc ts t 27	h me hat 27	tal conta 28	door, acted 29	wit I the 29	h fo fac 29	am co e at 27	ore. the 22	Doc top 24	or wa and 35	ns op side 35	erab s 31	le ar 28	ıd 30	1-3/4	7.5	126	Door	RAL TL 76-119
28	Metal d 20 24	.00r; 21	2 f 23	t 4 23	inch 26	to 3 28	3 ft 29	6 in 30	ch × 31	6 fi 31	E 8 : 29	inch 24	24	32	37	40		1-3/4	2.7	122	STA-TRU Door	RAL TL 77-46
32	Flush m 24 26	etal 24	doo 27	r 35 26	- 3/4 27	x 79 27	9-1/8 28	inc 30	h, m 31	aximu 32	um te 32	emper 31	atur 32	e 15 35	0 ⁰ F. 38	40	37	1-3/8	3.4	14	Standard 1400 Series Door	RAL TL 69-299
33	Flush m 29 28	etal 28	. doo 29	r 35 30	- 3/4 30	x 79 30	9-1/8 29	inc 30	h, t 31	empei 33	ratu 33	rera 31	ange 34	-67 ⁰ 37	to 38	165 ⁰ F 38	37	1-3/4	4.6	14	Standard 1500 Series 18 Gauge Door	RAL TL 69-290
35	Retains glazing 32	app 720 32	eara squ 30	nce are 29	of co inch 29	onver 33	ntion 40	al h 41	ollo 42	w met 43	tal (43	door. 42	. Ма 41	aximu 42	m ar 45	ea of 48		1-3/4	6.8	95	Single Glazed Acoustical Door	RAL TL 73-160
35	35-3/4 25 27	x 83 29	-5/8 30	incl 32	h mei 33	tal (37	ioor, 40	foa 41	m co 38	re 36	33	32	33	34	37	39	41	1-3/4	7.5	126	Fully Operable Door	RAL 76-117
35	Metal d single 27 24	oor, auto 28	fra mati 31	meh cth: 33	as ao resho 34	djust old o 34	able close 35	gasi r 36	ket 36	stops 36	s at 36	top 34	and 33	side 34	s wi 36	tha 37	36	1-3/4	11.7	8	Allied Sound Retardant Doors and Frames	RAL TL 73-166
36	18 gaug 5 ft 0 27	e sk inch 24	ins, x 1 25	ste 0 ft 26	el g: 0 in 30	rid, nch 32	soun 34	d de 36	aden 35	ed, g 34	gaske 35	eted 36	fran 39	ne, i 40	n si 41	zes t 41	0	1-3/4	5.3	54	Presidential Door	RAL TL 77-135
36	Flush m 29 29	etal 29	doo 30	r 35. 32	- 3/4 32	x 79 34	9-1/8 34	incl 35	h, t 36	emper 37	atun 36	re ra 33	inge 35	-670 37	to 39	165°F 39	39	1-3/4	6.7	14	UL 1500 Series 18 Gauge Door	RAL TL 69-293
36	Timeble 34	nd h	igh	dens: 34	ity (core	with 35	har	dwoo	d sur 36	face	≥s 35	5-7/8 38	x 8	3-3/	4 inc 40	ħ	1-3/4	6.7	145	Sound Retardant Door	RAL TL 64-182
38	18 gaug gaskete 28	e sk d fr 25	ins. ame, 29	stee in s 31	el gi sizes 31	rid, s to 37	soun 5 ft 36	d de. 0 11 37	aden nch 35	ed, t x 10 35	neavy ft (36	y den) inc 37	nsity h 40	ins 42	ulat 43	ion. 43		1-3/4	6.0	54	Presidential Door	RAL TL 77-134
38	Fully i aluminu 22 30	nsul mga 29	ated sket 33	door ed si 31	r equ tops 33	₁ippe 33	ed wi 32	tha 33	utom 35	atic 37	drop 40	o clo 42	sers	, f r 42	ame 43	has 41	41	1-3/4	8	35 '	#747 Door	RAL TL 78-76
39	Metal d bottom 30 30	oor, fitt 29	fra ed w 31	me eo ith a 34	quip; a sir 36	oed w ngle 38	ith auto 36	adju mati 35	stab c th 37	le ga resho 40	asket old c 41	ts at close 41	the r 41	top 41	and 40	side 40	s, 41	1-3/4	10.8	8	Allied Sound Retardant Doors and Frames	RAL TL 73-188
39	Metal d bottom 30 29	oor, fitt 30	fra ed w 32	me eo ith a 33	quipp a sin 32	ngle 32	vith auto 35	adju mati 38	stab c th 41	le ga resho 42	asket old o 41	ts at close 40	the r 40	top 41	and 40	side 40	s, 41	1-3/4	12.0	8	Allied Sound Retardant Doors and Frames	RAL TL 73-227
40	Core of 28	con 28	cret 32	e bla 32	ock (33	5 ft 34	10 i 35	nch : 36	x 9 39	ft 5 42	inct 43	1 43	44	43	42	44		2 - 5 / 8		105	#873 Acoustical Door	RAL
41	Metal d bottom 29 30	oor, fitt 30	fra ed w 31	me eo ith 1 34	quipp two a 36	oed w autom 37	vith matic 37	adju thr 37	stab esho 39	le ga ld cl 42	asket Losen 42	ts at rs 41	: th∈ 44	top 46	a nd 47	side 49	s, 49	1-3/4	10.8	8	Allied Sound Retardant Doors and Frames	RAL TL 73-189
42	Retains 26	арр 26	eara 29	nce o 32	of co 38	nven 42	tion 41	al ho 42	511o 43	w met 41	al c 41	loor 41	43	45	46	47		1-3/4	7.7	95	Flush Acoustical Door	KAL 704-7
42	Metald 2524	007, 29	adj 32	ustal 33	oleg 37	gaske 38	tsa 39	t top 41	р, Ъ 41	ottom 42	n, ar 43	nd si .43	des 46	51	54	55	56	1-3/4	11,7	8	Allied Sound Retardant Doors and Frames	RAL TL 73-168
42	Timeble 37	nd h	igh (densi 39	ity c	ore	with 39	hard	dwoo	d sur 41	face	es 36	× 8 45	4 in	ch	40		2-1/4		145	Sound Retardant Door	RAL TL 61-194

266

.

Table 20. Doors concluded.

	_						Tr	ansn	<u>iss</u> i	on L	oss,	dB											
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	ZH 005	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH (1007	5000 Hz	Thicknes (in.)	Density (1b/ft ²)	Company	Product	Reference
42	St	andar	rd p	Lywoo	od do	or.	Core	2:1	lb s	heet	lea	d, g	lass	fibe	r ir	n cav	ity 1	/8					
	in	ch p. 19	22 22	od f: 29	1n1sh 35	face 39	e. 1 39	Jata 39	read 40	42	44 44	aph 45	46	48	50	53	56				52	Acoustil ea d	CR L771-2-5M
43	Mei an	tal d d sid	ioor ies	, fra	ame e	quip	ped v	vith	adju	istab	le g	asket	ts at	the	top), Ъо	ttom,					Allied Sound Retardant Doors and	RAL
	28	26	28	32	34	37	39	40	43	46	48	46	42	44	47	51	52	52	1-3/4	11.7	8	Frames	TL 73-175
43	Doi	ble. 35	fu: 36	11-ре 36	erime 36	ter 1 36	neop: 38	rene 38	seal 41	sat 43	jam 44	bs, ł 44	nead, 45	and 47	l sil 45	.1 45	45		4-1/2	34	95	7.2 PSI Blast Door	RAL TL 65-181
45	35	-3/4	x 8:	3-5/8	8 inc	h mei	tal d	ioor	with	foa	im co	re											RAL.
	31	27	28	34	37	41	45	47	47	46	46	45	43	44	46	51	52	53	1-3/4	7.5	126	Door	TL 76-115
45	Re	tain: 35	5 apj 39	beara 39	ance 42	of co 45	onver 42	ntion 45	nal b 46	10110 48	w me 47	tal (46	door 46	45	48	49	50		1-3/4	9.5	95	Flush Acoustical Door	RAL TL 63-188
45	Met	tal d d sid	ioor les	, fra	ame e	quip	ped v	with	adju	istab	le g	asket	ts at	the	top	, bo	ttom,					Allied Sound Retardant	RAT
	29	30	29	31	35	38	40	42	45	47	49	49	46	48	50	50	53	53	1-3/4	10.8	8	Frames	TL 73-186
45	Ret	tains	app 27	peara	ance	of co	onver	ntion 41	nalh 43	0110	w me	tal o	ioor 48	49	50	50	53		1-3/4	11 3	95	Single Glazed Acoustical Door	RAL TL 66-285
		23	27	رد	20	40	40	41	45	44	4)	47	40	49	50	00	11		1-5/4	11.5	,,,	5001	
46	Re gl	tain: azed	are	pear; a	ance	of co	onver	ntion	nal h	0110	w me	tal (door,	300	squ	are	inch					Double Glazed Acoustical	RAL
		25	26	34	38	40	41	41	43	45	47	49	51	53	54	55	58		1-3/4	11.3	95	Door	IL 66-284
47	St. 39	eel g 42	olat 44	e doo 40	or wi 43	th in 42	nsula 44	ation 43	n bet 42	ween 45	the 48	pla: 49	tes 49	50	50	52	53		4-1/8	11.3	105	*1850 Single Slide Door	RAL TL 76+126
51	Re	tains	5 801	bear	ance	of c	onver	ntio	nal b	0110	w me	tal (door									Flush	247
		35	38	35	39	44	46	50	50	52	52	50	52	56	57	56	56		1-3/4	8.6	95	Door	TL 63-183
51	Tin	neble 36	end 1	nigh	dens 44	ity (core	wit 49	n har	dwoo	od su 51	rface	es 35	5-7/8 55	x 8	3-3/	4 inc 62	h	1-3/4		<u>.</u> 45	Sound Retardant Door	RAL TL 64-183
51	Do	uble 43	, fu	11-p	erime 79	ter (compo 51	osit 48	e sea	uls a	itja 55	mbs,	head	1, ar 57	ıd si 56	.11	49		2-1/2	21.9	95	Flush Acoustical Door	RAL TL 63-312
			4.5	45	4)	21	51	•	50	51	55		21	2,	20	20	- ,					Fluch	
53	Do	uble 32	, fu 40	11-p 44	erime 46	ter 1 47	neop: 47	rene 48	seal 50	s at 51	јат 53	ibs, 1 55	head, 58	anc 61	sil 62	.1 62	63		4	23	95	Acoustical Door	RAL TL 67-3
60	Me	tal (40	door 38	43	48	50	54	56	56	58	60	61	64	68	68	71	71	74	8	45	95	Flush Acoustical Door	Kal 704-4
62	Two	50 50	3/4 : 55	inch 50	meta 56	1 doo 57	ors v 56	vith 59	fram 60	ness 65	epar 67	ated 65	by 7 61	' inc 60	hai 65	r sp 67	ace 70		10-1/2	8.6	95	Tandem Flush Acoustical Door	RAL TL 63-182
	20	gau	ge si	kins	, ste	el g:	rid,	sou	nd de	aden	ned.	Siz	es to	53 f	it 6	inch	x 7	ft					<i></i>
	۷.	22			21			36			38			32			33		1-3/8	4.5	54	rresidential Door	DSP-25T

267

.

.

-

Concrete Subfloor with a Finish Floor Cover

A Floor with Wood Support Structure and a Carpet Cover

CATEGORY 21. FLOORS

Materials used for basic floor structures are concrete, wood and metal. Floor coverings include tile, wood, or carpet. Acoustic measurements on floors are either sound transmission (STC or NR) or sound impact (INR or IIC) tests. The latter procedure is performed with a calibrated tapping machine.

Concrete floors are typically heavy and provide a good transmission barrier, but they are efficient transmitters of tapping sounds. The tapping sound transmission can be reduced significantly by using carpets, pads, and insulation filled cavities.

Organizations contributing data to this table are: 55, 75, 103, 109, 113, 129, 144, and 145.

CAUTION

- 1. THE PRODUCT LISTED IN THE TABLE MAY ONLY BE A FLOOR ACCESSORY BUT IT WAS TESTED IN A FLOOR SYSTEM AND, HENCE IS LISTED IN THIS TABLE.
- 2. FOR IMPACT DATA, THE VALUES SHOWN ARE SOUND PRESSURE LEVELS GENERATED IN A ROOM BELOW WHEN THE STANDARD TAPPING MACHINE WAS OPERATED ON THE FLOOR COVERING. SEE PAGE 88 FOR FURTHER EXPLANATION.

GLOSSARY

Wood Joists: Parallel timbers that support the planks of a floor

- Standard Carpet and Pad: 44 oz per square yard Gro-Point carpet with 40 oz per square yard hair felt pad (see page 66).
- Floor Deck: A platform or a surface covering the structural framework to form a floor.

	T	rans	miss	ion 1	Loss,	dB	(upp	er l	ine)	Imp	act	Nois	e Le	rel,	dB	(lowe	r lin	ne)	80				
STC IIC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	ZH 007	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	7000 Hz	5000 Hz	Thicknes (in.)	Density (1b/ft ²)	Company	Product	Reference
46 78	Can	rpet ch wo	and	pad, joist	1/2 s 16	inc inc	h Fin h on	r-Tez	c car ter.	pet 1/2	boar inc	d, 5, h Nu	/8 ir 11-A-	ch p Fire	lywc gyr	ood, sum	on 2 board	x 10 on					
	re: 42	sili 26 42	25 41	chanr 31 42	nels 38 34	unde: 38 34	rnea 44 28	th. 47 24	51 22	55 16	62 12	69 11	70	72	73	76	76				75	Wood Joist Floor	KAL
6	18	incl	Tri	ıs jo	oist	cavi	ty w	ith :	5/8_i	nch	plyw	ood,	1-5/	8 ir	ich o	oncr	ete,	and					
Z	sta	anda: 63	rd ca	arpet	 48	pac	on	 39	2/8	inch	gур 33	sum	oard	 25	DOCT	om.			20-1/2	. -	129	Trus Joist	KAL 224-38-65 224-37-65
• <u>7</u> • 5	14 and box	inci 1/8 ard.	n Tru 3 ing	ıs Jo ch vi	oist nyl	cavi tile	ty w: on 1	ith 3 top.	3/4 i Res	nch ilie	plyw nt cl	ood, hanne	1/4 21 wi	inch th 5	unc 73 i	lerla .nch	yment gypsu	m					
	500	30 74	32 75	35 73	36 71	39 69	42 63	45 57	47 52	50 47	52 45	52 45	51 48	47 52	50 49	59 44	65 40		16-1/4		129	Trus Joist	CKAL 7212-04
.7 .4	1/1 woo cer	l6 in od su	nch ubfla 1	vinyl por, /2 in	asb R-11 Nch N	esto ins ull-	s til ulat: A-Fin	le, f ion b regy	5/8 i batt ypsum	nch on 2 boa	plyw x 1 rd or	ood u 0 ind n res	under ch wo silie	layn od j nt c	nent, oist chann	1/3 s 16 els	inch inch benea	ply- on th.					
	70	27 71	33 71	36 70	35 72	38 72	41 72	44 69	47 67	51 64	51 58	54 53	57 50	59 46	61 45	57 47	60				75	Wood Joist Floor	CKAL
8	14 inc bot	inch ch pl ttom.	n Tru ywod	us Ja od on	ist top	cavi . Re	ty wi esili	ith 3 ient	3/4 i chan	nch nel	plyw with	ood, 5/8	resi inch	n pa gyp	per, sum	and boar	3/8 d on						5.4
		26 50	31 42	34 36	37 34	41 30	45 26	49 24	51 18	52 17	53 14	53 11	52 12	48	47	52	56		16-1/4	7.5	129	Trus Joist	RAL TL70-48 IN70-7
-8 5	14 car on	inch spet bott	and	ıs Jo pad	oist on t	cavi op.	ty wi Resi	ith l ilier	L-3/4 ht ch	inc anne	h fla 1 win	oor d th 1,	iecki /2 in	ng a ch g	ind s gypsu	tand m bo	ard ard						
		2ð 45	28 39	36 35	38 31	40 32	41 26	47 26	51 22	55 15	60 15	63	66	72	71	71	72		16-1/2	8.9	129	Trus Joist	KAL 858-3-70
43 71	14 and gyl	inch i 1/2 psum	Tru ind boar	is Jo ch pa cd on	ist Irque bot	cavit t flo tom.	ty wi	ith 3 ng or	3/4 i n top	nch . R	plywe esil:	ood, i en t	1/4 chan	inch nel	and	տոժ Ե 5/8	oard, inch						
		30 77	34 74	34 73	37 72	39 72	43 68	45 66	47 62	50 58	51 57	52 56	52 58	49 62	51 61	57 52	64 45		16-5/8		129	Trus Joist	CKAL 7212-01
48 39	Cei fit ply 3-1	iling ber s wood l/2 i	g 1/8 strip I sub .nch	B inc os or ofloc insu	ch ve joi or or lati	neer sts. 2 x on.	plas Flo 12 i Fiel	ster bor 1 inch ld te	on 1 1-1/2 wood sted	/2 i inc joi	nch j h ce sts :	gypsu llula spanr	um la ar co ning	th p ncre 11 f	lus te c t 6	1/2 n 1/ inch	inch 2 inc with	glass h	5				
	28 70	25 70	28 72	37 69	37 72	42 74	44 73	46 72	49 71	51 68	53 65	57 65	60 64	60 64	60 63	62 61	67	68			144	"F" Floor	BBN P.N. 166338
49 66	14 ind bot	inch ch pl	i Tri .ywod	is Jo od on	ist i top	cavil . Re:	:y wi sili€	ith 3 ent c	3/4 i chann	nch el w	plyw ith 1	ood, 1/2 i	resi Inch	n pa gyps	iper, ium b	and loard	3/8 on						
		28 49	28 45	30 42	33 44	36 39	41 33	45 29	48 22	52 16	55 11	57	58	58	54	56	62		16-5/8	9	129	Trus Joist	RAL TL70-53 IN70-8
49 78	Can ins Nul	rpet sulat Ll-A-	and ion Fire	pad, batt gyp	1/2 on sum	incl 2 x 2 board	i Fin 10 in 1 on	r-Tex nch w resi	c car vood llien	pet jois t ch	boar ts li anne:	d, 5, 6 inc 1s ur	(8 in ch on idern	ch p cen eath	lywc ter.	ood 1/	R-11 2 inc	h					
	42	33 37	29 36	38 32	37 31	37 30	45 22	51 19	57 17	61 12	65 11	71	75	77	77	74	75				75	Wood Joist Floor	KAL
49 46	l/l boa joi cha	16 in ard, ists annel	ich v 1/2 16 i .s ur	vinyl inch Inch Idern	asb ply on c leath	esto: wood enter	s til subi r. l	le, 3 floor l/2 f	3/8 i c, R- Inch	nch 11 i Null	part nsul -A-F	icle atior ire g	boar bat gypsu	d, 1 tor mbc	/2 i 2 x ard	nch 10 on r	gypsu inch esili	m wood ent					
	70	31 70	34 70	35 67	38 71	40 71	43 69	46 66	47 63	48 59	51 54	55 49	59 45	62 42	62 44	62 44	65				7'5	Wood Joist Floor	CKAL
50 65	14 sta boa	inch andar ard o	Tru d ca	is Jo arpet ottom	ist and	with pad	rock on t	wool	bat Resi	ts. lien	1-3, t cha	/4 ir annel	nch f . wit	100r h 5/	dec 8 in	king ch g	with ypsum						
		32 45	30 38	38 33	42 27	38 28	43 15	48 19	51 18	55 15	61	65	68	72	75	75	75		16-1/2	9.7	129	Trus Joist	KAL 858-5-70

Table 21A. Floors (transmission and impact).

Table	21A.	Floors (transmission	and	impact) continued.

	T	rans	miss	ion	Loss,	dB	(upp	er li	ine);	Im	pact	Nois	e Lev	vel,	dB	(lowe	r lin	e)				······································	-,
STC TIC	2H 00	25 Hz	50 Hz	20 Hz	50 Hz	15 Hz	00 Hz	00 Hz	30 Hz	00 Hz	2H 000	250 Hz	500 Hz	ZH 000	500 Hz	150 Hz	200 Hz	ZH 000	nicknes (in.)	ensity lb/ft ^Z)	ompany	Product	Reference
49 50	1/2 boa	l6 i: ard, Lsts	nch 1/2 16	viny incl	l ast h ply on c	m pesto wood cente	s til sub	le, 1 floor Two 1	3/8 i r, R- Layer	mch 11 5 1	part insul /2 in	icle ation	boan baa	rd, t or A-Fin	1/2 : 1 2 3	inch 10 psum	gypsu inch boar	m wood d	Ę	AC 	- <u></u>		
	on 64	res 32 63	ilie: 36 65	nt cl 39 63	hanne 40 66	els un 41 66	nde 11 43 65	1eath 45 63	1. 45 61	49 59	52 55	54 49	58 46	61 41	60 41	61 41	63				75	Wood Joist Floor	CKAL
50 44	2-1 si	L/2 Lien	inch t un	thi der 1	ck ce aymen	11u1a t, 1	ar co /2 in	oncre	ete i olywo	in wa	aterp subfl	roof	membon 2	x 12	2, 1, inc	/2 in ch wo	ch re od jo	- ists					
	wit lat 31	th 3- th. 33	-1/2 33	incl 37	n ins 37	ulat: 43	ion. 45	Cei 44	iling 49	s, 1, 55	/2 ir 59	ich p: 63	laste 61	er on 61	1 3/8 62	66 66	h gyp 70	sum 71					BRN P N
	74	69	72	71	69	69	69	71	67	62	58	57	57	55	50	45			•-		144	"B" Floor	166338
50 44	1-1 und 3-1 1a(l/2 ierl L/2 th s	inch ayme inch tapl	cel nt, ins ed t	lular 1/2 i 11ati 0 joi	nch j .on. .sts.	crete plywo Ceil Fie	e on ood s ling, eld t	wate subfl 1/2 teste	oor ind	oof m on 2 ch pl	embra x 12 aster	ne, ind on	1/2 2h wo 3/8	inch od inch	n res oist gyp	ilien s, sum	t					
	26 69	28 64	31 68	37 66	40 67	43 67	45 68	47 68	52 64	53 64	56 62	60 62	60 63	61 62	63 59	67 53	71	70		•	144	"C" Floor	BBN P.N. 166338
51 44	2-1 1/2 woo	l/2 2 in od j	inch ch r oist lat	thi esil s, 3 h st	ck as ient -1/2 apled	phal unde inch	tic g rlayı insu joist	gypsu ment, ulati ts.	um cc 1/2 lon. Fiel	ncre inc Ce: ld te	ete c ch pl iling ested	n wat ywood , 1/2	erpi sub ind	coof ofloo ch pl	memt or or laste	rane 12 x er on	,12 i 3/8	nch inch					
	25 70	31 68	33 69	38 68	40 69	44 68	44 67	46 69	51 65	58 63	60 59	62 58	63 59	61 60	62 56	64 49	69	72			144	"A" Floor	BBN P.N. 166338
<u>51</u> 53	1-1 und ins	L/2 derl sula	inch ayme tion	cel nt, . Ce	lular 1/2 i iling	con nch ;, 1/2	crete subf 2 inc	e on loor ch pl	wate on 2 laste	rpro x	oof m L2 ir 1 3/8	embra ich wo incl	ne, od j gyp	1/2 joist sum	inch s, 1 lath	n res 3-1/2 n. Fi	ilien inch eld t	t ested					
	27 67	31 65	31 67	39 66	39 67	42 66	47 68	48 67	51 63	53 60	56 57	60 57	59 56	59 53	60 48	64 44	66	68			144	"D" Floor	BBN P.N. 166338
51 63	Can ind 16 und	rpet ch p incl	and lywo h on eath	pad od si ceni	, 1/2 ubflo ter,	incl or, 1 1/2 :	h Fin R-11 inch	r-Tex insu Null	c car ulati L-A-F	pet on l ire	boar batt gyps	d, 1, on 2 sum bo	2 in x 10 ard	nch g) ind on 1	gypsu ch wo resil	m bo od j ient	ard, oists chan	1/2 nels					
	57	30 53	35 45	39 38	39 34	39 29	45 26	49 24	55 20	55	57	59	65	68	70	70	70				75	Wood Joist Fleer	CKAL
52 51	14 51a 1/8	incl inke in	h Tr ts. ch v	us Jo 3/4 invl	int inch tile	cavi ply	ty wi wood	ith t with Resi	wo 1 mas	ayen tic	rs of laye	1-1/ rs, 1	2 ir /4 i	nch s inch	sound unde	i att rlay gvps	enuat ment um bo	ion and ard					
	on	bot 24	tom. 38	38	42	43	46	49	50	53	56	58	62	61	63	67	68				100		CKAL
52	14	68 incl	6/ h T r i	68 us J	65 Dist	63 cavi	58 tv w:	51 ith r	44 :wo 1	39 ave	3/ rsof	35	33 /2 ir	3/ nch i	37 sound	39 Hatt	28 enuat	ion	16-1/4		129	irus Joist	/212-03
51	bla 1/2 boa	inke in ird	ts. ch p on b	3/4 arque ottor	inch et fl n.	oorii	wood ng or	with n top	n mas b. F	tic Resi	laye Lient	rs, char	1/4 i mels	inch and	unde 15/8	erlay 3 inc	ment h gyp	and sum					
		34 68	37 67	39 68	40 65	44 64	45 60	48 58	50 52	53 47	56 45	59 42	63 41	62 45	65 42	67 41	69 33		16-5/8	•	129	Ťrus Joist	CKAL 7212-02
53 69	14 5/8 gyr	incl incl sum	h Tri ch m boa:	us Jo astio rd bo	oist cal g ottom	cavi ypsur	tywi ncor	ith 3 hcret	3/4 i te on	nch top	plyw D. F	ood, esili	15] .ent	lbas char	sphal inel	ted and	felt 5/8 i	and nch					DAT
		33 70	37 69	37 67	43 66	46 67	50 65	54 62	57 62	59 61	60 62	60 61	58 64	52 69	52 70	59 63	65 56		16-1/2	11.9	129	Trus Joist	TL 70-1 IN 70-2
55 42	1-1 inc 1/2 cli	/2 : h wo ind	inch ood h p Fie	thio joist laste ld te	ck ce is sp er on ested	llula annir 3/8	ar co ng ll inch	oncre l ft) gyp	ete o 6 in Sum	n 1, ich w lath	/2 in vith n con	ich pl 3-1/2 necte	ywod ind d to	od su ch in joi	ubfla isula ists	or, tion with	2 x l . Cei resi	2 ling, lient					
	41 56	45 54	43 61	42 61	43 61	47 65	49 66	50 67	52 67	55 64	58 63	59 63	60 63	60 64	60 61	65 57	68	68			144	"E" Floor	BBN P.N. 166338
58 55	2 x 1/2 flc	10 ind	incl ch so	n woo ound ring	d fl dead on t	oor ening	joist g boa Resil	is wi ard, lient	thg 1/2	lass inch	s fib n ply l wit	er ir wood h 5/8	sula unde inc	tion rlay	n. 3/ Ament Apsum	'8 in ;, an n boa	ch pl d vin rd bo	ywood yl ttom.					
		36	42	43	47	49	52	55	58	61	66	70	71	71	70	74	75		10 14	10.0	1/5	Vinyl Finish Plas	RAL TL70-72

				Ta	ıb1	e 2	1A	•	Flo	oor	S	(tr	ans	smi	ss	ion	an	d i	impact	:) co	oncl	uded.	
	T	ranst	iss:	ion I	.oss,	dB	(uppe	er li	ne)	Imr	act	Noise	Lev	vel,	dB	lowe	r lir	<u>ie)</u> '	-				
STC	μz	Hz	Hz	Ηz	Hz	Ηz	Ηz	Ηz	Hz	Hz	zH (T Hz	zH I	zH (I Hz	zH (zH (zH (knest n.)	ft ft	any	Product	Reference
110	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	This (1	Den (1b/	Comp		
58 42	14 an	inch d pad	Tru	is Jo top.	ist 1/2	cavi incl	ty w: h gyp	ith 1 osum	- 3/4 boar	inc d or	h fl bot	oor d tom.	lecki	ing	and s	stand	ard o	arpe	t				<u> </u>
		22	21	30	35	35	38	45	47	52	56	61	65	66	69	70	71						KAL
		56	51	48	40	40	39	32	32	27	23	19	18	16	15	15			16-1/2	8.8	129	Trus Joist	858-1-70
58 80	14 on	inch top.	Tru Res	ıs Jo sili€	ist nt c	with hanne	3/4 el w:	inch ith 5	n ply 6/8 i	wood .nch	l and gyps	1~5/ um bo	'8 in ard	on l	light	weig m.	ht co	ncre	te				
		39	40	43	47	51	54	57	57	57	59	64	66	65	64	69	74						RAL TL70-44
		40	33	27	25	22	19	17	12	12	12	11	9						17-1/2		129	Trus Joist	IN70-6
60 72	14 15 si	inch lb a lient	Tru spha	is Jo alted annel	ist I fel . and	with t, an 5/8	2 in nd 5, inch	nch t /7 ir	hern hch n	afib asti boar	er i cal d on	nsula gypsu bott	tior m cc	n, 3 oncre	/4 ir ete d	nch p on to	lywoc p. F	od te-					
		39	45	45	49	52	54	57	60	63	67	70	70	65	63	69	77						RAL TI.70-9
		41	34	27	23	22	18	14	10	7	7								16-1/2	12.3	129	Trus Joist	IN70-4

Table 21B. Floors (transmission loss).

							Tr	ansm	issie	on Lo	oss,	dB							_				
STC	Hz	Ηz	zH	Ηz	μz	Hz	Ηz	zH	Ηz	Hz	zH (, Hz	ZH (zH () Hz	ZH (zH (ZH (kness n.)	sity ft ²)	any	Product	Reference
	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	Th to (1	Den (1b/	Com		
44	2) 100 1-5	x 10 op ca 5/8	inch arpen	n woo Ce Iso	od jo eilin Schau	ists, g. 4 um foa	. 5/ mil m, 5	8 inc poly /8 ir	h pl vethy ich g	ywoo lene ypsu	d, 4 she m bo	0 oz et, ł ard.	hair ourla	fel p to	t pa woo	nd, 4 od st	4 oz rippi	wool ing,				Iso Schaum	KAI.
		27	24	26	31	34	39	46	51	56	61	76	70	72	71	71	66				109	Foam	610-1-68
46	8 i acc	inch oust:	sect ical	ion, soff	4 f it,	t wi cores	de no	cond t fil	rete led.	pla	nk,	three	e cav	viti€	es, r	io to	pping	ς,					RAL
	32	32	33	33	34	38	39	44	47	45	44	46	51	57	58	60	64	67	8	45	113	Concrete plank	TL68-249
46	8 i 1/2	inch 2 ind	sect ch ir	ion, sula	4 f ation	t wid boar	le co d,	oncre 1/2 i	te p .nch	lank wood	, no par	top; quet	floc	acor, c	ousti cores	cal not	soffi fill	it, led.					RAL.
	33	32	32	36	34	38	41	45	47	45	43	46	55	62	66	68	72	74	9	45	113	Concrete plank	TL68-292
50	4 ; 2 i	x 8 f inch	t by slur	8 i np cc	nch c incre	concr	ete	slab	(ho	llow	core) wi	th w	et b	otto	m lay	ver o	f					INTEST
		32	35	39	38	41	43	47	49	52	52	53	52	57	60	62	63		8	50	113	Concrete plank	5-346-1
55	3 i gyp	inch Sum	20 g boar	auge d or	ste res	el de ilien	ck i it cl	vith nanne	2-1/	2 in	ch c	oncre	ete.	Ceil	ing,	5/8	incl	1				3"H Hi-Bond	RAL
	35	35	37	39	44	48	50	53	55	58	60	63	62	59	61	65	67		6-7/8	51.2	71	Floor Deck	TL74-122
56	3V- 1/2	-32 2 2 ind	20 ga ch gy	uge psum	stee boa	l dec rd on	k wi res	ith 3 silie	inc nt c	h li hann	ghtw els.	eight	con	cret	.e. (eili	ng,					3V-32 Hi-Bond	RAL
	35	36	38	41	44	49	51	53	55	57	59	62	63	65	62	60	66	68	3-1/2	51	71	Floor Deck	TL73-216
59	6 i 5/9	inch	20 g	auge	ste	el de	ck v	vith	4 in	ch l	ight	weigh	nt co	ncre	te.	Ceil	ing,						
	40	41	8) 44	43	47	50	53	56	59	63	65	68	68	68	67	68	69	·69	11-1/2	60.5	71	6"H Hi-Bond Floor Deck	RAL TL74-66

Table 21C. Floors (impact level).

							In	pact	Noi	ioise Le		dB							60	_			
110	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	5000 Hz	Thicknes (in.)	Density (lb/ft2	Company	Product	Reference
33	2 : in 79	x 10 cav 76	incl ity, 85	h jo: impa 86	ists, act on 82	5/8 3/3 82	inch 12 in 83	so 80	wood lexi 77	. Ce -Flo 74	iling or bo 68	g, 5, 5th s 65	/8 in sides 62	ich g 3. 61	3 yps 1 62	um, i 55	nsula	tion	10-3/4	7.1	103	Flexi-Floor	RAL IN76-1
42	8 so fi 71	inch ffit lled 70	sect 1/2 bot 72	tion 2 ind ttom 75	, 4 fi ch ins paint 76	t wic sulat ted. 75	le pr ion 74	estr boar 71	esse d, 1 68	d co /2 i 65	ncrei nch v 64	te p] wood 62	lant, parq 52	no luet 44	topp floo 42	oing, or, co 37	acou res r 32	istica iot 30	1 9	45	113	Concrete plank	RAL IN68-4
48	1-1 uno 3-1 jo: 71	l/2 : derla L/2 : lb/yo ists 65	inch aymer inch 12. Fi 68	cell nt, 1 insu Ceil ield 65	lular 1/2 in 1latio ling, teste 67	conc nch p n an 1/2 ed. 66	rete lywo d co inch 67	on od s veri pla 67	wate ubfl ng o ister 63	rpro oor f .0 on 61	of me on 2 7 inc 3/8 : 58	mbra x 12 ch th inch	ine, inc ick gyps 53	1/2 th wo viny sum 1 48	inch od j 1/fc lath 38	res oist am/f stap 28	ilien s wit elt, led t	it h			144	"C" Floor	BBN 166338
48	1-1 und ind	1/2 : derla ch in	inch aymen nsula	cci. nt, i	iuiar 1/2 in n, wit	conc nch s	rete ubfl veri	on oor	wate on 2 07 i	rpro x 1 nch	of me 0 inc thick	embra ch wo	ane, ood j nyl/f	1/2 oist	inch s wi felt	res th 3	ilier -1/2 1b/y	rt rd ² .					
49	Ce: 62 2-	62 62	8, 1, 69	/2 11 68 thi	nch p. 68 ck ast	68 68	er on 67	68 075	65	h gy 60 ncre	psum 56 teor	1atr 53	1. F1 48 vater	41	test 33	26 26	ne.				144	"D" Floor	BBN P.N. 166338
	1/2 woo vii la 68	2 ind od jo nyl/i th si 66	ch re bist foam, taple 67	esil: s with felt ed to 66	ient (th 3-1 t 2.4 b jois 67	inder L/2 i 1b/y sts. 66	laym nch d ² . Fiel 65	insu Ceil .d te	1/2 lati ing, sted 61	inc on a 1/2 59	h ply nd co incl 54	wood overe n pla	l sub ed wi aster 48	floc th . on 44	07 j 07 j 3/8 37	inch 25	12 i thick gyps	nch um			- - 144	"A" Floor	BBN P.N. 166338
49	1-1 un 3-1 2.8 to 68	1/2 : derla 1/2 : 3 15, jois 64	inch aymen Inch /yd ² sts. 67	cel nt, insu Fie 66	lular 1/2 in ulatio eiling 1d tes 66	conc nch p on, c g, 1/ sted. 65	over 2 in 65	on od s ing ich p 65	wate ubfl of v last 58	rpro oor inyl er o 56	of me on 2 /foar n 3/8 51	embra x 12 n/fel 3 inc 45	ane, 2 inc 1t .1 2h gy 40	1/2 ch wo 05 i psum 30	inch od j nch 1 lat 23	res oist thic thic thic	ilien s wit k at apled	it ih			144	''C'' Floor	BBN P.N. 166338
49	1-1 und 3-1 4.1 to 67	1/2 : lerla 1/2 : 25 11 join	inch aymer inch o/yd' sts. 68	cel nt, 2 insu Fie 66	lular 1/2 in ulatio Ceilin 1d te: 66	conc nch p on ar ng, 1 sted.	rete lywo d cc 1/2 i 65	on od s overi .nch	wate ubf1 ng o plas 60	rpro oor f vi ter 56	of me on 2 nyl/i on 3,	embra x 12 foam/ /8 in 45	ane, 2 inc /felt nch g 40	1/2 ch wo : .14 gypsu	inch od j 0 ir 1m la 25	i res oist ich t ith s 18	ilien s wit hick taple	it ih at id			144	"C" Floor	BBN P.N.
50	1-1 un 3-1 Ce:	1/2 : derla L/2 : Lling	inch aymen inch g, 1,	cel nt, insu /2 in	lular 1/2 in ulatio	conc ich p on, s laste	rete lywc semis	e on bod s shag 1 3/8	wate ubfl nylo inc	rpro oor n cu h gy	of me on 2 t pi psum	embra x 12 le 1 lath	ane, 2 inc inch n sta	1/2 ch wo n on upled	inch od j jute	n res oist bac jois	ilier s wit king. ts.	it h					
	F1. 70	eld 1 67	testi 69	ed. 68	64	60	56	54	47	40	34	26	24	21	19	17					144	"C" Floor	BBN P.N. 166338
50	1/2 une 3-2 3.2 to 70	1-2 i derla 1/2 : 5 15, jois 65	inch aymen inch /yd ² sts. 67	cel nt, insu Ce Fie 62	lular 1/2 in ulatio eiling eld te 59	conc nch p on, vi 3, 1/ ested 54	rete lywc nyl 2 in 1. 45	on ood s cove ich p 38	wate subfl ring last 33	rpro oor of er o 27	of me on 2 viny: n 3/8 22	embra x 12 1/foa 3 inc 16	ane, 2 inc am .2 ch gy 16	1/2 ch wo 25 ir 7psun 13	incl ood <u>d</u> nch t n lat	n res joist hick h st	ilier s wit at apled	it h			144	"C" Floor	BBN P.N. 166338
50	1-1 und in: 2.1	L/2 i ierla sulat B lb, sted	inch aymer ion /yd ²	cel: nt, 1 and Ce	lular 1/2 in with eiling	conc nch s cove g, 1/	rete subfl ring 2 in	on loor of ich p	wate on 2 .105 last	rpro x 1 inc er o	of me 2 inc h th: n 3/0	embra ch jo ick v B ino	ane, Dists Vinyl Ch gy	l/2 swit l/foa /psum	inct th 3, am/fe n lat	res 1-2 1t a	ilier inch t Field	it İ					BBN P.N.
50	62 1-3	63 1/2	67 inch	66 cel:	66 lular	66 conc	65 rete	64 on	59 1/2	53 inch	47 ply	39 700d	33 subf	27 [1001	21 r, 2	17 × 12	inch!	2			144	"D" Floor	166338
	yo jo: lb, vi; 53	od jo ists /yd ² a res 53	and Cesilie 60	s spa with eilin ent o 60	anning n a co ng, 1, clips. 62	g [l overi /2 in Fie 63	ft 6 ing o ich p ild t 63	inc of .0 last este 64	n wi 17 in er o d. 64	th 3 ch t n gy 61	-1/2 hick psum 59	inch viny lath 56	n ins y1/fc n cor 54	sulat pam/f inect 51	tion felt ted t	betw at 2 o jo 38	veen .4 bists				144	"E" Floor	BBN P.N. 166338
53	.14 gyn in	4 ind osum ch w	ch fo boar	oam-l rd, jois	backed 1/2 in ts 16	i vir nch p inch	ivl s lywc i on	heet od s cent	ubf1	8 in oor, Two	ch pa R-1 lave	artio l ins ers l	ile t sulat 1/2 i	ion inch	i, l, batt Nul:	2 in on L-A-F	ich 2 x 1 Tire	.0					
	8.⊻1 63	psum 64	65	62	64	63	60	52	44	39	32	27	25	19	19	18					75	Wood Joist Floor	CKAL

273

•. •

Table	21C.	Floors	(impact	level)) concluded.
			(~ ~ ~ ~ ~ ~ ~		

.

		Impact Noise Level, dB																					
IIC	ZH OC	25 Hz	60 Hz	00 Hz	50 Hz	15 Hz	zH 00	ZH OC	30 Hz	2H 00	2H 000	250 Hz	500 Hz	2H 000	500 Hz	150 Hz	2H 000	200 Hz	hickness (in.)	ensity lb/ft ²)	ompany	Product	Reference
	ā			Ñ.	<u>ہ</u>		3		<u>.</u>	ã	_=			5	نة 2	<u></u>	4	- 2	F	<u> </u>	ŭ		
53	Ca: ce 1/: Ce: 64	rpet 11u1 2 ir i1ir 63	ich s ich s ig, 1 66	semis oncre ubflo /2 in 64	shag ete c por c nch p 63	nylor n wat n 2 x laste 60	n cut terpr k 12 er on 57	pil oof inch 3/8 54	e on memb woo inc 46	a j rane d jo h gy 38	ute , 1/ ists psum 30	back 2 ind with 1 ath 24	62 c ch re n 3-1 n. Fi 18	oz/yc sil: L/2 : Leld 15	d ² . ient inch tes 11	l-1/ unde insu ted. 8	2 in rlay lati	ch nent, on.			144	"D" Floor	BBN P.N. 166338
55	Can bac 1-1 unc 3-1	rpet ckir 1/2 der1 1/2 th s	of cell ayme inch tapl	tight erall ular nt, l insu ed to	tly w l sur conc l/2 i ulati o joi	oven face rete nch p on. sts.	nylo weig on w lywo Ceil Fie	n lo ht o ater od s ing, ld t	op p f 69 proo ubf1 1/2 este	ile oz/ f me oor inc d.	on ₂ 3 yd ² , mbra on 2 h p1	/16 : pile ne, : x 12 aster	inch e hei 1/2 i 2 inc 7 on	thio ight inch in wo 3/8	ck fo 7/64 res od j incl	oam r 4 inc ilien oists h gyp	ubbe: h. t s wit sum	r h					BBN P N
	65	59	56	53	47	41	34	29	24	21	18	16	12	10	9	9					144	"C" Floor	166338
55	l-: ind joi Cei cl:	l/2 ch w ists ilin ips.	inch ood and g, l Fie	cell joist with /2 ir ld te	lular ts sp n a c nch p ested	conc annin overi laste	rete ng 11 ng o r on	on ft f.1 gyp	1/2 6 in 05 i sum	inch ch w nch lath	ply ith thic con	wood 3-1/2 k vir necte	subf inc yl/f ed to	loon h in oam, joi	r on nsula /fel1 ists	2 x ation t at via	12 betv 2.8 resi	veen ₂ Lb/yd ² . Lient					BBN P.N.
	52	54	61	60	62	61	60	61	59	52	48	41	36	32	29	24					144	"E" Floor	166338
57	Can al ce 1/1 ins to	rpet 1 su 1 lul 2 ir sula joi	of ar c ch p tion sts.	tight e wei oncre lywoo Ce Fie	tly-w ight ete c od su eilin eld t	oven of 64 n wat bfloc g, 1/ ested	nylo oz/ erpr or on 2 in 1.	n lo yd ² , oof 2 x ch p	op p pil memb 12 last	ile e he rane inch er o	on a ight , 1/ woo n 3/	unit is 1 2 ind d joi 8 ind	cong 3/16 ch re ists ch gy	back incl sili with with	king n. ient n 3-i n 1a	and 1-1/2 unde 1/2 i th st	an o incl rlayn nch apleo	ver- n nent,					BBN P.N.
	63	61	60	57	52	48	42	38	32	25	18	16	12	10	9	8					144	"C" Floor	166338
57	40 wat sub 1-1 63	oz terp oflo L/2 55	hair roof or o inch 51	and memb n 2 x plas 46	jute orane (12 ster (40	pad , 1/2 inch on 3/ 33	on a inc wood 8 in 28	flo h re joi ch g 24	or o sili sts ypsu 18	f l- ent with m la 16	1/2 unde 3-1 th s 13	inch rlayn /2 ir taple 12	cell ment, ich i ed to 9	ulan 1/2 nsul joi 8	t con 2 ind Latio 1sts. 6	ncret ch pl on. C Fie 5	e on ywood eilin ld te	i ng, ested.			144	"C" Floor	BBN P.N. 166338
ö	5/8 ing 1-5 Tes	8 in ch c 5/8 sted	ch t arpe inch to	hick t. Ce cavi ISO F	plyw ≥ilin Lty f R140-	ood, g, 4 illed 1960.	40 o mil wit	z ha poly h Is	ir/f shee o Sc	elt ; t, w haum	pad, ood foa	44 c strip m, 5/	oz wo oping '8 ir	ool] ;, bu ich g	loop urlag gypsu	pile str m bo	1/4 ips, ard.				109	Iso Schaum Foam	KAL 610-2-68
59	Car R-1 1/2 61	rpet 11 i 2 in 57	and nsul ch N 53	pad, ation ull-A 47	, 5/8 h bat A-Fir 43	inch t, on e gyp 39	ply 2 x sum 34	wood 10 boar 32	und inch d on 24	erla woo res 24	ymen d jo ilie 19	t, 1/ ists nt ch 20	2 in 16 i Nanne	nch p nch ls u	olywa on a under	ood s cente rneat	ubflo r. h.	DOT,			75	Wood Joist Floor	CKAL
60	Car cel spa 1/2 Fie	rpet llul anni 2 in eld	of ar c ng l ch p test	semis oncre l ft laste ed.	shag ete o 6 in er on	nylon n 1/2 ch wi gyps	t cut inc th 3 um 1	pil h pl -1/2 ath	e on ywoo inc conn	a ju d sul h in ecte	ute bflo sula d to	back or or tion jois	62 c 1 2 x betw sts v	nz/yc 12 ween via n	inch jois resi	1/2 n woo sts. lient	inch d jo: Ceil: clip	ists ing, os.					BBN P N
	54	54	60	57	57	55	50	48	43	36	28	20	16	13	11	7					144	"E" Floor	166338.
70	8 i sta 49	inch Inda 50	sec rdc 44	tion, arpet 41	4 f and 42	t wid pad, 39	le co cor 40	ncre es n 36	tep otf 25	lank ille 33	, no d, p 29	topp ainte 23	ing, ed bo 19	aco ottom 10	oust: n. 8	ical 9	soff	it,		45	113	Concrete Plank	RAL IN68-5
	Car clc pap	pet sed er,	pad cel 3/8	and l exp inch	soun ande thi	d con d pol ck. I	veth	1/8 ylen 60.	inc e an	h ma d on	stic the	core othe	e fac er si	ed o .de w	on or vith	ne si crep	de w: ed k:	ith raft			40	dba spec Carpet Pad	CR GL-12MT
	Car wit kra	pet h c aft	pad lose pape	and d cel r, 3/	soun 1 ex 8 in	d con pande ch th	trol d po ick,	uni lyet 1 1	t, 1 hylen b/ft	/8 in ne an 2. I	nch nd o IC =	masti n the 66.	c co oth	ere f	aceo aide	l on with	one : crej	side Ded			40	dba spec Carpet Pad	CR
	Nee 5/8	edle 3 in	-pun ch),	ched coat	fibe ed a	r fel nd wa	t of ffle	var d la	ious tex :	wei; rubbo	ghts er.	and	thic	knes	ses	(1/4	to				38	Villa Hair & Jute Cushion	CR
	Nee 5/8	dle in	-pun ch).	ched	fibe ed w	r fel ith w	t of affl	var ed l	ious atex	wei; rub	ghts ber.	and	thic	knes	ses	(1/4	to				38	Cheveux Coated Hair Cushion	CR

1

Gypsum Board Wall with Twin Stud Support and Insulation

CATEGORY 22. WALLS

Walls are primarily gypsum board, masonry, wood, aluminum, or steel. Walls can be used as load carrying structures or area separation barriers. The many variations of construction offer a wide range of acoustical barrier performance.

Gypsum is the most commonly used wall material; however, walls using gypsum boards of approximately the same thicknesses (say 1/2 inch) can be erected in a variety of ways with each wall construction providing a different sound transmission loss. Most common variables in such wall construction are the number of gypsum boards, thickness of the insulation added in the cavity, additional sound deadening boards, and different stud materials and construction. Organizations contributing data to this table are: 52, 55, 59, 69, 75, 90, 91, 109, 132, 144, and 145. Related categories are panels, enclosures, operable partitions, and open plan systems.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing

Batt: Fiber wadded in sheets

Fiberglass bolt: Fiberglass roll of a given length

- Furring: The creating of air spaces with thin strips of wood or metal before adding wall bonds or plaster
- Gypsum: A hydrated sulfate of calcium. CaSO₄·2H₂O. Used for making wallboards, plaster of Paris, etc.
- Lath: Thin, lightweight structure used as groundwork for plastering, mounting tiles, etc. It may be in a form of gypsum board, perforated metal wire cloth, thin wood strips, etc.

Screw Stud: Studs on which the wall boards are attached by screws Stud: An upright piece in a frame to which boards or laths are applied
			Та	b1	e 2	2A.	•	Gy	psu	m 1	boa	rd	wa	11:	5 ((AS]	M I	E90-	-70 01	c eq	uiva	alent).	
							Tr	ansm	issi	on L	088,	dB											
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	2H (1007	5000 Hz	Thicknes (in.)	Density (1b/ft ²)	Company	Product	Reference
36	2 x gyp:	4 s suom	tuds wall	at boar	16 in dead	nch c ch si	o.c. ide	, 1/2	inc	h fi	berb	oard	each	sid	e 1,	/2 in	ch			<u> </u>		Standard Stud	
	071	17			29			37			42			45			38		4-5/8	5.3	69	Fiberboard	TL65-186
38	22 g	gaug 15	e st 18	eel 26	facin 29	ngs, 34	gla: 37	ss fi 41	ber 42	core 45	; da 48	ta re 51	ead f 52	rom 53	grap 55	oh 56	57		2-1/4		52	Acoustilead	CR L7710- 1-43M
39	Star inch boar	ndar n fu rd;	d st rrin data	eel g, 1 rea	stud incl d fro	and hgla om gr	gyp ass aph	sum b fiber	oard	con poun	stru d sh	ctior eet]	n par lead,	titi 5/8	on v ind	vith 2 ch gyp	2 x 2 osum						CR L7710-
	12	17	23	29	40	41	42	43	47	50	52	53	52	47	46	48	53	54	1-1/2		52	Acoustilead	1-43M
39	2 x	4 s 19	tuds	at	24 o 30	.c.,	1/2	inct 41	а дур	sum	boar 48	d bot	th si	des 47			42		6-5/8	6.3	69	Staggered Stud Dry Wall	RAL TL65-185
40	Stag 15	gger 22	edw 23	26	stud: 29	s, 24 30	• in 34	ch o. 40	c. f 44	aces 46	wit 49	h 1/2 51	2 inc 53	h gy 53	psun 49	n 39	43	48	6-1/2	6.2	109	Test Wall	RAL TL77-111
40	Wall fill	l of led 21	5/8 with 23	inc 180 28	h gyl Schi 34	psum aum f 35	boa: foam 34	rd, b 36	oth 40	side 41	s on 46	2 x 48	4 st 49	uds, 45	16 41	inch 44	o.c. 49			6.4	109	Iso Schaum Foa	CR m NCI 68-7
40	Cell plyw	lulo vood	se f wit	iber h 5/	s spi 8 inc	rayed ch gy	i be /psu	tweer n boa	1 5/8 1rd o	inc ther	h la sid	yer g e	gypsu	m bo	ard	and 1	l/2 i	ņch					RAL
		23	23	22	29	38	34	35	40	44	46	49	49	42	43	48	51				90	K-13	TL70-118
41	Star inch boar 13	ndar n fu rd; 20	d st rrin data 29	eel g, 1 rea 36	stud incl id fro 39	and hgla omgr 38	gyp ss aph 42	sum t fiber 41	oard , 1 44	con poun 48	stru d sh 49	ctior eet 1 52	n par lead, 50	titi 5/8 44	on w inc 43	vith l sh gyp 45	Lx2 sum 48	51	1/4		52	Acoustilead	CR L7710- 1-43M
41	Cell	lulo 21	sef 20	iber 26	s spi 33	rayed 37	i bei 38	tweer 40	1ay 44	ers 45	of 1 49	/2 ir 52	nch g 54	ypsu 53	т ba 51	bard 52	54			6.3	90	K-13	RAL TL69-131
44	3-5/ form	/8 i nald	nch ehyd	meta e fo	l stu am in	ud wi n cav	lth ! /itv	5/8 i	nch	gyps	um b	oard	each	sid	e ar	nd ure	a						
		23	24	30	32	39	40	46	49	54	58	60	59	49	46	50	56			5.1	109		KAL
44	5/8 stud	incl Is, v 20	n ty vith 28	pex Iso 33	gyps Scha 35	sum sum f 39	wall oam 43	boar 44	d - 1 48	vert	ical 50	join 50	ts, 51	. 3-5 47	/8 i 42	nch m 43	etal 48			5.4	109	Test Wall with Foam	CR NCI 68-8
46	Faci stud	ng o Is ar	of to nd b	wo l acki	ayers ng of	of two	1/2 1ay	inch vers	gyp: of 1	sum l /2 in	board nch g	i, co gypsu	re o: m boi	f 3- ard	5/8	inch	screv	J				Gvəsum	
		28	31	33	35	4	43	44	49	52	55	55	56	53	44	45	50		5-5/8	9	145	Wallboard	CR
46	Stag foam 23	gere 23	ed w 28	00d 30	studs 34	38 38	inc 42	eh o. 45	c. fi 49	aced 51	wit 54	n 1/2 56	incl 57	h gy 57	psum 54	with	Rapa 56	59	6-1/2	6.5	109	Test Wall	RAL TL77-145
46	Stag 2 x insu	gere 6 pl lati	ad s ate	tud, , on	wood e lay	l fra ver o	mep f5/	arti 8 in	tion ch gy	, 2 չ ypsum	κ4 j πboa	nch Ird e	stud: ach	s 16 side	inc , sp	h o.c ray-i	. on n					Fibron A-100 Spray-in Wall	CRISBC
		30	32	36	40	41	42	45	47	47	47	48	48	45	42	47	53		•-		55	Insulation	75-120-1A
47	2 in boar	ch t d, b 23	bich oth 33	k mi side 38	neral es of 42	fib 2-1 47	er t /2 i 50	este nch 53	d as stagg 55	bati gerec 56	ts in I met 57	al s 57	wal: tuds 56	1: 24 51	5/8 inch 48	inch 0.c. 50	gypsι 53	ım	3-3/4	5.9	59	Acoustifiber	RAL TL73-107
47	Sing chan stud inch	le m nels s lé gyp	fa fa in sum	wood cing ch o boa	stud 5/8 .c. w rd mo	inch inch ith unte	vity gyp 2-1/ d on	ins sum 4 in RC-	ulati board ch gl l res	ion, d, di lass silie	gyps irect fibe	um b att rab hann	oard ached sorpt els	wit d con tion	hre re, ,ba	silie 2 x 4 cking	nt wood 5/8	9				IISDA Unil	RA1
47	24 2 x	25 8 ir	29 ich 1	34 700d	40 jois	43 ts o	45 n 16	47	50 h cer	51 nters	52 s; Un	54 oper	52 side	46	44 1/2	40 inch	53 con-	53	5-9/32	6.36	132	(B)FPL 242	TL73-72
	cret boar	e ov d 1-	er 1/2	1/2 inc	inch h Ene	plyw rgy	ood Guar	shea d ce	thing 11ulo	g; Lo se s	ower spray	side ins	5/8 ulat:	3 in ion	ch g in j	yp sum oíst	wal	L - 2 y				France Could	CD

<u> </u>																	
STC	100 Hz 125 Hz 160 Hz	200 Hz 250 Hz	315 Hz 400 Hz	ansmis 2 H 005	sion Lo 2H 2H 0008	1000 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH CU07	5000 Hz	Thickness (in.)	$\frac{Density}{(1b/ft^2)}$	Company	Product	Reference
}	Cellulose f inch metal 24 31	ibers spri studs, fa 35 36	ayed on ced both 39 43	interi n sides 47 5	or of with 0 52	gypsum 5/8 inc 53 5	board h gyp 5 55	part sum be 52	ition bard 51	n, 1- 53	5/8 55		3	6.3	90	K-13	RAL TL69-171
	5/8 gypsum board on 2– 24 29	board, l j 1/2 inch : 38 40	pound sh steel st 43 45	neet le tuds; d 48 5	ad, 2 ata re 2 53	inch gl ad from 54 5.	ass f grapi 5 55	iber, h 52	5/8 50	inch 52	gypsi 60	m	3-3/4		52	Acoustilead	CR
i	Facing of 5 core of woo sound deade 24 28	0/8 inch g od studs an ening boar 34 37	ypsum bo nd backi d lining 42 47	ard wi ing of 3 51 5	th 1/2 5/8 in 5 58	inch s ch gyps 61 6	ound um boa 2 64	deade: ard w: 63	ning ith 1 60	boar L/2 i 61	d lin: nch 64	ing,	5-7/8	7.7	145	Partition Wall System	RAL TL70-3
	Cellulose f 3-5/8 inch 29 35	ibers spra metal stud 38 41	ayed bet ds 41 44	ween 1	ayers 9 52	of 5/8	inch g 3 53	gypsur 51	n boa 50	ard o 53	n 55		5	6.6	90	K-13	RAL TL69-173
	2 x 4 studs was 1/2 inc 27	lt inch a h gypsum w 38	o.c., l/ wall boa	2 inch Ird 48	fiber	board (57	each :	side, 59	oute	er fa	cing 55		5-3/4	7.3	69	Standard Stud Dry Wall	RAL TL65-233
	Staggered s 2 x 6 plate 34 38	tud, wood ,two layer 41 43	frame p rs of 5/ 45 44	artiti 8 inch 48 4	on, 2 : gypsur 9 50	k 4 incl n board 49 50	n stud one s D 51	ds 16 side d 48	inch only 46	n o.c 50	. on 55				55	Fibron A-100 Spray-In Wall Insulation	CR SRC 75-120-1A
	5/8 inch gy 2 inch fibe 30 37	rglass and 28 41	1, 3-5/8 15/8 in 53 51	inch Ich gyp 56 5	steel s sum boa 0 41	stubes v ard 52 58	vith (3 58	saviti	ies f 59	ille 58	d wit} 59	1			109	Rapco-Foam	WLI 22100
	2 x 4 studs gypsum boar 29	24 inch c d each sic 40	э.с., 1/ le	2 inch 47	fiber	board 58	each	side, 62	1/2	inc	h 57		7-3/4	8.0	69	Staggered Stud Dry Wall	RAL TL65-200
	Facing of 5 core of woo sound deade 27 30	/8 inch gy d studs ar ning board 34 39	ypsum bo nd backi 1 42 47	ard wi ng of 52 5	th 1/2 5/8 ind 6 59	inch so ch gypsu 59 60	ound o um boa	ieader ird wi 61	ing th 1	boar /2 i 60	d, nch 60		7-7/8	8.5	145	Wall with Sound Deaden- ing Boards	RAL TL70-4
	2 x 4 wood 11oor, gyps deadening b	studs - 16 um board - oard, 1/2	ó inch o – two 5/ inch Fi	.c. wi 8 inch rtex	th sepa layers	arate st s each s	ud pl side,	lates one l	on c ayer	oncr sou	ete nd				55	Energy Guard	CR
	Staggered s 2 x 6 plate 38 41	tud, wood , two laye 44 46	frame pers of 5 46 47	artiti /8 inc 49 5	on, 2 5 h gypsi 1 50	(4 inch um board 50 51	n stud 1 1 52	ls, 16	50	:h o. 54	с. оп 59				55	Fibron A-100	CR SRC
	Facing of 5 board, core inch sound	<pre>/8 inch gy of wood s deadening</pre>	vpsum bo studs an board	ard wi d back	th 1/2 ing of	inch Ho 5/8 inc	omosol ch gyp	.e sou osum b	nd d oard	leade wit	ning h 1/2				55	Partition	PA1
	28 32 Cellulose f	39 43 ibers spra	46 56 ayed int	55 5 o inter	7 59 rior of	62 63 gypsum	8 65 n boar	64 d wal	61	62	63		5-7/8	7.8	145	Wall System	RAL RAL
	2 x 4 wood floor, gyps sound deade	studs, 16 um board, ning board	inch o. two lay and l-	c. with ers 5/3 1/2 in	h separ 8 inch ch Fibr	ate stu each si	d pla de, l spra	tes c /2 in v-on	n co ich F insu	ncre irte:	59 te x laye on	r			90	K-13	TL69-130
	Cellulose f gypsum boar	iber spray d, stagger	ved betw	een wo studs	od fran , singl	ne wall: .e layer	two 5/8	layer inch	s 5/ gyps	8 in um b	ch oard				55	Spray-on	CR
	34 38 5/8 inch gy U.F.C. foam	41 45 psum board , and 5/8	48 51 1, 3-5/8 inch gy	52 5 inch psum b	3 55 steel s pard	56 58 studs wi	58 .th th	57 ie cav	57 ity	58 fill	60 ed wit	h	8	12.2	90	К-13	TL70-120
	53 50 Double row gypsum boar separation,	31 48 wood stud, d, core do two layers	oz 52 cavity ouble ro 2-1/4	48 5 insula w 2 x 1 inch g	tion, g 3 studs lass fi	ob 52 sypsum b , 16 ir .ber abs	ioard; ich o. ich pti	60 Fac c., 2 on ba	53 ing: 1/2 ickin	01 1/2 incl g 1/3	61 inch h plat 2 inch	e			109	Rapco-Foam	WLI 22100
	gypsum boar	d 40 46	49 52	5/ 5'	7 50	61 63	6/-	64	62	50	<u>61</u> 6	3	0 E	61	122	USDA Wall	RAL

	Τ	'ab	le	22	Α.	G	yps	sum	Ъс	aro	t t	wal	ls	(A	STM	ſE	90-	70	or eq	uiva	len	t) conclud	led.
							Tr	ansmi	ssic	n Lo	SS,	dB											
STC	Hz	Ηz	Hz	HΖ	Hz	Hz	Hz	Ηz	Hz	Hz	Hz	Hz	Hz	Hz	zH 1	Hz -	zH i	Hz.	knes: n.)	ft ⁷)	any	Product	Reference
	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	400	5000	Thic (1	Den (1b/	Comp		
56	Sin wit on 2-1 boa 34	gle h re RC-1 /4 i rd t 36	row esili l res inch nount 42	wood ent ilie glas ed o 46	stu chan nt c s fi on RC 49	d, c nels hann ber -1 r 51	avity , Fac els, abson esil: 52	y ins core core ptio ient 53	ulat two 2 x n. chan 53	ion, lave 4 wc Backi nels 56	mul ers, od ng: 59	tiple 5/8 studs thre 62	e lay incl s, 16 se 1 63	yers h gy 5 ind ayer 63	gyps psum ch o, s, 5/ 58	um b boar c. w 8 in 57	oard d mou ith ch gy 58	inted Vpsum 59	6-11/16	11,6	132	USDA Wall (A)FP: 241	RAL TL73-75
57	Doul gyp pla 5/8 30	ble sum te s inc 35	row boar epar ch gy 39	wood d, C atio psum 42	stu ore: n, t boa 49	d, c doul wo 1 rd 52	avity ble m ayer: 53	/ ins row 2 s, 3- 55	ulat x 4 1/2 56	ion, wood inch 59	gyp st gla 62	sum b ud, l iss f: 64	oard 16 ir 15er 65	i, Fa ich c abs 62	acing b.c., orpti 59	5/8 1 in on, 62	inch Back: 66	i Lng: 70	9.25	7.ó	132	USDA Wall (3)FPL 309	RAL TL75-83
58	2 x gyp soun fil	4 w sum nd d 1	vood boar leade	stud d, 2 ning	, 16 lay boa	incl ers : rd, d	n o.c 5/8 i one s	nch tud	th s each cavi	epara side ty fi	te ; O lle	stud ne la d wit	plat iyer ih Er	te or 1/2 hergy	n con inch y Gua	cret Fir rd l	e flo tex bose	or			55	Energy Guard	CR
63	Doul Fac stu fib 39	ble ing: d, l er a 41	row two 6 in bsor 46	wood lay ch o ptio 50	stu ers, .c., n, B 55	d, ca 5/8 l in ackin 58	avity incl nch p ng: 1 59	r ins n gyp late two l 61	ulat sum sep ayer 62	íon, boarc arati s 5/8 64	mul i; C on, 3 in 67	tiple Core: two ich gy 69	e lay doui lay ypsur 70	vers ble : ers, m boa 67	gyps rov 2 3-1/ ard 66	um b x 4 2 in 68	oard, wood ch gi 69	i lars 70	10.5	12.2	132	USDA Wall (C)FVL 309	RAL TL75-82

					Tran	smis	sior	1 Los	s, dl	3		8					
TC	125 Hz	175 Hz	250 Hz	350 Hz	500 Hz	700 Hz	1000 Hz	1400 Hz	2000 Hz	2800 Hz	4000 Hz	Thicknes (in.)	Density (1b/ft ²)	Mounting	Company	Product	Reference
35	Facing wood st	of	1/2	inch inch	gyps on c	um b	oar T. a	d, co	re o ackii	f 2 :	x 4 inc f 1/2 i	h nch					
	gypsum 19	boa: 17	rd. 28	30	35	38	45	48	42	37	44	4-5/8	5.90		75	Wood Frame	CR 470-1
36	Facing	of !	5/8	inch	Null	- A - F	ire	2 V 0 S	սա Եւ	oard	. core	of				rartition	
	2 x 4 i of 5/8	nch incl	woo Nu	d st 11-A	uds 1 -Fire	6 in gyp	ch o sum	boar	nter d.	and	backin	g					
	30	22	31	30	37	39	44	43	39	45	52	4-7/8	7.10		75	Wood Frame Partition	NBS 240
37	Facing KWS-158	of spe	5/8 eed	inch stud	Null s 24	-a-F inch	ire on	gyps cent	um bo er at	bard nd ba	, core acking	of of					
	same as 17	20	30	35	43	46	49	47	37	37	46	2-7/8	5.6		75	Metal Frame Partition	CR 476
39	Facing KWS-250	of f	5/8 eed	inch stud:	Null s 24	-A-F inch	ire on	gyps cent	um bo er ar	bard nd ba	, core acking	of of					
	23 23	27	33	35	42	45	50	49	39	36	41	3-1/4	5.2		75	Metal Frame Partition	CR 476
40	Facing KWS-358	of spe	5/8 eed	inch stud:	Nu11 5 24	-A-F inch	ire on	gyps cent	um bo er an	nd ba	. core acking	of of					
	20	29	35	38	44	48	51	50	39	39	44	4-7/8	5.4		75	Metal Frame Partition	CR 476
41	Facing KWS-358 blanket	of spe in	5/8 ed spa	inch stud: ce ar	Null s 24 nd ba	-A-F inch	ire on g of	gyps cent	um bo erwi eas	ard th i faci	core insulat	of ion					
	27	34	39	41	45	48	51	51	34	38	43	4-7/8	5.4		75	Metal Frame Partition	CR 476
42	Facing KWS-250 blanket	of Spe in	i/8 ed spa	inch studs ce ar	Null 24 nd ba	-A-F inch ckin	ire on g of	gyps cente same	um bo erwi eas	ard, th i faci	core nsulat ng.	of ion				Metal Frame	
	25	32	38	43	48	50	51	51	43	39	44	3-1/4	5.2		75	Partition	CR 476
43	Facing core of backing	of t KWS of	wo -15 sam	layen 8 spe e as	s 3/ ed s faci	8 in tuds ng.	ch a 24	ind 1, inch	/2 in on c	ch g ente	ypsum er and	board				Metal Frame	
	23	25	34	39	44	47	49	50	51	49	50	3-3/8	7.1		75	Partition	CR 476
44	Facing of KWS- of same	oft 158 as	wo spe fac	layer ed st ing.	s 3/ uds	8 an 24 i	d 5/ nch	8 ind on ce	ch gy enter	npsum and	board backi	, core ng				Metal Frame	
	24	26	39	42	49	49	52	52	35	52	57	3-5/8	8.4		75	Partition	CR 476
44	Facing studs s	of 1 tagg	/2 ere	inch d at	gyps 8 in	um b ch o	oard n ce	l, com nter	re of and	2 x back	3 inc ing of	h wood 1/2					
	inch gy 36	psum 31	і bo 36	ard. 40	40	46	47	50	52	41	45	6-5/8	6.2		75	Wood Frame Partition	NBS 242
44	Facing 2 x 4 i	of t nch	wo woo	layer d stu	's 5/ ids 1	8 in 6 in	ch g ch o	ypsur n cer	n boa iter	and	core o backin	f g of					
	23	29	38	38	40	44	48	51	51	46	53	6-1/8	10.93		75	Wood Frame Partition	CR 470
44	Facing wood st of 5/8	of 5 uds inch	/8 stag	inch ggere psum	gyps dat boar	um b 8 in d.	oard nch	i, cor on ce	e of nter	2 x and	3 incl backin	h ng				No. J. Trans	
	43	44	37	38	40	46	48	47.	41	44	50	6-7/8	7.7		75	Wood Frame Partition	NBS 243
45	Facing KWS-158 same as	of t spe fac	wo ed ing	layer studs	s 1/ 24	2 in inch	ch g on	ypsum cente	n boa er an	rd, id ba	core o cking o	f of					
	24	29	34	39	46	47	52	53	53	45	48	3-5/8	7.8		75	metal Frame Partition	CR 476
45	Facing core of backing	of t KWS of	wo -25 sam	layer Ospe e as	s 1/ ed s facin	2 in tuds ng.	ch N 24	ull-# inch	-Fir on c	e gy ente	psum b r, and	oard,				Motol Even	
	23	34	34	41	47	51	53	58	59	49	47	4-1/2	8.7		75	Partition	CR 476
45	Facing 2 x 4 i of same	oft nch as	wo wood fac:	layer 1 stu ing.	s 1/3 ds 1	2 in 6 in	ch g ch o	ypsum n cer	ter	and,	core o backing	f B				Need Press	
	23	31	37	41	41	46	49	51	53	48	49	5-5/8	8.68		75	wood rrame Partition	CR 470

Table 22B. Gypsum board walls (AMA-1-11).

1

	T	ansmission]	Loss, dB		ss	×^	60			
3TC	125 Hz 175 Hz 250 Hz 350 Hz	500 Hz 700 Hz	1400 Hz 1400 Hz 2000 Hz	2800 Hz 2800 Hz 4000 Hz	Thickne (in.)	Density (1b/ft2	Mountin	Сотрапу	Product	Reference
45	Facing of two lay core of 2 x 4 inc and backing of sam	ers 3/8 and h wood studs me as facing	1/2 inch 16 inch	gypsum boa on center,	ard,		<u> </u>		Wood Frame	
	25 33 39 39	41 47 4	9 52 51	51 50	5-3/8	8.10		75	Partition	CR 470
45	Facing of two lays core of 2 x 4 incl and backing of sau 22 31 39 41	ers 1/2 and h wood studs me as facing 42 47 4	5/8 inch 16 inch 9 52 53	gypsum boar on center, 50 55	5-7/8	9.88		75	Wood Frame Partition	CR 470
46	Facing of two lay core of KWS-158 s backing of same as	ers 1/2 and peed studs 2 s facing.	5/8 inch , 4 inch on	gypsum boar center and	rd, i				Motal Frame	
	24 32 37 40	45 49 5	1 51 50	48 51	3-7/8	8.8		75	Partition	CR 476
46	Facing of two lay KWS-158 speed stu- of same as facing 24 31 39 42	ers 5/8 inch ds 24 inch or 	gypsum b n center	oard, core and backing	of 3 (-1/8	10.2		75	Metal Frame	CP 476
46	Facing of two lay	ers 3/8 and	1/2 inch :	gypsum boar	4-1/8	10.2		/5	Fartition	CK 470
	core of KWS-250 s backing of same as 23 31 37 42	beed studs 24 s facing. 47 49 52	4 inch on 2 52 53	51 55	4-1/4	7.2		75	Metal Frame Partition	CR 476
46	Facing of two lay core of KWS-250 s backing of same a	ers 3/8 and 1 beed studs 24 s facing.	5/8 inch ; 4 inch on	gypsum boar center and	d, I				N . 1 F	
	24 31 37 41	45 49 50	0 53 52	53 53	4-1/2	8.5		75	Partition	CR 476
46	Facing of two laye core of 2 x 4 incl insulation blanke facing.	ers 3/8 and 3 n wood studs t in space an	1/2 inch ; 16 inch ; nd backin;	gypsum boar on center w g of same a	d, vith as				Wood Frame	
	26 36 38 40	44 48 5	1 53 53	55 52	5-3/8	8.26		75	Partition	CR 470
46	Facing of 1/2 incl sound deadening be compound 24 inch of 2 x 4 inch wood st of same as facing.	n gypsum boar oard, 6 inch on center ber tuds 24 inch	rd, 1/2 in strip of tween lay on cente:	nch Fir Tex laminating ers, core c r and backi	of .ng				lined Frame	014 101
	31 34 36 40	46 48 5	1 53 55	55 53	5-5/8	6.68		75	Partition	12FT -(2)
46	Facing of 1/2 incl rated sound deader laminating compour layers, core of 2 center and backing	n gypsum boar ning board, (nd 24 inch or x 4 inch woo of same as	rd, 1/2 in 6 inch st n center 1 5d studs 1	nch Fir-Tex rip of between 16 inch on	ŝ					
	23 31 37 43	49 54 55	5 55 55	56 55	5-5/8	7.04		75	Wood Frame Partition	G&H 1B1- 6FT-(1)
46	Facing of two laye of 2 x 4 inch wood insulation blanket as facing.	ers 1/2 inch 1 studs 16 in 1 in space an	gypsum bo nch on cei nd backing	oard, core nter with g of same						
	24 31 38 42	43 46 49	9 51 52	48 50	5-5/8	8.82		75	Wood Frame Partition	CR 470
46	Facing of two lays core of 2 x 4 incl with insulation bl same as facing.	ers 1/2 and 5 wood studs lanket in spa	5/8 inch g 16 inch d ace and ba	gypsum boar on center acking of	ď,				Wood Frame	
	23 32 39 42	43 46 49	9 52 54	52 56	5-7/8	10		75	Partition	CR 470
47	Facing of two laye KWS-250 speed stud of same as facing.	ers 1/2 inch ls 24 inch or	gypsum bo center a	oard, core and backing	of	<u>م</u> ל		75	Metal Frame	00 (3)
47	24 33 30 43	45 47 54	2/8 :	4/ JU	4-1/2	1.9		/5	rartition	UK 4/6
47	core of 2 x 4 inch with insulation bl same as facing.	wood studs anket in spa	16 inch (ace and ba	gypsum boar on center acking of	α,				Wood Frame	
	24 35 39 41	44 48 50	51 48	48 45	5-1/2	9.28		75	Partition	CR 470

Table 22B. Gypsum board walls (AMA-1-11) continued.

			<u> </u>		<u> </u>						·			
	Transmission Loss. dB													
STC	Hz Hz	Hz Hz	Hz	Hz Hz	zH (2H (2H (Hz	kne n.)	sit) /ft ²	ıtin	pany	Product	Reference	
	125 175	250 350	500	1000	1400	2000	2800	Thic	Den (1b,	Wour	Com			
47	Facing of 1 sound deade studs stagg of same as	/2 inch ning boa ered at facing.	gypsum ard, co 8 inch	board re of on ce	, 1/2 2 x 3 nter	2 inch 3 inch and b	Fir-Tex wood acking							
	34 35	37 41	44 4	8 50	52	54 5	3 52	5-5/8	7.72		75	Wood Frame Partition	G&H 1B1- 19FT-(1)	
48	Facing of to core of KWS insulation facing.	wo layen -158 spe blanket	rs 3/8 eed stu in spa	and 1/ ds 24 .ce and	2 inc inch back	ch gyp on ce cing o	sum board nter with f same as					Metal Frame		
	30 30	40 48	50 5	0 52	52	52 5	5 53	3-3/8	7.1		75	Partition	CR 476	
48	Facing of the core of KWS backing of the second sec	wo layen -250 spe same as	rs 1/2 eed stu facing	and 5/ ds 24	8 inc inch	ch gyp on ce	sum board nter and	,				Metal Frame		
	26 32	39 42	46 4	7 50	52	52 5	1 54	4-3/4	8.9		75	Partition	CR 476	
48	Facing of to KWS-250 spec same as fac:	wo layen ed stude ing.	rs 5/8 s 24 in	inch g ch on	ypsum cente	n boar er and	d, core of backing o	f of				Metal Frame		
	26 34 4	40 42	46 5	0 52	52	48 4	5 51	5	10.3		75	Partition	CR 476	
48	Facing of to core of KWS backing of s	wo layen -358 spe same as	rs 3/8 eed stu facing	and 1/ ds 24	2 inc inch	h gyp on ce	sum board nter and	,	7.0			Metal Frame	an 124	
	29 35 4	42 42	40 4	8 52	28	50 5	3 22	5-3/8	1.3		/5	Partition .	CR 4/6	
48	Facing of the core of 2 x backing of s 25 33 4	wo layen 4 inch same as 40 42	rs 5/8 . wood s facing 45 4	and 3/ tuds 1 8 52	8 inc 6 inc 55	shgyp shon 54 5	sum board, center and 4 56	5-1/2	9.16		75	Wood Frame Partition	CR 470	
48	Facing of tw KWS-358 spea same as fact	wo layer ed studs ing.	rs 5/8 : s 24 ind	inch g ch on d	ypsum cente	n boar r and	d, core of backing c	f of				Metal Frame		
	27 37 4	41 43	47 5	1 52	53	49 4	5 49	6-1/8	10.4		75	Partition	CR 476	
49	Facing of to core of KWS- insulation b as facing	vo layer 158 spe Slanket	ed stud in space	and 5/8 dis 24 : ce and	8 inc inch back	h gyp on ce ine o	sum board, nter with f same					Metal Frame		
	28 39 4	44 47	49 41	8 48	50	50 4	9 49	3-7/8	8.8		75	Partition	CR 476	
49	Facing of tw KWS-158 spea blanket in s	vo layer ed studs space ar	rs 5/8 : s 24 ind nd back:	inch g ch on a ing of	ypsum cente same	boar rwit as f	d, core of h insulati acing.	f Lon				Metal Frame		
	27 38 4	43 46	47 48	8 50	51	48 4	7 52	4-1/8	10.2		75	Partition	CR 476	
49	Facing of tw core of KWS- backing of s	vo layer 358 spe same as	ed stud facing	and 5/8 ds 24 :	8 inc inch	h gyp on cei	sum board, nter and					Metal Frame		
	27 36 3	59 43	4/ 50	5 2 3	23	52 5	2 52	5-5/8	8.6		75	Partition	CR 476	
49	Facing of 5/ sound deadem compound 24 2 x 4 inch wo of same as f	'8 inch ing boa inch on od stud acing.	gypsum ard, 6 i center ls 24 ir	board inch st r betwe nch on	, 1/2 trip een 1 cent	inch of la ayers er an	Fir-Tex minating , core of d backing					land Frame	C(H 181	
	36 38 4	2 43	49 52	2 53	54	54 5	5 57	5-7/8	7.58		75	Partition	10FT-(2)	
49	Facing of tw core of KWS- backing of s	o layer 358 spe ame as	s 1/2 a ed stud facing	and 5/8 is 24 i	B inc inch	h gyp on cei	sum board, nter and		c			Metal Frame		
50	28 3/ 4	43	46 50	J 52	54	ວວ 5. ກະ	2 56	5-7/8	9		75	Partition	CR 476	
50	Facing of tw board, core with insulat same as faci	of KWS- ion bla ng.	s 1/2 i 250 spe nket ir	inch Nu eed stu n space	111-A 1ds 2 2 and	-rire 4 incl back:	gypsum h on cente ing of	r				Metal Frame		
	27 36 4	.2 47	48 50	53	55	54 51	0 51	4-1/2	8.7	~-	75	Partition	CR 476	
50	Facing of tw KWS-250 spee blanket in s	o layer d studs pace an	s 5/8 i 24 ind d backi	inch gy ch on d ing of	psum ente same	board r with as fa	d, core of h insulati acing.	on				Motol Ex		
	31 41 4	6 48	50 52	2 54	53	50 4	7 53	5	10.3		75	Partition	CR 476	

Table 22B. Gypsum board walls (AMA-1-11) continued.

٠.

able 22b. Gypsum board walls (AIA-1-11) CC	Table	2B. Gypsum	board walls	(AMA-1-11)	continued.
--	-------	------------	-------------	------------	------------

		Tra	insmiss	ion Lo	ss, d	в							
STC	S Hz	0 Hz	2H 00	2H 000	2H 00	2H 000	300 Hz	iickness (in.)	ensity (b/ft ⁷)	ounting	upany	Product	Reference
	1 12	3 2	25	< 2	-	50	40	户 户	AC	ž	త ————————————————————————————————————		
50	Facing of 5/ sound deader compound 24 of 2 x 4 inc	/8 inch hing boa inch or ch wood	gypsum ard, 6 cente studs	board inch s r betw l6 inc	, 1/2 trip een 1 h on	incl of 1 ayer cento	h Fir-Tex aminating s, core er and						
	29 34 4	41 46	50 5	4 56	61	58	59 60	5-7/8	8.42		75	Wood Frame Partition	G&H 1B1- 28FT-(1)
50	Facing of tw KWS-358 spee blanket in s 32 40 4	vo laver ed studs space an 45 49	rs 5/8 s 24 in id back 51 5	inch g ch on ing of 1 52	ypsum cente: same 52	boan r'win as : 49	rd, core th insula facing. 48 50	of tion 6-1/8	10.4		75	Metal Frame Partition	CR 476
50	Facing of tw core of 2 x center and b 30 36 4	vo layer 4 inch backing 42 44	s 5/8 wood s of sam 48 5	and 3/3 tuds s e as f 1 51	8 inc tagge: acing 54	h gy red 8 52	osum boar 3 inch on 53 50	d, 7-1/4	10.53		75	Wood Frame Partition	CR 470
50	Facing of tw core of 2 x center and b 32 35 4	vo layer 4 inch backing 42 44	s 3/8 . wood s of sam 47 5	and 1/: tuds s e as f 1 52	2 inc tagge: acing 54	h gyr red 8 54	osum boar 3 inch on 53 55	d, 7-3/8	9.30		25	Wood Frame Partition	CR 470
50	Facing of 1/ sound deader staggered 12 facing. 30 36 3	2 inch hing bos 1 inch c	gypsum ard, co on cente 48 5	board re of : er and 1 51	1/2 2 x 4 back: 52	inch inch ing c 55	n Fir-Tex n wood st of same a 56 56	uds, s 7-5/8	7.40		75	Wood Frame Partition	G&H 1B1- 11FT-(2)
50	Facing of tw 2 x 4 inch w backing of s 30 35 4	vo layer vood stu same as 42 44	s 1/2 ids sta facing 48 5	inch g ggered 1 51	ypsum 8 in 52	boan ch or 52	rd, core n center 49 49	of and 7-5/8	10.20		75	Wood Frame Partition	CR 470
50	Facing of tw core of 2 x center and b 30 37 4	vo layer 4 inch eacking 3 44	s 1/2 a wood st of same 47 51	and 5/8 tuds st e as fa 1 52	3 inc) agger acing 53	n gyp red 8 41	sum boar inch on 50 50	d. 7-7/8	11.25		75	Wood Frame Partition	CR 470
50	Facing of tw core of 2 x center and b 33 38 4	o layer 4 inch acking 1 44	s 5/8 : wood st of same 45 49	inch Nu tuds st e as fa 9 52	111-A- aggen icing 54	-Fire red 8 48	gypsum inch on 49 55	board, 8	10.6		75	Wood Frame Fartition	CR 470
50	Facing of tw 2 x 4 inch w backing of s 31 37 4	o layer ood stu ame as 2 44	s 5/8 i ds stag facing. 48 51	inch gy ggered 1 52	vpsum 8 inc 54	boar ch on 49	d, core center 49 50	of and 8-1/8	12.5		75	Wood Frame Partition	CR 470
50	Facing of 5/ Fir-Tex soun inch wood st airspace and	8 inch d deade uds 16 backin	Null-A- ning bo inch or g of sa	Fire g bard, c mente ame as	ypsum ore c r sep facin	n boa of tw parat	rd, 1/2 o rows 2 ed by 1	inch x 4 inch				Wood Frame	G&H 1B1-
51	Facing of two core of KWS- insulation b facing.	o layer 158 spectanket	s 3/8 a ed stud in spac	and 5/8 ls 24 i ce and	inch nch c backi	o gyp m ce ng o	sum board nter with f same as	14-1/2 d., h s	9.96		75	Partition	25FT-(2)
	28 37 4	3 48	50 50) 51	52	52	53 52	3-5/8	8.4		75	Metal Frame Partition	CR 476
51	Facing of two core of KWS-2 insulation b facing. 32 33 4	o layer: 250 spec lanket : 3 47	s 3/8 a ed stud in spac 47 50	and 1/2 ls 24 i e and) 51	inch nch o backi 54	gyp n ce ng o 54	sum board nter with f same as 54 53	1, 3 4-1/4	7 2		75	Metal Frame	CD 474
51	Facing of two KWS-250 speed blanket in sp	o layers d studs bace and	s 1/2 i 24 inc i backi	nch gy h on c ng of	psum enter same	boar wit as f	d, core d h insulat acing.	of ion	,. <u></u>		, ,	ALLICION	UK 470
51	30 36 44	4 48	49 50	52	52	52	49 50	4-1/2	7.9		75	Metal Frame Partition	CR 476
51	KWS-358 speed same as facir 34 38 42	d studs ng. 2 47	24 inc 50 52	h on c	psum enter 53	and	u, core o backing 48 51	of 5-5/8	8.1		75	Metal Frame Partition	CR 476

		Tran	smissio	on Los	s, dB			· <u> </u>					
STC	125 Hz 175 Hz 250 Hz	350 Hz	ZH 0007	1000 Hz	1400 Hz 2000 Hz	2800 Hz	4000 Hz	Thickness (in.)	Density (1b/ft ²)	Mounting	Company	Product	Reference
	Facing of two	lavers	1/2 an	d 5/8	inch g	vosu	n board.						
	core of KWS-3 insulation bl	58 speed anket in	studs space	24 in and b	nch on backing	cente of s	er with same as						
	facing. 28 38 /3	45 4	- .8 /.8	51	51 52	51	53	5-7/8	٥		75	Metal Frame	CD / 74
	20 30 43	4) 4	-0 -40	51 .			25	5-778	2		/ 5	rattition	CK 476
51	Facing of two of 2 x 4 inch with insulati same as facin	layers wood st on blank g.	1/2 in uds st tet in	ch gyn aggere space	ed 8 in and ba	ard, ich or icking	core n center g of	· ,					
	35 39 45	45 4	9 50	53 5	54 53	50	50	7-5/8	10.4		75	Wood Frame Partition	CR 470
51	Facing of 5/8 sound deadeni compound 24 i of 2 x 4 inch and backing o	inch gy ng board nch on c wood st f same a	rpsum b l, 6 in center i cud sta is faci:	oard, ch str betwee ggerec ng.	1/2 in rip lam en laye d 8 inc	inati rs, c h on	ir-Tex ing core center					Wood Frame	G&H 1B1- 22FT
	38 39 43	45 4	8 55	58 5	57 58	58	59	7-5/8	9.72		75	Partition	CR 470-8
51	Facing of two core of 2 x 4 center with in of same as fac	layers inch wo nsulatio cing.	1/2 an od stu on blan	d 5/8 ds sta ket ir	inch g aggered space	ypsum 8 ir and	n board, ich on backing					Wood From	
	35 40 45	46 4	9 51	53 5	54 52	50	50	7-7/8	11.53		75	Partition	CR 470
51	Facing of two core of 2 x 4 center with i of same as fa	layers inch wo nsulatio cing.	5/8 in od stu on blan	ch Nul ds sta ket in	ll-A-Fi aggered space	re gy 8 ir and	vpsum bo ich on backing	ard,					
	38 44 44	47 4	6 49	52 5	54 49	50	54	8	10.7		75	Wood Frame Partition	CR 470
52	Facing of two core of KWS-2 insulation bl. facing.	layers 50 speed anket in	1/2 and studs space	d 5/8 24 ir and b	inch g nch on backing	ypsum cente of s	n board, er with same as					Marcal France	
	35 38 44	48 4	8 49	51 5	64 54	54	56	4-3/4	8.9		75	Metal Frame Partition	CR 476
52	Facing of two core of KWS-3 insulation bla facing.	layers 58 speed anket in	3/8 and studs space	d 1/2 24 in and b	inch g ich on acking	ypsum cente of s	n board, er with same as					Metal Frame	
	32 37 42	46 5	1 51	54 5	53 53	52	51	5-3/8	7.3		75	Partition	CR 476
52	Facing of two core of 2 x 4 center with in of same as fa 35 40 43	layers inch wo nsulatio cing. 46 5	5/8 and od stud on bland	d 3/8 ds sta ket ir 54 5	inch g aggered space	ypsum 8 ir and 54	n board, ich on backing	7-1//	10.72		75	Wood Frame	CP 470
								, 1,4	10.72		, ,	A CICION	en 470
53	Facing of two core of KWS-2 insulation bla facing.	layers 50 speed anket in	3/8 and wood space	d 5/8 studs and b	inch g stagge acking	ypsum red 8 of s	n board, 3 inch o ame as	n center				Metal Frame	
	34 37 44	48 4	9 50	52 5	3 54	54	55	4-1/2	8.5		75	Partition	CR 476
53	Facing of 5/8 Fir-Tex sound inch wood stud backing of ser	inch Nu deadeni: ls separ ne as fo	11-A-Fi ng boar ated by cing	ire gy rd, co y l in	psum b bre of ich air	oard, two r spac	1/2 in ows 2 x e and	ch 3					G&H KG-
	38 44 42	48 5	2 58	59 5	6 50	53	60	8-1/2	9.4		75	Wood Frame Partition	8FT-(1) CR 470-9
54	Facing of two core of KWS-35 insulation bla facing	layers 8 speed inket in	3/8 and studs space	1 5/8 24 in and b	inch g ich on acking	ypsum cente of s	board, r with ame as						
	35 38 47	49 5	2 51	53 5	5 58	55	57	5-5/8	8.6		75	Metal Frame Partition	CR 476
54	Facing of two core of 2 x 4 center with ir of same as fac	layers inch wo sulation ing.	3/8 and od stud n blank	d 1/2 ds sta ket in	inch g ggered space	ypsum 8 in and	board, ch on backing					Wood Frame	
	31 41 46	48 4	9 51	53 5	5 56	55	56	7-3/8	9.42		75	Partition	CR 470
54	Facing of two two rows 2 x 4 1/2 inch sound and backing of	layers inch w deaden same a	1/2 inc ood stu ing boa s facir	ch gyp 1ds 16 ard in 1g.	sum bo inch l inc	ard, on ce h air	core of nter with space	th				Used P	
	36 40 45	48 5	2 54	55 5	7 56	57	57	11	13.6		75	wood Frame Partition	CR 470

Table 22B. Gypsum board walls (AMA-1-11) continued.

284

.

			T	ransr	nissi	on L	oss.	dB									
STC	Hz	Ηz	μz	Чz	Ηz	Ηz	μz	Hz	Hz	Ъzн	Hz	(.r	1 ftr /	ting	an y	Product	Reference
	125	175	250	350	500	700	1000	1400	2000	2800	4000	Thick (ir	Dens (1b/j	Moun	Comp.		
54	Facing of two center	of row	two vs 2 bac	layen x 4 : king	rs 5/ inch of s	'8 in wood ame	ch g stu as f	ypsu ds 10 acing	n boa 5 inc 3.	ard, ch or	core					Wood Frame	
	35	41	45	49	52	56	54	56	53	53	55	11-1/2	15.2		75	Partition	CR 470
56	Facing of two center space	of row wit and	two s 2 h so back	layen x 4 i und c ing c	rs 5/ Inch leade of sa	'8 in wood ning me a	ch g stu boa s fa	ypsur ds 16 rd 10 cing	n boa 5 inc 1 1 i	ard, ch or inch	core air						
	37	44	47	50	53	55	56	56	56	57	57	11-1/2	16		75	Partition	CR 470

Table 22B. Gypsum board walls (AMA-1-11) concluded.

				Т.	<u>abi</u>	e 4			P1	as	сеі	c, (201	cr	ete	-, -	stee	е⊥, 	and	June	r wa		
STC	Hz	Hz	Hz	Hz	μz	Hz	Tı Fi	ansu ¥	nissi R	on L	<u>085,</u> ZH (dB ZH	2 H Z	ZH (D Hz	0 Hz) Hz) Hz	ckness (n.)	sity /ft ^Z)	pany	Product	Reference
	100	125	160	200	250	315	400	500	630	800	100	125	160	200	250	315	400	500	Th t	Den (1b)	Coll		
40	Ext	. wa	all:	out	door	side	, 7/	8 in	ch po	ortla	and	cemen	t pla	aster	r on	17 g	auge						
	wi: and	re la iver	ath, neer	roc fin	kwool ish l	ins /16	ulat inch	ion	with	vapo	or ba	arrie	r, 1,	/2 in	ich i	/enee	r bas	e					RAL
	29	28	28	32	38	35	35	38	39	39	39	41	41	41	43	45	47	48	5-1/4	13.7	144		TL77-41
41	Тут	oical	ь1	ock	confi	gura	tion	two	or	thre	e co	re co	ncre	te,	temp	eratu	re ra	ange					
	- 2	0 to 25	150 26	0°F. 27	Dat 31	a re 33	ad t 35	10m 37	grap 39	n 42	45	45	46	47	47	47	47		4	20	91	4 inch Hollow Concrete	CR
	-						7 / 0																
¥1	Win 1/3	:. wa re la	all, ath, sh e	out pap	door er ba	side se,	7/8 rock	unc: wool	n, po insu	ulati	ind of the second s	cemen 3/8	t pla inch	gyps	: on sum 1	1/g lath,	auge						
	30	29	26	29	38	38	38	39	40	40	40	41	41	43	44	45	46	47	5-1/2	17.7	144		RAL TL77-43
/ 1	C a .											inch	F		1 4-		1						
42	fil	per,	l p	ound	shee	t le	artı ad,	1/4	inch	plyv	700d	; dat	a rea	ad fr	om	graph	lass						ÇR L7110-
		17	22	26	32	36	42	45	46	48	51	52	57	60	. 62	65	66		1-1/8		52	Acoustilead	1-43M
43	22 fr:	gaug	ge s	teel	faci	ngs,	gla	ss f	iber	core	2, 1	poun	d she	eet l	lead;	dat	a rea	d					
		18	23	28	34	40	40	44	45	47	49	52	53	55	56	57	58		2-1/4		52	Acoustilead	CR L7110- 1-43M
4.3	F.,		.11.	011	deer	aida	. 7/	8 in	ch no		and a		r n1/			1/2	inch						
40	вун 1/2	sum lina	she she	etin	g, st r bas	eel e an	stud d ve	s; in neer	ndoor fini	sic sic	le: 1	rockw	ool i	insul	atio	n,	Lucu						
	25	30	40	41	39	40	40	41	42	41	41	42	43	43	45	46	48	49	3	14.4	144		RAL TL77-44
43	Ext	- w	11.	out	door	side	7/8	inc	h nor	rtlar	nd ce	ement	nla	ster	on 1	7 in	ch wi	TP					
	lat sic	h, d le 3/	n 1 8 i	inc nch	h pol gypsu	ysty m la	rene th a	she nd 1	eting /2 ir	g 2 y hch s	4 and	studs ed pl	(16 astei	inch r and	po. d	ty f	indoo inísh	r					
	sir 25	1g1e 27	2 x 23	4 s 26	olep 37	late 35	and 41	a do 45	ouble 50	e cap 49	9 p14 43	ate, : 45	tire 43	stop 49	, 54	58	60	59	6-1/4	17.7	144		RAL TL78-93
							_										_						
44	Par fil	titi 1	lon	stee	l stu	d me	tal	lath	and	plas	ster	with	urea	a-for	malo	iehyd	e foa	m					
		26	24	27	35	40	42	46	50	52	52	51	58	45	46	47	48		3	18	109		KAL
44	Ext	erio	or w	al 1:	outd	oor	side	: 7/	8 ind	ch po	ortl	and c	emen	t pla	aster	on	wire						
	sic	de: 1 nole	ock	auge wool e nl	, 1/2 insu ate	lati doub	ngy on, lec	1/2 ap n	inch late	vene	er i	2 x 4 base	and :	finis	h, 2	2 x 4	inch	1					
	23	24	23	30	38	37	43	46	49	51	50	50	44	44	49	56	60	63	5-3/4	12.9	144		RAL TL78-91
45	4	inch	cín	der	block	wi	rh 1	¥ 2	incl	h fui	rrin	o 1	inch	ela	ss f	iber							
	i p	ound	i sh	eet	lead,	1/4	inc	h pl	ywood	d; da	ata :	read	from	grap	5h	40	60		,		5.2	Assustiland	CR 17710-
		دد	28	29	32	55	39	42	40	50	52	20	28	29	60	60	60		Ŧ		52	Acoustilead	1-435
46	22 fr:	gaug om gi	ge s raph	teel	faci	ngs,	gla	ss f	iber	core	e. 2	poun	d she	eet 1	Lead	dat:	a rea	d					CP 1771
		25	27	30	37	41	42	45	47	48	51	53	54	56	57	58			2 - 1 / 4		52	Acoustilead	1-43M
47	Sta	andar	rd s	teel	offi	ce Þ	arti	tion	wit	h 1 ;	x 2 :	inch	furr	ing.	l in	nch g	lass						
	fil	per,	1 p	ound	shee	t le	ad, /5	1/2	inch 40	gyp	sum l	board	; da:	tare	ad i	from	graph	ı	1-174		5.7	Acoustiland	CR L7710-
		23	29	22	39	45	4)		49	1	J	14	10	20	00	02	04		1-1/4		20	Acoustifeau	1-4511
47	1/4 she	ind eet	ch p lead	1ywo . 1/	od, l 4 inc	pou h pl	nd s ywoo	heet d; d	lead ata n	d, 1. read	1/2 from	inch m gra	gla: ph	ss f:	iber	, 1 p	ound						CP 17710
	21	24	25	30	36	40	47	48	50	52	52	53	54	56	58	58	60	57	2		52	Acoustilead	1-43M
47	Ext	: wal	11:	outd	oor s	ide	- 7/	8 in	ch po	ortla	and (cemen	t_pl	astei	r on	17 g	auge						
	win tic	re la on, y	ath, vapo	pap r ba	er ba rrier	se, , re	2 x sili	4 wo ent	od si clip:	tuds s, 3	; in /8 in	door nch t	side hick	of 1 gyp:	sum 1	vool lath,	insul 1/2	.a-					
	ind 37	ch tì 39	11¢k 41	san 44	ded g 47	ypsu: 47	m pl 46	aste 47	r and 47	d put 46	ty: 47	11nis 45	n 44	47	48	50	51	52	6	21.1	144		RAL TL77-40
			-														• -						
47	Exi	uge v	or w vire	all: lat	outd h, pa	oor per	side back	- 7 ed,	/8 in 25/3:	nch p 2 in:	oort ch i	iand nsula	cemen	nt pi shee	Laste ting	er on	17						
	2 : fi:	re si	stud trip	s on , 3/	16 i 8 inc	nch h gy	cent psum	ers, lat	sin; h, l,	g1e.: /2 in	sole hch	piat sande	e, d d'an	d pla	aster	s pla r fin	ce, ish						RAL
	25	31	26	33	43	45	46	49	52	51	49	51	51	52	56	62	64	66	7	19.1	144		TL78-90

							Tr	ansm	issic	n Lo	ss,	dB							\$				
STC	Ηz	μz	Ηz	Ηz	Ηz	Ηz	Hz	Ηz	Ηz	Ηz	zH C	ZH (ZH (0 Hz	zH 0	2H C	J Hz	C Hz	cknes: (n.)	sity /ft ²)	pany	Product	Reference
	100	125	160	200	250	315	400	500	630	800	100(125(1600	200(2500	315(40U	5000	This is a second	Den (1b)	Com		
48	Ex wi ro	teria re l. ckwo	or w ath, ol i	all: 1/2 nsul	outd inch ation	oor gyp , 1/	side sum 2 in	7/8 sheat ch ve	inch hing eneer	por 2 bas	tlan x 4 v e and	d cen wood d ven	ment stuc	pla ls; fin:	ster indo ish	on or s	.7 gau .de	ıge					
	27	29	28	39	41	40	45	48	49	50	47	50	50	50	51	55	56	60	5-3/4	17. 1	144		TL78-92
48	Ex sh va pl	teria eetin por l astia	or w ng, barr c, 2	all: 17g ier, x4	outd auge 1/2 stud	oor wire inch s, 1	side lat thi 6 in	7/8 h. pa ck ve ch o.e	inch aper eneer	por back bas ngle	tlano ed, n e ano sole	d cen rocku d 1/ e pla	ment √ool 16 in ate.	plas insu nch i doub	ster ulat fini ole	, 25, ion w sh of cap p	32 ir ith vene late	er					PAI
	24	26	27	36	42	42	45	46	47	49	49	50	50	51	52	55	57	59	6-3/8	16.0	144		TL78-89
49	4 sh	inch eet	cin lead	der 1	olock 4 inc	, wi h ply	th 2 ywoo	x 2 d: da	inch ata r	fur ead	ring from	. 1 gra	inch ch	glas	ss f	iber	1 pc	ound					CR L7710-
		33	35	36	37	40	45	47	51	53	55	58	59	60	61	61	61		1	• •	52	Acousitlead	1-43M
50	St. fil	andan ber,	rd a lp	teel ound	offi shee	ce pa t lea	arti ad,	cion 1/2 i	with Inch	2 x gypsi	2 ir um bo	nch : bard	furr: ; dat	ing, La re	l in ad :	nch g from	lass grapt						CR L7710-
		26	32	37	41	44	46	49	51	52	54	55	56	58	60	62	64		1-1/4		52	Acoustilead	1-43M
50	Exi vi zoi boi	terio re la htal ard,	or W ath res ven	all: and p ilien eer p	outd Daper ht ch	oor s base anne er f:	side e, re ls on inis	778 bekwc 124 1	inch ol i inch	por nsul c.c.,	tlanc ation 1/2	d cer n win inc:	nent th va h th:	plas apor ick '	bar: vene	, 17 rier, er t	gauge hori ase g	 yp su m					DAI
	34	39	43	45	45	51	52	52	51	48	49	52	51	49	48	50	52	53	6-1/4		144		TL77-38
52	22 fro	gauş on gi	ze s raph	teel	faci	ngs.	gla	as fi	.ber	core	, 3 p	oouna	d sh€	et l	.ead	. dat	a rea	ıd		•			CE 17710-
		34	33	39	43	46	47	49	51	52	53	54	56	57	58				2-1/4		52	Acoustilead	1-43M
53	Ex1 wit th:	terio re la ick s	or w ath, sand	all: rocl ed g	outd wool /psum	oor s insu plas	side ulat: ster	7/8 ion. and	inch vapo putt	por r ban v fin	tland rrien nish	d cer r, re	nent sil:	plas ent	cli	on 1 os, 1	7 gau /2 in	ige ich					PAT
	41	44	43	46	49	51	54	55	56	55	52	49	49	52	55	57	60	59	6		144		TL77-45
54	Ext gyp ind	terio osum ch ve	or W she enee	all: eting r bas	outd 1. 3- 5e. v	oor s 5/8 i eneei	side Inch r fin	7/8 stee nish	inch 1 st	port uds;	lanc indc	d cen	ment side:	plas ins	ter ula	on l ion,	/2 in 1/2	ch					RAL
	26	31	41		50	5	55	55	55	56	55	54	54	53	Ξı	56	58	60	6		144		TL77-66
56	Ex wi ba	teri re l. rrie	or u ath, r, r	all 2 x esil	outd 4 wo ient	oor od s chan	side tuds nels	7/8 ; inc were	inch door e loc	por side ated	tlano , roo hor:	d cen ckwor izon	ment ol in tally	plas nsula 7, 1,	ster ation '2 in	on] n wit nch v	7 gau h var eneer	ige or					
	ва 35	se ai 39	ud V 46	enee 49	52 52	15n 55	56	57	57	55	54	56	57	54	56	58	61	62	6-174	13.5	144		RAL TL77-67

Table 22C. Plaster, concrete, steel, and other walls concluded.

CATEGORY 23. WINDOWS

Sound transmission losses of window assemblies are listed. Various types of windows, e.g., pivoted, dual glazed, laminated glass, venetian blind, and plastic windows, etc, are presented. Simple windows are usually the "weak links" in the sound isolation of rooms and buildings, but it is possible to select windows with high sound transmission losses to make the interiors of the buildings reasonably quiet. In the buildings at airports the selection of windows will determine to a large extent the interior noise levels. In such instances entirely sealed, dual glazed windows with a large airspace between the plates provide acceptable sound attenuation. Thickness, sealing, transparent barrier material and spacing are all important in the acoustic performance of a window.

Organizations contributing data to this table are: 37, 64, 73, and 88.

GLOSSARY

Facing:	The	outside	surface	of	the	specimen.	In	general	the	side	facing
	the	sound so	ource								

Backing: The other outside surface of the specimen. In general the side not facing the sound source

Core: The region between the facing and the backing

Glazed Window: A window furnished with glass

Dual Glazed Window: A window furnished with two glass panes

Table 23. Windows.

							T1	ansm	issi	on L	oss,	dB							_				
STC	Hz	Hz	zΗ	Ηz	Hz	Hz	Ηz	Hz	Ηz	Hz	ZH (ZH (ZH (zH (ZH (ZH (zH (zH (kness In.)	sity ft ²)	any	Product	Reference
	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	This	Den (1b/	Comp		
37	Two	p p at	nes	of 1	/8 ir	nch g	lass	on b	oth	side	es of	a 2	-1/4	inch	air	spa	ce						RAL
		13	20	24	25	29	33	35	37	40	44	47	49	49	50	51	43		2-3/4	5.0	37	Model 650	TL69-244
40	Two	o par	nes	1/4 :	inch	glass	s on	both	n sid	ies c	of 2-	1/4 :	inch	air	spac	e							RAL
	30	27	27	27	32	34	31	36	40	42	43	42	42	38	41	47	51	52	3-1/4	7.1	37	Model 660	TL69-236
43	3/1 ain wir	ló in rspac ndow	nch ; ce. fra	glass 1/4 ; me	s. l- inch	1/8 : glas	inch s al	airs l gla	space azed	e, 1/ to 4	4 in 3-1/	ch i 2 x :	nsula 57-3,	ated /4 ir	glas ich a	ss, l lumi	/2 ir num	ch				Series 325 vertical pivoting	RAL
	26	28	29	31	31	36	35	40	42	44	45	47	48	45	42	49	48	48	2-13/16	9.5	88	windows	TL78-116
44	1/4 36	in x 8	ch p 4 in	olisł ch no	ned p omina	olate al per	, 2 rime	inch ter	air	spac	e, 3	/8 ii	nch p	oolis	hed	plat	₽,					Amerada Insu- lated Sound	RAL
	30	32	34	34	35	38	42	44	46	45	43	44	44	42	43	49	53	57	2-5/8	8.4	64	Control Unit	TL71-254
44	Two	p par	nes	of 1	/4 ir	ich g	lass	on b	ooth	side	s of	a 2-	-1/4	inch	air	: spa	ce						RAL
	22	20	30	32	35	37	40	42	45	47	47	49	47	44	45	52	53	57	3-1/4	7.6	37	Model 650	TL69-24
45	Two	o par	nes.	3/16	inch	n gla:	SS,	2-1/4	inc	ch ai	r sp	ace,	two	pane	s 1/	'4 in	ch gl	ass				Modol 660	DAI
	30	26	29	30	34	36	39	43	46	48	50	52	51	48	48	52	57	60	3-1/8	6.8	37	Double Hung	TL74+19
48	Two) pai	ies	1/4 :	inch	glas	s, 4	inch	n air	r spa	ice,	two j	panes	s 3/1	.6 in	ich g	lass						541
		27	32	34	37	40	41	45	49	52	56	58	59	56	53	51	60		4-7/8	7.0	37	Model 720	TL71-242
48	Two) pai	nes	3/16	inch	glas	ss,	4-1/2	inc	ch ai	r sp	ace,	two	рапе	s 1/	'4 in	ch gl	ass					DAT
	32	30	29	34	40	42	43	46	49	51	54	55	55	52	51	52	56	59	5-3/8	7.4	37	Model 660 DB	TL74-16
48	3/1	6 in	nch a	and]	l/4 i	nch g	glas	s on	both	n sid	les o	f 4-	3/4 i	inch	air	gap							RAT
	31	27	33	36	39	41	42	44	48	50	52	53	54	54	54	55	59	62	5-5/8	9.0	37	Model 650 DB	TL72-156
49	1/2 nom	l ind inal	ch A	coust	ta-Pa ter	ne, 2	2 in	ch ai	.r ga	ар, З	/8 i	nch 4	Acou	sta-H	'ane ,	36	x 8 4	inch				Amerada Insu- lated Sound	KAL
	40	40	39	39	39	43	44	46	48	49	50	50	50	51	54	55	57	58	3-1/8	12.1	64	Control Unit	TL71-253

CATEGORY 24. OPERABLE PARTITIONS

CATEGORY 24. OPERABLE PARTITIONS

Operable partitions are used as room dividers which are more rigid than flexible curtains. They are usually suspended from the ceiling on an overhead track. These partitions are often mounted on rollers for ease of operation and are opened in an accordianlike fashion. For individual access, smaller exit doors may be included; especially where the partitions are used for large areas such as gymnasiums, shops, hangers, auditoriums, etc.

Sealing is one of the main design parameters for acoustical performance. Various techniques are used in maintaining an acoustical seal at each fold and around the perimeter when the partition is closed. Organizations contributing data to this table are: 68, 99, and 105.

	Table	24.	Operable	partitions.
--	-------	-----	----------	-------------

							T	ransm	nissi	on I	oss,	dB							æ				
STC	100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	ZH 004	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	ZH (1004	5000 Hz	Thicknes (in.)	Density (1b/ft ²)	Company	Product	Reference
34	Fat 13	oric 13	cov 16	er. 19	vinyl 23	lea 26	1 1 i 29	ners 32	, fib 35	er g 36	glass 39	lin 43	er 44	46	48	51	53	54		4.8	99	Curtition	RAL
37	3-1 imp	/4 pregi	inch nate	26 d 1i	gauge ner f	stee aced	l s by	lats 48 oi	back unce	ed b per	oy 13 54 i	oun nch	ce pe viny:	er 54 L fal	ind mric	ch vi	nyl				(8	Coursian and M. C.	RAL
20	16	15	19	23	24	29	33	36	36	39	42	45	46	48	49	50 - e	51	50		48	60	Soundguard X-8	IL /1-316
38	#24 alu	14	um ba 19	cov ase 28	ering 32	33	35	ninge 37	37	40 ope	41	as . 41	a \$11 43	43	43	44	40	Ira	3	•	105	#380 Folding Wall with #240 Panels	RAL
38	Cer 15	nter 21	-hun; 26	g bi 36	-fold 35	wal] 37	wi 37	th #2 37	2540V 39	/ vir 39	ny1 c 40	over 40	ed pa 39	anels 36	34	37	38	39	3	5.9	105	#2500 Series Folding Wall	RAL OT 76-10
39	5-1 imp	/4 : oregi	inch Nates	wid d li	e 22 ner f	gauge aced	st by	eel s 48 ou	slat ince	back per	ed b 54 i	y 18 nch y	ound viny]	e pe fab	r 54 ric	inc	h vir	yl				Foldoor Super	RAL
	15	18	21	25	28	31	34	37	42	43	43	45	48	49	52	53	53	55		5.9	58	Soundguard X24	TL71-38
39	3-1 imp 19	19 19	inch hate 24	wid d 1i 27	e 22 ner f 28	gauge aced 30	by 31	eel s 48 οι 35	slat ince 41	back per 47	ed b 54 i 49	y 18 nch 7 50	ound viny1 48	e pe fab 49	r 54 ric 50	inc 51	h vir 51	51		6.1	68	Super Sound- guard X16 Fully Operable	kal TL71-256
40	Fac fat 16	ing rice 17	3/8 5 26	inc 29	h par 32	ticle 34	ь Бо 36	ard, 37	2-1/ 40	2 18	39	mine 42	eral 43	wool 45	, wi 46	1th 1 46	amina 47	ited 46	2-1/4	4.9	68	Folduor Series l	RAL 1170-225
40	5-1 imp 17	l/4 : pregi	inch nate	wid d li 26	e 24 ner f 28	gauge aced	e st by	eel s 48 ou 38	slat ince	back per	ed b 54 i 48	y 18 nch '	ound viny]	e pe fab	r 54 ric	inc	h vir 54	ayl 53		5.8	68	Foldoor Super Soundguard X12	RAL TL72-23
41	5-1 imp	/4 i regn	nch lated	wid l li	e 22 ner f	gauge aced	ste by 4	eels 48 ou	lat ince	back per	ed by 54 in	/ 18 hch v	ounc vinyl	e pe fab	r 54 ric	incl	n vin	yl		6 9/	4.9	Super Sound- guard X24	RAL
42	Fac	ing kwoo	1/4 01 th	incl iree	n par 11-g	j2 ticle auge	boa	ard f ips 5	abri inc	c co h wi	vere de la	40 i fil amina	led. ited	with to b	2-1 ack	/2 11 of	o/ft ³	90		0.24	co	rolaing boor	11/1-210
	21	22	27	31	34	34	36	40	41	42	42	44	47	49	50	48	49	50	3	5.3	68	Foldoor Series ?	RAL TL72-210
42	Cen	ter- 21	hung 27	; bi 36	-fold 38	wal1 38	wit 38	th #2 39	540 41	V vi 41	nyl (42	cover 43	ed p 45	anel 47	s 46	46	44		3	5.9	105	#2500 Series Fol ing Wall with Compression Unit	d- RAL OT76-9
43	3/8 ste	inc el d	h pa ampe	rti	cle b	oard	face	es (f	abri	c co	vered	±), 2	-1/2	1b/	Et ³	rock	v ool	and				Foldoor	RAT
	20	24	30	32	36	37	39	41	41	42	43	44	46	47	47	46	45	44	3	5.6	68	Series 3	TL76-103
43	#24 alu	5 vi minu 25	nyl m ba 30	cove se, 36	autor 41	matic 39	s, ł bot 40	tom 40	d to pres 41	ope sure 44	rate sea: 44	asa Igas 44	ket 45	gle 1 46	unit 46	. St 45	anda 41	rd	3		105	#380 Folding Wall with #245 panels	RAL
45	#24 pre	5 vi ssur 22	nyl e se 31	cove al g 36	ered j gaskei 40	anel	s, s 43	stand 45	ard 46	alum 47	inum 45	base	, aນ 44	toma 45	tic 47	botto	50		3		105	#380 Folding Wall with #245 namels	RAL
48	3/8	inc	h f1	aket	oard	face	s (f	abri	c co	vere	d), 6	5 16/	ft ³	rock		. ste	el		5		105	frais panero	
	dam 28	pers 32	38	38	41	40	43	45	47	48	49	51	53	52	52	49	50	52	3-3/4	8.7	68	Foldoor Series 4	RAL TL77-69
	Ste Par	el p titi	anel on h	s bo as a	nded In NR(to f C val	abri ue c	ic, w of 0.	ith y 75	perf	orate	ed Tu	ftex	-360	fab	ric.			12		69		RAL
																			14		08	FOLGOOP X12	B11-3/

CATEGORY 25. OPEN PLAN SYSTEMS

OFFICE LANDSCAPE SCREEN

CATEGORY 25. OPEN PLAN SYSTEMS

Open plan systems refer to products and materials which are used in open plan offices, buildings, or educational areas. The room configuration for open plan areas has no interior floor to ceiling partitions. Basically, there is one, large open area which is subdivided into working modules using movable partitions. These movable partitions are generally free standing, partial height barriers. They are often called landscape screens and are typically 5 to 6 ft high. These screens have absorptive and barrier properties so that speech privacy can be obtained between modules. Acoustically, these screens may be rated according to absorptive (NRC), transmission loss (STC), or noise isolation class (NIC') properties. The two other major elements of open plan systems are in absorptive ceiling and a sound masking system. In order to achieve adequate speech privacy, all three elements must have good acoustic performance.

Organizations contributing data to this table are: 4, 67, 77, 96, 118, 133, 136, and 141.

CAUTION

1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.

GLOSSARY

Landscape screen: A partial height, movable partition with absorptive and barrier properties.

NIC': Noise isolation class referred to open plan system performance. Higher numbers indicate better acoustic isolation.

			Absorpti	on Coeffi	icients		_					
NRC	zH	Hz	Hz	0 Hz	zH 0	2H O	ckness in.)	ısity /ft ²)	nting	pany	Product	Reference
	125	250	500	100	200	400	Thi	Der (1b	Mou	Соп		
. 80	Fabric co	over, f	iberglass	, full fa	ce.						Formfac	RAL
	. 33	. 53	. 81	. 90	. 87	. 90	2	1.04		136	Landscape Screen	A 76-284
. 80	Glass fil is lb/ft	er ins	ulation c	overed wi	th fabri	c. Density					Unigroup Standard	DAT
	. 25	. 47	. 71	. 79	. 81	. 78	2	1.9		67	Fabric Panel	TL-77-62
. 80	2 x 8 ft encased i by 20 gau galvanize back is c	or 8 x in white ige galv id expan covered	12 ft 4 e polyving vanized s nded and with 1/8	pcf mine yl chlori teel fram flattened inch Dur	ral fibe de film, e, front metal m on hardb	r blankets surrounde is of esh and oard.	d					CD CC 853/
	. 28	. 70	. 95	. 89	. 71	. 61	2	2.5	4	133	Acoustisorber Screens	USG/10-77
. 85	l/2 inch taining l with 6 lb	urethan /10 in /ft ³ f:	ne foam an ch perfor iberglass	nd nylon ated hard	velvet f board an	acing con- d filled					D 1	D
	. 32	. 57	.86	. 94	. 93	. 86	2-1/4			141	AR CR-6AR	RAL A 75-49
. 90	Center co 1/2 inch of 12 1b/ fiberglas	re 3/16 layer o ft ³ fil s cover	5 inch sep of 6 lb/fi berglass, red with p	otum with t ³ fiberg outer la polyester	aluminu lass, l/ yer of .(fabric.	m foil, 8 inch 5 lb/ft3					Plansc a pe	CKAL
	. 32	. 55	. 88	1.07	1.09	1.05	1-1/4			141	2 SM 60P	7601.65
. 90	Fabric co	ver, fi	iberglass	, absorbi	ng area.	1.02	2	1.0		126	Formfac	RAL
		. 60	. 75	1.05	1.00	1.02	2	1.2		130	Landscape Screen	R /0-204
. 90	Two layer Density i	s fiber s lb/ft	glass, or	ne layer p	polyeste	r fabric.					ERA-1	RAL
	. 23	. 40	. 85	. 96	. 95	.97	2	1.7		67	Acoustical Panel	TL-77-64
. 90	Acoustica diameter 2.5 pcf s	l panel holes c ound at	l perforation 1/4 inc	ted side v ch stagge: n blanket	with 1/8 red cent	inch ers.						DAI
	. 22	. 57	1.02	1.04	. 96	. 90	2	1.89	4	118	Multi-Use Panel	478-24
. 90	5 ft high with doub	, two l le alum	layer fibe ninum foi	erglass co l septum.	ore 3 in Fabric	ch thick covered.						CR
	. 09	. 54	1.06	1.04	. 99	1.04				96	Sound Screen II	1-AC-7815
1.00	4 x 4 ft ceiling p	glass f anel.	fiber nubb	y texture	⊵, high	performanc	e					RAL
	. 79	. 96	. 88	1.06	1.06	1.05	1-1/2	. 44	7	4	Nubby Open Plan	A 78-51
	Septum fa fiber and tional fa	ced on facing bric. A	either si s of open All enclos	de with weave, se sed in a	l inch t eamless, frame.	hick glass nondirec-	2-1/4	1.8		136	Acoustical Screen	RAL TL 77-126
	Nylon vel hardboard	vet ove , air c	er 3/8 ind core. Data	ch foam, i a shown an	1/8 inch re sabin	perforate s/unit.	d				Planscane	R A1
	12.4	17.1	21.6	26.6	33.4	32.7	1-3/4			141	Std. CR-6	A 72-15

Table 25A. Absorption properties of open plan office systems.

۰.

							Tr	ansm	issi	on L	oss,	dB											
STC	Hz	Ηz	Hz	Ηz	zΗ	zΗ	Ηz	Hz	Hz	Hz	0 Hz	0 Hz	0 Hz	0 Hz	2H O	2H O	J Hz	O Hz	ckness In.)	isity /ft ²)	pany	Product	Reference
	100	125	160	200	250	315	400	500	630	800	100	125	160	200	250	315	400	500	Thi	Der (1b	Сош		
13	Fal	bric	cove	er, g	glass	fibe	er ()	7 16/	ft ³)	, al	umin	um f	rame									Formfac Landscape	RAL
	9	10	7	6	6	6	8	10	10	11	12	14	15	15	15	16	17	19	2	2.09	136	Screen	TL 76-192
18	G14 16,	ass /ft ³	fiber	ins	ulat	ion c	over	red w	ith	fabr	ic 8	0 x 4	48 ir	1ch.	Der	sity	is					Unigroup Standard	RAL
	10	13	12	9	13	12	13	14	15	16	17	18	21	23	28	32	34	37	2	1.9	67	Fabric Panel	TL 77-62
24	Cer 1b. 1b.	nter /ft3 /ft3	core fibe fibe	e 3/1 ergla ergla	.6 in 185, 185 c	ch se 1/8 i overe	eptur .nch ed wi	wit of 1 th p	h al 2 lb olye	umin /ft ster	um f fib fab	oil, ergl ric	1/2 ass,	inch oute	r lay	ver c iyer	f 6 of .6		1 1 4		1/1	Planscape	CKAL
	12	11	11	12	11	13	16	19	22	24	28	30	55	36	39	41	43	45	1-1/4		141	2 SM 60 P	/604.33
26	2 x vir fro	k 8 d hyl d ont w	ft or chlor vith	8 x ide 1/8	: 12 film inch	ft 4 with Duro	pcf gal n Ha	mine lvani ardbo	ral zed ard	fibe expa back	r bl inded	anke and	ts er flat	icase tene	d ir d me	whi tal	te po mesh	ly				Acoustisorber	CR SC-852/
		13	11	13	15	15	18	22	27	31	34	34	36	38	37	28	28		2	2.5	133	Screens	USG/10-77
29	Two is	5 lay 16/1	vers Et ³ .	fibe	rgla	ss, o	ne l	ayer	pol	yest	er f	abrio	c 80	x 48	inc	h. E	ensit	у				ERA-1 Acoustical	RAL
	17	18	15	15	18	19	22	25	28	30	31	31	33	38	45	47	49	51	2	1.7	67	Panel	TL 77-64
42	Ce	iling	g par	el 2	x 4	ft,	test	ed t	o AM	1A - I -	11							•	1/2	1.9	4	Vinyl rock F-123	CR All1

Table 25B. Barrier properties of open plan office systems.

Table 25C. Speech privacy potential of open plan office systems.

		I	functiona	l Interzo	ne_Atter	nuation,	dB		-				
:IIC'	0 Hz	0 Hz	2H 0	2H 0	00 Hz	50 Hz	2H 00	zH CO	ickness (in.)	nsity b/ft2)	mpany	Product	Reference
	40	50	63	80	10	12	16	20	Th	<u>B</u> E	Cor		
19	Alpha	a II. Te	st metho	d PBS-C.2									
	22	17	20	19	20	20	21	20	1-1/2		96	Ceiling Board	CR 1-AC-8150
20	4 x 4 tical	ft glas panel,	s fiber : test in .	nubby tex accordance	ture, hi e with F	gh perfo BS-C.2	rmance ac	ous-					
	18	19	20	21	21	22	23	22	1-1/2	. 44	4	Nubby Open Plan	G & H AFX IL2
20	Nubby	/II. Te	st metho	d PBS-C.2									6 7
	21	18	19	20	20	21	21	23	1-1/2		96	Ceiling Board	1-AC-8150
20	Omega	II. Te	st metho	d PBS-C.2								Chara Charb	6D
	21	17	20	20	21	22	23	24	1-1/2		96	Ceiling Board	1-AC-8150
20	Textu	red II.	Test met	thod PBS-(C.2							-	
	21	17	19	20	21	21	21	23	1-1/2		96	Glass Cloth Ceiling Board	CR 1-AC-8150
21	5 ft	high. T	wo layers	s fibergla	ass core	3 inch	thick wit	h					
	doub I PBS-C	.e a⊥umin C.2	um foil s	septum. 1	Fabric c	overed.	Test met	hod			96	Sound Screen II	CR 1-AC-7815

CATEGORY 26. WALL TREATMENTS

CATEGORY 26. WALL TREATMENTS

Facings in the form of panels, boards, and coverings which can be mounted on walls are used to improve acoustic performance. Wall treatments are made from a variety of materials and are available in various designs, colors, and surface textures. Aesthetic value plus sound control are major criteria for selection of wall treatments.

Organizations contributing data to this table are: 4, 11, 15, 73, 85, 92, 96, 106, 115, and 133. Related categories are walls, unit absorbers, panels, ceiling tile, and open plan systems.

CAUTION

- 1. ABSORPTION COEFFICIENTS MAY EXCEED 1.0. FOR A COMPLETE DISCUSSION OF THESE VALUES SEE PAGE 51.
- 2. THE NUMBERS LISTED UNDER THE "MOUNTING" COLUMN REFER TO THE AIMA STANDARD MOUNTINGS DESCRIBED ON PAGE 54.

GLOSSARY

- Facing: The outside surface of the specimen. In general the side facing the sound source
- Backing: The other outside surface of the specimen. In general the side not facing the sound source
- Core: The region between the facing and the backing
- Lath: Thin lightweight structure used as groundwork for plastering, mounting tiles, etc. It may be in a form of gypsum board, perforated metal wire cloth, thin wood strips, etc.

			Absorptio	n Coeffic	ients							
NRC	Hz	ZH	zH	Нz	Hz	Hz	ness .)	ity (t ³)	ing	'ny	Product	Reference
	125	250	500	1000	2000	4000	Thíck (in	Dens (1b/f	Mount	Сотра		
. 40	Acoustic wood fib fiber su square.	al inter ers and rface, p Temperat	ior wall inorganic ainted or ure range	panels co cement b unpainte -50 to 1	mposed (inder,) d, edge: 50°F.	of long coarse s are						
	. 08	.14	. 27	.57	. 59	.63	1	18.9	2	92	Interior Wall Panels	NGC 7309
. 50	Fibergla: .01	ss, fabr: .09	ic cover .31	. 62	. 88	1.04	7/16	9.75	4	115	Noise Stop Wall Panel	CKAL 7601.63
. 55	1 inch 7(.09	03 with 1 .35	1/8 inch : .99	pegboard .58	facing. .24	.10	1			96	ocwt	OCRL
. 60	l inch 70 .08	03 with 3	1/4 inch : .99	pegboard .76	facing. .34	. 12	1			96	ocwt	OCRL
. 60	l inch Tl	W Type 1	l with 1/-	4 inch pe	gboard i 26	Eacing.				96	OCUT	OCRI
. 60	Paper-fac	red 3-1/2	2 inch fi	berglass	.20 with 1/4	inch	1			50	0001	OCKL
	. 50	. 99	. 70	. 41	. 38	. 27				96	OCWT	OCRL
.65	l inch pa .03	inted 1: .17	inear gla .63	ss cloth .87	board. .96	. 96	1		[.]	96	OCWT	OCRL
. 65	l inch Tl	W Type 1 .33	. 70	. 80	. 86	. 85	1			96	OCWT	OCRL
. 70	Absorptiv film fini .16	ve minera Ish 4 x 6 .52	al fiberbo 5 ft. .64	oard pane .81	ls with	vinyl	5/8	26	2	96	Armstrong Armashield Acoustical Wall Panels	AAL T56181
.70	l inch 70)3				,	5,0		-			
. 70	.06 l inch te	.20 extured g	.65 glass clot	th board.	. 95	. 98	1	1.58		96	OCW1	UCKL
70	.05 2 (nab 77	. 22	.67	.93	.99	. 95	1			96	OCWT	OCRL
.70	.26	.89	. 99 .	.58	.26	.17	2			96	OCWT	OCRL
. 70	3 inch TI .53	WType 1 .99	core with .97	n 1/4 inc .51	h pegboa .32	rd facir .16	ıg. 3			96	OCWT	OCRL
. 70	4 inch TI .70	W Type 1 .99	l core wit	h 1/4 ind .58	ch pegbo .37	ard faci .19	ng. 4			96	OCWT	OCRL
. 70	5 inch TI .78	₩ Type 1 .99	l with 1/4 .89	inch pe	gboard f .34	acing. .14	5			96	OCWT	OCRL
. 70	6 inch TI .95	W Type 1 .99	l with 1/4 .88	inch pe; .64	gboard f .36	acing. .17.	6			96	OCWT	OCRL
. 70	3-1/2 inc on 2x4 wo	h fiberg	glass with 16 inch	0.C.	h pegboa	rd facin	g			0.1	0.01	0.511
. 75	.45 l inch nu	.99 bby glas	.87 ss cloth b	.41 Doard	. 30	.18				96	OCWT	OCRL
	. 04	. 21	.73	. 99	. 99	. 9 0	1			96	OCWT	OCRL
. 75	2 inch 70 .26	3 with 1 .97	.99	egboard : .66	.34	. 14	2			96	ocwt	OCRL
. 75	l inch li l inch ai	near gla r space. 26	ass cloth 78	board fa	cing bac	ked with	2			94	OCUT	OCRI
							-			20	0081	JUKL .

Table 26. Wall treatment.

			Absorpti	on Coeffi	cients		<u> </u>					
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 75	3 inch 70 .49	3 core .99	with 1/4 .99	inch peg .69	board f; .37	acing. .15	3			96	OCWI	OCRL
. 75	4 inch 70 .80	3 core .99	with 1/4 .99	inch pegl .71	board fa .38	acing. .13	4			96	OCWT	OCRL
. 75	5 inch 70 .98	13 core .99	with 1/4 .99	inch peg .71	board f: .40	acing. .20	5			96	ocwt	OCRL
.75	6 inch 70 .95	3 core .99	with 1/4 .98	inch pegl .69	ooard fa .36	icing. .18	6			96	OCWT	OCRL
. 75	Anechoic .09	wedge p .40	anels 12 .79	x 12 inc) .90	n . 93	. 83		6.5	4	106	Robac	CPRC SA-75-126
. 80	Fiberglas .10	s panel .29	. fabric .81	99	1.04	. 99	1	7.5	4	115	AF570 Wall Panel	CKAL 7601.59
. 80	Paper-fac 16 inch O	ed 3-1/	2 inch f:	iberglass	on 2 x 4	wood stud	ls			0/	0.51 22	OCRI
. 85	.38 Premolded	fiberg	.99 lass boan	.68 rds incase	.47 ed in cl	.35 Lass I				96	00wr	UC KL
	.31	ed labr .48	.89	1.01	1.01	1.02	1	6	4	73	Noise Control Panels	KAL 434350
.85	l inch fi 4 x 4 ft, .26	berglas 4 x 8 .31	s, fabria ft. .86	covered	. Sizes 1.13	2 x 4 ft. 1.03	1			96	Wall Panel 700 Series	OCRL
. 85	l inch pa with 2 in	inted l ch air 40	inear gla space.	ass cloth	board i	Eacing 00	Ъ			96	0.CUT	OCRI
85	l inch pa	inted 1	inear gl.	ass cloth	board 1	.,,,	J					UCILL .
	. 19	. 53	. 99	. 99	. 92	. 99	4			96	OCWT	OCRL
. 85	2-1/4 inc .30	h fiber .69	glass on .94	2x2 wood .92	studs 1 .92	.98 .98	C.			96	OCWI	OCRL
. 90	Glass fab .72	ric fac .93	ed panel .72	4 x 4 ft .97	1.02	1.01	1	4.1	7	4	Мирру 90	RAL A76-32
.90	l inch AF 7/16 inch fiberglas	545; l noise s with	inch thi stop, 9, fabric (ck 4.5 1b. 75 1b/ft3 5.11 1b/ft	/ft ³ fit	erglass:	1 7/14	(30	,	116	AF545 Noise Stop	CV 41 7401 61
. 90	2 x 4 ft i	.47 mineral	fiber bi	lanket en	cased in	white	1-7/10	4.30	4	1.5	wali ranei	CKAL 7001.01
	. 29	. 69	. 99	. 99	. 86	. 72	2	9		133	Acoustisorber Wall Panel	CR SC-851/ USG/10-77
. 90	2 x 4 ft f film with .35	mineral flatte .74	fiber bl ned expar .99	lanket end nded metal .96	cased in Lone fa .85	n plastic Nce, flush .65	2	9		133	Geocoustisorber Wall Panel	CR SC-851/ USG/10-77
.90	l inch 70 cloth boa .18	3 core r rd facin	with l inng.	nch painte	ed linea	ir glass	2			96	OCWT	OCRL
. 90	2 inch TI facing.	W Type	l with 24	gauge pe	erforate	d metal	-			. •		
	. 25	. 64	. 99	. 97	. 88	. 92	2			96	OCWT	OCRL
. 90	l inch TI board fac .23	W Type ing. .72	1 core w: .99	ith l incl .99	n linear .99	glass cl	loth 2			96	OCWT	OCRL

Table 26. Wall treatment continued.

301

•. •

**

.

.

	· <u> </u>		Absorptic	n Coeffi	cients	<u>.</u> _	s					
NRC	5 Hz	0 Hz	C Hz	20 Hz	zH OC	2H OC	icknes: (in.)	nsity o/ft ³)	unting	npany	Product	Referenc
	12	25	20	10	20	40	ћ	<u>5</u> p	Wo	Ö		
. 90	1 inch pa	inted 1	inear gla	ss cloth	board f	acing wit	h					-
	5 inch ai .41	r space. .73	. 99	.98	. 94	. 97	6			96	OCWT	OCRL
. 95	Fiberglas	s board	s, decora	tive.								
	. 48	.76	. 89	1.02	1.07	1.05	1-1/2		4	73	Noise Control Panels	KAL 43844
. 95	2 inch 70	3					0			0.6	0.01.00	0.001
	. 18	. /6	.99	. 99	. 99	. 99	2	1.58		90	OCWI	UCKL
95	2 x 4 ft plastic f panel.	mineral ilm. Te	fiber bl sted with	anket end 2 inch a	ased in air spac	white e behind					Acoustisorber	CR SC-85
	. 35	. 76	. 99	. 99	. 99	. 72	2	9		133	Wall Panels	USG/10-73
. 95	2 x 4 ft with flat air space	mineral tened e: behind	blanket xpanded m	encased i etal one	in plast face.	ic film 2 inch						CD CC 851
	. 37	. 85	. 99	. 99	. 93	. 68	2	9		133	Wall Panel	USG/10-7
.95	2 inch 70)3 with	24 gauge	perforate	ed metal	facing.						
	. 18	.73	. 99	. 99	. 97	.93	2			96	OCWT	OCRL
. 95	l inch 70 board fac)3 core sing.	with 1 in	ch nubby	glass c	loth						
	. 25	.76	. 99	.99	. 9.9	. 97	2			96	OCWT	OCRL
95	2 inch Tl .25	W Type .75	1 . 99	. 99	. 99	. 99	2			96	OCWT	OCRL.
95	l inch Tl	W Type	l core wi	th l inch	ı nubby	glass clo	oth					
	board fac .26	.75	. 99	. 99	. 99	. 99	2			96	OCWT	OCRL
95	3 inch 70	3										
	. 53	. 99	. 99	. 99	. 99	. 99	3			96	OCWT	OCRL
. 95	2 inch 70 board fac)3 core : cing.	with l in	ch painte	ed linea	ur glass o	eloth					
	. 59	. 99	. 99	. 99	. 99	. 99	3			96	OCWT	OCRL
95	2 inch 70)3 core	with l in	ch nubby	glass c	loth boar	rd					
	.50	. 99	. 99	. 99	. 99	. 97	3	- -		96	OCWT	OCRL
95	3 inch Tl	W Type	1									
	.46	.99	. 99	. 99	. 99	. 99	3			96	OCWT	OCRL
95	2 inch T	[W Type	l with l	inch pair	nted lir	near glas:	3					
	cloth boa .48	erd faci .99	ng. .99	. 99	. 99	. 99	3			96	OCWT	OCRL
95	2 inch T	W Tune	l with l	inch nub	ny place	cloth						
	board fac	ing.	. wich I	200	, ETG25		ъ	_		96	OCHT	OCRI
	. 51	. 99	. 99	. 99	.97	. 70	د			20	0041	UCIAL
95	4 inch 70 99	. 99	. 99	. 99	. 98	. 98	~_4			96	OCWT	OCRL
95	3 inch 70)3 core	with 1 in	ch painte	ed linea	ar glass	·					•
	board fac 88	ing.	. 99	. 99	. 93	. 98	4			96	OCWT	OCRL
.95	3 inch 70)3 core	with l in	ch nubby	glass o	loth						
	board fac	ing.	00	00	0.0	07	1.			96	OCUT	00.01

Table 26. Wall treatment continued.

.

302

٠

			Absorpt	ion Coeffic	ients							
NRC	Hz	2H (ZH (2H 00	2H 00	2H 00	.ckness (in.)	nsity o/ft ³)	inting	npany	Product	Reference
	125	250	500	100	200	007	Thi	Del Del	Mou	Соп		
05	(datab. 77	11 Turne 1										
. 95	4 inch 11 .57	.w 1ype . .99	. 99	. 99	. 99	. 99	4			96	OCWT	OCRL
. 95	3 inch TI	W Type 1	l with	l inch pair	ted lin	ear glass						
	.77	.99	.99	, 99	. 99	. 99	4			96	OCWT	OCRL
. 95	3 inch TI	W Type 1	l with	l inch nubb	y glass	cloth						
	. 71	. 99	. 99	. 99	. 99	. 92	4			96	OCWT	OCRL
. 95	5 inch 70)3		·								
	. 95	. 99	. 99	. 99	. 99	. 99	5			96	OCWT	OCRL
. 95	4 inch 70 cloth fac	3 core v	with 1	inch painte	d linea	r glass						
	.87	. 99	. 99	. 99	. 99	. 99	5			96	OCWT	OCRL
. 95	4 inch 70	3 core w	vith l	inch nubby	glass c	loth						
	.88	. 99	. 99	. 99	. 99	. 96	5	•-		96	OCWT	OCRL
. 95	5 inch TI	W Type 1	Ŀ									
	. 83	. 99	. 99	. 99	. 99	. 99	5			96	OCWT	OCRL
. 95	4 inch TI board fac	W with 1	inch	painted lin	ear gla	ss cloth						
	. 77	. 99	. 99	• .99	. 99	. 99	5			96	OCWT	OCRL
. 95	4 inch II board fac	W Type 1 ing.	l with	l inch mubb	y gl as s	cloth						
	. 79	. 99	. 99	. 99	. 99	, 98	5			96	OCWT	OCRL
. 95	6 inch 70	3	90	99	99	99	6			94	OCUT	OCP1
		. , ,	. , , ,	. , ,	.,,,		Ū			90	UCW1	OCKE
. 95	5 inch 70 cloth boa	3 core v rd facir	vith 1 ng.	inch painte	d linea	r glass	,			0.6	0.011	0081
	.99	.99	. 99	. 99	. 99	. 99	D			90	00.01	UCKL.
. 95	5 inch 70	3 core w	vith l	inch nubby	glass c	loth						
	. 92	. 99	. 99	. 99	. 99	. 99	6			96	OCWT	OCRL
05	6 inch TT	U Turne 1	1									
. , ,	. 93	. 99	. 99	. 99	. 99	. 99	6	••		96	OCWT	OCRL
. 95	5 inch TI cloth boa	W Type 1 rd facir	l with	l inch pain	ted lin	ear glass						
	. 87	. 99	. 99	. 99	. 99	. 99	6			96	OCWT	OCRL
. 95	5 inch TI board fac	W Type 1 ing.	with	l inch nu bb	y glass	cloth						
	. 92	. 99	. 99	. 99	. 99	. 93	6			96	OCWT	OCRL
. 95	6 inch 70 cloth boa	3 core w rd facin	vith l Ng.	inch p ainte	d linea	r glass						
	. 86	. 99	. 99	. 99	. 99	. 99	7			96	OCWT	OCRL
. 95	6 inch 70 facing.	3 core w	vith l	inch nubby	glass c	loth board	l					
	. 85	. 99	. 99	.99	. 99	. 99	7			96	OCWT	OCRL
. 95	6 inch TI cloth boa	W Type 1 rd facir	with	l inch pain	ted lin	ear glass						
	. 95	. 99	. 99	. 99	. 99	. 99	7			96	OCWT	OCRL

Table 26. Wall treatment continued.

303

-

			Absorptio	on Coeffi	cients		6					
NRC	Hz	Hz	Hz) Hz	C Hz	, Hz	knes: n.)	sity ft3)	iting	any	Product	Reference
	125	250	500	1000	2000	4000	This (i	Den (1b/	Mour	Comp		
. 95	6 inch T board fa	lW Type cing.	1 with 1	inch nub	by glass	cloth						
	. 95	. 99	. 99	. 99	. 99	. 94	7			96	OCWT	OCRL
. 95	3-1/2 in	ch fiber	glass on	2x4 wood	studs 1	.6 inch O	.c.					
	. 34	. 80	. 99	. 97	. 97	. 92	3-1/2	•-		96	OCWT	OCRL
.95	3-1/2 in glass cl 0.C.	ch fiber oth boar	glass wit d facing	h l inch on 2x4 w	painted ood stud	l linear ly 16 inc	h					
	. 66	. 99	.99	. 99	. 99	. 97	4-1/2			96	OCWT	OCRL
. 95	3-1/2 in board on	ch fiber 2x4 woo	glass wit d studs l	h 1 inch 6 inch 0	nubby g	lass clo	th					
	. 67	. 99	. 99	. 99	. 99	. 90	4-1/2			96	OCWT	OCRL
. 95	Paper-fa línear g 16 inch (ced 3-1/ lass clo D.C.	2 inch fi th board	berglass facing o	with l n 2x4 wo	inch pai od studs	nted					
	. 66	. 99	. 99	. 99	. 99	. 99	4-1/2			96	OCWT	OCRL
. 95	Paper-fac glass clo	ced 3-1/ oth boar	2 inch fi d facing	berglass on 2x4 w	with l bod stud	inch nub s 16 inc	bу h О.С.					
	. 66	. 99	. 99	. 98	. 99	. 95	4-1/2			96	OCWT	OCRL
. 95	6 inch f	iberglas	s on 2x6	wood stu	is 16 in	ch O.C.						
	. 67	. 99	. 99	. 99	. 99	. 98	6			96	OCWT	OCRL
. 95	6 inch f: board fao	iberglas sing on	s with 1 2x6 wood	inch pair studs 16	nted lin inch O.	ear glas C.	s cloth					
	. 89	.99	. 99	. 99	. 99	. 99	7			96	OCWT	OCRL
1.00	Fiberglas	ss. deco	rative.								Notes D. Lander	
	. 63	. 83	. 96	1.06	1.07	1.07	2-1/2		4	73	Noise Reduction Panels	KAL 438443
	Decor par decor fat 2 x 4 thr inches	nels 3 t pric, re cough 4	o 6 lb ri inforced x 10 ft i	gid fiber fabric, v n thickne	rglass, vinyl va esses fr	core fac por barr om l to	ed with ier. 8 			85	MBI Thermal Acoustic Insulation	CR 7.14 MF:
.95 (c)	Fiberglas	s 2 inc	h thick w	ith fabr:	ic. 1 05	1.04	2	7	4	115	AF570 Wall Panel	CKAI 7601 62
	. 20	. / 9	1.1/	1.1/	1.03	1.04	4	,	4	***	Arg/U wall ranel	CIAL /001.02

Table 26. Wall treatment concluded.

.

.

CATEGORY 27. PIPE LAGGINGS

CATEGORY 27. PIPE LAGGINGS

Pipe laggings can effectively reduce the ambient noise levels if the pipe and fluid generated noise is of high amplitude compared to other ambient noise. Pipe laggings consist essentially of a decoupling element and a "floating" barrier where the decoupling element stops the pipe vibrations from driving the barrier material. Thermal properties and ease of application are the important criteria in the selection of the most suitable lagging. Data shown may consist of transmission loss, sound pressure level reduction, and noise reduction. Organizations contributing data to this table are: 1, 18, 32, 40, 45, 66, 73, 74, 90, and 96.

CAUTION

VALUES PRESENTED ON PAGE 307 ARE NOISE REDUCTIONS; THOSE ON PAGE 309, ARE INSERTION LOSSES; THOSE ON PAGE 311 ARE TRANSMISSION LOSSES. SEE PAGE 94 FOR AN EXPLANATION OF DIFFERENCES.

GLOSSARY

Lagging: Strip or sheet of nonconducting material wrapped around a pipe to reduce sound (and heat) transmission.

Refractory: Able to withstand high temperatures. Heat resistant.

-									Noi	ise H	leduc	tion,	dB					_								
2H 00	:	ZH C7	60 Hz	2H 00	50 Hz		LD HZ	ZH 00	00 Hz	30 Hz	00 H2		ZH NNN	250 Hz	600 Hz	~H 000	211 000	500 Hz	150 Hz	2H 000	000 Hz	hickness (in.)	ensity lb/ft2)	ompany	Product	Reference
-					~				<u> </u>		a.													0		
Cor	rug	ate	d alu	minu	man 1	nd le	ad i.	amin	late. 16			2	6			37	,			41		5/16	1.2	73	Acousti-Jac N-C-S	RAL 7604.222
0.5	in	ch f	oann ;	. 10 1	6 in 6	ich r	ubbei 5	r. 4	9	11	14	1	5	21	22	20) 1	17	24	21	24	. 606	1.03	66	Acousta Sheet 500	RAL
Sta foa	nda m.	rd d Use	convo d fo:	lute r th	d fo erma	am. 1 an	A.040 d aco) in bust	ch v ical	inyl ins	jack ulati	et la on or	amin n p:	nateo ipes	d to and	flex tank	ible s.	e po Ter	olyure mperat	than ure	2					
11m 0	its	-6(D)" to ()	220 0	°F f 0	oam,	-20° 0	'to 3	150 5.1	°Fj 8.	acket 49.	. Der 9 13.	nsit .8	:ygi 18.6	ven i 20.4	s lin 23.	near 9 ²⁵	wei 5.1	ight i 26.9	n 15/: 28.5	29.5	1	1.47	1	Acoustazip	RAL NR 78-11
Hig 2 x	h to 45	empe anc	eratu: 14 x	re i	nsul ft r	atio olls	n (ur . Av	o to Vail	230 able	0°F) in	. Fl 1/4,	ow ve 1/2,	eloa 1,	city 1-1,	30 f /2 ar	t/se nd 2	c. incl	Ava h tł	ailab) hickne	e in esses						
0	3,	1	0	0	1.	8	0	0	1	4.	39	8	8 1	1.5	13.8	17.	5 1	17	19.5	18	23	1	. 33	18	Kaowool Blanket	RAL NR 73-13
Bar vin giv	ium yl, en	-fil -60 is 1	led)° to inea:	viny 220 r we	l, l °F f ight	inc oam in	h cor Use 1b/ft	ivol ed a	uted s th	foa erma	n. Te 1 and	mpera acou	atu ust:	re ra ical	inge insu	0 to lati	150 on c)°F	bariu Dipes	um-fi Den:	lled síty					D.4.1
0		0	. 9	. 8	2.	2 6	. 6	7.6	10.3	15.	³ 13.	4 20	. 8 2	23.7	24.7	25.	3 30).7	31.2	33	33	1	4.9	1	Acoustazip	RAL NR 78-13
Hig 2 x and	h t 45 3.	empe anc 4.	ratu 14 x 6 an	re i 25 d 8	nsul ft r lb d	atio olls lensi	n (up . Ava ties.	o to aila	230 ble	0°F) ín l	. Fl /4, 1	ow ve /2,	elo 1, 1	city 1-1/2	30 f 2 and	t/se 2 i	c. nch	Ava thi	ailab) icknes	e in ses						DAI
0	·	1	1	1.8	3		. 5	1	4	6	9.	8 1	1	13.5	17.3	21.	8 ²	22	25	23	29.3	1	. 5	18	Blanket	NR 73-10
Hig 2 x and	h t 45 3,	empe and 4.	ratu: 14 x 6 and	re i 25 d 8	nsul ft r lb d	atio olls lensi	n (ur . Ava ties.	o to mila	230 ble	0°F) in l	. F1 /4, 1	ow v /2,	elo 1, 1	city L-1/2	30 f 2 and	t/se 12i	c. nch	Ava thi	ailab) icknes	e in ses						7.67
1		D	0	0	1.	2 2	. 7	6	14.3	18.	5 19	23	2	26	26	31	2	26	28.5	26.5	29	1	. 5	18	Blanket	NR 73-8
Hig 2 x and	h te 45 3,	and 4,	ratu 4 x 6 and	rei 25 18	nsul ft r lb d	atio olls ensi	n (up . Av ties.	o to vail	230 able	0°F) in	. Fl 1/4.	ow ve 1	eloc i	l-l	30 f 2 an	t/se d 2	c. inch	Ava th	ailabl Fickne	e in sser					Kaowool	RAL
0	:	1	2	0	2.	8 7	.5	10	14.5	18.	5 19	21	2	27	26	31	2	27	29	26	29	1	. 5	18	Blanket	NR /3-9
Hig 2 x	h ti 45	anc anc	ratu: 14 x 0	re i 25	nsul ft r 2	atio olls	n (ur) to	230	0°F)	. Fl	ow ve 2'	elo:	city	30 f	t/se	с. 27	Ava	ailabl	e in		1	66	16	Kaowool	RAL
Hia	1	. 5		1.8		- 3	.5 -		13.5		° 18.	8	-1	26	20.4	32.	3 27		29		33	1	.00	10	Branket	NK* / J- J
2 x and	45 3,	anc 4,	6 and	25 1 8	ft r lb d	olls ensi	ties.	vail	able	in 6	1/4, 1	1/2,	1,	1-1,	2 an	id 2	inch	n ti	ickne	sses		1	44	1.0	Kaowool	RAL
Hie	i h te) 9770	ratu	0 rei	neul	atio	0	, to	230	0°F)	, 10 FI			20	21 30 f	27	_	A11	27	-/	29.5	1	. 00	10	Dianket	NK-73-3
2 x and 0	45 3,	and 4	6 and l	25 18 8	ft r 1b d 3.	olls ensi 5 7	ties.	ail .8	able	in 19.5	i/4,	23	1. 3	1-1/	2°an 27	id 2	inct	: t ł	nickne	28.5	22	1	. 66	18	Kaowool Blanket	RAL NR 73-4
Cel	lula	ose	fiber	. о - Ы1	anke	ť t in	two	lay	ers,	1 i1	nch t	otal	thi	 .ckne	\$5,	5∠. 4 x	5 8 ft	sł	20 neets.		32				к-13	CD (DVC
					5				8			8	3			12				15		1		90	Acoustical Blanket	8277
Min 0	eral (. wo	ol, a 0	a 12 0	00°F 0	min	e ral D	fibe O	er ba O	att. 2.2	² 3.	1 5.	5	7.8	8	10	8	. 6	10	10	10.3	1.5	. 38	18	Flexwhite Mineral Wool	RAL NR 75-9
Bar fil and	ium- led	fil vin	led v vl 0 ical	to ins	1, 1 150°:	/2 in F; f: ion /	nch f iberg	oam las:	, 1 : s 0 i	inch to 4	fibe 0°F;	rglas foam	s. 1 - 6	Tem 0° t	pera o 22	ture 0°F.	ran Us	ige ied b/f	bariu as th	m- ermal						
. 5		2	2.5	3.3	5.3	2 6	.9 9	.7	11.6	18.1	14.	2 ² 22.	4	26	24.7	28.	3 ³	3	33	32.8	34.5	1.5	5.7	1	Acoustazip	RAL NR 78-12
Min O	eral (l wo	ol ir O	usula 0	atio 0	n,a	1200 .5 ¹	°F 1 .6	ninen 1.2	ral 1 2.5	iber 4.	batt 2 6.	2	9.1	9.1	11.	5 10	. 5	12	12	12	1.5	. 75	18	Flexwhite Mineral Wool	RAL NR 75-11

lable 2/A. Pipe lagging (noise reduction) concluded	Table 27	A. Pipe	lagging	(noise	reduction)) concluded
---	----------	---------	---------	--------	------------	-------------

.

	• •						Noi	se Re	ductio	on, d	в							_				
100 Hz	125 Hz	160 Hz	200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	2H 0007	5000 Hz	Thickness (in.)	Density (lb/ft ²)	Company	Product	Reference
Min .8	eral v l	1 001 0	insul 0	ation. 0	, a 1: 0	200°F 1	mine 2.5	ral f: 5.5	iber b 5.8	7.2	10.5	8.2	14	12.	l 15	14	15	1.5	1	18	Flexwhite Mineral Wool	RAL NR 75-13
Mine 2	eral w	0001, 1	a 12 .5	:00°F t 3	niner. 4	al fil 7	per b. 9	att. 13	14	14.3	18.5	14.5	19	16	19	18.2	19.5	2	. 5	18	Flexwhite Mineral Wool	RAL NR 75-10
High 2 x and 0	1 temp 45 an 3, 4, 1	perat nd 4 , 6 a 1	ure i x 25 .nd 8 .8	nsulat ft rol 1b der 3.5	tion Lls. A nsitio 7.5	(up to Availa es. 9.8	230 ble :	0°F). in 1/4 19.5	Flou 4, 1/2 16	v vel 2, 1, 23	25	30 f 2 and 27	t/sec 2 in 32.5	:. Av ich ti 26	vailab nickne 28	le in sses 28.5	32	2	. 66	18	Kaowool Blanket	RAL NR 73-4
High 2 x and	temp 45 an 3 4	berat Nd 4	ure i x 25 nd 8	nsulat ft roj lb der	tion lls. A	(up to Availa	> 230 able :	0°F). in 1/4	Flow 4, 1/2	v vel 2, 1,	ocity 1-1/3	30 f 2 and	t/sec 2 in	:. Av ich th	vailab nickne	le in sses						
0	1.5	0	1.8	2.5	3.5	5.5	13.5	17.8	18.8	23.5	26	27	32.3	27.8	³ 29	29.5	33	2	. 66	18	Kaowool Blanket	RAL NR 73-3
Hig 2 x and 1	1 temp 45 an 3, 4, 0	oerat nd 4 6 a 0	ure 1 x 25 nd 8 0	ft rol ft rol lb der 1.2	Lls. A sitie 2.7	(up to Availa es. 6	14.3	18.5	19	2, 1, 22	26	30 f 2 and 26	t/sec 2 in 31	ich th 26	28.5	26.5	29	2	. 66	18	Kaowool Blanket	RAL NR 73-8
High 2 x and 0	temp 45 an 3, 4, 1	erat Id 4 6 a 2	ure i x 25 nd 8 0	nsulat ft rol lb der 2.8	ion lls. A sitie 7.5	(up to Availa es. 10	2300 ble : 14.5	0°F). in 1/4 18.5	Flow 4, 1/2 19	velo 2, 1, 22	27	30 f 2 and 26	t/sec 2 in 31	. Avich th 27	vailab Nickne 29	le in sses 26	29	2	. 66	18	Kaowool Blanket	RAL NR 73-9
Hig 2 x and 0	temp 45 an 3, 4, .3	erat d 4 6 a 0	ure i x 25 nd 8 0	nsulat ft rol lb der 1.3	tion lls. nsitie 0	(up to Avail es. 3	230 able 7.8	0°F). in 1/ 12	Flow (4, 1) 18.3	velo 2, 1 17	24	30 f 2 an 26	t/sec d 2 i 32	nch t 28	ailab hickn 31.8	le in esses 26	34	2	. 66	18	Kaowool Blanket	RAL NR 73-14
Mine 2	eral w O	001 1.5	insul 2	ation, 2.5	a 12 5	200°F 7	miner 9.8	al fi 12.8	iber b 14	att. 13.5	18.8	14	19.8	, 16.4	³ 19.5	, 18.5	21.2	2	1	18	Flexwhite Mineral Wool	RAL NR 75-12
Hig 2 x and 1.5	temp 45 an 3.4,	erat nd 4 6 a 1	ure i x 25 nd 8	nsulat ft rol lb der 3.8	tion lls. nsitio 3.5	(up to Avail es. 6	230 able	0°F). in 1, 14	Flow /4, 1, 19.8	vel 2, 1 21.5	ocity , 1-1 25.5	30 f /2 an 28	t/sec d 2 i 35.5	nch 29	vailab thickn 30.8	ole in messes 25	34	2	1	18	Kaowool Blanket	RAL NR 73-11
Hig 2 x and	temp 45 an 3, 4,	erat nd 4 , 6 a	ure i x 25 nd 8	nsulat ft rol lb der	tion Lls. Nsitie	(up to Avail es.	230 able	D°F). in l,	Flow /4, 1/	vel 2, 1	city	30 f /2 an	t/sec d 2 i	nch i	vailab hickn	ole in messes					Kaowool	RAL
0 Cell	0 ulose	0 fib	0 er bl	0 anket	1.2 in tw	4.3 vo lay	11 vers,	15.5 2-1/2	15.5 2 inch	22.5	26 al th:	27 ickne	32 ss, 4	25 x 4	27 ft sh	26.5 eets.	30	2	1.33	18	K-13	NR 73-6
High	temp	erat	ure i	5 nsulat	ion	(up to	10	°₽).	Flow	15 velo	ocity	30 f	22 t/sec	:. A1	vailab	. 30 le in		2.5		90	Blanket	CR
2 x and 0	45 an 3, 4, 0	id 4 6 a 0	x 25 nd 8 0	ft rol lb der 2.6	lls. nsitie 1.8	Avail es. 7.5	.able 13.5	in 1, 18.5	26 ⁽⁴ , 1)	2, 1 26	, 1-1, 30	/2 an 32	d 2 i 38	30.5	bickn 33	26.3	34	3	1	18	Kaowool Blanket	RAL NR 73-15
High 2 x and 1.8	temp 45 an 3, 4,	erat Id 4 6 a 2	ure i x 25 nd 8	nsulat ft rol 1b der 5	ion Lls. Sitie	(up to Avail es. 10	2301 able	0°F). in 1/ 22.8	Flow (4, 1)	vel 2, 1 26	ocitý , 1-1,	30 f /2 an 33	t/sec d 2 i	. Av nch t 30	vailab hickn	le in lesses 26.5	24	3	1.5	18	Kaowool Blanket	RAL NR 73-12
High 2 x	temp 45 an	erat	ure i x 25	nsulat ft rol	ion ((up to Avail	230(able)°F). in l/	Flow 4, 1/	vela 2, 1	29.5 city 1-1,	30 f 2 and	38 t/sec d 2 i	. Av	ailab hickn	le in esses	34					
and O	3, 4, 0	ьа 0	nd 8 1.8	lb den l	4.3	s. 7	15.5	21.5	17.5	24.5	.27.5	28	33.8	26.5	27.5	27.5	30	3	2	18	Kaowool Blanket	RAL NR 73-7
Cell 4 x	ulose 8 ft	fibe shee	ersla ts.	minate 6	d to	polye	thyle 20	ene co	mbine	d win 23	h lea	ad fe	1t, a 39	vaila	ble i	n 42	·			90	K-13 Acoustical Blanket	CR
Cell 4 x	ulose 8 ft	fib shee	ers l ts. D	aminat esntiy 7	ed to give	o poly en is	ethyl volum 16	lene der	combin hsity	in li 19	th le /ft ³	ead, :	felt, 32	etc.	Avai	lable 36	in		2.5	90	K-13 Acoustical Blanket	CR
Cell	ulose	fib	er bl	anket 5	in tw	o lay	ers, 10	1-1/2	inch!	tota 12	l thi	ckne	ss, 4 19	x 8	ft sh	eets. 21		1.5		90	K-13 Acoustical Blanket	CR

		Ir	nsertion 1	Loss, dB								
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference .
	l inch u	rethane	with WFR.	(vapor	barrier)	iacket						
	(.06 15/	sq ft)	0	0	1	a	1			96		00.01
	-	0	0	v	1	,				,,,		OCAL
	Fibergla .06 lb/s	ss pipe q ft)	with WFRJ	jacket	(Glasclad	d ~						
	-	0	5	9	14	20	1			96		OCRL
	Kaylo pi .25 lb/s	pe with q ft)	aluminum	jacket (Glasclad	-						
	-	1	4	8	12	20	1-1/2			96		OCRL
	Fibergla	ss pipe	with alum	inum jac	ket (Glas	sclad -						
	-	1	6	14	19	26	1			96		OCRL
	Three la	yers the	rmal insu	lating w	ool (TIW)) Туре I						
	(1 inch -	thick FR 2	K faced) 10	17	19	25	1		•-	96		OCRL
	Two lave	rs therm	al insula	ting woo	1 (TIW) 1	Tvpe I						
	(1 inch	FRK face	d) 6	12	16	23	1			96		OCRI.
							-					
	One laye (1 inch	r therma thick FR	l insulat K faced)	ing wool	(TIW) Ty	ype I			•			0.001
	-	0	2	/	12	18	1			96		UCRL
	Three la faced)	yers ED-	100 duct	wrap (l	inch thic	ck, FRK						
	-	0	12	19	23	31	1			96		OCRL
	Two laye faced)	rs ED-10	0 duct wr	ap (1 in	ch thick	, FRK						
	-	0	8	13	20	30	1			96		OCRI.
	One laye	r ED-100	duct wra	p (l inc	h thick,	FRK face	d)					
	-	0	4	7	13	18	1			96		OCRL
	Fibergla	ss pipe	with 1.40	lb/sq f	t jacket.		,		_	04		OCPI
	-	2	7		22	29	1			70		OCKL
	1200 mol pipe ins as therm	ded pipe ulation al or ac	covering in prefor oustical	. Homoge med half insulation	nous, min sections ons. Ter	neral fib s for use mperature	er s					
		3	10	15	25	31	1-1/2	10		45	Epitherm Pipe Covering	RAL NR 72-30
	Kaylo pi	pe, no c	overing.									
	-	0	2	6	9	12	1-1/2			96		OCRL
	1200 mole pipe inst as therm	ded pipe ulation al or ac	covering is prefor oustical	Homoger med half insulation	nous mine sections ons. Temp	eral fibe s for use perature	r					
	4	5	15.5	18	29.5	30.5	2	10		45	Epitherm Pipe Covering	RAL NR 72-31
	Rigid, h	ydrous c	alcium si	licate i	nsulation	n in sec≁						
	tional p	ipe fo r m	. Tempera 6	ture to 11	1500°F. 11	14	2	13		74	Thermo-12 Plain Facing	CT
	Rigid h	vdrous o	alcium ei	licate i	nsulation	n in sec-						
	tional p	ipe form	; canvas	jacket.	12	16	2	13		7%	Thermo-12 Canvas Jacket	СТ
			,	•	•		-			74	Sanvas Salket	
	Rigid, h tional p	ydrous c ipe form	alcium si ; aluminu	licate in m jacket	nsulation	n in sec-					Thermo-12	
			13	16	16	18	2	13		74	Aluminum Jacket	CT

Table 27B. Pipe lagging (insertion loss).

•

	<u>In</u>	sertion L	oss, dB			S S		60		Product	
125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thicknes (in.)	Density (lb/ft ³)	Mounting	Company		Referenc
 Rígid, bon aluminum (ded fib or stai	erglass p nless ste	oipe insu el jacke	lation w	ith	··	- ·	·			
		17	18	24	29	2			74	Micro-Lok 650; ML Jacket	CT
Rigid, bor kraft-fibe	nded fi erglass	berglass -aluminum	pipe ins n jacket.	ulation	with					Miana Ish 650	
		12	14	21	27	2			74	AP Jacket	СТ
Rigid, bor	nded fi	berglass s	pipe insu	ulation.	18	2			74	Micro-Lok 650;	CT.
			, , ,	15	10	4				TTATIL FACTING	01
.25 lb/sq	ft)	with alum	ninum jaci	ket (Gla	sclad -						
	1	6	15	21	28	2			96		OCRL
Fiberglass	s pipe 4	with 1.40 11) 1b/sq f: 18	t jacket 23	. 29	2			96		OCRL
Fiberglass	; pipe	with WFRJ	jacket	(Glascla	d -						
.06 1b/sq	ft) 0	6	13	20	27	2			96		OCRL
Urethane	outer	laver l i	nch thic	k) plus	Fiberglass					5 m	
pipe (inne	r laye O	r 1 inch 3	thick), r 11	no cover 15	ing. 21	2			96	:	OCRL
2 inch ure	thane	with WFRI	(vapor)	harrier)	iacket						
(.06 lb/sc	ft). 0	0	0	2	10	2			96		OCRL
Fiberglass	Dipe	with alum	unum iack	ket (Gla	sclad -						
.25 1b/sq	ft). 2	8	18	23	30	3			96		OCRL
Fiberglass	pipe	wirh WFR.	iacket ((Glascla	d - 06						
lb'sq ft).	2	8	15	22	29	3			96		OCRL
3 inch ure	thane	with WFR.I	(vanor b	narrier)	iacket						
(.06 lb/sq	ft). 0	0	1	3	10	3			96		OCRL
Fiberglass	níne i	with 1 /	lb/co.ft	incket							
Tibergiass	4	13	20	24	30	3			96		OCRL
Kaylo pipe	(inne	r layer l	-1/2 inch	n thick)	plus bick)						
with alumi	num ja 1	cket (Gla 8	sclad 20	25 1b/s	q ft) 28	3			96		OCRL
Kavlo nine	with	aluminum	iacket (C	lasolad	_						
.25 1b/sq	ft).	3	6 f	10	17	3			96		00.01
			ũ	10	1,	5			,,,		ocia
vairo bibe	, 110 CI	3	7	10	11	3			96		OCRL
Urethane (outer	layer l i	nch thick) plus :	fiber-						
glass pipe	(inne) 0	r Layer 2 5	inch thi 13	lck), по 16	covering. 24	3			96		OCRL
Urethane (outer	layer l i	nch thick	c) plus :	fiber-						
glass pipe	(inne:	r layer 3 S	inch thi 14	lck), no	covering. 23	4			96		OCRI

Table 27B. Pipe lagging (insertion loss) concluded.

1

.

•• ·

.0

Table 27C. Pipe lagging (transmission loss).

						Tr	ansmi	ssic	on Lo	ss,	dB										
STC	Hz	Ηz	Ηz	Ηz	Ηz	Hz	Нz	Чz	Ηz	zΗ	Hz	Hz	Hz	Ηz	Rz	ZH	knest n.)	íty ft ²)	any	Product	Reference
	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	Th í c (i	Dens (1b/	Сотр		
24	Fle	exibl	le, ical	limp, foam	den:	se no	onlea	d-10	aded	vin	yl 1	amin	ated	to l	./4 i	.nch					
	12			14			18			26			31			36	0.34	0.83	40	dba Aircon-"DW"	CR DW-120
26	Coi	ruga	ated	alum	inum	and	lead	lam	ninat	e.	~ ~								• •		CKAL
	15	14	15	10	18	19	21	24	24	26	28	30	32	34	35	3/	5/16	1.2	/3	ACOUSTI-JAC N-C-S	7604.22
26	Fle acc	exibl	le, cal	limp, foam	den 1.	se n	onlea	ıd-lo	aded	vin	yl 1	amin	nated	to]	./4 :	inch					
	12			17			19			28			36			40	0.375	1	40	dba Aircon "DW"	CR DW-144
26	Fle acc	exibl Susti	e, cal	limp, foam	dens	se no	onlea	d-10	aded	vin	yl 1	amin	ated	to l	/4 i	nch					CR
	12			17			19			28			36			40	0.385	1	40	dba Aircon-"DW"	DW (FR)-144
28	Lic to app far	uid 350° bliec s, g	cata 'F, : to gearl	alyti relat any poxes	call ive shap , pi	y cu humi e an ping	red b dity d con and	arri to l tour duct	er m .00%. suc	asti Tr h as	c: t ansm com	empe issi pres	on l sors	re ra oss t , tur	nge arr: bine	-10 Ler s,					CKAL
	16	16	18	18	30	22	20	21	27	31	35	39	42	45	47	50		1.75	32	Muffl-Lag	734-14

...

.

•

.

.

CATEGORY 28. GENERAL INDUSTRIAL SILENCERS

CATEGORY 28. GENERAL INDUSTRIAL SILENCERS

Information in this category is limited to products used in industrial rather than vehicle applications. These silencers are used to quiet gas flows in a variety of applications from high volume airflow to high temperature steam outlets. These units may have reactive or absorptive components or a combination of both. Materials are specified for heavy duty, industrial applications. Organizations contributing data to this table are: 2, 5, 40, 70, 102, 135, and 139.

- 1. SILENCER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLICA-TIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- 2. IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRESENTED FOR A GIVEN PRODUCT LINE. SEE MANUFACTURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFORMANCE DATA.

Table	28A.	General	industrial	silencers	(attenuation)
-------	------	---------	------------	-----------	---	-------------	---

			Atte	nuation	, dB					
Чz	Чz	Hz	чz	Hz	Нz	Ηz	Hz	Company	Product	Referenc
63	125	250	500	1900	2000	4000	8000			
Standard I	anel fi	lters, fa	bricated	steel s	heet and	plate, w	velded. Nomina	1		
2	3	4	5	8	13	14	13	135	FSH Series Filter Silencer	CR 241
Two stage	filters	, fabrica	ted steel	sheet	and plate	e welded.	Nominal			
2 2	3	35.500 CI 4	m. 5	8	13	14	13	135	FCRH Series Filter Silencer	CR 241
Unit const Nominal c	ructed apacity	of heavy 1750 to	duty stee 35,500 cf	l sheet m. Used	and plat on cent	te welded rifugal c	l throughout. compressors,			
2	3	4	5	8	13	14	13	135	FASH Series Absolute Filter Silencer	CR 241
Heavy duty compressor long with pipe size.	, compa s and b pipe si	ct unit, lowers. S ze 1/2 to	dry pleat izes vary 20 inch	ed pape from 7 diamete	r element -1/2 incl r x 28-1,	t, used o n diamete /2 inch l	on engines, or to 6-1/2 ind ong with 6 ind	ch ch	CCS Series	
5	8	10.5	12.5	14	14	14	13	135	Intake Filter	CR 34-300
Absorptior Pipe size to 36 inch	silenc 5 to 30 diamet	er, strai inch, si er x 189	ght throu zes range inch long	gh desi from 1	gn, all w l inch d:	velded co iameter t	nstruction. o 36 inch long	2		
2	3	5	8	15	22	23	20	135	Model U6H and U6G	CR 214A
Heavy duty design, ar sizes from	7, all w nd exter n 10 inc	elded, ex ior surfa h diamete	plosion r ces prime r x 33 in	esistan coated ch long	t, flange . Pipe s: to 54 in	e type, s ize 4 to nch diame	traight throug 36 inch, vario ter x 227 inch	gh ' bus		
1011g. vei 17	18	17	16	13	11	8	7	135	Turbo-Charged Engine Silencer Model UT	CR 223A
Air intake	silence	er, pipe	sizes fro	m 22 to	36 inch	, and siz	e varies from			
4	5	7	11	17	22	22	19	135	SU3H Series	CR 12-300
Heavy duty foam filte	assemb relement	ly with a nt for us	weather e on smal	hood, e 1 blowe	mploys an rs, compi	n oil wet ressors,	ted polyurethand engines.	ane		
14	17	19	18	15	14	13	12	135	FS Series Filter Silencer	CR 242
Exhaust si prime coat	lencers ed, gas	for turb flows th	o charged rough a p	engine orted t	s, welded ube and a	i steel, attenuati	exterior surfangers.	ices		
12	23.5	24	16.5	11	10.5	10.5	10.5	2	Model A4	CR A4/9/7
Intake fil low and mi prime coat Temperatur	ter/sil dfreque ed. Inte to 20	encer for ncy noise ernal sur 0°F. Ver	reciproc reductio faces are tical mou	ating e n. Weld cleane nting.	ngines, d ed steel d and coa	compresso , exterio ated with	ers, blowers, f or surfaces are a rust inhib:	for 2 itor.		
14	19	22.5	19	15	12	10.5	10.5	2	Model Al0	CR A10/9,
Intake and Welded ste and attenu	exhausi el. exte	t silence erior fac hambers.	rs for re es prime	ciproca coated.	ting engi gas flow	ine blowe vs throug	rs, compresson h ported tubes	5 S .		
17	21	21	17.5	15	14	13	12	2	Model Al	CR A1/9/
Spark arre exterior s a plugged ported tub	ster/ex urfaces outlet v es and a	haust sil are prim which can attenuati	encer for e coated. be led t ng chambe	recipro The sp. o any co rs. Ver	ocating e ark colle onvenient tical mou	engines, ector box point. inting.	welded steel, is provided w Gas flow throu	with agh		
17.5	21	20.5	18	15.5	14.5	13.5	13	2	Model A7	CR A7/9/
Heavy duty exterior s Various si long. Ver	all we surface p zes 14 tical o	lded cons prime coa inch diam r horizon	truction ted, stan eter x 35 tal mount	with sp dard si inch l ing.	ark traps lencing. ong to 66	s, explos Pipe siz 5 inch di	ion resistant es 4 to 30 inc ameter x 146 :	zh inch	Spark Arrester Silencer Model	
17	19	20	18	17	16	15	14	135	UCC UCCH	CR 216A
Noncritica sizes from long.	l silen 5 inch	cer, indu diameter	strial us x 21 inc	ages, p h long	ipe size to 72 inc	l to 30 ch diamet	inch. Various er x 229 inch			
17	19	20	18	17	16	15	14	135	Type UC Silencer	CR 224B

Table 28	8A. Genera	l industrial	silencers	(attenuation)) continued.
----------	------------	--------------	-----------	---------------	--------------

			Atte	nuation,	dB			· = · · · · · · · · ·		
Hz	Hz	zH	Hz	Hz	Hz	liz	Hz	Company	Product	Refere
63	125	250	500	1000	2000	4000	8000			
Heavy du through (various)	ty, all w design, e sizes fro	elded exp xterior s m 14 inch Vertical	losion re urfaces p diameter	sistant prime coa x 80 in	flange ated. Pipe nch long	type, st size 8 to 54 in	traight 8 x 36 inch 11 diameter		Turbocharged	
21	22	20	18	17	15	14	13	135	Engine Silencer Model UTM	CR 223
Heavy dut used for range 22	ty, welde subcriti inch dia	d unit co cal PLV a meter x 6	nstructio pplicatio l inch lo	on of can ons, pipe ong to 66	rbon steel e size 8 6 inch dia	l sheet to 30 i ameter x	and plate inch, size 206 inch			
18 18	21	21	19	17	15	14	13	135	UCI Series Inlet Silencer	CR 244
A heavy o used for range 22 long.	duty, wel subcriti inch diæ	ded unit cal PLV a meter x 6	construct pplicatic l inch lc	ed of cannot be the second s second second	arbon stee 2 size l 1 6 inch dia	el sheet to 30 in ameter x	and plate ich, size 206 inch		UCD Group	
17	20	21	19	17	16	14	13	135	Chamber Type Discharge Silencer	CR 244
Exhaust s surfaces chambers.	ilencers prime co	for turb ated, gas	ocharger flows th	engines rough a	s, welded ported tu	steel, ibe and	exterior attenuating			
14	26	27.5	19	14	13	13	13	2	Model A5	CR A5/
Heavy dut design, e sizes fro	ty, all week exterior om 10 inc	elded exp surfaces h diamete	losion re prime coa r x 47 in al mounti	sistant, ted, pip ch long	, flange t be size 4 to 78 inc	ype, st to 36 i ch diame	raight throug nch. Various ter x 345 inc	;h :h	Turbocharged	
23	24	23	21	17	15	14	13	135	Engine Silencer Model UTR	CR 223
Air disct diameter	narge sil x 31 inc	encer, pi h long to	pe sizes 90 inch	8 to 84 diameter	inch, siz x 265 ir	e varie ich long	s from 14 inc	:h		
4	6	10	19	28	30	26	21	135	SUGD Series	CR 12-
Intake si x 31 incl 4	llencer, long to 6	pipe size 90 inch 10	8 to 84 diameter 20	inch, si x 265 ir 28	ize varies nch long. 30	26 from 1	4 inch diamet	er 135	SUHI Series	CR 12-
			~							
prime co attenuat:	rester/ex ated surf ing chamb	aces, gas ers. Ver	flows th tical mou	recipro rough po nting.	orted tub	es, spir	ning section	and		
22	26	27	24	20.5	19	18	18	2	Model A8	CR A8/
Intake an welded s attenuat	nd exhaus teel, pri ing chamb	t silence me coated ers.	r for rec exterior	ciprocat faces,	ing engin gas flows	es, blow through	vers, compress n ported tubes	sors, s and		
22	26	26.5	24	21	19	18	18	2	Model A2	CR A2/
Average 5 inch d: 23	dampening iameter x 24	silencer 21 inch 25	, pipe s long to 2 24	izes from 72 inch 22	m 1 to 30 diameter : 21	inch. N x 229 ir 20	Various sizes nch long. 18	from 135	Type US Silencer	CR 224
Heavy du	tv. al Twe	lded cons	truction	with sp	ark trans	explo	sion resistant	t.		
exterior inch. Van 230 inch	surface rious siz long. Ve	prime coa es l4 inc ertical or	h diamete h diamete horizont	ndard si er x 47 tal moun	lencing, inch long ting.	to 66	zes from 4 to inch diameter	30 X	Spark Arrester Silencer Model USC USCH	CR 216
23	24	25	24	2.5	~ .	20			noder coc coch	
Intake an exhauster All welde	nd exhaus rs, pumps ed steel, 8	t silence , high fr exterior 12	rs for re equency r surfaces	oise re prime 28 5	ting engi duction w coated. T 38	nes, cor ith min: emperatu 34 5	mpressors, blo imal pressure ure up to 950 24 5	loss. 'F. 2	Model All	CR All
,	0	12	2)	20.9	50	54.5				
Intake f or high internal washable	ilter/sil frequency surfaces . Tempera	encer for noise re cleaned ture up t	ereciproc duction and coate o 200°F.	vating en Welded ed with Vertic	ngines, c steel, ex rust inhi al mounti	ompresso terior : bitor, : ng.	ors, blowers, surfaces prim filter element	mid e coated t		
11	14	19	25	29	29	26	18	2	Model A9	CR A9/
Absorpti double s from 3-1	on sílenc eal crimn /4 inch d	er, strai ed end C liameter x	ght throu onstruct 8 inch	igh desi ion, pip iong to	gn, conti e sizes l 8-1/2 inc	nuous we /2 to 4 h diamen	elded shell so inch, size va ter x 48-3/4	eams, aries inch long.		cp. 314
3	5	10	17	30	42	44	40	135	model UH and UG	CK 212
Absorptic construct 73-1/2 in	on silenc tion size och diame	er strai s range f ter x 204	ght throu rom 9-3/4 inch lor	igh with inch d: 2.	annular (iameter x	design. 22 inct	all welded long to			
3	arame 5	10	17	 30	42	44	40	135	Model SUH and SUG	CR 214

315

N	N	N	N	N	N	N	N	6	Product	
н	н	H	Ĥ	H O	н 0	0 11	и 0	Company	Froduct	Refere
63	125	250	500	190	200	400	800			
A heavy for crit	duty, wel ical PLV	ded unit applicat	construc ions. Pip	ted of d e size i	earbon ste From 1 to	el sheet 30 inch	plate used diameter		RIS Group	
versus l	ength fro. 21	m 8 x 27 24	inch to 26	66 x 206 27	inch. 26	25	21	135	Chamber Absorptive Type Inlet Silencer	CR 244
1		2.1							<i>y</i> 1	
Intake a pressors a series	nd exhaus . Welded of ported	t silenc steel, e tubes,	ers for re xterior s and atten	eciproca urfaces uating o	nting engi prime coa chambers.	ines, blo ated, gas	wers, com- flows through	gh		
25	29	29	26	24	22.5	22	20.5	2	Model A3	CR A3/9
Reactive	chamber displace	type sil	encer, fo	r large Nominal	slow spee	ed recipi 1875 to	ocating or 26.000 cfm.			
28	29	29	28	26	25	24	28	135	RF Series Filter Silencer	CR 241
Maximum	silencing	, nontun	ed, multi diameter	chambere x 21 in	ed: pipe s	size 1 to	30 inch h diameter			
x 265 in	ch long.					25	20	1.25	Torne UD Cilencer	CD 2245
27	29	30	28	27	26	25	22	135	lype UK Silencer	CR 2241
Heavy du Used for range 5	ty, welde subcriti inch diam	d unit, cal PLV eter x 2	construct applications 1 inch log	ed of ca ons. Pip ng to 72	arbon stee De size l 1 inch dia	el sheet to 30 in ameter x	and plate. ch, size 304 inch		UR AND URD	
long. 28	31	31	30	27	26	25	24	135	Chamber Type Discharge Silencer	CR 244
Heavy du Used for	ity, welded companio	lunit, c n silenc	onstructe er with U	d of can CD serie	bon steel s, pipe s	sheet a size 10 t	nd plate. o 30 inch,			
size ran x 133 in	iges 30 in Ich long.	ich diame	terx 54	-1/2 ind	th long to	0 /2 incr	diameter		WBM Series Blower Mounted	
21	26	29	32	32	30	26	21	135	Discharge Silencer	CR
Heavy du Used for 6 inch d	ity, welde critical	d unit. PLV app 29 inch	construct lications	ed of ca , pipe s 60 inch	arbon stee size l to diameter	el sheet 30 inch, x 276 in	and plate. size ranges		sD Group, Combination	
22	26	30	32	32	30	27	21	135	Chamber Absorptive Type Discharge Silencer	CR 244
attenuat material 16 Intake a blowers, Temperat	ing chamb which is 23 nd exhaus exhauste ure up to	ers and retaine 27 t silenc rs, pump 950°F	a circula: d by perfo 31 ers for ro s. Welded Gas flows	r airway prated s 35 eciproca steel, through	tined wisheet stee 35 ting engineration exterior a circu	th sound and wo 29.5 .nes, coπ surface lar airw	absorbent ven fabric. 24 pressors, prime coated ay lined with	2 h	Model Al3	CR A13/
sound ab and laye	sorbent m rs of wov	aterial en fabri	which is : c.	retained	l by perfo	orated sh	eet steel			
6.5	11	20.5	31	42	46	41	24	2	Model A12	CR A12/
Aluminum range fr	exhaust om 10 inc	silencer h diamet	, pipe si: er x 41 in	zes 2-1/ nch long	2 to 54 i to 114 i	.nch. Var .nch diam	ied sizes eter x 403			
33	g. 34	35.5	34	32	31.5	30.5	29	135	SUR Series Exhaust Silencer	CR
Heavy du used for	ty, welde critical	d unit, PLV_app	constructe	ed of ca Pipe s	irbon stee ize l to	1 sheet 30 inch,	and plate, size ranges		RD Group, Combination	
28 28	Jamecer X 32	35 inch 35	36	37	36 .	27 27	26	135	Chamber Absorptive Type Discharge Silencer	CR 244
Engine o	xhauet	ffler fo	r regiona	nating f	ncinee	varioue	sizes corta	n		
steel.			- recipio				2200, Carbo		dhe einer 1949	CP
34	36	51	30	34	22	∪د	20	40	uba aircon-"M"	UR
Intake at tion over coated. chambers is retain	nd exhaus rawide f Temperatu and a ci ned by a	t silenc requency re up to rcular a perforat	ers for b range. 950°F. irway line ed sheet s	lowers, All weld Gas flow ed with steel an	compresso led steel, through sound abs id woven f	ors; high exteric a series orbent m abric.	noise reduc r surfaces p of attenuat aterial which	- rime ing h		
22	27.5	32.5	37.5	43	43.5	38.5	29.5	2	Model Al4	CR A14,
Absorpti packing. 54 inch	ve-type s Pipe siz diameter	ilencer, e 1/2 to x 310 in	heavy du 48 inch, ch long.	ty, weld with 3-	ed steel 1/2 inch	construc diameter	tion with acc x 10 inch 10	oustical ong to 102	Quietflo Silencer CIS-DCS	
Carbon s silencing	teel, one g for spe	coat pr cific fl	imer, size ow. Model	es 4 to P (inta	24 inch d ke/exhaus	liameter t silenc	inlet. Broad er) pulsating	band g flow		
resonator tinuous	r design; or interm uiremente	<pre>model P ittent; </pre>	в suitable Model PE,	for hig	gn-pressu h velocit	y flow w	ith low pres	ow, con- sure 70	Models P, PB, PE Silencers	CR NCD
	Marca							, 0		~

.

Table 28A General industrial silencers (attenuation) concluded

٠

			Inse	rc100	LOSS, dB					
μz	Hz	Hz	2H	Ηz	Hz	HZ	ZH	Company	Product	Reference
63	125	250	500	1000	2000	4000	8000			
4 inch	diameter 0.5	pipe. Tem 1.5	perature r 3	ange - 8	20° to 20 14	00°F. 13	11	5	Model 4TB 2.5 Industrial Silencer	CR B-136
Carbon	steel she	et 1/4 in	ich, zinc c	or epox	y resin :	surfaces.	Data are n	oise		
reducti 2	on at 3 f 4	t. 13	13	13	7	2	2	102	Quietflow Silencer	CR
12 inch	diameter	pipe. Te	mperature	range	-20° to 2	200°F.			Model 12TB 2.5	
1	2.5	6	11	15	12	8	7	5	Industrial Silencer	CR B-136
30 inch 3	diameter 8	pipe. Te 12	mperature 14	range 10	-20° to 2 9	200°F. 6	4	5	Model 30TB 2.5 Industrial Silencer	CR B-136
20 inch	diameter	Ding To	mporature	x ap ge	-20° to 1	00°F				
2	5	10	14	12	10	8	6	5	Model 20TB 2.5 Industrial Silencer	CR B-136
inch	diameter	pipe. Tem	perature r	ange -	20° to 20	00°F.			Model 4TA 2.5	
0.5	1.5	4	9	14	17	15	12	5	Industrial Silencer	CR B-136
4 inch 0.5	diameter l	pipe. Tem 2	perature r 5	ange - 13	20° to 20 21	0°F. 22	18	5	Model 4TB 4 Industrial Silencer	CR B-136
i		i			208 - 20	0.00				
4 Inch 1	2 2	pipe. iem 6	perature r 11	ange - 16	18	16 I.	13	5	Model 4T 2.5 Industrial Silencer	CR B-136
30 inch	diameter	pipe. Te	mperature	range	-20° to 2	200°F.			Model 30TA 2.5	
8	12	16	16	12	10	7	5	5	Industrial Silencer	CR B-136
2 inch 2.5	diameter 6	pipe. Te 11	mperature 15	range 18	-20° to 2 14	200°F. 10	8	5	Model 12TA 2.5 Industrial Silencer	CR B-136
0 ()	·· ·				200				-	
5	10	15 Ib	nperature 17	14	11	9 9	7	5	Model 2CTA 2.5 Industrial Silencer	CR B-136
abrica	ted of mi	ld steel;	shell, 10	gauge	carbon s	teel; sp	litters			
nateria Sizes 4	l encased to 64 ft	in fiber from 40	glass clot 00 to 128	h, hig 000 ac	h flow, l fm. Tempe	ow pressi rature to	re drop. 400°F.		AV Series	
4	6	10	14	18	18	12	8	70	Industrial Silencers	CR NCD-74
30 inch	diameter	pipe. Te	mperature	range	-20° to 2	00°F.	,	<i>.</i>	Model 30T 2.5	67 R 134
11	15	10	17	13	11	0		2	Industrial Silencer	CK B-130
20 inch 8	diameter 12	pipe. Ten 17	mperature 18	range 15	-20° to 2 12	10°F. 10	8	5	Model 20T 2.5 Industrial Silencer	CR B-136
inch a	diameter p	pipe. Temp	perature r	ange -	20° to 20	0°F.			Model 4TB 6	
0.5	1	3	7	17	27	29	24	5	Industrial Silencer	CR B-136
l2 inch	diameter	pipe. Ten	mperature	range	-20° to 2	00°F.	0	c	Model 12T 2.5	CD R 134
	10	15	10	10	15		2	C	Industrial Silencer	CK 5-130
Carbon s absorpti Cemperat	steel, coa ion materi ture range	ated stee al is che -40° to	l, galvani: emically in 350°F and	zed or nert. speci	stainles Flow fro al to 800	s steel, m 300 to °F Model	acoustical 15,000 cfm. AB36-20-11		AB Series	
4	6	10	18	20	20	14	12	70	Industrial Silencers for Contaminated Flow	CR NCD-75
2 inch	diameter	pipe. Ter	nperature	range	-20° to 2	00°F.			Model 12TB 4	
1.5	3	11	18	24	19	15	12	5	Industrial Silencer	CR B-136
inch o	diameter p	oipe. Temp	perature r	ange -:	20° to 20	0°F. 24	19	5	Model 4TA 4	CD D 134
1			1.3	~ 1	ر ے	24	17	c	industrial Silencer	CK 8-130
20 inch	diameter	pipe. Ter	nperature :	range 20	-20° to 2	00°F.	10	5	Model 20TB 4	CP P-134

Table 28B. General industrial silencers (insertion loss).

Гаble 28B.	General	industrial	silencers	(insertion	loss)	continued.
------------	---------	------------	-----------	------------	-------	------------

	Insertion Loss, dB									
Hz	Hz	Hz	Hz) Hz) Hz) Hz) Hz	Company	Product	Referenc
63	125	250	500	1000	2000	4000	8000			
30 inch 5	diameter 12	pipe. Te 18	emperature 1 22	range -2 18	0° to 20 14	00°F. 11	8	5	Model 30TB 4 Industrial Silencer	CR B-136
4 inch 0.5	diameter l	pipe. Tem 3	mperature ra 8	ange -20 20	° to 200 31	0°F. 34	26	5	Model 4TBA Industrial Silencer	CR B-136
4 inch 1.5	diameter 3.5	pipe. Tem 9	perature ra 17	ange -20 23	° to 200 27	D°F. 25	20	5	Model 4T 4 Industrial Silencer	CR B-136
Carbon recipro 21	steel she cating co 29	et 1/4 in mpressor. 22	nch, zinc or Data are 15	r epoxy noise r 20	resin su eduction 14	urfaces f n at 10 f 9	or t. 2	102	Quietflow Silencer	CR
Carbon acousti availab LAS 42(tion at	steel or cal packi le LAS 30 c) 42 inc 3 fr	corten s ng 18 inc (c), 30 i h diamete	teel for co h diameter, nch diamete r x 175 inc	orrosion 55 inc er x 110 ch long.	and ero h long; inch lo Data a	osion res other ty ong; type are noise	reduc-		Quietflow	
10	5	8	22	18	30	30	33	102	Line Silencers and Type LAS 18 c	CR LS-5M
12 inch 4	diameter 9	pipe. Te 17	mperature r 23	27 27	0° to 20 21	0°F. 16	13	5	Model 12TA 4 Industrial Silencer	CR B-136
12 inch 2	diameter 5	pipe. Te 11	mperature 1 22	ange -2 30	0° to 20 25	00°F. 20	16	5	Model 12TB 6 Industrial Silencer	CR B-136
30 inch 12	diameter 19	pipe. Te 25	mperature r 24	ange -2 19	0° to 20 15	00°F. 12	9	5	Model 30TA 4 Industrial Silencer	CR 8-136
20 inch 7	diameter 15	pipe. T 22	emperature 26	range - 22	20° to 2 17	200°F. 14	11	5	Model 20TA 4 Industrial Silencer	CR B-136
4 inch a 1	diameter 3	pipe. Te 7	mperature r 17	ange -2 27	0° to 20 33	00°F. 31	25	5	Model 4TA 6 Industrial Silencer	CR B-136
20 inch 4	diameter 9	pipe. T 19	emperature 29	range - 27	20° to 2 20	00°F. 17	13	5	Model 20TB 6 Industrial Silencer	CR B-136
Carbon : noise re	steel she eduction	et 1/4 in at 2 ft.	ch, zinc or	ероху	resin su	urface. D	ata are			
21	32	24	27	. 12	18	10	10	102	Quietflow Silencer	CR
30 inch 6	diameter 15	pipe. Te 24	mperature r 30	ange -2 23	0° to 20 18	0°F. 14	11	5	Model 30TB 6 Industrial Silencer	CR B-136
30 inch 16	diameter 23	pipe. Te 28	mperature r 25	ange -2 20	0° to 20 16	13°F.	10	5	Model 30T 4 Industrial Silencer	CR B-136
12 inch 6	diameter 14	pipe. Te 20	mperature r 26	ange -2 28	0° to 20 22	0°F. 17	14	5	Model 12T 4 Industrial Silencer	CR B-136
20 inch 12	diameter 19	pipe. Te 25	mperature r 28	ange -2 23	0° to 20 18	0°F. 15	12	5	Model 2014 Industrial Silencer	CR B-136
12 inch 2	diameter 5	pipe. Ten 13	mperature r 26	ange -2 35	0° to 20 30	0°F. 21	19	5	Model 12TB 8 Industrial Silencer	CR B-136
.20 inch 5	diameter 11	pipe. Te 22	mperature r 33	ange -2 30	0° to 20 23	10°F. 18	15	5	Model 20TB 8 Industrial Silencer	CR B-136
4 inch o 2	liameter 5	pipe. Tem 11	perature ra 23	nge -20 30	° to 200 35	°F. 32	26	5	Model 4T6 Industrial Silencer	CR B-136
4 inch c l	diameter p 3	pipe. Tem; 8	perature ra 20	nge -20 32	° to 200 38	°F. 36	28	5	Model 4TA 8 Industrial Silencer	CR B-136

	Insertion Loss, db									
Hz	Hz	Hz	× H	Hz	Hz H	liz	개	Company	Product	Referenc
63	125	250	500	1000	2000	4000	8000			
Flow to corten	bes, acou steel for	stic p flow	acking, expl tubes, heavy	osion wall	chamber, carbon st	construct: eel for th	on includes we shell, al	1	Quietflo	
welded	construct	ion. l	Data are noi	se red	uction.				Vent Silencers	_
7	7	20	22	26	33	36	36	102	Type VS.108	CR
12 incl	diameter	pipe.	Temperature	range	-20° to	200°F.			Model 12TA 6	
5	11	22	30	35	27	21	17	5	Industrial Silencer	CR B-136
30 inch	diameter	pipe.	Temperature	range	-20° to	200°F.			Model 30TA 6	
15	24	32	32	25	19	15	12	5	Industrial Silencer	CR B-136
30 inch	diameter	nine	Temperature	range	-20° to	200°F				
7	18	28	35	28	22	18	13	5	Model 30TB 8 Industrial Silencer	CR B-136
			_							
20 inch 9	diameter 20	pipe. 29	Temperature 34	range 29	-20° to 22	200°F. 18	14	5	Model 20TA 6 Industrial Silencer	CR B-136
		-		• /						
4 inch	diameter p	pipe. 🤇	Temperature :	range ·	-20° to 2	00°F.		r.	Model 4T 8	a n n 10/
2	2	10	26	35	40	37	30	c	industrial Silencer	CK 8-136
30 inch	diameter	pipe.	Temperature	range	-20° to	200°F.			Model 30T 6	
21	30	36	33	26	20	16	13	. 5	Industrial Silencer	CR B-136
20 inch	diameter	pipe.	Temperature	range	-20° to	200°F.			Model 20T 6	
15	24	32	36	30	23	19	15	5	Industrial Silencer	CR B-136
12 inch	diameter	pipe.	Temperature	range	-20° to	200°F.			M-4-1 10m /	
8	18	26	34	36	28	22	18	5	Model 121 b Industrial Silencer	CR B-136
12 inch	diameter	Dine	Topporature		o -20° ≠a	200%5				
5	13	26	35	40 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	32	23	20	5	Model 12TA 8 Industrial Silencer	CR 3-136
30 inct	diameter	pipe.	Temperature	range 20	-20° to	200°F.	14	5	Model 30TA 8 Industrial Silencer	CP 8-136
10		50	5.	.,	23	.,	1-	2	indistrial silencer	0.1 2 190
20 inch	diameter	pipe.	Temperature	range	-20° to	200°F.			Model 20TA 8	
11	23	33	40	33	25	20	16	5	Industrial Silencer	CR B-136
30 inch	diameter	pipe.	Temperature	range	-20° to	200°F.			Model 30T 8	
24	35	42	38	30	24	19	15	5	Industrial Silencer	CR B-136
12 inch	diameter	pipe.	Temperature	range	-20° to	200°F.				
9	22	30	40	41	33	25	21	5	model 121A Industrial Silencer	CR 8-136
20 inch	diameter	pipe	Temperature	rapee	-20° to	200°F				
18	28	38	42	35	27	22	17	5	Model 20T 8 Industrial Silencer	CR B-136
Tatala	or dit-t				1 626.	alaaa = - 1				
stainle	ss steel :	screen	and fibergla	ass clo	oth.	Riass bado	ing,			
11	18	32	42	48	50	49	37	40	dba aircon-"S"	CR
••	•									

Table 28B.	General	industrial	silencers	(insertion	loss)	concluded.
TADIC ZOD:	Generat	THURDELTAT	OTTCHCCLO	THOCTCION	10000	

Vanec Silencers

CR

CATEGORY 29. HIGH PRESSURE DISCHARGE SILENCERS

CATEGORY 29. HIGH PRESSURE DISCHARGE SILENCERS

These silencers range in size from less than 1 inch in diameter to several feet in diameter. They are used to quiet high pressure gas or steam discharges. The simplest application is for noise reduction of shop air discharge lines. Large geometries are used in exhaust or industrial discharge stack applications. Organizations contributing data to this table are: 2, 5, 9, 16, 17, 19, 40, 56, 63, 80, and 124.

- 1. SILENCER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLI-CATIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- 2. IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRESENTED FOR A GIVEN PRODUCT LINE. SEE MANUFACTURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFOR-MANCE DATA.

N	N	N	N	N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N	N	Company	Product	D-F
H	н	Ĥ	Ĥ	Ю	н о	н 0	й 0	company	rrodučt	Keie
63	125	250	500	100	200	400	800			
Code V-5	00-363987	Porous	s permeab	le plast	ic materi	al made	from high			
density	8.5	7	4.5	5	6.5	19	20	17	Vyon Silencers	CR (
Code V-3	75-363985	Porous	- Damash	la plact	ic materi	al made	from bigh			
density	polyethyl	ene. NPT	3/8. Date	a are no:	ise reduc	tion.	iion nigh			
	11	9	6.5	2	8.5	21	23	17	Vyon Silencers	CR
Code V-1	25-363981	. Porous	permeab	le plast:	ic materi	al made	from high			
density	10	12.5	10.5	8 8	15.5	24.5	31	17	Vyon Silencers	CR 6
Code V 2	50.363093	Paraur	. Bowmosh		ia matari	al mada	from high			
density	polyethyl	ene. NPT	1/4. Data	a are no:	ise reduc	tion.	rion nigh			
	9.5	8	8	9.5	18	29	31	17	Vyon Silencers	CR 6
Steam an	d gas ven	t blowdow	√n silence	ers; high	h pressur	re, high	velocity.			
17	18	23	32	38	40	36	30	2	Model VSI	CR
Steam an	d gas ven	t blowdow	m silence	ers, high	n velocit	y, low p	pressure			
(below 2 The gas	8 psig) a flows thr	nd all we ough a ci	elded stee ircular a:	el, exter irway lin	rior surf ned with	aces pr	ime coated. psorber			
material forated	, which i steel she	s retaine et).	ed by wove	en cloth	(woven s	steel and	a per-			
22	26	31	36	38	36	30	22	2	Model VAS	CR
CS_Type.	speed co	ntrol muf	fler, ato	omuffler	design f	or elim:	inating air			
exhaust for air	noise. operated	NPT 1/8 devices.	to 3/8. Data are	insertic	s the add on loss.	ied featu	are of speed			
18	24	30	36	38	42	45	42	9	Speed Control Muffler	CR
VP type, simulati	vacuum p on chambe	ump muffl rs, trans	er. NPT 1 fer and c	1/8 to 2 control d	inch. F ievices.	lecommeno Data are	ded for insertion			
18	24	30	36	38	42	45	42	Ģ.	Vacuum Pump Muffler	CR (
Single c Applicab	hamber, a le for si	ir motor lencing t	muffler, he object	EP Type tionable	4-44 ser whine cr	ies. NP: eated by	F 1/8 to 2. V air motor			
l8	24	e inserti 30	.on 1055. 36	38	42	45	42	9	Air Starter Muffler	CR
CD	i 2									
Control	single c of air ex	hamber, m haust noi	se from a	ber, air air cylin	exhaust nders, va	muiiler. lves, to	NPT 3 to 6. pols, hoist,		,	
18	24	ar ar op 30	36	38 38	42	45	42	•	Air Exhaust Atomuffler	CR
-										
Steam an 28 psig)	d gas ven , all wel	t blowdow ded steel	m silence exterio	ers, high or surfac	n velocit ces prime	y. low p coated	The gas flows			
which is	retained	by woven	n cloth (v	voven ste	el and p	erforate	ed steel sheet).			
26	30	36	42	45	42	35	27	2	Model VAR	CR
Steam an	d gas ven	t blowdow	m silence	ers, high	n pressur	e, high	velocity,			
l8	21 21	29 29	40	47	50	46	40	2	Model VSS	CR
				•						
steam an welded s through material	u gas ven teel, ext inlet dif which is	t blowdow erior sur fusers an retained	m silence faces pri nd annulan i by wover	ers, high Lme coate r airway n fabric	n pressur ed. The g lined wi (woven s	e, high as flows th sound teel mes	velocity, all s initially d absorbent sh and per-			
forated	steel she	et).	50	57	40	56	51	2	Nedel VCD	C D
21	23	/ د	20	21	00	20	10	2	HODEL VSK	CK
Oil coal pressure	escing, n to 100 p	oncorrodi si. NPT 1	.ng, sinte ./8. Atre	ered poly	vethylene 18 dB #	structu at 20 ps:	ure, operating L; 20 dB at 30 n	si;		
22 dB at at 80 ps	40 psi; i. Data	24 dB at read from	50 psi; 2 graph.	24 dB at	60 psi;	24 dB at	70 psi; 24 dB	80	Pneumatic Silencers S Series	CR
Oil coal pressure	escing, n to 100 p	oncorrodi si. NPT l	ng, sinte /4. Atte	ered poly	ethylene 26 dB	at 40 ps	ire, operating si; 29 dB at			
50 psi; graph	29 dB at	60 psi; 2	9 dB at 7	70 psi; 2	29 dB at	80 psi.	Data read from	80	Pneumatic Silencers S Series	CR

- -

Table 29. High pressure discharge silencers.

Labit - ,	Fable :	29.	High	pressure	discharge	silencers	continued.
-----------	---------	-----	------	----------	-----------	-----------	------------

 Attenuation, dB											
Hz	Чz	Hz	Hz	Ηz	Чz	Hz	Нz	Company	Product	Reference	
63	125	250	500	1000	2000	4000	8000				
Oil coale pressure 30 psi; 30 dB at	escing, n to 100 p 3 dB at 80 psi.	oncorrodi si. NPT 1 40 psi; 3 Data rea	.ng, sinte ./2. Atten 13 dB at 5 1d from gr	red poly uation O psi; : aph	yethylene 31 dB at 33 dB at	structu 20 psi 60 psi;	are, operat 33 dB at 32 dB at 70	ing 0 psi: 80	Pneumatic Silencers S Series	CR 1277	
Oil coale pressure 30 psi; 2 29 dB at	escing, n to 100 p 26 dB at 80 psi.	oncorrodi si. NPT 3 40 psi; 2 Data rea	ng, sinte 1/4. Atte 16 dB at 5 1d from gr	red poly nuation O psi; 2 aph.	yethylene : 24 dB 28 dB at	structu at 20 ps 60 psi;	ire, operat: ii; 24 dB ai 29 dB at 70	ing t O psi; 80	Pneumatic Silencers S Series	CR 1277	
Oil coale pressure 30 psi; 2 26 dB at	scing, n to 100 p 8 dB at 80 psi.	oncorrodi si. NPT 1 40 psi; 3 Data read	ng, sinte inch. At 0 dB at 5 1 from gra	red poly tenuatio O psi; i ph.	yethylene on: 24 dB 30 dB at	structu at 20 p 60 psi;	ire, operat: si; 28 dB a 27 dB at 70	ing at 0 psi: 80	Pneumatic Silencers S Series	CR 1277	
Focus-Flo 6 dBA at at 20 oz.	o silent 4 oz: 9 Data re	nozzles, dBA at 8 ad from g	high thru oz; 10 dB raph.	st. Nois A at 12	se reduct oz: 10 d	ion vers BA at 16	us thrust: oz; 10 dB/	A 124	Sunnex 308	CR NB 766	
Focus-Flo 14 dBA at 20 oz; 6	silent : 4 oz; 1 dBA at 2	nozzle, π 4 dBA at 4 oz; 6 d	edium thr 8 oz; 10 BA at 28	ust. No dBA at : oz; 6 d1	oise redu 12 oz; 9 BA at 32	ction ve dBA at l oz. Dat	rsus thrus 6 oz; 7 dB/ a read from	t: A at n graph. 124	Sunnex 309	CR NB 766	
Focus-Flo flow. No), silent Dise redu	blowgun, ction 10	pressure to 15 dB.	range 4	45 to 100	psi. fr	om zero to	full 124	Sunnex 301 Variable	CR	
Construct inch NPT; valve exh maximum. (3/8 NPT)	ed of Po .60 to naust por Noise r ; 18 dBA	rex (high 1.5 inch ts, cylin eduction: . (1/4 NPT	density diameter der exhau 25 dBA); 9 dBA	polyethy and 1 to st ports (3/4 NPT (1/8 NPT	ylene), s 5 4.5 inc s. Tempe F); 26 dB F).	izes fro h porous rature n A (1/2 N	om 1/8 to 3; ; length. / ;ange 180°F !PT); 19 dB/	/4 Air . A 63	Glasrock 🕏 Pneumatic Silencer	CR 92RR 117725C	
Mini husł	4-0-M.	1-7/8 len	gth x 5/8	inch d:	iameter.	Noise r	eduction:	27 dBA. 40	dba Aircon-"PF"	CR 4-0-M	
Mini hush 22 dBA.	2-0-M,	1-1/4 len	gth x 7/1	6 inch d	diameter.	Noise	reduction:	40	dba Aircon-"PF"	CR 2-0-M	
Mini hush	з-0-м.	NPT 1/8.	Noise re	duction	: 25 dBA.			40	dba Aircon-"PF"	CR 3-0-M	
Permahush 12 dBA at	PH3, 1- 3 scfm.	7/8 lengt	h x 7/8 i	nch diar	neter. NP	T 174.	Noise reduc	ction 40	dba Aircon-"PF"	CR PH3	
Minihush reductior	1-0-Т, 1 1: 18 dB	inch len A.	gth x 7/1	6 inch d	diameter.	1/4 inc	h tube. No	bise 40	dba Aircon-"PF"	CR 1-0-T	
Permahush reductior	PH6, 2- 1: 16 dB	1/2 inch A at 6 sc	length x fm.	1-1/4 in	nch diame	ter, NPT	3/8. Nois	se 40	dba Aircon-"PF"	CR PH6	
Permahus† reductior	, PH12, 1: 20 dB	3-1/2 inc A.	h length	x 1-3/4	inch dia	meter, N	IPT 1/2 No	bise 40	dba Aircon-"PF"	CR PH12	
Permahush reduction	, РН25, 1: 15 dB	4-1/4 inc A.	h length	x 2-1/2	inch dia	meter, N	IPT 3/4. No	bise 40	dba Aircon-"PF"	CR PH25	
SQF-2, si Noise red 20 cfm; 2	ntered b uction: 5 dBA at	ronze muf 23 dBA a 25 cfm.	fler in p t 10 cfm;	rotectiv 23.5 dH	ve plasti 3A at 15	c housir cfm; 25.	ng, NPT 1/4 5 dBA at	16	"Super Quite Flow" Silencers/Muffler	CR	
SQF-4, si Noise red 21.5 dBA	ntered b uction: at 25 cf	ronze muf 16.5 dBA m; 23 dBA	fler in p at 10 cfr at 30 cfr	rotectiv m; 18 dH m; 23.5	ve plasti 3A at 15 dBA at 3	c housir cfm; 19 5 cfm.	dBA at 20 d	cfm: 16	"Super Quite Flow" Silencer/Muffler	CR	
SQF-3, si Noise red 20 dBA at	ntered b luction: 30 cfm;	ronze muf 16.5 dBA 20 dBA a	fler in p at 15 cfm t 35 cfm.	rotectiv m; 18 dI	ve plasti 3A at 20 -	c housir cfm; 19	g, NPT 3/8 dBA at 25 d	cfm, 16	"Super Quite Flow" Silencer/Muffler	CR	
SQF-1, si Noise red	ntered b luction:	ronze muf 16 dBA a	fler in p t 10 cfm;	rotectiv 15 dBA	ve plasti at 17 cfi	c housir m.	.g, NPT 1/8	16	"Super Quite Flow" Silencer/Muffler	CR	
Sintered reduction	Bronze m : 13 dB	uffler in A at 40 c	plastic fm.	housing	. NPT 1-1	/4 and 1	-1/2. Noi:	se 16	"Super Quite Flow" Silencer/Muffler	CR 925	

	Attenuation, dB											
	Hz	Hz	C Hz	Hz (00 Hz	0 Hz	10 Hz	0 Hz	Compa	iny	Product	Reference
	63	125	250	200	100	200	400	800				
ł	dodel SE	L. 25 to 1	30 dBA re	duction	when used	d on 100	psi air			5	Blowoff Silencers	CR B-32R3
ĥ	later-re	sistant a	coustic p	acking f	or use w	ith steam	m. Nois	e reduction	37 dBA.	5	Model HBS Silencer	
Ь	later-re	sistant a	coustic p	acking f	or use w	ith stea	m. Nois	e reduction	46 dBA.	5	Model RBS Silencer	
N a	Model TS applicat	N-125, mei ions, NPT	tal const 1/8. 78	ruction, dBA at	can be u 3 ft and	used for 0.5 lbf	station	ary air cle	aning l	9	ThrustR	CR PC-78
M 6	Model QE 53.5 at	-125. met. 20 scfm; (al constr 65.5 at 3	uction, 0 scfm.	NPT 1/8.	dBA at	3 ft: 6	1.5 at 10 s	cfm; 1	9	Quiek	CR PC-78
Ma	iodel TS applicat	N-250, me ions, NPT	tal const 1/4. 80	ruction, dBA at 3	can be u ft and (used for 0.5 lbf;	station 85 dBA	ary air cle at 3 ft and	aning 1 lbf. l	9	ThrustR	CR PC-78
۲ 6	fodel QE 5 at 20	-250. met. scfm; 67	al constr at 30 sc	uction, fm: 68.5	NPT 1/4. at 40 so	dBA at i fm.	3 ft: 62	.5 at 10 sc	fm; 1	9	Quiek	CR PC-78
۲ 2	fodel QE 10 scfm;	-375, meta 74 at 30	al constr scfm; 75	uction, .5 at 40	NPT 3/8. scfm; 76	dBA at 5	3 ft: 69 0 scfm.	at 10 scfm	n; 72 at 1	9	Quiek	CR PC-78
۲ 7	lodel QE '6.5 at	-500, met. 30 scfm;	al constr 78 at 40	uction, scfm; 79	NPT 1/2. at 50 sc	dBA at fm; 79.	3 ft: 74 5 at 60	at 20 scfm scfm.	1	9	Quiek	CR PC-78
н З	lush-Flo ft: 59	silencer at 10 sc:	nozzle, m fm; 63 at	metal cc 20 scfπ	nstructio ; 68 at 1	on. Size: 30 scfm;	supto 73 at 4	NPT 1/2. d O scfm.	BA at l	9	Hush-Flo Nozzle	CR PC-78
M V N P	M Type variable IPT 1/8 ilot, 1	nicro-mini flow cont and 1/4 it imit, zone	ature mus rol, sel nch. Use e. and re	fier, c f-cleani on pneum lay valv	ompact, 1 ng, rust atic circ es.	ightweig resistan wit app	cht, radi nt, vari lication	ial flow di: able tone c s such as c	scharge, ontrol, ontrol,	9	Micro-Miniature Muffler	CR 612
P 1 0	M Type, imited r vacuu	model P, space, int m equaliza	porous me ake filte ation. M	etal fil ering. c NPT 1/8	ter and m ryogenic to 2 inch	uffler. phase se	compact eparation	. applicabl 1. pressure	e	9	Porous Metal Filter & Muffler	CR 612
P a	C Type. ir cycl	model C, e speeds,	porous me regulates	etal adj 5 airflo	ustable f w,adjusta	low film ble flow	ter and n v. 1/8 t	muffler, co o l inch MN	ntrols PT.	9	Adjustable Flow Filter & Muffler	CR
A P	E Type, resentl	air eject y used for	or muffle the ejee	er, adap ction of	table to parts. 1	any comp /8 to 1	inch NP	air ejector F.		9	Air Ejector Muffler	CR 612
B r N	M Type, esistan PT.	bantam mu t metal, c	uffler, co lisperses	ompact, exhaust	applicabl air over	e limite a 360 d	ed space deg patte	, corrosion ern. 1/8 to	2 inch	9	Bantam Muffler	CR
F P	S Type, erform	filter si at high on	lencer, a low velo	dual-sta ocities,	ge depth NPT 1/8	filtrati to 2 ind	ion, noi ch and 3	se attenuat to 6 inch.	ion,	9	Filter Silencer	CR 612
Ta	F Type, pplicat	Thru-Flow ions where	muffler compress	, constr sed air	ucted of is being	corrosio used on	on-resis heavy s	tant materi lurríes.	al, for	9	Thru-Flow Muffler	CR
A s	E Type, ize l/4	model T. and 3/4 i	tube type Inch diame	2 air ej eter x l	ector, pi 2 inch le	npoints ngth.	noise-f	ree parts e	jection	9	Tube Type Air Ejector Muffler	CR
D s	F Type, mall in	end flow size, 1/8	muffler, 3 to 2 inc	lightwe ch NPT.	ight, sin	igle dire	ection e:	khaust airf	low,	9	End Flow Muffler	CR 612
S h s	M Type, as coat eminato	steam ext ing for re rs, NPT l	naust muf sistance to 6 incl	fler, co to alka n.	mpact, li lis, heav	ghtweigh y duty r	nt, corr netal cy	osion resis linder wall	tant, dis-	9	Steam Exhaust Muffler	CR 612
C a p	arbon s coustic late sh	teel, low pack, hea eet materi	alloy con vy gauge al.	rrosion sheet a	resistant coustic f	materia acing, s	al, glas steel ba	s fiber or r supports,	scovia steel 5	6	Blowoff Silencer	CR 701

Table 29. High pressure discharge silencers concluded.

1

•. ·

CATEGORY 30. FAN SILENCERS

interfact and from are difficult to controlly close the transition of the term of ter

CATEGORY 30. FAN SILENCERS

Silencers in this group may be used on either fan inlet or discharge plenums. Characteristic dimensions are difficult to identify since length, width, and height are all variables. These silencers often include filters, transition sections, and plenum volumes. Interior splitter or baffle geometries are usually used as primary noise reduction methods. Organizations contributing data to this table are: 5 and 50.

- 1. SILENCER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLI-CATIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- 2. IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRESENTED FOR A GIVEN PRODUCT LINE. SEE MANUFACTURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFOR-MANCE DATA.

Hz	Hz	Hz	Hz	0 Hz	0 Hz	0 Hz	0 Hz	Company	Product	Reference
63	125	250	500	1001	2001	4000	8000			
For use Dimensio	when fan ns, WxHxL	inlet is 17 24 x 2	s connecte 24 x 24 in	ed to pr nch, 500	ocess, di O rated c	scharge fm**	to atmosphere.		Model DF-5-1. Fan	CR
2	4	8	16	28	30	22	10	5	Discharge Silencer	B-229
'or use)imensio	when fan ns, WxHxl	inlet is	s connecte 36 x 24 :	ed to pr inch, 90	ocess, di 00 rated	scharge cfm**	to atmosphere.		Model DF-9-1 Far	CP
2	4	8	16	28	30	22	10	5	Discharge Silencer	B-229
'or use v	when fan ns. WxHxI	inlet is	s connecte 30 x 24 in	ed to pro	ocess, di 000 rated	scharge	to atmosphere.			a b
2	4	8	16	28	30	22	10	5	Model DF-18-1, Fan Discharge Silencer	B-229
or use	when fan ns WyHyl	inlet is	s connecte	ed to pr	ocess, di 000 rated	scharge	to atmosphere.			
2	4	8	16	28	30	22	10	5	Model DF-24-1, Fan Discharge Silencer	CR B-229
or use	when fan	inlet is	connecte	d to pr	ocess, di	scharge	to atmosphere.			
1mens10	4 4	.: 54 x 8	48 x 24 1 16	28 28	30 30 30	22	1.0	5	Hodel DF-32-1, Fan Discharge Silencer	CR B-229
or use	when fan	inlet is	connecte	ed to pro	ocess, di	scharge	to atmosphere.			
imension 4	ns, WxHxI 9	-*60 x 7 18	78 x 48 in 32	1ch, 60,9 43	000 rated 44	cfm?** 34	21	5	Model DF-60-1, Fan Discharge Silencer	CR B-229
or use :	when fan	inlet is	s connecte	ed to pro	ocess, di	scharge	to atmosphere.			
imension 6	ns, WxHxL 13	.* 72 x 1 23	102 x 48, 30	110,000 31	rated cf 28	m** 23	18	5	Model DF-110-1, Fan Discharge Silencer	CR B-229
signed	to bolt	directly	onto the	e fan in	let flang	e Sile	icer includes			
n inlet ith one	bell mou or two r	th and emovable	silencing plates t	element o allow	, followe access t	d by a p othe b	olenum section olts. Dimensio	ns,	Model Cl-5-1,	
KHXL? 3 8	0 x 24 x 9	30 inch, 10	12 12	ied cim? 13	13	13	11	5	Aeracoustic Fan Silencers	CR B-229
esigned	to bolt	directly	onto the	e fan in	let flang	e. Sile	nçer includes			
n inlet ith one xHxL* 4	beil mou or two r 4 x 44 x	th and seemovable 34 inch.	e plates t 18.000 p	element to allow tated cfu	, followe access t n ^{**}	d by a t othe b	olenum section olts. Dimension	s ,	Model C1-18-1,	6 P
6	7	9	10	10	10	9	7	5	Aeracoustic Fan Silencers	Ск В-229
esigned n inlet	to bolt bell mou	directly	vonto the	e fan in element	let flang followe	e. Silen d by a i	ncer includes			
ith one XHxL* 5	or two r $2 \times 52 \times 10^{-10}$	emovable 42 inch.	plates t 32,000 1	ated cf	access t	o the b	olts. Dimension	s,	Model Cl-32-1, Aeracoustic	CR
7	8	11	16	17	17	15	12	5	Fan Silencers	B-229
esigned In inlet	to bolt bell mou	directly th and s	onto the silencing	e fan in element	let flang , followe	e. Silen d by a p	ncer includes lenum section			
vith one NxHxL* 7:	or two r 2 x 66 x	emovable 50 inch,	e plates t 60,000 r	allow ated of	access t	o the b	olts. Dimension	s,	Model Cl-60-1, Aeracoustic	CR
8	10	14	19	20	20	15	12	5	Fan Silencers	B-229
esigned in inlet vith one	to bolt bell mou or two r	directly th and semovable	y onto the silencing	e fan in element to allow	let flang , followe access t	e. Sile d by a p o the be	ncer includes plenum section plts. Dimension	S .		
xHxL* 9	6 x 78 x 12	60 inch, 18	110,000 26	rated c: 27	£m.** 22	16	13	-, 5	Model CI-110-1, Aeracoustic Fan Silencers	CR B-229
	1				00.1			_		
or sing lirectly 1000 rate	to the f ed cfm**	fans wit an inlet	flange	Dimens:	, 90 deg Lons, WxH	inlet. xL: 15.	5 x 36 x 49 inc	t h,	Madal (C) 5 1 East	CP
8	9	10	12	16	18	19	14	5	Inlet Silencer	B-229
or sing lirectly	le inlet to the f	fans wit an inlet	hout inle flange.	t boxes Dimens:	90 deg ions, WxH	inlet. xL: 19 ;	Designed to bol < 60 x 73 inch,	t		
.8,000 ŕ: 8	ated cfm* 9	10	19	21	21	17	15	5	Model SS1-18-1, Fan Inlet Silencer	CR B-229
for sing	le inler	fans wit	hout inle	t boxes	. 90 deg	inlet.	Designed to bol	t.		
lirectly 24,000 ra	to the f ated cfm*	an inlet	flange.	Dimens	ions, WxH	xL 20	< 66 x 83 inch,	-	Model SS1-24-1A Fan	CR
8	9	10	18	21	2.0	17	15	5	Inlet Silencer	B-229

Table 30. Fan silencers (insertion loss).

*Dimensions without flanges. Add 4 to 6 inch to allow for flanges. **Maximum allowable flow is 10% higher than rated flow.

•

			Ins	ertion Lo						
Hz	Ηz	Hz	Hz	Hz	Hz	Нz	Hz	Company	Product	Reference
63	125	250	200	1 900	2000	4000	8000			
For singl directly	le inlet to the f	fans wit an inlet	hout inle	et boxes, Dimensi	90 deg ons. WxH	inlet. I xL* 38	Designed to x 88 x 106	bolt inch.		
60,000 ra 11	ited cfm* 13	22	30	33	33	27	22	5	Model SS1-60-1, Fan Inlet Silencer	CR B-229
For singl directly	e inlet to the f	fans wit an inlet	hout inle flange.	≥t boxes. Dimensi	90 deg ons, WxH	inlet. I xL: 49 :) Designed to K 108 x 127	bolt inch,		
110,000 r 9	ated cfm 13	23	30	30	26	22	18	5	Model SSI-110-1, Fan Inlet Silencer	CR B-229
Designed bell mout enough to	to bolt h and th accommo	directly e silenc date the	to the fing secting fan inle	fan inlet ion, foll et openin	flange. owed by g. Dime	Silence a plenum nsions,	r includes section 1. WxHxL* 15.	inlet arge 5 x 36		
x 49 16cn 8	9 9	ated cim 10	12	13	13	13	11	5	Model S1-5-1, Fan Inlet Silencer	CR B-229
Designed bell mout enough to	to bolt h and th accommo	directly e silenc date the	to the ing section fan inle	fan inlet ion, foll et openin	flange. owed by g. Dime	Silence a plenum nsions,	er includes section 1. WxHxL* 19	inlet arge x 60		
x 73 inch 8	, 18.000 9	rated c 10	fm** 15	16	16	12	10	5	Model Sl-18-1, Fan Inlet Silencer	CR B-229
Designed bell mout enough to	to bolt h and th accommo	directly e silenc date the	to the fing section fan inle	fan inlet ion, foll et openin	flange. owed by g. Dime	Silence a plenum nsions,	r includes section 1. WxHxL* 17	inlet arge x 73		
x 95 inch 10	8	rated c 9	13 13	18	16	12	10	5	Model S1-32-1, Fan Inlet Silencer	CR B-229
Designed bell mout enough to	to bolt h and th accommo	directly e silenc date the	to the f ing secti fan inle	an inlet Ion, foll et openin	flange. owed by g. Dime	Silence a plenum nsions,	r includes section 1. WxHxL* 38	inlet arge . x 88		
11	12	17	25	28	26	22	17	5	Model Sl-60-1, Fan Inlet Silencer	CR B-229
Designed bell mouth enough to	to bolt h and the accommo	directly e silenc date the	to the f ing secti fan inle	an inlet on, foll t openin	flange. owed by a g. Dimen	Silence a plenum nsions,	r includes section 1 WxHxL* 49	inlet arge x 108		
9	11	18	25	25	21	17	13	5	Model S1-110-1, Fan Inlet Silencer	CR B-229
For fans so that t the need	with inle he silen for a sep	et boxes cer exit parate t	. Interna matches ransition	l config the fan piece.	uration inlet bo: Dimensio	of this x thereb ms, WxHx	model is de v eliminat: L*15.5 x 1	esigned ing 86	Model 18-5-1.	
8	9	10	12	13	13	13	11	5	Aeracoustic Fan Silencers	CR B-229
For fans so that t the need	with inle he silen for a se	et boxes cer exit parate t	. Inernal matches rangition	configu the fan piece.	ration o inlet bo: Dimensi	f this m x thereb ons, WxH	odel is des y eliminat: xL* 19 x 60	signed ing)	Model 18-18-1	
x 32 inch 8	, 18,000 9	rated c 10	fm.?^ 15	15	16	12	10	5	Aeracoustic Fan Silencers	CR B-229
For fans so that t the need	with inle he silene for a sep	et boxes cer exit parate t	. Interna matches ransition	l config the fan piece.	uration (inlet boy Dimensio	of this x thereb ons, WxH	model is de y eliminat: xL# 17 x 73	esigned ing	Model 18-32-1	
x 38 inch 6	, 32,000 6	rated c 8	fm.?^ 13	18	16	12	10	5	Aeracoustic Fan Silencers	CR B-229
For fans so that t the need	with inle he silene for a sep	et boxes cer exit parate t	. Interna matches ransition	l config the fan piece.	uration d inlet bo: Dimensio	of this x thereb ons, WxH	model is de y eliminat: xL* 38 x 88	esigned ing	Model 18-60-1	
x 44 inch 9	. 60,000 11	rated c. 17	fm.?" 25	27	27	20	17	5	Aeracoustic Fan Silencers	CR B-229
For fans so that t the need	with inle he silend for a sep	et boxes cer exit parate t	. Interna matches ransition	l config the fan piece.	uration o inlet bo: Dimensio	of this x thereb ons, WxH	model is de y eliminati xL* 49 x 10	esigned Ing 08	Model 18-110-1	
9 9	11	l8	24	25	21	17	14	5	Aeracoustic Fan Silencers	CR B-229
For fans we so that the need of the section of the	with inle he silend for a sep 140 000	et boxes cer exit parate tr	Interna matches ransition	l configu the fan i piece. I	iration o inlet boy)imensior	of this : c thereb ns, WxHx	model is de y eliminati L* 49 x ll	signed ng 8.5	Model 1B-140-1,	
8	9	13	20	22 .	18	14	11	5	Aeroacoustic Fan Silencers	CR B-229

 * Dimensions without flanges. Add 4 to 6 inch to allow for flanges. ***Maximum allowable flow is 10% higher than rated flow.

			Inse	ction La	085, CB					
Hz	2H H	Ηz	Hz	Чz	Hz	Нz	Hz	Company	Product	Reference
63	125	250	500	1000	2000	0007	8000			
For fan so that the nee x 58 in	s with in the siles d for a s ch, 180,0	let boxe: ncer exis eparate 00 rated	s. Interna t matches transition cfm.**	l confi the fan piece.	guration inlet bo Dimensio	of this x thereb ns, WxHx	model is des y eliminatin L:* 47 x 173	igned S	Model 1B-180-1, Aeroacoustic	CR
8	9	15	22	24	26	16	13	5	Fan Silencers	B-229
For fan so that the nee x 66 in	s with in the siler d for a si ch, 200,0	let boxes ncer exis eparate s 00 rated	s. Interna t matches transition cfm.**	l config the fan piece.	guration inlet bo Dimensio	of this x thereb ns, WxHx	model is des y eliminatin L:* 55 x 138	igned E	Model 1B-200-1, Aeroacoustic	CR
6	7	13	19	20	16	13	10	5	Fan Silencers	B-229
Model S tails.	F (01 thro 3 ft unit	ough 36).	. Straigh	t throu	gh design	with fo	rmed noses a	nd		0.5
4	6	12	17	18	15	11	9	50	Enelco Fan Silencers	3879 2/7
Model S Tails, 6	F (Ol thro 5 ft unit 9	ough 36). 17	. Straight 26	througi 28	n design 23	with for 17	med noses an 14	d 50	Enelco Fan Silencers	CR 3879 2/
Model F design (S (01, 02 with form	, 05, 06 ed noses	, 07). Hig and tails	h volum , 4 ft i	e flow si unit.	lencer.	Straight thr	ough	Freise	CP
5	8	13	17	20	15	13	12	50	Fan Silencers	3877 5/7
Madal F	s (03 0/) High a	unlumo flo	u silon						
souer r	8	13	21	25 25	19	14	13	50	Enelco Fan Silencers	CR 3877 5/7
						. c.	•.		-	
lodel Fi	S (08, 09 8	, 10, 11: 12) High Vo	lume flo	ow silenc u	er, 4 It 8	unit.	50	Enelco Fan Silencers	CR 3877
2	0		. ,	**		U	0		Tan Diffencers	5677
Model F design (S (01, 02 with form	, 05, 06 ed noses	, 07). Hig and tails	h volume . 8 ft i	e flow si unit.	lencer.	Straight thr	ough		a 7
9	14	24	28	28	21	15	15	50	Fan Silencers	3877 5/7
Model F	S (03, 04)) Hiph v	volume flo	w silen	ret 8ft	unit				
8	14	24	35	37	27	22	18	50	Enelco Fan Silencers	CR 3877
							10		idii officiicers	5071
Model F:	s (08, 09	. 10, 11)). Hígh vo	lume fle	ow silenc	er, 8 ft	unit.		Enelco	CR
9	15	22	26	22	18	13	11	50	Fan Silencers	3877

Table 30. Fan silencers (insertion loss) concluded.

*Dimensions without flanges. Add 4 to 6 inch to allow for flanges

** Maximum allowable flow is 10% higher than rated flow.

•. •

-

CATEGORY 31. INLET AND EXHAUST SILENCERS

CATEGORY 31. INLET AND EXHAUST SILENCERS

This category includes a wide range of silencer geometries. These units are only used for industrial applications. Deformation is presented on silencers for large exhaust stacks and chimneys. Also, exhaust systems for large plenums are included. Materials vary for ambient to high temperature gas installations. For related infomation see general industrial silencers and high pressure discharge silencers. Organizations contributing data to this table are: 6, 50, 62, and 121.

- 1. SILENCER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLI-CATIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- 2. IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRE-SENTED FOR A GIVEN PRODUCT LINE. SEE MANUFACTURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFOR-MANCE DATA.

,

Table 31. Inlet and exhaust silencers.

			Insert	ion Loss,						
ZH	Hz	Hz	zHz	Чz	Hz	Hz	Hz	Company	Product	Referenc
63	125	250	500	1000	2000	4000	8000			
Silencer	s for up	to 625	cfm. For	intake or	dischar	rge of ce	entrifugal		<u> </u>	
compress	ors or b	lowers.	Temperatu	re range	0 to 100	00°F.5i	nch size.	121	Filter/Cileneers	CR
		3.5	,	17	21.5	11.5	10.5		Filler/Silencers	3000
Silencer	s for up	to 1600	cfm. For Temperatu	intake c	or discha 0 to 100	arge of c	entrifugal .nch_size.			6D
		5	10.5	23	16	13.5	12	121	Filter/Silencers	300D
Silencer	s for up	to 400	ofm For	intake or	dischar	e of ce	ntrifugal			
compress	ors or b	lowers.	Temperatu	re range	0 to 100	0°F. 4 i	nch size.		2 (1), (0)]	CR
		3.5	10	22.5	27.5	10.5	11	121	Filter/Silencers	2000
Silencer	s for up	to 900	cfm. For Temperatu	intake or	dischar	ge of ce	ntrifugal nch size.			
compress	010 01 0	7	12.5	25	23	14	12	121	Filter/Silencers	CR 300D
Compost	ailanaar	for oir	aanditia	nina aqui	nment T		d attenuator			
nondirect	tional f	or air a	nd sound,	and cons	truction	of .062	inch thick			
grilles;	24 inch	long x	24 inch w	ide. Othe	r sizes	availabl	.e.		Compact	CR
/	12	12	12	19	25	25	20	6	Airsan Silencer	6/4/65
Silencer	s for up	to 2500	cfm. For Temperat	intake o	r discha	rge of c	entrifugal			
•••••		6.5	13.5	27	22.5	14	12	121	Filter/Silencers	300D
Silencer	e for un	to 6500	ofm For	intako o	r diacha	rea of a	entrifueal			
compress	ors or b	lowers.	Temperatu	re range	0 to 100	0°F. 16	inch size.			CR
		14.5	24	29.5	13.5	9	9.5	121	Filter/Silencer	3000
Silencer	s for up	to 4800	cfm. For	intake o	r discha	rge of c	entrifugal			
compress	013 01 0	10.5	25.5	27.5	18	12	9	121	Filter/Silencer	CR 300D
Silencer	s for up	to 3500	ofm For	intake o	r dieche	ree of c	entrifugal			
compresso	ors or b	lowers.	Temperatu	re range	0 to 100	0°F. 12	inch size.	121	Filter/Sileneer	CR
		,	14	51.5	20	20	5.5	121	Treat Brience	
Silencers	sforup ors or b	to 230 c lowers.	fm. For i Temperat	ntake or ure range	discharg 0 to 10	e of cen 00°F. 3	trifugal inch size.			CB
		9.5	10.5	22.5	21.5	28	18.5	121	Filter/Silencer	300D
Model CV(04, inte	rmediate	volume f	low silen	cer. Con	structed	of carbon			
steel wit	th acous 15	tically 19	lined she 34	11 and a 33	center a 36	coustic 33	bubble. 26	50	Enelco Vent Silencer	CR 3884 5/
		•	•							
Model CV(of carbon	06 throu n steel 1	gh CV10, with aco	intermed ustically	iate volu lined sh	me flow ell and	silencer a center	. Constructed acoustic bub	ble.	Enelco	CR
14	18	22	36	.36	34	33	25	50	Vent Silencer	3884 5/
Model CV	12 throug	gh CV16,	intermed	iate volu	me flow	silencer	. Constructed			
of carbon 16	n steel v 21	with aco 28	ustically 36	lined sh 38	eliand 35	a center 33	acoustic bub 25	50 bie.	Enelco Vent Silencer	CR 3884 5/
2.	-									
Model HV(thick ste	08 silen eel with	cer, 3/1 fibergl	6 inch ca ass cloth	rbon stee and bond	l shell, led miner	panel i al wool	s of 16 gauge acoustical fi	11.		
Temperatu 16	ure up to 22	o 450°F. 32	40	40	34	28	23	50	Enelco Vent Silencer	CR 1889
							/			
Model HVI thick ste	12 silen eel with	cer, 3/1 fibergl	6 inch ca ass cloth	rbon stee and bond	1 shell, ed miner	panel i al wool	s of 16 gauge acoustical fi	11.		
Temperatu 20	ure up to 26	o 450°F. 39	49	50	40	33	29	50	Enelco Vent Silencer	CR 1889
					~		• • • •	<i>c</i>		
Model CV2 carbon st	2/ throug teel wit	gh CV40 h acoust	intermedi ically li	ate volum ned shell	and a c	enter ac	constructed oustic bubble	0I	Enelco	CR
20	27	36	37	38	33	31	26	50	Vent Silencer	3884 5/
Model CVI	18 throu	gh CV25	intermedi	ate volum	e flow s	ilencer.	Constructed	of		
carbon st 19	25	acoust 33	10a11y 11 39	ned snell 38	апо а с 34	activer ac	27	50	Enelco Vent Silencer	CR 3884 5/
							· · · · ·			
Model Cli acoustica	1905, she al mater	eil mate ial. Ven	rial 14 g t is pain	auge cold ted with	inorgani	steel, f c zinc-r	ire retardant ich primer.		Weatherproof	
13	ire range 17	e -13 to 19	33	37	43	46	48	62	Inlet and Exhaust Air Silencer	CR 154-75
-										

A splitter or louver geometry indicates that a large area of uniformly flowing gas is divided into smaller, narrower passages. Sometimes the main flow direction is altered by the splitter or louver. These geometries generally block direct line of sight noise transmission from an interior noise source to the ambient environment. Absorptive materials are often installed within a splitter or louver to improve sound absorption performance. Organizations contributing data to this table are: 5, 6, and 50.

- 1. SILENCER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLICATIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- 2. IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRESENTED FOR A GIVEN PRODUCT LINE. SEE MANUFAC-TURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFORMANCE DATA.

A splitter or louver geometry indicates that a large area of uniformly flowing gas is divided into smaller, narrower passages. Sometimes the main flow direction is altered by the splitter or louver. These geometries generally block direct line of sight noise transmission from an interior noise source to the ambient environment. Absorptive materials are often installed within a splitter or louver to improve sound absorption performance. Organizations contributing data to this table are: 5, 6, and 50.

- 1. SILENCER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLICATIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- 2. IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRESENTED FOR A GIVEN PRODUCT LINE. SEE MANUFAC-TURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFORMANCE DATA.

Table	32.	Splitter/	louver	silencers.
-------	-----	-----------	--------	------------

·			Inser	tion Los	s, dB						
Hz	Hz H	Hz	Hz	Hz	Hz	zų	Hz	c	Company	Product	Referen
63	125	250	500	1000	2000	4000	8000				
SS Seri	es, alumnin	um, stai	nless an	d galvan	ized avai	ilable.	24 inch	size.		Stack-Stuffer	CR Bul
3	6	12	22	27	20	12	8		5	Silencers, SSA3	B-38
SS Serie	es, Alumin	um, stai	nless an	d galvan	ized avai	ilable.	48 inch	size.		Stack-Stuffer	CR Bul
6	12	22	27	20	12	8	4		5	Silencers, SSA3	B-38
SS Seri	es, alumin	um, stai	nless an	d galvan	ized avai	ilable.	96 inch	size.		Stack-Stuffer	CR Bul
12	22	27	20	12	8	4	2		5	Silencers, SSA3	B-38
Acoustic stops or 22 gage	cal louver n upper su galvanize 6	s, top s rface, o d steel. 11	urfaces uter cas 15	solid, b ings 16 18	ottom sun gauge gal 18	face ab vanized 16	sorptive steel, 12	, water internals	5	. Aeroacoustic Silentflow Louvers	CR Bu B-46
C-14+++				, ,							
opiite: 7	r silencer: 15	s, Model 30	ав, 6 і: 54	nch modu 65	ies, avai 68	.⊥able in 60	n several 45	1 models.	5	Aeroacoustic Splitter Silencers	CR Bul B-133
									-	opificer bitencers	D. 199
Splitter	r silencer	s, Model	F2, 12	inch mod	ules.					Aeroacoustic	CR Bul
5	10	17	23	24	20	16	12		5	Splitter Silencer	B-133
Splitter	r silencer	s, Model	Q10, 15	inch mo	dules.					Aeroacoustic	CP Bul
9	17	29	41	43	27	22	17		5	Splitter Silencers	B-133
Splitter	silencer:	s, Model	V3, i8	inch modu	ules.					A	CD D. 1
5	8	13	18	15	12	9	7		5	Splitter Silencer	B-133
Airfoil aluminum by an op limit, m	shaped tur extrusion pen protect naximum ve 8	rning van n, acous tive met locity 4 8	ne for no tically a al facing 000 fpm. 11	oise and treated w g. Tempo Standard 18	directio with fibe erature r availab 25	nal air rglass, ange 290 le lengt 28	control, which is D°F, humi th 10 ft. 20	14 gauge protected dity, no	6	Airsan Acoustiturn	CR
Sound ab ling fan transmis	sorption l noises, a sion loss.	louver, a air intal .)	available kes, cool	e in 54 s ling towe	standard er inlets	sizes, 1 . (Repor	for use i rted valu	n control- les are			
3	6	7	10	14	13	12	10		50	Acoustilouvr	
Sound ab fan nois loss.)	sorption] es, air in	louver av ntakes,co	vailable boling to	in 54 st ower inle	tandard s ets. (Rep	izes for orted va	t use in Alues are	controllin transmiss	g ion		
4	7	8	11	16	17	13	10		50	Enelco Acoustilouvre Model AL-1	CR For 858 AL

CATEGORY 33. VEHICULAR MUFFLERS

CATEGORY 33. VEHICULAR MUFFLERS

The muffler products listed in this category are only applicable to heavy equipment and trucks. No information is presented for automotive use. Single and dual muffler configurations are presented. The required exhaust noise level at 50 ft from the vehicle is often the determining factor in muffler selection. For low noise requirements, muffler shell noise becomes a major contributing factor so that double wrapping or high temperature insulation may be added to the basic muffler design. The organization contributing data to this table is company 39.

- 1. MUFFLER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLI-CATIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRESENTED FOR A GIVEN PRODUCT LINE. SEE MANUFACTURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFOR-MANCE DATA.
- 3. SEVERAL MANUFACTURERS WERE SOLICITED FOR VEHICULAR MUFFLER INFORMATION, BUT ONLY ONE COMPANY PROVIDED DATA FOR THIS TABLE.

		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)					
76 72 70	1.2 2.0 1.6	NTC-230	Trucks, Cummins turbocharged engines cab side mount Single 4" systems	39	MUM09-0022 or MPM09-0141 or MKM10-0147	CR 1200-192
75 71 69	1.0 1.7 1.4	Formula 230			MUM09-0022 or MPM09-0141 or MKM10-0147	
77 73 71	1.5 2.4 1.9	NTC-250			MUM09-0022 or MPM09-0141 or MKM10-0147	
76 72 70	1.3 2.0 1.7	Formula 250			MUM09-0022 or MPM09-0141 or MKM10-0147	
78 74 72	1.3 2.1 1.7	NTC- 270			MUM09-0022 or MPM09-0141 or MKM10-0147	
79 73	1.9 2.4	NTC-270CT			MUM09-0022 or MKM10-1047	
79 73	2.1 2.8	PT-270			MUM09-0022 or MKM10-0147	
77 71	2.2 2.9	NTC-290			MUM09-0022 or MKM10-0147	
78 74 72	1.4 2.3 1.8	NTC-290 (pre 1976)			MUM09-0022 or MPM09-0141 or MKM10-0147	
76 70	1.8 2.4	Formula 290			MUM09-0022 or MKM10-0147	
78 72	2 · 3 3 · 0	PT- 330D			MUM09-0022 or MKM10-0147	
78 72	1.9 2.5	NTC-335			MUM09-0022 or MKM10-0147	
79	2.2	NTC-350			MUM09-0022	
78 72	1.8 2.4	Formula 335			MUM09-0022 or MKM10-0147	
- 78 72	1.8 2.4	NTC-350-Y			MUM09-0022 or MKM10-0147	
80	2.6	NTF-365			MUM09-0022	
78 74 72	1.1 1.8 1.5	VT-555			MUM09-0022 or MPM09-0141 or MKM10-0147	
7 8 74 72	1.2 1.9 1.5	VTF-555			MUM09-0022 or MPM09-0141 or MKM10-0147	
79 73	2.2 2.9	VT-903			MUM09-0022 or MKM10-0147	
78 72	1.9 2.5	Formula 903			MUM09-0022 or MKM10-0147	
75 73 71 69	0.5 0.9 0.9 1.5	NTC-230	Trucks, Cummins turbocharged engines cab side mount Single 5" systems		MPM09-0161 · or MPM09-0197 or MPM10-0106 or MFM10-0165	

Table 33. Vehicular mufflers.

/

338

.

••

Sound Measuremer	nt Criteria		······			
		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft) 74 72 70 68	Back Pressure Full Load (in. Hg) 0.4 0.7 0.7 1.3	Formula 230	Trucks, Cummins turbocharged engines cab side mount Single 5" systems	39	MPM09-0161 or MPM09-0197 or MPM1C-0106 or MFM1C-0165	CR 1200-192
76 74 72 70	0.6 1.0 1.0 1.8	NTC-250			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
75 73 71 69	0.5 0.9 0.9 1.6	Formula 250			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	0.5 1.0 0.9 1.6	NTC-270			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
78 76 74 72	0.8 1.4 1.3 2.3	NTC-270CT			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
78 76 74 72	0.9 1.5 1.5 2.7	PT-270			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
76 74 72 70	0.9 1.5 1.5 2.7	NTC-290			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	0.6 1.0 0.9 1.7	NTC-290 (Pre 1976)			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
75 73 71 69	0.8 1.3 1.3 2.3	Formula 290			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	1.0 1.6 1.6 2.9	PT-330D			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	0.9 1.5 1.4 2.4	NTC-335			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
78 76 74 72	1.0 1.8 1.6 2.8	NTC-350			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	0.8 1.3 1.3 2.3	Formula 335			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	0.8 1.3 1.3 2.3	NTC-350-Y			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
79 77 75 73	1.1 1.8 1.8 1.1	NTF-365			MPM09-0161 or MPM09-0197 or MPM10-0106 or MPM10-0108	
79 77 75 73	1.4 2.1 2.1 1.4	NTA-400			MPM09-0161 or MPM09-0197 or MPM10-0106 or MPM1C-0108	

.

--

.

339

•

-

Sound Measureme	nt Criteria					
		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise	Back Pressure Full Load					
80 78 76 74	1.7 2.4 2.4 1.6	NTA-420	Trucks, Cummins turbocharged engines cab side mount Single 5" systems	39	MPM09-0161 or MPM09-0197 or MPM10-0106 or MPM10-0102	CR 1200-192
80 78 76 74	1.5 2.4 2.4 1.4	KT-450			MPM09-0161 or MPM09-0197 or MPM09-0106 or MPM10-0108	
82 74	2.9 2.8	KTA-525			MPM09-0161 or MPM10-0108	
82 74	$\frac{2}{2}, \frac{5}{2}$	KTA-600			MPM09-0161 or MPM10-0108	
77 75 73 71	0.5 0.9 0.8 1.4	VT - 555			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	0.6 1.1 0.9 1.5	VTF-555			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
78 76 74 72	1.0 1.8 1.8 2.9	VT-903			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
77 75 73 71	0.9 1.7 1.6 2.6	Formula 903			MPM09-0161 or MPM09-0197 or MPM10-0106 or MFM10-0165	
70 69 71 70 72 73 73 71 72 72 72 72 72 73 72 72 74 72 72 74 75 75 75 77 72 72 72 72 72 72 72 72 72 72 72 72	0.6 0.5 0.7 0.6 0.9 1.1 1.1 0.7 0.9 1.2 0.9 1.2 0.9 1.1 0.9 1.3 1.4 1.7 1.8 2.8 0.6 0.7 1.1 1.1	NTC-230 Formula 230 NTC-250 NTC-2700 NTC-270CT PT-270 NTC-290(pre 1 Formula 290 PT-330D NTC-335 NTC-350 Formula 335 NTC-350-Y NTF-365 NTA-400 NTA-420 KTA-450 KTA-600 VT-555 VTF-555 VT-903 Formula 903	Trucks, Cummins turbocharged engines cab side mount Split systems 5x4x4		MPM09-0141 MPM09-0141	
70 71 69 70 68 70 70 70 70 72 71 72 71 72 73 73 73 73 70 71 70	0.4 0.6 0.7 0.5 0.6 0.8 0.6 0.8 0.7 0.7 0.9 1.0 1.3 2.2 2.6 0.4 0.5 0.7 0.7	NTC-270 NTC-270CT PT-270 NTC-290(pre 1 Formula 290 PT-330D NTC-335 NTC-350 Formula 335 NTC-350-Y NTF-365 NTC-450 KTA-600 KTA-600 KTA-600 KTA-525 VT-555 VT-555 VT-903 Formula 903	Trucks, Cummins turbocharged engines cab side mount Split systems 5x5x5 976)		MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172 MFM10-0172	

Table	33.	Vehicular	mufflers	continued.
TADIC	JJ.+	venicular	mattreis	CONCERNICE.

- .

340

.

Sound Measuremen	<u>nt Criteria</u>					
		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)					
75 74	1.8 2.9	NTC-230	Trucks, Cummins turbocharged engines chassis mount vertical tailpipe single 4" systems	39	MOM12-1000 or MBM10-0002	CR 1200-192
73 74	1.62.5	Formula 230			MOM12-1000 or MBM10-0002	
76 75 78 78 77 75 77 77 77 77	2.2 1.9 2.1 2.8 3.0 2.2 2.8 2.8 2.8 2.8 2.8	NTC-250 Formula 250 NTC-2700 NTC-270CT PT-2700 NTC-290(pre Formula 290 NTC-335 Formula 335 NTC-350-Y	1976)		MOM12-1000 MOM12-1000 MOM12-1000 MOM12-1000 MOM12-1000 MOM12-1000 MOM12-1000 MOM12-1000 MOM12-1000 MOM12-1000	
77 76	1.9 2.6	VT - 555			MOM12-1000 or MBM10-0002	
77 76	2.0 2.7	VTF-555			MOM12-1000 or MBM10-0002	
77	2.9	Formula 903			MOM12-1000	
76 73 68	0.8 1.7 1.7	NTC-230	Trucks, Cummins turbocharged engines chassis mount vertical tailpipe single 5" systems		MOM12-0131 or MOM12-0176 or MOM12-0189	
75 72 67	0.7 1.4 1.4	Formula 230			MOM 12-0131 or MOM 12-0176 or MOM 12-0189	
77 74 69	0.9 2.0 2.0	NTC-250			MOM12-0131 or MOM12-0176 or MOM12-0189	
76 73 68	0.8 1.7 1.7	Formula 250			MOM12-0131 or MOM12-0176 or MOM12-0189	
78 75 70	0.8 1.8 1.7	NTC-270			MOM12-0131 or MOM12-0176 or MOM12-0189	
79 76 71	1.3 2.6 2.5	NTC-270CT			MOM12-0131 or MOM12-0176 or MOM12-0189	
79 76 71	1.4 3.0 2.9	PT-270			MOM12-Q131 or MOM12-0176 or MOM12-0189	
77 74 69	1.4 3.0 2.9	NTC-290			MOM12-0131 or MOM12-0176 or MOM12-0189	
78 75 70	0.9 1.9 1.8	NTC-290 (pre 1976)			MOM12-0131 or MOM12-0176 or MOM12-0189	
76 73 68	1.2 2.6 2.5	Formula 290			MOM12-0131 or MOM12-0176 or MOM12-0189	
78	1.5	PT-330D			MOM12-0131	
79 75 70	1.4 2.6 2.5	NTC-335			MOM12-0131 or MOM12-0176 or MOM12-0189	

2

; •

341

		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA_at_50 ft)	Back Pressure Full Load (in. Hg)					
7 9 71	1.6 3.0	NTC-350	Trucks, Cummins turbocharged engines chassis mount	39	MOM12-0131 or MOM12-0189	CR 1200-192
78 75 70	1.2 2.6 2.5	Formula 335	vertical tailpipe single 5" systems		MOM12-0131 or MOM12-0176 or MOM12-0189	
78 75 70	1.2 2.5 2.5	NTC-350-Y			MOM12-0131 or MOM12-0176 or MOM12-0189	
80 80 81 81	1.7 2.2 2.5 2.6	NTF-365 NTA-400 NTA-420 KT-450			MOM12-0131 MOM12-0131 MOM12-0131 MOM12-0131	
78 75 70	0.8 1.6 1.6	VT-555			MOM12-0131 or MOM12-0176 or MOM12-0189	
78 75 70	0.9 1.7 1.7	VTF-555			MOM12-0131 or MOM12-0176 or MOM12-0189	
79 71	1.6 2.9	VT-903			MOM12-0131 or MOM12-0189	
78 75 70	1.4 2.7 2.6	Formula 903			MOM12-0131 or MOM12-0176 or MOM12-0189	
75 73 70	1.8 2.5 2.4	NTC-230	Trucks, Cummins turbocharged engines chassis mount horizontal tailpipe single 4" systems		MOM12-0100 or MIM10-0048 or MIM10-0043	
74 72 69	1.5 2.1 2.0	Formula 230			MOM12-0100 or MTM10-0048 or MTM10-0043	
76 74 71	2.1 3.0 2.8	NTC-250			MOM12-0100 or MTM10-0048 or MTM10-0043	
75 73 70	1 . 8 2 . 6 2 . 4	Formula 250			MOM12-0100 or MOM10-0048 or MTM12-0043	
77 75 72	1.8 2.6 2.5	NTC-270			MOM12-0100 or MTM10-0048 or MTM10-0043	
78	2.7	NTC-270CT			MOM12-0100	
77 75 72	2.0 2.8 2.6	NTC-290 (pre 1976)			MOM12-0100 or MTM10-0048 or MTM10-0043	
75 77 77 77	2.7 2.7 2.7 2.7 2.7	Formula 290 NTC-335 Formula 335 NTC-350-Y			MOM12-0100 MOM12-0100 MOM12-0100 MOM12-0100	
77 75 72	1 8 2 4 2 3	\T-555			MOM12-0160 or MTM10-0048 or MTM10-0043	
77 75 72	1.9 2.5 2.3	VTF-555 .			MOM12-0100 or MTM10-0048 or MTM10-0043	
77 ·	2.8	Formula 903			MOM12-0100	

. .

.

1

Sound Measuremen	nt Criteria					
		Engine Model	Application	Company	Product Nodel Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)					
77 72	1.2 1.1	NTC-230	Trucks, Cummins turbocharged engines chassis mount horizontal tailpipe single 5" systems	39	MOM12-0108 or MOM12-0186	CR 1200-192
76 71	1.0 1.0	Formula 230			MOM12-0108 or MOM12-0186	
- 78 73	1.4 1.4	NTC-250			MOM12-0108 or MOM12-0186	
77 72	1.2 1.2	Formula 250			MOM12-0108 or MOM12-0186	
79 74	1.2 1.2	NTC-270			MOM12-0108 or MOM12-0186	
80 75	1.8 1.7	NTC-270CT			MOM12-C108 or MOM12-0186	
80 75	2.0 2.0	PT-270			MOM12-0108 or MOM12-0186	
78 73	2.1 2.0	NTC-290			MOM12-0108 or MOM12-0186	
79 74	1.3 1.3	NTC-290 (pre 1976)			MOM12-0108 or MOM12-0186	
77 72	1.8 1.7	Formula 290			MOM12-0108 or MOM12-0186	
79 74	2.2 2.2	PT-330D			MOM12-0108 or MOM12-0186	
79 74	1.9 1.9	NTC-335			MOM12-0108 or MOM12-0186	
79 74	1.8 1.7	Formula 335			MOM12-C108 or MOM12-0186	
80 75	2.2 2.1	NTC-350			MOM12-0108 or MOM12-0186	
79 74	1.8 1.7	NTC-350-Y			MOM12-0108 or MOM12-0186	
. 81 76	2.5 2.4	NTF-365			MOM12-0108 or MOM12-0186	
81 76	2.8 2.7	NTA-400			MOM12-0108 or MOM12-0186	
81 81	1.9 2.1	NTA-420 KT-450			MOM12-0225 MOM12-0225	
79 78 74	1.1 0.6 1.0	VT-555			MOM12-0108 or MOM12-0225 or MOM12-0186	
79 78 74	1.2 0.8 1.1	VTF-555			MOM12-C108 or MOM12-0225 or MOM12-0186	
80 79 75	2.3 1.3 2.2	VT - 903			MOM12-0108 or MOM12-0225 or MOM12-0186	
79 78 74	1.8 1.1 1.8	Formula 903			MOM12-0108 or MOM12-0225 or MOM12-0186	

343

•. •

Sound Measureme	nt Criteria	<u> </u>		·		· · · · · · · · · · · · · · · · · · ·
		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)	· · · · · · · · · · · · · · · · · · ·				
72	1.1	1673T	Trucks, Caterpillar turbocharged engines cab side mount single 4" systems	39	MUM09-0022	CR 1200-255
75	1.2	1674T			MUM09-0022	
68 73	1.4	3306T		o	MKM10-0147 r MUM09-0022	
70 77	1.6 1.2	3406T-E		o	MKM10-0147 r MUM09-0022	
68 71 69	0.7 0.5 0.8	1673T	Trucks, Caterpillar turbocharged engines cab side mount single 5" systems	0 0	MPM10-0106 r MPM09-0161 r MPM09-0197	
70 72 74	0.8 0.9 0.5	1674TA		0	MPM10-0106 r MPM09-0197 r MPM09-0161	
72 74 76	1.4 1.5 0.9	1693T		0	MPM10-0106 r MPM09-0197 r MPM09-0161	
72 75 77	$1 \cdot 3$ $1 \cdot 4$ $1 \cdot 3$	1693TA		0	MPM10-0108 r MPM10-0127 r MPM09-0161	
69 71 73	0.7 0.8 0.5	3306T		0	MPM10-0106 r MPM09-0197 r MPM09-0161	
70 74 77	1.8 1.6 1.0	3406T		0	MOM12-0251 r MPM10-0106 r MPM09-0161	
69 73 76	1.9 1.8 1.1	3406TA		0	MOM12-0251 r MPM10-0106 r MPM09-0161	
72 74 76	0.8 0.6 0.6	3406T-E		0	MPM10-0106 r MPM10-0127 r MPM09-0161	
72 74 76	1.8 1.1 1.1	3408T		0	MPM10-0106 r MPM10-0127 r MPM09-0161	
70 73 75	1.5 1.6 1.6	3408TA		0	MPM10-0108 r MPM10-0127 r MPM09-0161	
68	0.6	1673T	Trucks, Caterpillar turbocharged engines split systems 5x4x4	dua	1 MPM09-0141	

,

Sound Measureme	nt Criteria					
		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise	Back Pressure Full Load					
71	0.2		Trucks, Caterpillar turbocharged engines cab side mount splt systems 5x5x5	39 d	ual MPM09-0161	CR 1200-255
70	0.7	1674TA	5x4x4	d	ual MPM09-0141	
71 73	0.4 0.2		5x5x5	d or d	ual MPM09-0197 ual MPM09-0161	
72 76	1.1 0.7	1693T	5x4x4	d or d	ual MPM09-0141 ual MUM09-0022	
71 75	0.5 0.4		5x5x5	d or d	ual MPM10-0106 ual MPM09-0161	
76	1.2	1693TA	5x4x4	d	ual MUM09-0022	
72 75	1.0 0.9		5x5x5	đ or d	ual MFM10-0106 ual MFM09-0197	
69	0.6	3306T	5 x4x 4	d	ual MPM09-0141	
71	0.2		5×5×5	d	ual MPM09-0161	
72 76	1.3 0.9	3406T	5x4x4	d or d	ual MPM09-0141 ual MUM09-0022	
70 73	1.2 0.7		5x5x5	d or d	ual MFM10-0165 ual MPM09-0197	
71 75	1.4 0.9	3406TA	5x4x4	d or d	ual MPM09-0141 ual MUM09-0022	
69 72	1.3 0.8		5x5x5	d or d	ual MFM10-0165 ual MPM09-0197	
71	0.7	3406T-E	5x4x4	d	ual MPM09-0141	
69 72	0.7 0.4		5x5x5	d or d	ual MFM10-0165 ual MPM09-0197	
71 75	1.4 0.9	3408T	5x4x4	d or d	ual MPM09-0141 ual MUM09-0022	
69 72	1.2 0.8		5x5x5	d or d	ual MFM10-0165 ual MPM09-0197	
70 74	1.9 1.3	3408TA	5x4x4	d or d	ual MPM09-0141 ual MUM09-0022	
70 71	1.1 1.2		5x5x5	d or d	ual MPM10-0106 ual MPM09-0197	
72	0.8	1673T	Trucks, Caterpillar turbocharged engines chassis mount vertical tailpipe single 5" systems		MOM12-0131	
75	Q.9	1674TA			MOM12-0131	
77	1.4	1693T			MOM12-0131	
73	0.8	3306T			MOM12-0131	
78	1.7	3406T			MOM12-0131	
77	1.8	3406TA			MOM12-0131	

.

, **..**

Table 33. Vehicular mufflers continued.

		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)					
70 77	1.7 0.9	3406T-E	Trucks, Caterpillar turbocharged engines chassis mount vertical tailpipe single 5" systems	39	MOM12-C189 or MOM12-C131	CR 1200-255
77	1.9	3408T			MOM12-0131	
69 73	1.1 1.1	1673T	Trucks, Caterpillar turbocharged engines chassis mount horizontal tailpipe single 5" systems		MOM12-0186 or MOM12-0108	
71 76	1.2 1.3	1674TA			MOM12-0186 or MOM12-0108	
77	1.3	1693T			MOM12-0225	
70 74	1.1 1.1	3306T			MOM12-0186 or MOM12-0108	
78	1.4	3406 T			MOM12-0225	
77	1.5	3406TA			MOM12-0225	
73 77	1.3 1.3	3406T-E			MOM12-0186 or MOM12-0108	
77	1.5	3408T			MOM12-0225	
76	1.9	3408TA			MOM12-0225	
78	2.5	6-71T	Truck, Detroit Diesel turbocharzed engine cab side mount single 4" systems	39	MUM09-0022	CR 1200-208
79	2.5	6V-71T			MUM09-0022	
74 77	1.8 1.0	6-71T	Truck, Detroit Diesel turbocharged engine cab side mount single 5" systems		MKM10-0149 MPM09-0161	
75 78	1.8 1.0	6V-71T			MKM10-0149 MPM09-0161	
72 75 78	1.5 2.4 1.6	8V-71T			MPM10-0108 MKM10-0149 MPM09-0161	
72 75 78	1.6 2.5 1.7	8V-71TA			MPM10-0108 MKM10-0149 MPM09-0161	
71 74 77	1.3 2.3 1.4	8V-71TT			MPM10-0108 MKM10-0149 MPM09-0161	
72 77 78	1.6 1.7 1.7	6V-92T			MPM10-0108 MPM10-0127 MPM09-0161	
72 78 79	1.7 1.8 1.8	6V-92TA			MPM10-0108 MPM10-0127 MPM09-0161	
71 76 77	1.1 1.2 1.2	6V-92TT			MPM10-0108 MPM10-0127 MPM09-0161	
73 76 78	2.0 2.2 2.2	8V-92T			MPM10-0108 MPM10-0127 MPM09-0161	

346

.

.
Sound_Measuremen	nt Criteria					
		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)		,			
73 76 78	2.1 2.3 2.3	8V-92TA	Truck, Detroit Diesel turbocharged engine cab side mount single 5" systems	39	MPM10-0108 MPM10-0127 MPM09-0161	CR 1200-208
72 75 77	1.7 1.8 1.8	8V-92TT			MPM10-0108 MPM10-0127 MPM09-0161	
80	2.5	12V-71T	Truck, Detroit Diesel turbocharged engine cab side mount dual 4" systems	dua]	MUM09-0022	
72 76 79	1.0 1.8 1.0	12V-71T	Truck, Detroit Diesel turbocharged engine cab side mount dual 5" systems	dual or dual or dual	MPM10-0108 MKM10-0149 MPM09-0161	
69 73	2.1 1.4	6-71T	Truck, Detroit Diesel turbocharged engine cab side mount split systems 5x4x4	dual or dual	. MSM09-0142 . MPM09-0141	
69 73	1.2 0.8		5x5x5	dual or dual	MFM10-0165 MPM09-0197	
70 74	2.1 1.3	6V-71T	5x4x4	dual or dual	MSM09-0142 MPM09-0141	
70 74	1.2 3.8		5x5x5	dual or dual	MFM10-0165 MPM09-0197	
70 74	1.8 2.1	8V-71T	5x4x4	dual or dual	MKM10-0147 MPM09-0141	
70 75	1 · 8 1 · 3		5x5x5	dual or dual	MPM10-0165 MPM09-0197	
70 74	1 · 9 2 · 2	8V-71TA	5x4x4	dual or dual	MKM10-0147 MPM09-0141	
70 75	2.0 1.4		5x5x5	du a l or dual	MFM10-0165 MPM09-0197	
69 73	1.6 1.8	8V-71TT	5x4x4	dual or dual	МКМ10-0147 МРМ09-0141	
69 74	1.6 I.1		5x5x5	dual or dual	MPM10-0165 MPM09-0197	
71 74	1.8 2.1	6V-92T	5x4x4	dual or dual	МКМ10-0147 МРМ09-0141	
71 75 .	1.9 1.3		5x5x5	dual or dual	MPM10-0165 MPM09-0197	
71 74	2.0 2.3	6V-92TA	5x4x4	dual or dual	MKM10-0147 MPM09-0141	
71 75	2.1 1.4		5x5x5	dual or dual	MFM10-0165 MPM09-0197	
70 73	1.3 1.5	6V-92TT	5x4x4	dual or dual	МКМ10-0147 МРМ09-0141	
70 74	1.3 0.9	·	5x5x5	dual or dual	MFM10-0165 MPM09-0197	
· 71 78	2.3 2.0	8V-92T	5x4x4	dual or dual	MKM10-0147 MUM09-0022	

Sound Measuremen	nt Criteria					
		Engine Model	Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)					·····
71 75	2.3 1.7	8V-92T	Truck, Detroit Diesel turbocharged engine cab side mount split systems 5x5x5	39 dual or dual	MFM10-0165 MPM09-0197	CR 1200-208
71 78	2.4 2.0	8V-92TA	5x4x4	dual or dual	MKM10-0147 MUM09-0022	
71 75	2.4 1.8		5x5x5	dual or dual	MFM10-0165 MPM09-0197	
70 74	2.0 2.3	8V-92TT	5x4x4	dual or dual	MKM10-0147 MPM09-0141	
70 74	2.0 1.4		5x5x5	dual or dual	MFM10-0165 MPM09-0197	
77	1.7	6-71T	Truck, Detroit Diesel turbocharged engine chassis mount vertical tailpipe single 5" system		MOM12-0131 ·	
78	1.7	6V-71T			MOM12-0131	
79	2.4	8V-71T			MOM12-0131	
79	2.5	8V-71TA			MOM12-0131	
78	2.2	8V-71TT			MOM12-0131	
81	2.5	6V-92T			MOM12-0131	
79	2.1	6V-92TT			MOM12-0131	
79	1.7	12V-71T	Truck, Detroit Diesel turbocharged engine chassis mount vertical tailpipe dual 5" systems	dua 1	MOM12-0131	
74 79	2.4 2.4	6-71T	Truck, Detroit Diesel turbocharged engine chassis mount horizontal tailpipe single 5" systems	or	MOM12-0186 MOM12-0108	
75 80	2.4 2.4	6V-71T		or	MOM12-0186 MOM12-0108	
77 82	2.4 2.4	12V-71T	Truck, Detroit Diesel turbocharged engine chassis mount horizontal tailpipe dual 5" systems	dual or dual	MOM12-0186 MOM12-0108	

Sound measureme				Product	
		Application	Company	Model Number	Reference
Exhaust Noise dBA at 50 ft)	Back Pressure Full Load (inHg)				
78 74	3.1 3.4	Truck, Detroit Diesel 8V-71N cab side mount duals 3-1/2" systems	39	MSM09-0146 or WSM09-0211	CR 1200-166
81 76 75 72 72	2.7 2.9 1.3 3.7 3.6	Truck, Detroit Diesel 8V-71N cab side mount dual 4" systems		MSM09-0135 or WSM09-0212 or WTM10-0066 or WZM10-0067 or WTM10-0104	
		Truck. Detroit Diesel 8V-71N cab side mount single w/conventional w	ye		
84 81	3.5 2.9	4" systems w/convention wye	al	MPM09-0141 or WKM10-0064	
82 80 79	3.9 3.9 3.6	5" systems w/convention wye	al	MTM10-0038 or WTM10-0065 or MFM10-0165	
		Truck, Detroit Diesel 8V-71N cab side mount singles w/wye connector			
77 80	3.2 3.8	4" systems w/wye connec 3-1/2x 3-1/2x4	tor	MAM07-0093 Wye Conn. + MKM10-000 or MAM07-0093 Wye Conn. + MPM09-014	54 41
79 77 76 77 75 74	4.0 4.0 3.8 4.0 4.0 3.8	4x4x4 5" systems w/wye connector 3-1/2x3-1/2x5		MAM07-0094 Wye Conn. + MTM10-00 or MAM07-0094 Wye Conn. + MTM10-000 or MAM07-0094 Wye Conn. + MTM10-001 or MAM09-0104 Wye Conn. + MTM10-000 or MAM09-0104 Wye Conn. + MTM10-000 or MAM09-0104 Wye Conn. + MTM10-010	38 55 55 38 55 55
77 74 75 76 73 74		4x4x5		MAM07-0090 Wye Conn. + MTM10-000 or WAM09-0217 Wye Conn. + MTM10-000 or MAM09-0235 Wye Conn. + MTM10-000 or MAM07-0090 Wye Conn. + MTM10-010 or WAM09-0217 Wye Conn. + MTM10-010 or MAM09-0235 Wye Conn. + MTM10-010	55 55 55 55 55
83 81 74	1.8 1.8 3.9	Truck, Detroit Diesel 8V-71N chassis mount duals, vertical tailpip 4" systems	e	MOM12-0154 or WOM12-0183 or WOM12-0006	
83 81	2.2 2.2	Truck, Detroit Diesel 8V-71N chassis mount duals, horizontal tailp 3-1/2" systems	ipe	MOM09-0158 or WOM09-0210	
84 82 73	1.8 1.8 3.9	Truck, Detroit Diesel 8V-71N chassis mount duals, horizontal tailp 4‴ systems	ipe	MOM09-0168 or WOM09-0213 or WOM12-0230	
85 80	3.3 3.3	Truck, Detroit Diesel 8V-71N chassis mount singles. vertical tailp w/conventional wye 5″ systems	ipe	MOM12-0176 or MOM12-0189	
82 77 80 75	3.5 3.4 3.5 3.4	w/wye connector 5" syst w/wye connector 3-1/2x3	ems -1/2x5	MAM07-0094 Wye Conn. + MOM12-01 or MAM07-0094 Wye Conn. + MOM12-01 or MAM09-0104 Wye Conn. + MOM12-01 or MAM09-0104 Wye Conn. + MOM12-01	76 89 76 89
82 79 80 77 74 75		4x4x5 3-1/2x3-1/2x5		MAM07-0090 Wye Conn. + MOM12-01 or WAM09-0217 Wye Conn. + MOM12-01 or MAM09-0235 Wye Conn. + MOM12-01 or MAM07-0090 Wye Conn. + MOM12-01 or WAM09-0217 Wye Conn. + MOM12-01 or WAM09-0218 Wye Conn. + MOM12-01	76 76 89 89

.

-

•

•

		Application	Product Model Number	Reference	
Exhaust Noise dBA at 50 ft)	Back Pressure Full Load (inHg)				
83	2.5	Truck, Detroit Diesel 8V-71N chassis mount singles, horizontal ta w/conventional wye 5" systems	39 ilpipe	MOM12-0186	CR 1200-166
85 81 84 79	2.6 2.5 2.6 2.6	5" systems w/wye connec 3-1/2x3-1/2x5	tor	MAM07-0094 Wye Conn. + MOM12-010 or MAM07-0094 Wye Conn. + MOM12-018 or MAM09-0104 Wye Conn. + MOM12-010 or MAM09-0104 Wye Conn. + MOM12-018	8 6 8 6
85 82 83 81 78 79		4x4x5		MAM07-0090 Wye Conn. + MOM12-010 or WAM09-0217 Wye Conn. + MOM12-010 or MAM09-0235 Wye Conn. + MOM12-018 or MAM07-0090 Wye Conn. + MOM12-018 or WAM09-0217 Wye Conn. + MOM12-018 or MAM09-0235 Wye Conn. + MOM12-018	8 8 6 6 6 6
74	2.0	Truck, Cummins V8-185, V8 V-555 cab side mount dual 3" systems	3-210,	MTM08-5078	CR 1200-218
83 80 78 66 68	1.5 1.5 2.4 2.1 2.5	Truck, Cummins V8-185, V4 V-555 cab side mount single w/conventional v 4" systems	3-210, 7ye	MPM09-0063 or MPM09-0141 or MSN09-0142 or WTN10-0066 or WZM10-0145	
81 78 74 74 65 67	1.5 2.0 2.0 2.8 2.5 2.9	Truck, Cummins V8-185, V4 V-555 cab side mount single w/wye connector 4″ systems	8-210	MAM07-0045 Wye Conn. + MUM09-002 or MAM07-0045 Wye Conn. + MPM09-006 or MAM07-0045 Wye Conn. + MPM09-014 or MAM07-0045 Wye Conn. + MSM09-014 or MAM07-0045 Wye Conn. + WTM10-006 or MAM07-0045 Wye Conn. + WZM10-014	2 3 1 2 6 5
78	2.2	Truck, Cummins V8-185, V9 V-555 chassis mount dual, vertical tailpipe 3" systems	8-210	MBM08-5083	
80 76 71 73	1.9 2.0 1.9 2.4	Truck, Cummins V8-185, Vé V-555 chassis mount dual horizontal tailpi; 3" systems	8-210 9e	MZM08-5023 or MTM08-5078 or W0M09-0159 or M0M09-0170	
83 80 76 74 83	2.0 2.3 2.5 2.5 1.4	Truck, Cummins V8-185, V8 V-555 chassis mount single, vertical tailpi w/conventional wye 4" s	pe systems	MBM10-0002 or MBM10-0049 or MOM12-0154 or WOM12-0183 or MOM12-1000	
78 77 73 71 78	2 - 5 2 - 7 2 - 8 2 - 7 1 - 6	Truck, Cummins V8-185, V& V-555 chassis mount single, vertical tailpi w/wye connector 4" syst	pe ems	MAM07-0045 Wye Conn. + MBM10-000 or MAM07-0045 Wye Conn. + MBM10-004 or MAM07-0045 Wye Conn. + MOM12-018 or MAM07-0045 Wye Conn. + MOM12-018 or MAM07-0045 Wye Conn. + MOM12-100	2 9 4 3 0
82 74 72 82 77 79 80	1.8 2.9 2.9 1.6 1.6 2.1 1.4	Truck, Cummins V8-185, V6 V-555 chassis mount single, horizontal tail w/conventional wye 4" s	9-210 pipe ystems	MOM09-0124 or MOM09-0168 or WOM09-0213 or MTM10-0006 or MTM10-0043 or MTM10-0048 or MOM12-0100	
76 77 74 75 76	2.2 2.6 2.1 2.3 2.1	Truck, Cummins V8-185, V6 V-555 chassis mount single, horizontal tail w/wye connector 4" syst	pipe	MAM07-0045 Wye Conn. + MOM09-012 or MAM07-0045 Wye Conn. + MTM10-000 or MAM07-0045 Wye Conn. + MTM10-004 or MAM07-0045 Wye Conn. + MTM10-004 or MAM07-0045 Wye Conn. + MOM12-010	4 6 3 8 0

,

- -----

Sound Measureme	nt Criteria				
		Application	Company	Product Model Number	Reference
Exhaust Noise (dBA at 50 ft)	Back Pressure Full Load (in. Hg)				
75	1.3	Truck, Caterpillar 1140, 1145, 1150, 1160, and 3208NA cab side mount dual 3" systems	39	MTM08 - 5C78	CR 1200-237
75 71	1.0 1.1	Truck, Caterpillar 1140, 1145, 1150, 1160, and 3208NA cab side mount 3-1/2" systems		MSM09-0146 or ₩SM09-0211₩	
81 79 76 75	1.5 1.4 2.3 1.2	Truck, Caterpillar 1140, 1145, 1150 1160, and 3208NA cab side mount single w/conventional wye 4" systems		MPM09-0063 or MPM09-0141 or MSM09-0142 or WKM10-0054W	
79 77 75 71 72	1.2 1.6 1.6 2.4 1.4	Truck, Caterpillar 1140, 1145, 1150 1160, and 3208NA cab side mount single w/wye connecto 4" systems 3x3x4 3-1/2x3-1/2x4	r	MAM07-0045 Wye Conn. + MUM09-00 or MAM07-0045 Wye Conn. + MPM09-00 or MAM07-0045 Wye Conn. + MPM09-01 or MAM07-0045 Wye Conn. + MSM09-01 or MAM07-0045 Wye Conn. + WTM10-00	022 063 141 142 066 ^w
76	1.7	Truck, Caterpillar 1140, 1145, 1150 1160, and 3208NA chassis mount dual, vertical tailpi 3" systems	pe	мемо8-5083	
79 76 72 74	1.0 1.2 1.2 1.2	Truck, Caterpillar 1140, 1145, 1150 1160, and 3208NA chassis mount dual, horizontal tail 3" systems	pipe	MZM08-5023 or MTM08-5078 or WOM09-0159 ^w or MOM09-0170	
81 79 73	2.0 2.4 2.3	Truck, Caterpillar 1140, 1145, 1150 1160, and 3208NA chassis mount single, vertical tail w/conventional wye 4"	pipe systems	MBM10-0002 or MBM10-0049 or MOM12-0154	
77 75 69 78	2.1 2.5 2.5 1.6	Truck, Caterpillar 1140, 1145, 1150, 1160, and 3208NA chassis mount single, vertical tail w/wye connector 4" sy 3x3x4	pipe stems	MAM07-0045 Wye Conn. + MBM10-00 or MAM07-0045 Wye Conn. + MBM10-00 or MAM07-0045 Wye Conn. + MOM12-01 or MAM07-0045 Wye Conn. + MOM12-10	02 149 54 60
		3-1/2x3-1/2x4		MAM07-0093 Wye Conn. + MUM09-00 or MAM07-0093 Wye Conn. + MPM09-00 or MAM07-0093 Wye Conn. + MPM09-01 or MAM07-0093 Wye Conn. + MSM09-01 or MAM07-0093 Wye Conn. + WTM10-00	022 063 41 42 066₩
82 75 77 80 82	1.8 2.5 1.7 1.8 1.4	Truck, Caterpillar 1140, 1145, 1150, 1160, and 3208NA chassis mount single. horizontal ta w/conventional wye 4"	ilpipe systems	MOM09-0124 or MOM09-0168 or MTM10-0043 or MTM10-0048 or MOM12-0100	
78 78 73 76 78	1.9 1.8 1.8 1.9 1.5	Truck, Caterpillar 1140, 1145, 1150, 1160, and 3208NA chassis mount single, horizontal ta w/wye connector 4" sy 3x3x4 3-1/2x3-1/2x4	ilpipe stems	MAM07-0045 Wye Corn. + MOM09-01 or MAM07-0045 Wye Corr. + MTM10-00 or MAM07-0045 Wye Corr. + MTM10-00 or MAM07-0045 Wye Corr. + MTM10-00 or MAM07-0045 Wye Corr. + MOM12-01	24 106 143 148 00

 $^{\rm W}$ Muffler has double-wrapped body to reduce "shell" noise.

CATEGORY 34. DUCT SILENCERS

CATEGORY 34. DUCT SILENCERS

Duct silencers are inserted into round or rectangular ducts to reduce external noise levels. These silencers include structural elements which conform to the duct size. Internal splitters, bullets, louvers, and turning vanes are often included in these designs. They are mainly used for lower gas veloc-ities. Organizations contributing data to this table are: 5, 50, and 78.

CAUTION

- 1. SILENCER PERFORMANCE FIGURES OFTEN DO NOT CONFORM TO STANDARD REFERENCE MEASUREMENTS. FOR SPECIFIC APPLICA-TIONS, SEE MANUFACTURER'S PRODUCT LITERATURE.
- 2. IN MANY CASES, ONLY REPRESENTATIVE INFORMATION IS PRE-SENTED FOR A GIVEN PRODUCT LINE. SEE MANUFACTURER'S LITERATURE FOR COMPLETE LISTINGS OF SIZES AND PERFOR-MANCE DATA.

Table	34.	Duct	silencers
10010		Dace	OTTCHCC-0

-			nuation, o	1B			i ty					
	63 Hz 125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	7H 000	8000 Hz	Size (in.)	ace Veloc (fpm)	ompany	Product	Referenc
Duct	silencers 9	available 14	in several 18	models a	and size	 s. 11	8		0	5	Model Q3 Aeroacoustic Duct Silencer	CR B-42
Duct	silencers 8	available 13	in several 17	i models a 18	and size 14	es. 11	8		2000	5	Model Q3 Aeroacoustic Duct Silencer	CR B-42
Duct	silencers 7	available 12	in several 17	l models a 18	and size 14	s. 11	8		4000	5	Model Q3 Aeroacoustic Duct Silencer	CR B-42
Duct	silencers 9	, 12 x 6 in 18	ch to 24 3 31	48 inch. 46	52	31	20		0	5	Model T7 Aeroacoustic Duct Silencer	CR B-43
Duct	silencers, 7	, 12 x 6 inc 16	ch to 24 x 29	48 inch. 44	51	31	20		2000	5	Model T7 Aeroacoustic Duct Silencer	CR B-43
Duct	silencers, 6	, 12 x 6 in 15	nch to 24 : 28	x 48 inch 42	50	30	19		4000	5	Model T7 Aeroacoustic Duct Silencer	CR B-43
Duct	silencers 11	20	31	36	32	23	17	24	0	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 10	20	30	36	31	23	17	24	2000	5	Model HC Circular Duct Silencer	CR B-44
Duct	silencers 9	19	29	31	31	23	17	24	4000	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 11	20	26	25	19	14	10	36	0	5	Model HC Circular Duct Silencer	CR B-44
Ďuct	silencers 10	20	25	25	19	14	10	36	2000	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 9	19	25	25	19	14	10	36	4000	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 13	20	23	20	15	10	8	48	0	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 13	20	23	20	15	10	8	48	2000	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 12	19	23	20	15	10	8	48	4000	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 13	20	21	17	12	9	7	60	0	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 13	19	21	17	12	9	7	60	2000	5	Model HC, Circular Duct Silencer	CR B-44
Duct	silencers 13	19	21	17	12	9	7	60	4000	5	Model HC, Circular Duct Silencer	CR B-44
Inte galv enca	rmediate vo anized stee sed in glas	olume flow el face she ss cloth. A	silencer, et. 16 gau vailable i	splitter ige. Acous in several	panels, stical m . sizes.	perfor naterial	ated				Enelco Circular	CR
	5 7	16	29	38	34	26	19			50	Silencers CS	3878
Circ	ular duct s	silencers	26	25			,,		(50	Enelco Aircoustat	CR 236

 			A				ity					
63 Hz	125 Hz	:	zH UC2	1000 Hz	2000 Hz	zH 0004	8000 Hz	Size (in.)	Face Veloc (fpm)	Company	Product	Reference
 Circular	duct	silence	rs 8 25	24	14	12	12		4000	 50	Enelco Aircoustat	CR 2365
4	,	1	0 25	24	14	12			4000	50	.iouer ex	541611 9,77
Circular 4	duct 7	silence 1	rs 8 24	23	15	13	13		2000	50	Enelco Aircoustat Model CA	CR 2365 DVIOM 9/77
Circular 4	duct 7	silence	rs 8 24	22	16	16	17		Static	50	Enelco Aircoustat Model CA	CR 2365 DVIOM 9/77
			• •		10	••			bruttt	50		bridin y in
Circular 4	duct 7	silence 1	rs 8 24	22	16	15	17		2000	50	Enelco Aircoustat Model CA	CR 2365 DVIOM 9/77
Circular 4	duct 7	silence 1	rs 7 24	22	15	14	15		4000	50	Enelco Aircoustat Model CA	CR 2365 DVIOM 9/77
Circular 3	duct 6	silence 1	rs 7 23	21	16	14	15		6000	50	Enelco Aircoustat Model CA	CR 2365 DVIOM 9/77
Duct sil 8	encer 13	1	8 24	28	23	16	10		4000	50	Enelco Aircoustat Model 3SLR	CR 7554 6777
Duct sil 7	encer 12	1	7 21	26	24	17	11		2000	50	Enelco Aircoustat Mcdel 3SLR	CR 7554 6/77
Duct sil	encer										Enelco Aircoustat	CR
6	10	1	6 19	24	25	18	12		Static	50	Mcdel 3SLR	7554 6.77
Duct sil	encer										Enelco Aircoustat	CR
6	9	1	5 18	22	25	20	13		2000	50	Model 3SLR	7554 6/77
Duct sil	encer										Enelco Aircoustat	CR
5	9	1	4 16	21	25	21	13		4000	50	Model 3SLR	7554 6/77
Duct sil	encer										Enelco Aircoustat	CR
8	13	1	6 20	26	19	13	8		4000	50	Modei 3XLR	7557 6 TT
Duct sil	encer										Enelco Aircoustat	CR
7	11	1	4 18	25	20	13	8		2000	50	Model 3XLR	7557 6/77
Duct sil	encer										Enelco Aircoustat	CR
6	9	1	0 15	24	22	13	10		Static	50	Model 3XLR	7557 6/77
Duct sil	encer										Enelco Aircoustat	CR
4	7		9 14	23	24	15	12		2000	50	Model 3XLR	7557 6/77
Duct sil 3	encer 6		7 12	21	25	17	14	•••	4000	50	Enelco Aircoustat Model 3XLR	CR 7557 6/77
Tubular	units,	high p	ressures								Hush A Tubo	CR
4	10	2	² ³³ .	37	34	21	14		Static	78	Model RJ	K33E
Tubular	units,	high p	ressures.								Hugh A Tubo	CP
4	9	2	1 33	37	34	21	14		1000	78	Model RJ	K33E
Tubular	units,	high p	ressures.								U b. A. Tuba	CD
4	9	2	0 31	36	33	21	14		2000	78	Model RJ	K33E
Tubular	units,	high p	ressures.								Huch A Tob-	CP
4	8	2	0 30	35	33	21	14		2500	78	Model RJ	K33E
Tubular	units,	high p	ressures.								Hugh 6 T. L.	CP.
4	5	1	6 20	19	13	9	7		Static	78	Model RB	K33E

.

.

Table 34. Duct silencers continued.

-

Table	34.	Duct	silencers	concluded.

 	Attenuation, dB								ity			
Hz	2Hz	Hz H	ZH	Hz	2H	Hz	Hz	~	Veloc fpm)	yns	Product	Reference
63	125	250	500	1000	2000	0007	8000	Size (in.	Face	Compa		
 Tubular un	its, F	nigh pressur	es.	18	13	8	7		1000	78	Hush A Tube	CR
5	,	10	20	10	15	0	1		1000	/0	MODEL KD	2005
Tubular un 3	its, h 5	nigh pressur 16	es. 20	18	13	8	7		2000	78	Hush A Tube Model RB	CR K33E
Tubular un	its. h	ligh pressur	es.									
3	5	16	20	18	13	8	7		2500	78	Hush A Tube Model RB	K33E
Rectangula	r duct	silencers,	low a	nd medium	pressures						Hush A Duct	CR
9	18	36	46	50	50	53	29		Static	78	Model 84SP	K33E
Rectangula: 7	r duct	silencers,	low a 43	nd medium 49	pressures 49	51	29		1000	78	Hush A Duct Model 84SP	CR K33E
					.,							
S S	14 14	30	10w a 39	und medium 46	pressures 43	33	24		2000	78	Hush A Duct Model 84SP	CR K33E
Rectangula	r duct	silencers,	low a	nd medium	pressures						Hush A Duct	CR
5	11	27	34	42	40	23	17		2500	78	Model 84SP	K33E
Rectangula:	r duct	silencers,	low a 38	nd medium	pressures		22		Static	78	Hush A Duct Model 60SP	CR K33E
, Restance las		eilen een	love	nd modium		54			Deutere			1000
Rectanguiai 7	11	22	36	43	42	35	22		1000	78	Hush A Duct Model 60SP	CR K33E
Rectangula	duct	silencers,	low a	nd medium	pressures						Hush A Duct	CR
6	9	20	32	40	39	30	20		2000	78	Model 60SP	K33E
Rectangular 5	duct	silencers, 18	lowa 27	nd medium 36	pressures	26	16		2500	78	Hush A Duct Model 60SP	CR K33F
		10	2,		50	20	15		2300	, 0		K) JL
Kectangular 4	7 7	silencers. 17	10w a 23	nd medium 28	pressures 32	25	14		Static	78	Hush A Duct Model 36SP	CR K33E
Rectangular	duct	silencers,	low a	nd medium	pressures						Hush A Duct	CR
3	7	16	22	28	31	25	14		1000	78	Model 36SP	K33E
Rectangular	duct	silencers,	low a	nd medium	pressures		14		2000	70	Hush A Duct	CR
2	/	10	20	20	30	24	14		2000	/8	model Josr	KJJE
Rectangular 1	duct 7	silencers, 16	low a 20	nd medium 26	pressures 30	24	14		2500	78	Hush A Duct Model 36SP	CR K33E
Rectangular 2 Rectangular 1	duct 7 duct 7	silencers, 16 silencers, 16	low a 20 low a 20	nd medium 26 nd medium 26	pressures 30 pressures 30	24	14 14		2000 2500	78 78	Hush A Duct Model 36SP Hush A Duct Model 36SP	CR K33E CR K33E

CATEGORY 35. DUCTING MATERIALS

CATEGORY 35. DUCTING MATERIALS

The materials listed in this category are generally used to form air conditioning and heating ducts. Common elements are formed fiberglass boards (in round or rectangular shapes) covered with an aluminized fabric or plastic skin. Circular wire rods are sometimes used to increase strength and yet retain flexibility. Information may be presented as insertion loss or absorption. For related information see glass fiber materials and mineral fibers. Organizations contributing data to this table are: 24, 29, 73, 74, 96, 98, and 131.

			Absorptic	n Coeffic	ients							
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	zH 0007	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 55	Bonded f	iberglas .41	s faced w .39	ith black .58	coated	mat .85	1/2	2	6	74	Linacoustic	CR IND-3319 4-77
. 55	Bonded f: .18	iberglas .35	s with fo .40	il-scrim-N .62	craft fa	cing .87	5/8		6	74	Micro-Aire Type LP	CR IND-3319 4-77
. 60	Fibergla: #200	ss therm	al and ac	oustical o	duct lin	er					Ultralite	CR
	. 16	. 53	. 41	.60	. 84	.87	1/2	2	D	29	Duct Liner	30-32-080
. 65	Fibergla: #300 .15	ss therm.	al and ac	oustical o	iuct lin	er . 87	1/2	3	6	29	Ultralite Duct Liner	CR 30-32-08U
							-, -	-				CR
70	Bonded f: .28	iberglas .51	s faced w .63	ith black .80	coated 1	.91	1	1.5	6	74	Linacoustic	IND-3319 4-77
. 70	Bonded f: .24	iberglas: .48	s with fo .60	il-scrim-k .82	craft fa	cing .99	1		6	74	Micro-Aire M/F Type 475	CR IND-3319 4-77
. 70	Bonded f:	iberglas	s with ne	oprene fac	ing	.			ć	7/	M/	CR IND-3319
	. 35	. 45	.64	. 89	.87	. 84	L	1.5	б	/4	Microlite	4-77
. 70	Bonded f: facing	iberglas:	s board w	ith foil-s	scrim-kra	aft 90	1		6	74	Micro-Aire M/F Type 800	CR IND-3319 4-77
	. 24	. 40	. 00	. 02	.,,4		•		0	, 4	in type 000	- //
. 75	Fibergla: .32	ss therma .51	al and ac	oustical d .83	luct line .98	er .86	1	1.5	6	29	Ultralite Duct Liner	CR 30-32-08U
. 75	Fiberjlas	ss therma	al and ac	oustical d	luct lin	er						
	#200 . 41	. 58	. 65	. 89	. 90	. 86	1	2	6	29	Ultralite Duct Liner	CR 30-32-08U
75	Inorganic side coat	c glass : ted NFPA-	fibers pro -90A coat	eformed ir ing.	ito board	is, one					Coated Duct	CR
	24	. 49	. 65	. 93	99	99	1	3	6	29	Liner Board	30-32-57U
. 75	Inorganic with a th NFPA-90A	glass : hermoset	fibers, p ting resi	reformed i n, one sic	nto boan le coatec	rds 1,						
	. 24	. 52	. 66	. 88	.97	.95	1	4.2	6	29	Coated Duct Liner Board	CR 30-32-570
. 75	Bonded fi	iberglas:	s with bl.	ack coated	lmat							CR
	. 2 2	. 45	. 66	. 93	. 99	. 99	1		6	74	Linacoustic R	4-77
. 80	Fiberglas	ss therma	al and ac	oustical d	luct line	er						
	. 38	. 53	. 71	.97	. 95	. 90	1	3	6	29	Ultralite Duct Liner	CR 30-32-08U
. 80	Inorganic using res coating	glass i sins, one	fibers, p side coa	reformed i ated with	nto boan NFPA-904	rds A						
	. 26	. 47	. 66	. 96	. 99	. 96	1	6	6	29	Coated Duct Liner Board	CR 30-32-570
. 85	Bonded fi	berglass	with bla	ack coated	mat							
	. 33	63	. 79	. 92	.98	.94	1-1/2	1.5	6	74	Linacoustic	4-77
. 90	Bonded fi	berglass	board wi	ith foil-s	crim-kra	ft						CR
	facing .39	. 66	. 87	. 99	. 99	. 99	1-1/2	••	6	74	Micro-Aire M/F Type 800	IND-3319 4-77
. 90	Slotted 1 wide made	.5 inch of low	o.c., l.: density p	5 inch dee glass. De	p, 0.25 nsity sł	inch Iown						
	is lb/ft ²	. 67	.98	1.04	.97	. 76	3.5	2.9	4	98	Geocoustic Muffler Lining	RAL A 75-19

Table 35A. Absorption properties of ducting.

			Absorptio	n Coeffi							· · · · · · · · · · · · · · · · · · ·	
NRC	125 Hz	250 Hz	24 005	7 1000 Hz 1000	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Mounting	Company	Product	Reference
. 95	Bonded fi	berglass	with bla	ick coate	d mat					-		CR 1ND-3319
	. 44	. 77	.96	. 99	. 99	. 99	2	1.5	6	74	Linacoustic	4-77
. 95	Inorganic preformed coating .50	glass f boards .78	ibers res one side .99	in formu coated,	lated in NFPA-90A .99	.99	2	3	6	29	Coated Duct Liner Board	CR 30-32-570
. 95	Inorganic using res coating .42	glass f ins. On .74	ibers, pr e side co .99	eformed ated wit .99	into boan h NFPA-9(.99	rds)A .99	2	4.2	6	29	Coated Duct Liner Board	CR 30-32-57U
. 95	Inorganic using res coating	glass f ins, one	ibers, pr side coa	eformed ted with	into boan NFPA-90/	rds A					Coated Duct	CR
	. 53	. 76	. 99	. 99	. 99	.97	2	6	6	29	Liner Board	30-32-570
. 95	Fibered f binder pr	iberglas essure m	s bond wi olded. T 1.05	th a the emperatu	rmosettin re up to .95	450°F.		8		73	High Density Tubes	CR

Table 35A. Absorption properties of ducting concluded.

			Insertion	Loss, dB							
RC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Company	Product	Reference
	Flexible, plain	bonded	fiberglass	blanket.	Facin	g :	·				CR
	•			1	2	4	1	. 6	74	Plain Facing	4-77
	Semi-rigio plain	d, bond€	ed fibergla 1	ss boards 2	s. Facin 4	ng : 5	1	1.6	74	Spin-glas #812 Boards, Plain Facing	CR IND-3319 4-77
	Mechanica	lly bond	ded unfaced	fibergla 1	uss blan) 4	ket 8	1/2		74	Glas-Mat	CR IND-3319 4-77
	Flexible, plain	bonded	fiberglass l	blanket. 3	Facing	g : 5	1	1	74	Microlite, Plain Facing	CR IND-3319 4-77
	Flexible, plain	bonded	fiberglass	blanket.	Facing	g ·		2	7.	Microlite,	CR IND-3319
			1	3	5	0	1	2	74	Flain Facing	4-//
	Semi-rigio plain	d, bonde	≥d fibergla 3	ss boards 6	Facin 7	ng: 6	2	1.6	74	Spin-glas #812 Boards, Plain Facing	CR IND-3319 4-77
	Flexible, plain	bonded	fiberglass 3	blanket. 6	Facing 8	g : 9	2	1	74	Microlite, Plain Facing	CR IND-3319 4-77
	Semi-rigio plain	d, bonde	ed fibergla 2	ss boards 6	Facin	ng: 11	1	6	74	Spin-glas #817 Boards, Plain Facing	CR IND-3319 4-77
	Rigid, hyd	drous ca	alcium sili	cate insu	lation -	-					(P)
	ulock for.	ш 7	4	3	6	12	1-1/2	13	74	Thermo-12	LNU-3319 4-77
	Flexible, plain	bonded	fiberglass	blanket.	Facing	g :					CR
	p		4	8	10	11	2	2	74	Microlite, Plain Facing	IND-3319 4-77
	Rigid, hyd block forn	drous ca m	alcium sili	cate insu	lation -	-					CR
		8	5	5	7	11	2	13	74	Thermo-12	4-77
	Flexible, vinyl	bonded 1	fiberglass 3	blanket. 6	Facing	g: 18	1-1/2	. 75	74	Microlite, Vinyl Facing	CR IND-3319 4-77
	Mechanica	lly bond	ied unfaced 4	fibergla 9	iss blani 13	ket 16	1	•	74	Glas-Mat	CR IND-3319 4-77
	Flexible, vinyl	bonded	fiberglass	blanket.	Facing	g :				Microlite,	CR IND-3319
	Florible	2	5	7	13	17	1-1/2	. 6	74	Vinyl Facing	4-77
	vinyl	2	4	6	racing 13	ь: 19	1-1/2	1	74	Microlite, Vinyl Facing	CR IND-3319 4-77
	Flexible, plain	bonded	fiberglass	blanket.	Facing	g:				Microlite,	CR IND-3319
			Ţ	4	2	2	2	. 6	74	Plain Facing	4-77
	Flexible, foil-scrip	bonded m-kraft 2	fiberglass 4	blanket. 7 .	Facing 14	g: 19	1-1/2	. 6	74	Microlite, FSK Facing	CR IND-3319 4-77
	Flexible, foil-scrim	bonded n-kraft	fiberglass	blanket.	Facin	B :				Microlite,	CR IND-3319
•		2	4	7	14	20	1-1/2	. 75	74	FSK Facing	4-77

Table 35B. Barrier properties of ducting (insertion loss).

		In	sertion	Loss, dB							
	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	2H 0007	Thickness (in.)	Density (1b/ft ³)	Company	Product	Reference
F1	exible,	bonded	fibergla	ss blanket	Faci	ing:					
vi	nyl	3	5	8	13	18	2	. 6	74	Microlite, Vinyl Facing	IND-3319 4-77
Set	mi-rigic	i, bonde	d fiberg	lass board	s. Fac	ing:				Spin-else	CP
fo	il-scrim	n-kraft 1	4	7	16	21	1	1.6	74	#812 Boards. FSK Facing	IND-3319 4-77
Fle	exible,	bonded	fibergla	ss blanket	. Faci	ing:					CR
10.	II-SCFI	l l	4	8	15	22	1	1.5	74	Microlite, FSK Facing	IND-3319 4-77
Ser	mi-rigio	i, bonde	d fiberg	lass board	s. Fac	ing:				Spin-glas	CR
pr.	d T ()		6	11	15	18	2	3	74	#1000 Boards, Plain Facing	IND-3319 4-77
F1e	exible,	bonded	fibergla	ss blanket	. Faci	ing:					CR
10.	11-80110	2	6	9	15	20	2	. 6	74	Microlite, FSK Facing	IND-3319 4-77
Fle	exible,	bonded	fibergla	ss blanket	. Faci	ing :				•	CR
•1.		2	6	9	15	21	1	2	74	Microlite, Vinyl Facing	IND-3319 4-77
Fle	exible, il-scrim	bonded	fibergla	ss blanket	. Faci	ing:					CR
		2	5	9	16	21	1	2	74	Microlite, FSK Facing	IND-3319 4-77
Fle foi	exible, 11-scrim	bonded n-kraft	fibergla	ss blanket	. Faci	ing:				Microlito	CR
		2	5	9	16	22	1-1/2	1	74	FSK Facing	4-77
Set	ni-rigid il-scrim	l, bonde n-kraft	d fiberg	lass board	s. Fac	ing:				Spin-glas #814 Boardo	CR
		2	5	12	16	21	1	3	74	FSK Facing	4-77
Set foi	mi-rigic il-scrim	l, bonde n-kraft	d fiberg	lass board	s. Fac	ing:				Spin-glas #815 Boards	CR IND-3319
		3	5	12	16	21	1	4.25	74	FSK Facing	4-77
Fla vir	exible, nyl	bonded	fibergla	ss blanket	. Faci	ing:				Microlite	CR IND-3319
		3	6	10	16	22	2	1	74	Vinyl Facing	4-77
Sem pla	ni-rigid ain	l, bonde	d fiberg	lass board	s. Fac	ing:				Spin-glas #817 Boards.	CR IND-3319
			8	14	17	19	2	6	74	Plain Facing	4-77
Fle foi	exible, il-scriπ	bonded -kraft	fibergla	ss blanket	Faci	ing				Microlite,	CR IND-3319
		2	7	11	18	23	1-1/2	1.5	74	FSK Facing	4-77
Fle foi	exible, il-scrim	bonded h-kraft	fibergla	ss blanket	. Faci	ng:				Microlite,	CR IND-3319
		3	7	11	17	23	2	1	74	FSK Facing	4-77
Sen foi	ni-rigid il-scrim	l, bonde n-kraft	d fiberg	lass board	s. Fac	ing:				Spin-glas #817 Boards,	CR IND-3319
		3	6	12	19	22	1	6	74	FSK Facing	4-77
Fle vir	exible, nyl	bonded	fibergla	ss blanket	. Faci	ing:				Microlite,	CR IND-3319
		4	8	11	17	22	3	. 75	74	Vinyl Facing	4-77
Sem pla	ni-rigid ain	l, bonde	d fiberg	lass board	s. Fac	ing:				Spin-glas #1000 Boards,	CR IND-3319
			9	15	18	20	3	3	74	Plain Facing	4-77

Table 35B. Barrier properties of ducting (insertion loss) continued.

			Insert	ion Loss,	dB						
NRC	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thickness (in.)	Density (lb/ft ³)	Сомралу	Product	Reference
	Flexible, foil-scri	bonded m-kraft	fibergla	ss blanke	et. Faci	ng :		·		Microlite	CR IND-3319
		3	8	12	18	23	1-1/2	2	74	FSK Facing	4-77
	Flexible, foil-scri	bonded m-kraft	fibergla	ss blanke	et. Faci	ng:				Microlite,	CR IND-3319
		5	9	13	18	23	3	. 75	74	FSK Facing	4-77
	Semi-rígi foil-scri	ld, bonde im-kraft	ed fiberg	lass boar	rds. Fac	ing:				Spin-glas #814 Boards,	CR IND-3319
		3	11	-16	22	26	2	3	74	FSK Facing	4-77
•	Semi-rigi foil-scri	id, bonde im-kraft	ed fiberg	lass boar	rds. Fac	ing:				Spin-glas #815 Boards,	CR IND-3319
		4	11	17	22	26	2	4.25	74	FSK Facing	4-77
	Semi-rigi foil-scri	id, bonde im-kraft	ed fiberg	lass boa	rds. Fac	ing:				Spin-glas #817 Boards,	CR IND-3319
		6	11	18	21	25	2	6	74	FSK Facing	4-77

.

Table 35B. Barrier properties of ducting (insertion loss) concluded.

-

		No	bise Reduct	ion, dB/	ft		ŝ	0			
	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	Thicknes (in.)	P/A Rati	Company	Product	Referenc
Cyl	indrica	1 muff	ler, linin	g I.D. 3	0 inch r	nominal					
and	actual	low d	lensity cel 1	lular gl l	ass l	1	3.5		98	Geocoustic Muffler Lining	CR
			-	-	•	-	0.0			6	
Rect	tangulan y cellu	r muff lar gl	ler lining ass	25 x 25	inch lo	ow den-				Geocoustic Muffler	
	. 4	1	1	2	1	1	3.5		98	Lining	CR
Glas	ss fiber	r with	fire-rate	d coatin	g tested	i at					
air	veloci: .5	ty of .5	2000 fpm 1.5	2.8	4	2.7	1	3	96	Aeroflex Duct Liner, Type 150	CR
Gla: air	ss fiber veloci:	r with ty of	fire-rate 2000 fpm	d coatin	g tested	1 at				Aeroflex Duct Liner	
	. 7	, 6	1.7	2.9	4.1	2.8	1	3	96	Type 200	CR
Rect	tangula	muff	ler lining	16 x 16	inch lo	ow den-					
sit	y cellu. .7	lar gi l	.ass 3	3	3	2	3.5		98	Geocoustic Muffler Lining	CR
16 :	indrica. inch act	i muff tual.	Low densi	g I.D. I ty cellu	6 inch r lar glas	nominal, ss				Geocoustic Muffler	
	. 7	1	3	3	3	2	3.5		98	Lining	CR
Fibe	erglass	board	with scri	m-reinfo	rced foi	il vapor					
Dari	rier rad 1.1	.9	2.3	3.3	3.8	2.1	1	3	96	Type 475 FR	CR
<u>(1</u>)	na fihan		fire rete								
veld	city of	E 2000	fpm	u coatin;	g tested			2			6 1
	. 4		1.7	4.4	ه.د	2.2	1	3	90	Duct Liner Board	CK
Fibe barı	erglass tier fac	board	with scrip	m-reinfo	rced foi	il vapor					
1	1	. 8	2.4	3.4	3.9	2.2	1	3	96	Type 800 FR	CR
Glad	c fibor	- with	fire-rate	locatin	. tootod						
velo	city of	2000	fum	, coacting	g testeu	at all				Aeroflex Duct Liner,	
	6	.8	2	3.4	3.9	3.6	1	4	96	Type 150	CR
Glas	s fiber	with 2000	fire-rated	d coating	g tested	latair					
	6	. 1	2	3.4	4.1	3.7	1	4	96	Aeroflex Duct Liner, Type 200	CR
Glas	s fiber	with	fire-rated	l coating	z tested	lat air					
velo	city of	2000	fpm	2 /	2 0	2.4	,	ć	06	Aeroflex Duct Liner,	C.D.
	د	1	2.4	3.4	3,8	3.4	1	6	96	Type 200	CR
Glas velo	s fiber city of	with 2000	fire-rated fpm	d coating	g tested	lat air				Assoflar Duct Lines	
	2	1.1	2.4	3.5	3.9	3.7	1	6	96	Type 150	CR
Glas	s fiber	with	fire-rated	d coating	z tested	latair					
velo	city of 4	2000	fpm 31	3.6	~ 	3.5	2	6	96	Aeroflex Duct Liner, Type 150	CR
	-	2.5	511	5.0		5.0	-	Ŭ	,,,	.)pc 150	U.
Glas velo	s fiber city of	with 2000	fire-rated	coating	g tested	at air				Acrofler Duct Liner	
	9	1.1	3.2	4.6	3.5	2.6	2	3	96	Type 150	CR
Glas	s fiber	with	fire-rated	coating	g tested	at air					
velo	city of 5	2000	fpm 2.1	3.4	5.1	3.8	1	5	96	Aeroflex Duct Liner, Type 150	CR
								-		,r•	
Glas velo	s fiber city of	with 2000	fire-rated fpm	l coating	g tested	at air					
	6	1	3.8	4.7	3.6	2.3	2	3	96	Duct Liner Board	CR
Glass	s fiber	with	fire-rated	coating	tested	at air					
velo	city of	2000	fpm 2 1	3 5	5 2	3 0	1	5	A 4	Aeroflex Duct Liner,	6B
• •		* • *	·	J. J	2.5	5.0	•	2	90	Type 200	CK

Table 35C. Attenuation properties of ducting.

	No	ise Reduc	tion, dB	/ft						
5 Hz	O Hz	0 Hz	2H 00	2H 00	2H 00	ickness (in)	A Ratio	mpany	Product	Referen
12	25	20	10	201	40	보	P/1	Col		
Fiberglas pressure	s duct w	with foil	/scrim ja	acket; hi	gh				Micro-Aire HV-3	CR IND-3319
. 1	. 9	1.5	3.2	4.3	6.8	14		74	Rigid Round	4-77
Fiberglas barrier f	s board acing	with scr	im-reinfo	orced foi	l vapor					
. 4	1.4	3.3	3.9	5	3.7	1	6	96	Type 475 FR	CR
Glass fib velocity	er with of 2000	fire-rate fpm	ed coatir	ng tested	at air				Acrofley Duct Liner	
.9	1.5	3	4.1	3. 9	3.8	2	4	96	Type 150	CR
Glass fib velocity	er with of 2000	fire-rate fpm	ed coatir	ng tested	at air					
. 3	. 9	2.7	4.7	5.2	4.1	1	6	96	Duct Liner Board	CR
Fiberglas film. Te	s blanke mperatur	et insula Te range (tion face	ed with a D ^O F, 18	vinyl inch					
diameter 2	4	5	4	2	1			29	Glass Flex Air Duct	CR 30-32-58
Glass fib	er with	fire-rat	ed coatir	ng tested	at air					
velocity .4	of 2000 1.7	fpm 2.9	3.9	4.8	4.4	1	8	96	Aeroflex Duct Liner,	
									Type 200	CR
Fiberglas barrier f	s board acing	with scr	im-reinfo	orced foi	l vapor				•	
. 3	1.4	3.4	4,1	5.2	4	1	6	95	Type 800 FR	CR
Glass fib velocity	er with of 2000	fire-rate fpm	ed coatir	ng tested	at air				Aeroflex Duct Liner,	
. 4	1.7	3.1	4	4.8	4.4	1	8	96	Туре 150	CR
Glass fib velocity	er with of 2000	fire-rat fpm	ed coatir	ng tested	at air				Aeroīlex Duct Liner,	
. 4	1.8	3.7	4.2	4.8	4.4	2	8	96	Type 150	CR
Glass fib velocity	er with of 2000	fire-rat fpm	ed coatir	ng tested	at air					
. 4	2	4.1	4.7	5.1	3.7	2	6	96	Duct Liner Board	CR
Glass fib velocity	er with of 2000	fire-rat fpm	ed coatir	ng tested	at air				Aeroflex Duct Liner.	
. 5	1.8	3.4	4.7	5.3	4.1	2	5	96	Type 150	CR
Fiberglas film. Te diameter	s blanke mperatur	et insula Te range (tion face D ^o to 250	ed with a D ^O F. 16	vinyl inch					CP
2	5	5	5	3	2	- •		29	GIASS FIEX AIT Duct	30-32-50
Fiberglas film. Te diameter	s blanke mperatur	et insula Te range (tion face) ^o to 250	ed with a D ^O F. 14	vinyl inch					
2	5	5	5	4	2			29	Glass Flex Air Duct	CR 30-32-5
Cylindric 8.625 inc	al muffl h actual	er, linin low den	ng I.D. 8 sity cell	B inch no lular ela	minal, 85					
1	3	5	6	5	3	3.5		98	Geocoustic Muffler Lining	CR
Fiberglas film. Te	s blanke mperatur	et insulat e range (tion face	ed with a	vinyl inch					
diameter 2	5	5	6	5	2			29	Glass Flex Air Duct	CR 30-32-5
Rectangul	ar muffl	er lining	3 8 x 8 i	inch low	density					
ceilular 1	grass 3	6	6	6	4	3.5		98	Geocoustic Muffler Lining	CR
Fiberglas	s blanke	t insulat	ion face	d with a	vinyl					
film. Tem 2	perature 5	range 0' 6	' to 250° 6	'F. 10 in 6	ch diame: 4	ter 		29	Glass Flex Air	CR 30=32-54
	Fiberglass film. Te diameter 2 Glass fib velocity .1 Fiberglass film. Te diameter 2 .3 Glass fib velocity .4 Fiberglass film. Te diameter 2 .3 Glass fib velocity .4 Glass fib velocity .5 Fiberglas film. Te diameter 2 Cylindric 8.625 inc 1 Fiberglas film. Te diameter 2 Cylindric 8.625 inc 1 Fiberglas film. Te diameter 2 Cylindric 8.625 inc 1 Fiberglas film. Te diameter 2 Cylindric 8.625 inc 1 Fiberglas film. Te diameter 2 Cylindric 8.625 inc 1	No Fiberglass duct w pressure .1 .9 Fiberglass board barrier facing .4 1.4 Glass fiber with velocity of 2000 .3 .9 Fiberglass blank film. Temperaturd diameter 2 4 Glass fiber with velocity of 2000 .4 1.7 Fiberglass blank film. Temperaturd diameter 2 4 Glass fiber with velocity of 2000 .4 1.7 Fiberglass board barrier facing .3 1.4 Glass fiber with velocity of 2000 .4 1.7 Glass fiber with velocity of 2000 .4 1.7 Glass fiber with velocity of 2000 .4 1.8 Glass fiber with velocity of 2000 .4 2 Glass fiber with velocity of 2000 .4 2 Glass fiber with velocity of 2000 .4 1.8 Glass fiber with velocity of 2000 .4 2 Glass fiber with velocity of 2000 .4 1.8 Glass fiber with velocity of 2000 .4 1.8 Glass fiber with velocity of 2000 .5 1.8 Fiberglass blank film. Temperaturd diameter 2 5 Rectangular muffl cellular glass 1 3 Fiberglass blank film. Temperature 2 5 Rectangular muffl cellular glass 1 3 Fiberglass blank film. Temperature 2 5 Rectangular muffl cellular glass 1 3	Noise ReducHHHHHHHHHHPressure.1.91.5Fiberglass board with scrbarrier facing.41.43.3Glass fiber with fire-rativelocity of 2000 fpm.3.92.45Glass fiber with fire-rativelocity of 2000 fpm.3.92.4245Glass fiber with fire-rativelocity of 2000 fpm.41.72.9Fiberglass blanket insula film. Temperature range of diameter2431.43.4Glass fiber with fire-rativelocity of 2000 fpm.41.73.1Glass fiber with fire-rativelocity of 2000 fpm.41.83.7Glass fiber with fire-rativelocity of 2000 fpm.4.41.83.7Glass fiber with fire-rativelocity of 2000 fpm.4257Fiberglass blanket insula film. Temperature range of diameter25572575777777777777777 <td>Noise Reduction, dBNNNNNNNNNNNNNNNNNNNNNPressureNN.1.91.5Jartier facing.41.4.41.43.3.91.53.1.91.5Jartier facing.4.41.43.3.92.74.7Glass fiber with fire-rated coatin velocity of 2000 fpm.3.92.7.3.92.7.41.72.9.9.5.41.72.9.9.9.41.72.9.9.9.41.73.9Piberglass blanket insulation factor film. Temperature range 0° to 250diameter224.41.7.31.4.41.7.41.7.41.7.51.8.41.4.51.8.6Siber with fire-rated coatin velocity of 2000 fpm.41.7.41.7.51.8.41.4.7Siberglass blanket insulation factor film. Temperature range 0° to 250diameter.55Siberglass blanket insulation factor film. Temperature range 0° to 250</td> <td>Noise Reduction, dB/ftNNPiberglassboard with scrim-reinforced foibarrier2A1.3JN2.74.75.2Piberglassblanketinsulation faced with aJ.92.74.75.2Piberglassblanketinsulation faced with aJ.92.74.75.2Piberglassblanketinsulation faced with afilmTemperature range 0° to 250°F.18diameter2.93.94.8Piberglassboard with scrim-reinforced foibarrier facing.31.43.44.1S3.74.24.8Glass fiber with fire-ratedcoating testedvelocity of 2000fpm.41.73.14A3.74.24.8Glass fiber with fire-ratedcoating testedvelocity of 2000fpm.41.83.74.2Glass fiber with fire-ratedcoating tested<t< td=""><td>Noise Reduction. $dB/ft$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{N}$Fiberglass board with formation face of the second /td><td>Noise Reduction, dB/ft\underline{M}<</td><td>Noise Reduction, dB/fr $\frac{\pi}{2}$ $\frac{\pi}{2$</td><td><</td><td>Note: Reduction, db/ft$\frac{1}{21}$$\frac{1}{22}$</td></t<></td>	Noise Reduction, dBNNNNNNNNNNNNNNNNNNNNNPressureNN.1.91.5Jartier facing.41.4.41.43.3.91.53.1.91.5Jartier facing.4.41.43.3.92.74.7Glass fiber with fire-rated coatin velocity of 2000 fpm.3.92.7.3.92.7.41.72.9.9.5.41.72.9.9.9.41.72.9.9.9.41.73.9Piberglass blanket insulation factor film. Temperature range 0° to 250diameter224.41.7.31.4.41.7.41.7.41.7.51.8.41.4.51.8.6Siber with fire-rated coatin velocity of 2000 fpm.41.7.41.7.51.8.41.4.7Siberglass blanket insulation factor film. Temperature range 0° to 250diameter.55Siberglass blanket insulation factor film. Temperature range 0° to 250	Noise Reduction, dB/ftNNPiberglassboard with scrim-reinforced foibarrier2A1.3JN2.74.75.2Piberglassblanketinsulation faced with aJ.92.74.75.2Piberglassblanketinsulation faced with aJ.92.74.75.2Piberglassblanketinsulation faced with afilmTemperature range 0° to 250°F.18diameter2.93.94.8Piberglassboard with scrim-reinforced foibarrier facing.31.43.44.1S3.74.24.8Glass fiber with fire-ratedcoating testedvelocity of 2000fpm.41.73.14A3.74.24.8Glass fiber with fire-ratedcoating testedvelocity of 2000fpm.41.83.74.2Glass fiber with fire-ratedcoating tested <t< td=""><td>Noise Reduction. $dB/ft$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{M}$$\frac{B}{N}$Fiberglass board with formation face of the second /td><td>Noise Reduction, dB/ft\underline{M}<</td><td>Noise Reduction, dB/fr $\frac{\pi}{2}$ $\frac{\pi}{2$</td><td><</td><td>Note: Reduction, db/ft$\frac{1}{21}$$\frac{1}{22}$</td></t<>	Noise Reduction. dB/ft $\frac{B}{M}$ $\frac{B}{M}$ $\frac{B}{M}$ $\frac{B}{M}$ $\frac{B}{M}$ $\frac{B}{N}$ Fiberglass board with formation face of the second	Noise Reduction, dB/ft \underline{M} <	Noise Reduction, dB/fr $\frac{\pi}{2}$ $\frac{\pi}{2$	<	Note: Reduction, db/ft $\frac{1}{21}$ $\frac{1}{22}$

Table 35C. Attenuation properties of ducting continued.

365

-

.

	NO	ise Reduc	LION, UB.	/10		s,	9			
Hz	Hz	Hz	Hz I	ZH I	2H I	n.)	Rati	any	Product	Reference
125	250	500	1000	2000	4000	다. (j)	P/A	Comp		
Fiberglas film. Te	s blanke mperatuz	et insulat re range (tion face N° to 250	ed with a POF. 8 in	vinyl nch					
diameter 2	5	7	7	7	5			29	Glass Flex Air Duct	CR 30-32-58U
Fiberglas	s duct w	with foil-	-scrim ja	cket; hig	gh					CR
pressure .2	1.1	2.5	6	12.2	16	10		74	Micro-Aire HV-3 Rigid Round	IND-3319 4-77
Flexible wrapped w with plas	round du ith fibe	ucting of erglass in	fibergla sulation	iss helix and cove	ered					CR
5.2	6.7	6.3	6	9.2	5.8	8		74	Micro-Aire FLX	IND-3319 4-77
Fiberglas film. Te diameter	s blanke mperatur	et insulat re range (tion face)° to 250	d with a PF. 6 in	vinyl ach					
2	5	8	7	9	9			29	Glass Flex Air Duct	CR 30-32-58U
Fiberglas	s duct w	with foil-	-scrim ja	icket					Micro-Aire	CR IND-3319
. 3	1.3	3.2	7.8	14.4	18.5	8		74	Rigid Round	4-77
Cylindric Nominal 4 I.D. low	al muffl inch, a density	ler lining actual 4.5 glass	g of geoc inch, m	oustic ma auffler li	aterial. ining				Geoggieric Muffler	
2	6	10	11	10	7	3.5		98	Lining	CR
Flexible in fiberg skin	round du lass ins	ucting of sulation a	fibergla and cover	ss helix ed with p	wrapped plastic					CR
6.5	7.7	7. 7	8.2	10.5	6.3	10		74	Micro-Aire FLX	180-3319 4-77
Fiberglas: film. Ten diameter	s blanke mperatur	et insulat re range C	ion face to 250	d with a ^O F. 4 ir	vinyl Nch					
3	7	8	9	11	10			29	Glass Flex Air Duct	CR 30-32-580
Flexible : with fibe:	round du rglass i	icting of insulation	fibergla and cov	ss helix ered with	wrapped plas-					CR
6.5	8.5	8.5	8	10.5	10.7	6		74	Micro-Aire FLX	IND-3319 4-77
Rectangul	ar muffl slass	ler lining	; 4 x 4 i	nch, low	density					
Certular 3	7	12	13	12	8	3.5		98	Geocoustic Muffler Lining	CR
Fiberglass	s duct w	with foil-	scrim ja	cket; hig	;h					CR
.S	2	5.3	11.4	18.6	29	5		74	Micro-Aire HV-3 Rigid Round	IND-3319 4-77
Rectangula	ar muffl	ier lining	; 2 x 2 i	nch, low	density					
6	14	24	26	24	16	3.5		98	Geocoustic Muffler Lining	CR
Cylindric	al_muffl	er lining	; I.D., n	ominal 2	inch,					
actual 2.1 7	375 inch 16	1, low den 28	sity gla 30	ss 28	19	3.5		98	Geocoustic Muffler Lining	CR
Double wai	ll duct,	filled w	ith insu	lation, i	nside					
wall perfo .82	orated u 1.15	ip to 150 ⁰ 1.88	F. 2.21	2 17	2.02	4		131	Acousti K-27 Duct	CR
Porous she	eet mate	rial of s	intered	metal fih	ers					
bonded to absorber	perfora lining s	eparated	Used from a d	as a visc uct wall	by					
an air gai high press streams; d	sure, te chemical	in limit mperature ly hostil	eo space , or vel e enviro	silencer ocity gas nments	s;					
								24	Brunscoustic Plate	CR
Porous she fibers in range of a viscous at wall by ar	eet mate a varie acoustic osorber n air en	erial made ty of mat flow res lining se ace	from sin erials an istances parated d in lim	ntered me nd a wide . Used a from a du ited enac	tal sa ict					
silencers, city gas s	, high p streams,	ressure chemical	temperatily hosti	ure, or v le enviro	elo- nments			24	Feltmetal	CR

Table 35C. Attenuation properties of ducting concluded.

366

•. •

CATEGORY 36. SEALS

CATEGORY 36. SEALS

A very good sound barrier system would be rendered ineffective by a small noise leak. The products listed in the table can be used in a variety of ways to stop such noise leaks. Meaningful acoustic information cannot be provided for such products as the performance depends upon the manner and the place of application. Organizations contributing data to this table are: 25, 100, and 146.

						Tr	ansm	issi	on Lo	oss,	dB								
STC	Чz	Ηz	Ηz	Нг	гH	μz	Ηz	Hz	ΡZ	Ηz	Чz	Hz	ZH	Ηz	Ηz	Ηz	Company	Product	Reference
	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	Combarry		
35	Wea	ther	str	ippi	ngt	ested	lon	3 x	7 ft	x 1	-3/4	inc	h doo	r.					
	21	24	31	33	34	38	37	36	33	33	34	34	34	35	35	39	146	Type 170,770	KAL
39	Alu sea Sta 28	uminu 1 te 1 rred 33*	m or sted dat	ano wit a ar 37	dize h l- e at 417	ed sec -3/4 i : 175,	tior nch 350 37	is wi holl), 70 36*	ith c .ow m 10, 1	lose etal 400, 40	d ce doo and 42*	11 f r (o 280	oam n perab 0 Hz. 43	eopr le). 41*	ene	37	25	9603 Sur-Round Door Frame Seal	RAL TL 63-306
39	Wea 22	ther 25	str 31	ippi 35	ng t 36	testec 39	i on 40	3 x 41	7 ft 36	x 1 36	- 3/4 38	inc 38	h doo 38	r. 42	43	47	146	Type 170, 361, 663	KAL
40	Wea 22	ther 23	str 31	iopi 34	ng t 37	testec 39	l on 41	3 × 43	7 ft 42	× 1 41	- 3/4 41	inc 41	h doo 42	r. 41	39	42	146	Type 770, 361, 663	KAL
41	Wea 21	ther 25	str 34	ippi 36	ng 1 37	testeo 40	d on 44	3 x 44	7 ft 40	x ¹ 38	- 3/4 40	inc 41	h doc 44	er. 45	43	43	146	Type 326/328, 663, 328	KAL
41	Wea 20	ther 26	str 34	ippi 35	ng 1 37	testeo 40	1 on 45	3 x 44	7 ft 40	x 1 39	1-3/4 42	inc 42	h doc 43	or. 43	43	42	146	Туре 326/328, 351, 663	KAL
42	Wea	ather	str	ippi	ng	teste	d on	3 ×	7 ft	x	L-3/4	inc	h doc	or.					
	20	26	34	36	37	40	46	44	42	40	42	43	45	44	45	46	146	Type 326/328, 361, 663	KAL
	Var in for ch	rious neop rced, loroh	siz rene nat	es f e, EF ural	or DM, ru	any pa sili bber,	one poly	culan , van yure	r sea rious thane	iling ela e, bi	g app astom utyl.	lica ers vit	tion. fabri on ar	Av c re nd er	vaila ein- bi-	able	100	Pneuma-Seal 🕅	CR S-76

Table 36. Transmission loss properties of seals.

CATEGORY 37. DAMPING, DEADENERS, AND PADDING MATERIALS

The materials in this category are primarily used for decreasing vibration. A material may do this by absorbing, restricting, or changing the frequency characteristics of the vibrating structure. The material performance is usually mass related. In most cases where an absorptive material is used, its function is that of a cushioning device or deadener to limit vibration rather than as a sound absorber.

The information presented is not consistent between companies as that comparative evaluation of materials is not possible. Therefore, products are listed in alphabetical order by organization.

Organizations contributing data to this table are: 13, 22, 32, 33, 36, 38, 40, 47, 78, 81, 82, and 117.

Table 37. Damping material.

Hz	Чz	Hz	Hz	Hz	μz	Hz	нz	Company	Product	Reference
31.5	63	125	250	500	1000	2000	4000			
Asphalt-ba thick, .7	ised, pre lb/ft ² .L	ssure se oss fact	nsitive or data	damping shown fo	sheets; - r materia	30° to 4	00°F, .07 inch to 20 gauge			
steel at 7 .025	0°F. Da .037	ta read .053	from gra .066	ph. .070	. 065	.052	.039	22	Bostik 6211	CR
Damping fr	om 125 t	o 4000 H	z. Tempe	rature r	ange -30°	to 400°	F. Asphalt			
or materi .025	al bonde .035	d to 20	gauge sh	eet stee	1 at 70°F .065	.051	. 037	47	TEC Damping Sheet	CR SES 77072
016 alumi 015 (1 1b	num T300 /sg ft)	3-5005 Н lead. Fo	-14 lamin r use on	nated win	th a visc adiating	coelastic equipmen	adhesive to			
ata shown	are tra	nsmissio 13	n loss, : 17	STC=26. 21	26	32	39	32	Muffl-Jac	CKAL 744-26
ound dead	ener, cr	eped kra	ft masti	c with re	esinated	cotton,	5/8 inch thick			
.3 1b/ft ²	. Data	shown ar 13	e transm 17	ission la 21	oss, STC= 30	27. 38	46	81	KA Series	RAL TL 73-196
-1002 E.A	.R. ener	gy absor	bing she	et mater:	ial on a	l/4 inch	steel plate.			
ata shown	are noi 15	se reduc 13	tion. 19	20	23	22	27	40	dba damp-"V"	CR
prayable ₃ 05 1b/ft 5.6 at 60	asphalt : . Decay * °F: 26 a	mastic, rate, dB r 80°F•	a vibrat: /sec: 12 17 8 at	ion damp: 2 at 0°F	ing compo ; 13 at 2	und, .12 0°F; 19.	5 inch thick, 2 at 40°F;	36	Pioneer 216 Sound Deadener	G&H
roweled o	r airles r: .13 a	s spraye t 77°F; 122°F - T	d, visco .18 at 80	elastic, 6°F; .21	water-b at 95°F;	ase damp .23 at	ing compound. 104°F: .235	50	Soundscreen T M. Spravable	CR DS (100)
· · · ·	.213 at	122 F. 1	emperatui	re range	/5 10 1	50°F.		82	Damping Dr5-1	05 4301
amping la hick, 69	yer betw 1b/ft ³ .	een meta Loss fa	l structu ctor: .2	ure and d 22 at 100	onstrain Hz; 38	ing laye at 1000	r, .05 inch Hz.	33	Quietdamp DD	CR QD-DD-121
amping la hick, 69	yer betw 1b/ft ³ .	een meta Loss fa	l structu ctor: .1	ure and d 10 at 100	constrain) Hz; .22	ing laye at 1000	r, .01 inch Hz.	33	Quietdamp DD	CR QD-DD-121
hick plat actor for emperatur	e vibrat l to 4 i e range	ion damp thicknes -20° to	ing compo s ratio 350°F.	ound01 .03 at	l inch th 100 Hz;	ick, 69 .07 at 1	lb/ft ³ . Loss 000 Hz	117	Dvad 606	CR 701C
hick plat	e vibrat:	ion damp	ing compo	ound0°	inch th	ick 69	lb/ft ³ . Loss			
actor for emperatur	l to 4 e range	thicknes -20° to	s ratio: 350°F.	.07 at	100 Hz;	.14 at 1	000 Hz.	117	Dyad 609	CR 7010
uick curi oss facto 051 at 15	ng epoxy r for pe: %; .10 a	compoun rcent da t 20%; .	d combini mping tre 14 at 30%;	ing compo eatment: ; .17 at	ound 101 .005 at 40%; .20	and epox; 5%; 02 at 50%.	v. 12 lb/gallor 2 at 10%:	i. 33	Quietdamp Epoxy 110	CR QD-TDS-110
iscoelast 2 dB/sec 95 at 15%	ic damp: decay ran , .10 at	ing comp te at 86 20%1	ound, epo °F. Loss 4 at 30%.	oxy resir s factor Temper	based, for perc rature ra	ll.5 lb/ ent trea nge -65°	gallon. Ement by weight to 375°F.	117	Epoxy -10 Vibration Damping Compound	CR 705D
iscoelast or percen DM; .22 a:	ic plass t damping t 30%:	tic, wat g treatm 27 at 40°	er soluat ent: .01 %; .30 at	le paste at 5%; . 50%.	9, 11.5 1 043 at 1	b/gallon 0%; .10 .	Loss factor at 15%: 16 at	33	Quietdamp Compound 101	CR QD-TDS-101
iscoelast 72°F. 1 5%; .16 a	ic dampin Loss fact t 20%; .2	ng compo tor for 1 22 at 305	und, spra percent t %. Temper	ay or tro treatment ature ra	wel-on, by weig inge -40°	45 dB/sea ht: .04 a to 375°1	c decay rate at 10%; .10 at F.	117	GP-1 Vibration Damping	CR 706D
nbossed for ensity 2 1 tached to 15 on 22 p	oam bonde lb/ft3, 7 o steel s gauge. Te	ed to dan 75 dB/se sheet: emperatur	mping com c decay r 15 on 16 re range	npound, d ate at 7 gauge: - -45° to	iamping w 2°F. Lo 18 on 18 225°F.	eight 3: ss facto: gauge;	3 lb/ft ² , foam rat 70°F when 25 on 20 gauge	117	Foam Damping Sheet Embossed	CR 704D
ecured da 5 inch th meet: .1 mperature	amping co hick, .31 5 on 16 g e range -	ompound ₂ 3 lb/ft ² gauge: . -45° to :	formed in Loss f 18 on 18 375°F.	nto 24 x Tactor at gauge: .	48 inch 70°F wh 25 on 20	or 48 x en attacl gauge;	72 inch sheets. hed to steel .35 on 22 gauge	. 117	GP-2 Damping Sheet	CR 703D
/16 inch ttached to 2 gauge, 1	sheet of o sheet s 17.5%.	compound steel: 1	d 101, .3 6 gauge,	33 1b/ft ² 7.5%; 18	. Percen gauge,	t critica 9%; 20 ga	al damping when auge, 12.5%;	33	Quietdamp Sheet-102	CR QD-TDS-102

371

•. •

•

	Hz	Hz	Hz	Hz	Hz H	Hz	Hz	Hz		Company	Product	Reference
	31.5	63	125	250	500	1000	2000	4000	-			
	Spray-on co	ompound,	81 1b/ft	³ . Loss	factor	.22 at 60	°F.			82	DPS Damping Compound	
	Vinyl/graph Loss factor	nite comp r 0.30 at	osite in 60°F.	sheets,	.062 in	nch and .l	88 inc h	thick.	95 lb/ft	³ . 82	DAP Damping Sheet	
	Type 80-2K- at 80°F for	WR compo r a dampi	und, sel ng mater	f-exting ial-to-m	uishing, etal thi	, vistagre ickness ra	en. Los tio of	s factor 2.	= 0.2	78	Korfund Epoxy Vibrodamper Compound	CR BL K17E
	Type 80A, g ness 3/16 5	general p inch, 45	urpose d dB/sec d	amping c ecay rat	ompound e at 80°	green, 1 °F.	.3 1b/f	t ³ . maxi	mum thick	78	Korfund Vibrodamper Compound	CR BL K17E
	Reinforced 0.017. Deca	viscoela Ny rate 7	stic dam 5 dB/sec	ping she	et, .05	inch thic	k, .33	16/ft ² .	Loss fact	or 13	Hushcloth VE-33	CR
	Impact and	structur	al dampi	ng sheet	materia	al, 16 gau	ge, los	s factor	0.13.	13	HC-EAS-50	CR
	Impact and	structur	al dampi	ng sheet	materia	al, 18 gau	ge, los	s factor	0.16.	13	HC-EAS-50	CR
	Impact and	structur	al dampi	ng sheet	materia	al, 22 gau	ge, los	s factor	0.32.	13	HC-EAS-50	CR
	3/16 inch (noise reduc	2003 ene: tion 24	rgy abso dBA.	rbing sh	eet mate	erial on 1	/16 inc	h steel.	Typical	40	dba damp-"V"	CR
	Sound deade	mer of c	hipboard	, mastic	, and re	esinated c	otton,	0.5 to 2	lb/ft ² .	81	C A Series	CR
;	Viscoelasti range -40°	c copoly to 250°F	mer, alu	minum sk	in, self	-adhesive	, 1 16/	ft ² . Tem	perature	117	Sound Foil Vibration Damping Composite	CR 710
,	0.5 to 2 1b	/sq ft m	astic wi	th 1/8 i	nch poly	vethylene	foam.			81	KA & KFO Series	CR
	.5 to 2 1b/	sq ft ma	stic wit	h 3/4 in	ch polye	thylene f	o am.			81	CFJ Series Chipboard	CR
1	Mastic crep	ed kraft	, .5 to 1	2 lb/ft ²						81	KW Series Plain Kraft	CR
1	Mastic jute	, .5 to 1	2 16/ft ²							81	KJ Series Creped Kraft	CR

Table 37. Damping material concluded.

CATEGORY 38. SPECIAL APPLICATIONS

CATEGORY 38. SPECIAL APPLICATIONS

Several products are presented here which have unique acoustical features not included in other categories. Some examples are ear plugs and ear protectors, special covers or enclosures, and partial barriers. Many of these products do not have appropriate acoustic data so that specific information must be requested from the manufacturer or distributor. Organizations contributing data to this table are: 3, 20, 40, 41, 48, 53, 82, and 137.

Table 38. Special applications.

			Center	Freque	ncy, Hz							
NRC	Hz	Hz	ZH	2H (zH (0 Hz	2H 0	ckness in.)	sity /ft3)	pany	Product	Reference
	125	250	500	100	2000	400	008.	ŧ	Den (1b	Com		
	Enclosur on a met aluminiz brating	e Model al side ed mylar part fee	122, tran enclosure film on ders. Da	sparent , with m foam. D ta are i	dome, spo agnapatch esigned to nsertion	ortsorber n ports c to shield loss	cone of vi-					
	26	20	30	25	27	33	42		30	48	Sound Shield	VFE 100/200
	Foamed p	olymer e	ar plugs.	Data a	re attenu	uation va	lues					
	25	25	25	26	35	40	37			40	dba spec-"EP"	CR
	Ear plug attenuat	s held i ion valu	n the ear es read f	s by a h rom a gr	ead suppo aph	ort. Dat	a are					
	18	16	15	15	29	32	30			41	Sound Sentry 7500	CR
	Sound en visual a shieldin	capsulat access fo ag. Data	or, trans r parts f are nois	parent s eeders a e reduct	ound curt nd genera ion	ain with al purpos	360 deg e					RAI
	3	8	8	13	16	21	23			53	Flexi-View NS-Series	LP74-7
	22 gauge viewing	stainle areas.	ss steel m Provides	with cle. 10 dBA	ar and to of noise	ough Lexa e reducti	n .on			82	Soundscreen Conveyor Covers	CR DS-4801
80 (c)	2 x 4 ft tical pa are abso	transpa nel on a rption c	rent paral butyrate oefficien	bolic/sin base wi ts read	nusoidal th foam w from a gr	shaped a vedges. raph	cous- Data		,			CR
	. 38	. 43	.61	1.12	. 95	. 94				11	Alphasonic	11771-I
	Perforat ricated booths a ing, flo	ed metal into var round te or mount	backed w ious desi lephones, ing, and	ith abso gns for wall mo director	rptive ma use as so unted; pe y shelf a	aterial, bund cont destal m available	fab- rol wunt-			3	Acousti-Booth	CR
	Electron continuo speech p trum bel per octa	ic maski ous noise rivacy c ow 250 H ove dropo	ng system generatin ontour. ' z, a peak ff at hig	consist ng source The cont at 250 her freq	ing of a e with ar our has a Hz, and a uencies.	broadban optimiz rising a 6 to 12	d ed spec- dB			20	Priva-Talk	CR
	Retrofit erations	noise k cabs	its for in	nstallat	ion in eq	quipment	op-					
										94	Noise Insulation Kits	CR
	Molded p to engag	lastic t e, retai	ape or bu n, and dia	ttons wis sengage i	th tiny h reticulat	nooks des ed foams	igned			1 3 7	Arrowhead Fasteners	CR
										2.57		
	Mating s and loop sealing	trips of pile on applicat	material the other ions	with tin r. For n	ny hooks many fast	on one s ening an	trip d				111- f 1 - f	CD.
										137	HOOK & LOOP Fastener	LK

•

INDEX TO DATA TABLES

Description	Table/Type	Page <u>Number</u>
Absorptive Block	1	159
Barrier/Fiberglass Composites	7A (absorption) 7B (barrier)	193 194
Barrier/Foam Composites	8A (absorption) 8B (barrier/TL) 8C (barrier/IL) 8D (barrier/NR)	198 199 200 201
Ceiling Tiles	14A (absorption) 14B (barrier)	222 227
Curtains	15A (absorption) 15B (barrier)	231 232
Damping/Deadeners/Padding	37	371
Doors	20	266
Ducting Materials	35A (absorption) 35B (barrier/IL) 35C (attenuation)	359 361 364
Duct Silencers	34	354
Enclosures	19A (absorption) 19B (barrier/TL) 19C (barrier/NR)	259 260 262
Fan Silencers	30	327
Felt	3A (absorption) 3B (barrier)	170 170
Floors	21A (TL and impact) 21B (TL) 21C (impact)	270 272 273
Foam	2	163
General Industrial Silencers	28A (attenuation) 28B (IL)	314 317
Glass Fiber Materials	 4A (absorption/number 4 mtg) 4B (absorption/number 6 mtg) 4C (absorption/number 7 mtg) 4D (absorption/number 7 mtg mod.) 4E (absorption/other mtg) 4F (barrier/other mtg) 	173 176 180 183 184 185

Preceding page blank

Description	Table/Type	Page <u>Number</u>
Glass and Plastic Sheets	12	215
High Pressure Discharge Silencers	29	322
Inlet and Exhaust Silencers	31	332
Mastics	9A (absorption) 9B (barrier/TL) 9C (barrier/IL)	204 204 205
Mineral Fiber Materials	5A (absorption) 5B (barrier)	188 188
Open Plan Systems	25A (absorption) 25B (barrier) 25C (speech, privacy)	296 297 297
Operable Partitions	24	293
Other Barrier Materials	13	218
Panels	l6A (absorption) l6B (barrier)	236 239
Pipe Laggings	27A (NR) 27B (IL) 27C (TL)	307 309 311
Plain and Mass-Loaded Plastics	11	211
Quilted Materials	10A (absorption) 10B (barrier)	208 208
Roof Decks	l7A (absorption) 17B (barrier)	245 248
Seals	36	369
Special Applications	38 .	375
Splitter/Louver Silencers	32	335
Spray On Materials	6	190
Unit Absorbers	18	252
Vehicular Mufflers	33	- 338
Walls .	22A (gypsum board/E90-70) 22B (gypsum board/AMA I-11) 22C (other)	277 280 286
Wall Tratments	26	300
Windows	23	290

PHOTOGRAPHIC CREDITS

Courtesy of	Category
American Acoustical Products	2
Celotex Corporation	3
Top: American Acoustical Products Bottom: Johns Manville	4
Celotex Corporation	5
Left: Canada Metal Company Ltd. Right: Globe Industries Inc.	7
Tube-Lok Products	8
Top: Celotex Corporation Bottom: Globe Industries Inc.	9
Top: Foam Design Inc. Bottom: Acoustiflex Corporation	10
Top: Foam Design Inc. Bottom: Korfund Dynamics	11
National Gypsum	14
Foam Design Inc.	15
Koch	16
Middle: Inryco Bottom: Concrete Products Inc.	17
Lord All Force Acoustics	18
Acoustiflex Corporation	19
Stanley Door	20
Owens/Corning Fiberglass Corporation	21
National Gypsum	22
DeVac Inc.	23
Hough Manufacturing Corporation	24
Top: L. E. Carpenter & Company Bottom: Upstate Precision	25
Acoustiflex Corporation	26

ć.

Accessible Products	27
Quietflo	28
Top: Lehigh Corporation Bottom: Aeroacoustic Corporation	29
Aeroacoustic Corporation	30
Aeroacoustic Corporation	31
Aeroacoustic Corporation	32
Donaldson Corporation	33
Environmental Elements Corporation	34
Top: Certainteed Corporation	0.5
Bottom: Johns Manville Corporation	35
Presray	36
All Force Acoustics	38