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DISCLAIMER 

Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic 
Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human 
Services. 
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UPDATE STATEMENT 

A Toxicological Profile for Toluene Diisocyanate and Methylenediphenyl Diisocyanate, Draft for Public 
Comment was released in September 2015. This edition supersedes any previously released draft or final 
profile.  

Toxicological profiles are revised and republished as necessary.  For information regarding the update 
status of previously released profiles, contact ATSDR at: 

Agency for Toxic Substances and Disease Registry 
Division of Toxicology and Human Health Sciences 

Environmental Toxicology Branch 
1600 Clifton Road NE 

Mailstop F-57 
Atlanta, Georgia 30329-4027 
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FOREWORD 

This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic 
Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA).  The 
original guidelines were published in the Federal Register on April 17, 1987.  Each profile will be revised 
and republished as necessary. 

The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects 
information for these toxic substances described therein.  Each peer-reviewed profile identifies and 
reviews the key literature that describes a substance's toxicologic properties.  Other pertinent literature is 
also presented, but is described in less detail than the key studies. The profile is not intended to be an 
exhaustive document; however, more comprehensive sources of specialty information are referenced. 

The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile 
begins with a public health statement that describes, in nontechnical language, a substance's relevant 
toxicological properties.  Following the public health statement is information concerning levels of 
significant human exposure and, where known, significant health effects.  The adequacy of information to 
determine a substance's health effects is described in a health effects summary.  Data needs that are of 
significance to the protection of public health are identified by ATSDR. 

Each profile includes the following: 

(A) The examination, summary, and interpretation of available toxicologic information and 
epidemiologic evaluations on a toxic substance to ascertain the levels of significant human 
exposure for the substance and the associated acute, subacute, and chronic health effects; 

(B) A determination of whether adequate information on the health effects of each substance 
is available or in the process of development to determine levels of exposure that present a 
significant risk to human health of acute, subacute, and chronic health effects; and 

(C) Where appropriate, identification of toxicologic testing needed to identify the types or 
levels of exposure that may present significant risk of adverse health effects in humans. 

The principal audiences for the toxicological profiles are health professionals at the Federal, State, and 
local levels; interested private sector organizations and groups; and members of the public.  

This profile reflects ATSDR’s assessment of all relevant toxicologic testing and information that has been 
peer-reviewed.  Staffs of the Centers for Disease Control and Prevention and other Federal scientists have 
also reviewed the profile.  In addition, this profile has been peer-reviewed by a nongovernmental panel 
and was made available for public review.  Final responsibility for the contents and views expressed in 
this toxicological profile resides with ATSDR. 

Patrick N. Breysse, Ph.D., CIH 
Director, National Center for Environmental Health and 

Agency for Toxic Substances and Disease Registry 
Centers for Disease Control and Prevention 
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*Legislative Background 

The toxicological profiles are developed under the Comprehensive Environmental Response, 
Compensation, and Liability Act of 1980, as amended (CERCLA or Superfund).  CERCLA section 
104(i)(1) directs the Administrator of ATSDR to “…effectuate and implement the health related 
authorities” of the statute.  This includes the preparation of toxicological profiles for hazardous 
substances most commonly found at facilities on the CERCLA National Priorities List and that pose the 
most significant potential threat to human health, as determined by ATSDR and the EPA. Section 
104(i)(3) of CERCLA, as amended, directs the Administrator of ATSDR to prepare a toxicological profile 
for each substance on the list.  In addition, ATSDR has the authority to prepare toxicological profiles for 
substances not found at sites on the National Priorities List, in an effort to “…establish and maintain 
inventory of literature, research, and studies on the health effects of toxic substances” under CERCLA 
Section 104(i)(1)(B), to respond to requests for consultation under section 104(i)(4), and as otherwise 
necessary to support the site-specific response actions conducted by ATSDR. 
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QUICK REFERENCE FOR HEALTH CARE PROVIDERS 

Toxicological Profiles are a unique compilation of toxicological information on a given hazardous 
substance.  Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation 
of available toxicologic and epidemiologic information on a substance.  Health care providers treating 
patients potentially exposed to hazardous substances may find the following information helpful for fast 
answers to often-asked questions. 

Primary Chapters/Sections of Interest 

Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating 
patients about possible exposure to a hazardous substance.  It explains a substance’s relevant 
toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of 
the general health effects observed following exposure. 

Chapter 2:  Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, 
and assesses the significance of toxicity data to human health. 

Chapter 3:  Health Effects: Specific health effects of a given hazardous compound are reported by type 
of health effect (e.g., death, systemic, immunologic, reproductive), by route of exposure, and by 
length of exposure (acute, intermediate, and chronic).  In addition, both human and animal studies 
are reported in this section. 
NOTE: Not all health effects reported in this section are necessarily observed in the clinical 
setting.  Please refer to the Public Health Statement to identify general health effects observed 
following exposure. 

Pediatrics:  Four new sections have been added to each Toxicological Profile to address child health 
issues: 
Chapter 1 How Can (Chemical X) Affect Children? 
Chapter 1 How Can Families Reduce the Risk of Exposure to (Chemical X)? 
Section 3.7 Children’s Susceptibility 
Section 6.6 Exposures of Children 

Other Sections of Interest: 
Section 3.8 Biomarkers of Exposure and Effect 
Section 3.11 Methods for Reducing Toxic Effects 

ATSDR Information Center 
Phone: 1-800-CDC-INFO (800-232-4636) or 1-888-232-6348 (TTY) 
Internet:  http://www.atsdr.cdc.gov 

The following additional materials are available online: 

Case Studies in Environmental Medicine are self-instructional publications designed to increase primary 
health care providers’ knowledge of a hazardous substance in the environment and to aid in the 
evaluation of potentially exposed patients (see https://www.atsdr.cdc.gov/csem/csem.html). 

https://www.atsdr.cdc.gov/csem/csem.html
http:http://www.atsdr.cdc.gov
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Managing Hazardous Materials Incidents is a three-volume set of recommendations for on-scene 
(prehospital) and hospital medical management of patients exposed during a hazardous materials 
incident (see https://www.atsdr.cdc.gov/MHMI/index.asp).  Volumes I and II are planning guides 
to assist first responders and hospital emergency department personnel in planning for incidents 
that involve hazardous materials.  Volume III—Medical Management Guidelines for Acute 
Chemical Exposures—is a guide for health care professionals treating patients exposed to 
hazardous materials. 

Fact Sheets (ToxFAQs™) provide answers to frequently asked questions about toxic substances (see 
https://www.atsdr.cdc.gov/toxfaqs/Index.asp). 

Other Agencies and Organizations 

The National Center for Environmental Health (NCEH) focuses on preventing or controlling disease, 
injury, and disability related to the interactions between people and their environment outside the 
workplace.  Contact:  NCEH, Mailstop F-29, 4770 Buford Highway, NE, Atlanta, GA 
30341-3724 • Phone:  770-488-7000 • FAX:  770-488-7015 • Web Page: 
https://www.cdc.gov/nceh/. 

The National Institute for Occupational Safety and Health (NIOSH) conducts research on occupational 
diseases and injuries, responds to requests for assistance by investigating problems of health and 
safety in the workplace, recommends standards to the Occupational Safety and Health 
Administration (OSHA) and the Mine Safety and Health Administration (MSHA), and trains 
professionals in occupational safety and health.  Contact: NIOSH, 395 E Street, S.W., Suite 9200, 
Patriots Plaza Building, Washington, DC 20201 • Phone:  202-245-0625 or 1-800-CDC-INFO 
(800-232-4636) • Web Page: https://www.cdc.gov/niosh/. 

The National Institute of Environmental Health Sciences (NIEHS) is the principal federal agency for 
biomedical research on the effects of chemical, physical, and biologic environmental agents on 
human health and well-being.  Contact:  NIEHS, PO Box 12233, 104 T.W. Alexander Drive, 
Research Triangle Park, NC 27709 • Phone:  919-541-3212 • Web Page: 
https://www.niehs.nih.gov/. 

Clinical Resources (Publicly Available Information) 

The Association of Occupational and Environmental Clinics (AOEC) has developed a network of clinics 
in the United States to provide expertise in occupational and environmental issues.  Contact: 
AOEC, 1010 Vermont Avenue, NW, #513, Washington, DC 20005 • Phone: 202-347-4976 
• FAX:  202-347-4950 • e-mail: AOEC@AOEC.ORG • Web Page:  http://www.aoec.org/. 

The American College of Occupational and Environmental Medicine (ACOEM) is an association of 
physicians and other health care providers specializing in the field of occupational and 
environmental medicine.  Contact:  ACOEM, 25 Northwest Point Boulevard, Suite 700, Elk 
Grove Village, IL 60007-1030 • Phone:  847-818-1800 • FAX:  847-818-9266 • Web Page: 
http://www.acoem.org/. 

The American College of Medical Toxicology (ACMT) is a nonprofit association of physicians with 
recognized expertise in medical toxicology.  Contact: ACMT, 10645 North Tatum Boulevard, 

http:http://www.acoem.org
http:http://www.aoec.org
mailto:AOEC@AOEC.ORG
http:https://www.niehs.nih.gov
https://www.cdc.gov/niosh
https://www.cdc.gov/nceh
https://www.atsdr.cdc.gov/toxfaqs/Index.asp
https://www.atsdr.cdc.gov/MHMI/index.asp
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Suite 200-111, Phoenix AZ 85028 • Phone: 844-226-8333 • FAX:  844-226-8333 • Web Page: 
http://www.acmt.net. 

The Pediatric Environmental Health Specialty Units (PEHSUs) is an interconnected system of specialists 
who respond to questions from public health professionals, clinicians, policy makers, and the 
public about the impact of environmental factors on the health of children and reproductive-aged 
adults.  Contact information for regional centers can be found at http://pehsu.net/findhelp.html. 

The American Association of Poison Control Centers (AAPCC) provide support on the prevention and 
treatment of poison exposures.  Contact:  AAPCC, 515 King Street, Suite 510, Alexandria VA 
22314 • Phone: 701-894-1858 • Poison Help Line: 1-800-222-1222 • Web Page: 
http://www.aapcc.org/. 

http:http://www.aapcc.org
http://pehsu.net/findhelp.html
http:http://www.acmt.net
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CONTRIBUTORS 

CHEMICAL MANAGER(S)/AUTHOR(S): 

Malcolm Williams, DVM, Ph.D. 
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THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 

1. Health Effects Review. The Health Effects Review Committee examines the health effects 
chapter of each profile for consistency and accuracy in interpreting health effects and classifying 
end points. 

2. Minimal Risk Level Review.  The Minimal Risk Level Workgroup considers issues relevant to 
substance-specific Minimal Risk Levels (MRLs), reviews the health effects database of each 
profile, and makes recommendations for derivation of MRLs. 

3. Data Needs Review. The Environmental Toxicology Branch reviews data needs sections to 
assure consistency across profiles and adherence to instructions in the Guidance. 

4. Green Border Review.  Green Border review assures the consistency with ATSDR policy. 
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PEER REVIEW 

A peer review panel was assembled for toluene diisocyanate and methylenediphenyl diisocyanate.  The 
panel consisted of the following members: 

1. Dr. Mark Pemberton; Systox, Ltd.; Wilmslow, Cheshire, United Kingdom; 

2. Robyn Prueitt, Ph.D., DABT; Gradient Corporation; Cambridge, Massachusetts; and 

3. John Weeks, DABT; S.C. Johnson & Son, Inc.; Racine, Wisconsin. 

These experts collectively have knowledge of toluene diisocyanate and methylenediphenyl diisocyanate 
physical and chemical properties, toxicokinetics, key health end points, mechanisms of action, human and 
animal exposure, and quantification of risk to humans.  All reviewers were selected in conformity with 
the conditions for peer review specified in Section 104(I)(13) of the Comprehensive Environmental 
Response, Compensation, and Liability Act, as amended. 

Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer 
reviewers' comments and determined which comments will be included in the profile.  A listing of the 
peer reviewers' comments not incorporated in the profile, with a brief explanation of the rationale for their 
exclusion, exists as part of the administrative record for this compound.  

The citation of the peer review panel should not be understood to imply its approval of the profile's final 
content.  The responsibility for the content of this profile lies with the ATSDR. 
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1 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

1. PUBLIC HEALTH STATEMENT 

This Public Health Statement summarizes the Agency for Toxic Substances and Disease Registry’s 

(ATSDR) findings on toluene diisocyanate (TDI) and methylenediphenyl diisocyanate (MDI), including 

chemical characteristics, exposure risks, possible health effects from exposure, and ways to limit 

exposure. 

The U.S. Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the 

nation. These sites make up the National Priorities List (NPL) and are sites targeted for long-term federal 

clean-up activities.  The EPA has found TDI in at least 4 of the 1,854 current or former NPL sites. MDI 

was not found in any of the current or former NPL sites. The total number of NPL sites evaluated for TDI 

and MDI is not known.  But the possibility remains that as more sites are evaluated, the number of sites at 

which TDI and MDI are found may increase. This information is important because these future sites 

may be sources of exposure, and exposure to TDI and MDI may be harmful. 

If you are exposed to TDI or MDI, many factors determine whether you’ll be harmed.  These include how 

much you are exposed to (dose), how long you are exposed (duration), how often you are exposed 

(frequency), and how you are exposed (route of exposure).  You must also consider the other chemicals 

you are exposed to and your age, sex, diet, family traits, lifestyle, and state of health. 

WHAT ARE TDI AND MDI? 

TDI and MDI do not occur naturally in the environment.  TDI is a clear, colorless to pale yellow liquid. 

MDI is a light yellow crystalline solid. There are several forms of TDI and MDI, which are called 

isomers. The two most common TDI isomers are 2,4-TDI and 2,6-TDI.  The most common isomer of 

MDI is 4,4’-MDI. 

TDI and MDI are used to make many household products. They combine with other chemicals to 

produce various polyurethanes.  Some of the products made with these polyurethanes include foam for 

furniture cushions and carpet padding and waterproof sealants.  

WHAT HAPPENS TO TDI AND MDI WHEN THEY ENTER THE ENVIRONMENT? 

TDI and MDI can be released into the air, water, and soil at places where they are produced or used. TDI 

and MDI are extremely reactive chemicals and are not likely to stay in the environment. In air, TDI and 



    
 

   
 
 

 
 
 
 
 

      

   

     

    

  

    

     

 

    
 

   

 

    

      

   

    

    

    

  

 

    
 

     

    

        

    

  

 

     

     

      

    

 

 

2 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

1.  PUBLIC HEALTH STATEMENT 

MDI have half-lives of less than 1 day (half-life is the amount of time needed for the amount of TDI or 

MDI in air to be reduced by one-half).  TDI and MDI rapidly react with water to form other compounds 

in a process called hydrolysis. The half-lives of TDI and MDI in water range from a few minutes to a few 

hours.  Significant concentrations are not likely to be found in moist soil or sediment due to the rapid 

hydrolysis of these compounds; however, small amounts may be detected near point sources such as 

industrial waste streams and hazardous waste sites. TDI and MDI will not bioaccumulate in the food 

chain and are therefore not expected to be found in significant concentrations in fish and foods. 

HOW MIGHT I BE EXPOSED TO TDI AND MDI? 

TDI and MDI are used to make a number of different types of polyurethane products that are used by 

consumers ranging from foams for insulation, foam cushions, and sealants.  In products such as cushions, 

the diisocyanates are cured, meaning that they are not reactive.  It is unlikely that consumers would be 

exposed to diisocyanates from cured products.  However, you can be exposed to TDI in the air from 

uncured polyurethane products such as adhesives, sealants, coatings, paints, craft materials, and insulating 

foams.  The percentage of monomeric isocyanates in pre-polymer products is low (generally <5% for 

consumer products). Consumer products that contain low levels of diisocyanates warn against dermal 

exposure and recommend use of protective gloves. Workers involved in the manufacture of cured and 

uncured polyurethane products or involved in other industries using uncured diisocyanates may be 

exposed to higher levels. You are unlikely to be exposed to TDI or MDI in food or water. 

HOW CAN TDI AND MDI ENTER AND LEAVE MY BODY? 

When you breathe air containing TDI or MDI, some will enter your body through your lungs, but there is 

limited information on how much and how fast these compounds enter the body.  TDI may enter your 

body through the digestive tract if you ingest it. There are no data on whether MDI will enter your body 

after ingestion. If your skin comes in contact with TDI or MDI, it is possible that a small amount may 

enter the body through the skin. 

Once TDI or MDI enters your body, it reacts with large molecules, called macromolecules to form TDI-

or MDI-conjugates.  These conjugates are widely distributed throughout the body.  TDI or MDI can also 

be reactive with itself to form compounds called polyureas, which are not absorbed.  TDI and MDI 

conjugates and polyureas primarily leave the body in the feces; a small amount also leaves the body in the 

urine. 



    
 

   
 
 

 
 
 
 
 

       
 

     

  

   

    

   

  

  

 
   

     

    

    

     

    

 

  

  

    

    

  

 

   

 

   
 

    

  

 

     

     

       

     

3 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

1.  PUBLIC HEALTH STATEMENT 

HOW CAN TDI AND MDI AFFECT MY HEALTH? 

The health effects of TDI and MDI depend on how much you are exposed to and the length of that 

exposure.  Respiratory effects, including a decrease in lung function, have been reported in workers 

exposed to TDI or MDI.  Some workers have become sensitized to TDI and/or MDI; they are particularly 

sensitive to the toxicity of TDI and MDI and may experience adverse effects at much lower 

concentrations than the concentrations that may affect non-sensitized individuals. Asthma and symptoms 

of asthma, such as wheezing and shortness of breath, have been observed in some individuals who are 

particularly sensitive to the toxicity of TDI and MDI. 

An excess of lung cancer has been observed in some workers at a polyurethane foam manufacturing plant. 

However, it is not known if exposure to TDI was the cause.  A study in animals exposed by gavage to 

TDI reported increases in tumors in the pancreas, mammary gland, and liver. The Department of Health 

and Human Services (HHS) considers TDI as reasonably anticipated to be a human carcinogen and the 

International Agency for Research on Cancer has classified TDI as possibly carcinogenic to humans. 

EPA has not classified the carcinogenicity of TDI.  

There are limited data to determine whether exposure to MDI can cause cancer.  An animal study reported 

an increase in lung tumors in rats exposed by inhalation to polymeric MDI.  The exposure levels tested in 

this study are much higher than concentrations found in work environments.  IARC has determined that 

MDI is not classifiable as to its carcinogenicity in humans.  EPA notes that the carcinogenicity of MDI 

cannot be determined, but there is suggestive evidence that raises concern for carcinogenic effects. 

See Chapters 2 and 3 for more information on health effects of TDI and MDI. 

HOW CAN TDI AND MDI AFFECT CHILDREN? 

This section discusses potential health effects of TDI and MDI exposure in humans from when they’re 

first conceived to 18 years of age. 

We do not have any information on the effects of TDI or MDI in children.  We expect that the effects in 

children will be similar to those seen in adults; exposure to TDI or MDI in the air could result in lung 

effects. A delay in bone growth has been observed in offspring of animals exposed to high levels of TDI 

in air that also caused decreases in body weight gain or respiratory effects in the mothers.  Exposure to 



    
 

   
 
 

 
 
 
 
 

    

 

 

   
 

    

 

     

 

     

  

 

     

  

  

    

     

  

  

 

 
  

 

  

     

  

       

      

 

 

  
  

 

    

     

4 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

1.  PUBLIC HEALTH STATEMENT 

high levels of MDI in air during gestation also resulted in bone effects in the offspring; the MDI 

concentration causing these effects also resulted in decreased food consumption in the mothers.  

HOW CAN FAMILIES REDUCE THE RISK OF EXPOSURE TO TDI AND MDI? 

If your doctor finds that you have been exposed to significant amounts of TDI or MDI, ask whether your 

children might also be exposed.  Your doctor might need to ask your state health department to 

investigate.  You may also contact the state or local health department with health concerns. 

You are unlikely to be exposed to TDI and MDI from food, drinking water, contaminated groundwater, or 

soil. 

TDI and MDI are used to make many products; however, most of these products are cured and should 

not have unreacted diisocyanates remaining in them.  Primary users and bystanders should be made 

aware of the potential risks and appropriate precautions to take when uncured TDI or MDI products 

(such as spray foam or sealants) are being used because use of these professional products can result 

in exposure to TDI or MDI. Always follow the manufacturers’ instruction or product labels when 

using these products.  Wear personal protective equipment (chemical resistant goggles/gloves/ 

clothing) to prevent direct contact with skin and eyes.  

ARE THERE MEDICAL TESTS TO DETERMINE WHETHER I HAVE BEEN EXPOSED TO 
TDI OR MDI? 

TDI and MDI exposures can be measured in blood and urine by hydrolyzing the TDI and MDI reaction 

products to the corresponding diamine.  However, the detection of the diamine products cannot predict 

the kind of health effects that might develop from that exposure.  Because TDI and MDI reaction products 

leave the body fairly rapidly (within hours or days), the tests need to be conducted soon after exposure. 

For more information on the reaction products of TDI and MDI and on tests to detect these substances in 

the body, see Chapters 3 and 7. 

WHAT RECOMMENDATIONS HAS THE FEDERAL GOVERNMENT MADE TO PROTECT 
HUMAN HEALTH? 

The federal government develops regulations and recommendations to protect public health.  Regulations 

can be enforced by law.  Federal agencies that develop regulations for toxic substances include the 



    
 

   
 
 

 
 
 
 
 

  

  

  

 

   

 

 

   

   

  

 

 

   

   

 

 

     

       

 

   

 

 
 

   

  

      

 

  

 
    

 
 

5 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

1.  PUBLIC HEALTH STATEMENT 

Environmental Protection Agency (EPA), the Occupational Safety and Health Administration (OSHA), 

and the Food and Drug Administration (FDA).  Recommendations provide valuable guidelines to protect 

public health but are not enforceable by law.  Federal organizations that develop recommendations for 

toxic substances include the Agency for Toxic Substances and Disease Registry (ATSDR) and the 

National Institute for Occupational Safety and Health (NIOSH). 

Regulations and recommendations can be expressed as “not-to-exceed” levels; that is, levels of a toxic 

substance in air, water, soil, or food that do not exceed a critical value usually based on levels that affect 

animals; levels are then adjusted to help protect humans.  Sometimes these not-to-exceed levels differ 

among federal organizations.  Different organizations use different exposure times (e.g., an 8-hour 

workday or a 24-hour day), different animal studies, or emphasize some factors over others, depending on 

their mission. 

Recommendations and regulations are also updated periodically as more information becomes available. 

For the most current information, check with the federal agency or organization that issued the regulation 

or recommendation. 

OSHA has set a legal ceiling limit of 0.02 parts per million (ppm) for TDI and MDI in air; these are “not-

to-exceed” levels. NIOSH has set a recommended limit of 0.005 ppm for monomeric 4,4’-MDI in air for 

workers exposed 10 hours/day during a 40 hour/day workweek.  The EPA has not recommended any 

drinking water guidelines for TDI or MDI. 

WHERE CAN I GET MORE INFORMATION? 

If you have any questions or concerns, please contact your community or state health or environmental 

quality department, or contact ATSDR at the address and phone number below.  You may also contact 

your doctor if experiencing adverse health effects or for medical concerns or questions. ATSDR can also 

provide publicly available information regarding medical specialists with expertise and experience 

recognizing, evaluating, treating, and managing patients exposed to hazardous substances. 

• Call the toll-free information and technical assistance number at 
1-800-CDCINFO (1-800-232-4636) or 



    
 

   
 
 

 
 
 
 
 

  
  

  
 

 
 

 

   

 

6 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

1.  PUBLIC HEALTH STATEMENT 

• Write to: 
Agency for Toxic Substances and Disease Registry 
Division of Toxicology and Human Health Sciences 
1600 Clifton Road NE 
Mailstop F-57 
Atlanta, GA 30329-4027 

Toxicological profiles and other information are available on ATSDR’s web site: 

http://www.atsdr.cdc.gov. 

http:http://www.atsdr.cdc.gov


    
 
 
 
 

 
 
 
 
 

  
  

       
   

  

   

   

  

    

    

    

  

   

   

  

    

   

   

    

    

  

      

  

    

 

    

 

   

    

   

  

     

    

  

7 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

2. RELEVANCE TO PUBLIC HEALTH

2.1  BACKGROUND AND ENVIRONMENTAL EXPOSURES TO TDI AND MDI IN THE 
UNITED STATES 

Diisocyanates have widespread commercial use due to their reactivity and versatility.  These compounds 

are predominantly used in the production of polyurethane materials. Two diisocyanates, TDI and MDI, 

and their related polyisocyanates make up >90% of the commercial market.  Commercial-grade TDI 

comprises an 80:20 mixture of isomers 2,4- and 2,6-TDI and represents >95% of TDI industrial use.  

There are several isomers of MDI, including 4,4’-, 2,4’-, and 2,2’-MDI, as well as oligomers and 

polymeric compounds.  The principal commercial product of MDI is made up of a mixture of all of these 

components, with a typical composition in the range of 40–50% 4,4’-MDI, 2.5–4.0% 2,4’-MDI, and 0.1– 

0.2% 2,2’-MDI; the remainder is oligomers.  4,4’-MDI is the most commercially common isomer and is 

referred to as pure MDI. 

The dominant process affecting the overall environmental fate, transport, and bioaccumulation potential 

of TDI and MDI is hydrolysis.  Diisocyanates react with water forming the respective amines, which in 

turn may react with more diisocyanates to produce inert, insoluble polyureas.  Hydrolysis half-lives of 

MDI and TDI have been measured to be on the order of a few minutes to a few hours.  Due to the rapid 

hydrolysis of these compounds, they are not expected to persist or bioaccumulate in the environment. 

Almost all of the potential exposures to these compounds are associated with the production, handling, 

use, and disposal of diisocyanates and products containing unreacted diisocyanates.  TDI and MDI are 

most frequently detected in occupational settings, mainly by inhalation of aerosol and vapor (TDI only).  

Diisocyanates are used in the production of polyurethane foam during foaming, casting, spraying, and 

other processes.  Exposure may also occur after production when the polymer is processed.  Thermal 

degradation of polyurethane foam during processes such as heat cutting of foam blocks, flame lamination 

with textiles, and welding, cutting, or grinding of polyurethane-coated metal, can also release 

diisocyanates into the air.  Another route is through dermal exposure by contact with uncured 

polyurethane foams. 

Exposure of the general population to diisocyanates could potentially result from industrial exposures, as 

well as the use of consumer products containing uncured TDI and MDI.  There has been an increase in the 

number of uncured diisocyanate-containing products used by consumers.  TDI emissions were not 



    
 

   
 
 

 
 
 
 
 

   

       

  

   
  

     

     

   

    

     

    

      

    

  

   

 

     

   

      

    

    

   

     

  

       

    

    

       

   

        

   

  

    

   

8 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

2. RELEVANCE TO PUBLIC HEALTH

detected in a study of polyurethane products such as carpet padding, furniture cushions, and varnishes.  

However, application of a concrete water solvent did result in elevated TDI levels. 

2.2  SUMMARY OF HEALTH EFFECTS 

TDI. Epidemiology studies and laboratory animal studies have investigated the toxicity of TDI and 

identified the respiratory tract as the most sensitive target of toxicity. A 6-hour exposure of healthy adults 

to 0.005 ppm did not result in respiratory symptoms, but did result in slight declines in lung function 

(specific airway conductance and maximal expiratory flow [MEF]).  A shorter duration exposure to a 

higher concentration (0.02 ppm for 20 minutes) did not result in alterations in specific airway resistance 

in healthy or asthmatic subjects.  Occupational exposure studies primarily report three types of respiratory 

effects: occupational asthma, asthma-like symptoms, and declines in lung function. Occupational 

asthma, which is characterized by airflow limitations and/or airway hyperresponsiveness, is seen in 

individuals who become hypersensitive to TDI.  In sensitized individuals, exposure to low, non-irritating 

concentrations of TDI can result in wheezing and dyspnea, a marked decrease in lung function, and 

nonspecific airway hyperresponsiveness.  In some workers, removal from TDI exposure can result in 

improvement in symptoms and a lack of response to a TDI challenge (a brief exposure to a non-irritating 

concentration); however, a fair percentage of workers still reported asthma symptoms.  One study of 

TDI-sensitized subjects reported an improvement in respiratory symptoms 11 years after removal from 

TDI exposure; however, 60% of the workers still complained of asthmatic symptoms.  Subjects who are 

diagnosed with occupational asthma shortly after the onset of symptoms, immediately discontinue TDI 

exposure after diagnosis, and have a milder degree of airway hyperresponsiveness are more likely to 

recover from the respiratory symptoms.  Recovery has not been reported in workers who continue to be 

exposed to TDI; continued exposure may result in further declines in lung function.  TDI concentrations 

resulting in sensitization are not known, but the sensitization is believed to be due to a brief exposure to a 

very high concentration or prolonged exposure to lower concentrations.  Prior to 1970 when occupational 

exposure levels were higher, the prevalence of TDI-induced asthma was 5–6%; after the mid-1970s when 

the occupational limit was typically maintained at 0.005 ppm, rates of <1% have been reported.  Some 

workers report asthma-like symptoms such as wheezing, dyspnea, and chest tightness but do not respond 

to a TDI challenge; several studies have found that approximately half of the subjects with asthma-like 

symptoms will have a positive response to a TDI challenge. 

The primary health effect observed in nonsensitized workers exposed to TDI is a decline in lung function, 

particularly the forced expiratory volume in 1 second (FEV1).  Two longitudinal studies provide 



    
 

   
 
 

 
 
 
 
 

     

         

      

  

   

   

     

      

  

   

    

    

     

     

    

    

   

  

      

       

       

    

    

   

    

   

  

  

  

    

     

    

        

   

9 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

2. RELEVANCE TO PUBLIC HEALTH

suggestive evidence that the greatest declines in lung function occur within the first couple of years of 

exposure to lower TDI concentrations.  A decline in FEV1 and forced vital capacity (FVC) was found in 

workers with no previous history of occupational exposure to TDI who were exposed to an 8-hour time-

weighted average (TWA) TDI level of 0.0012 ppm.  However, no declines in lung function were found in 

the cohort, which mostly consisted of workers with prior TDI exposure.  Additionally, when the naïve 

workers were followed for another several years, no additional declines in lung function were found.  

Declines in lung function were observed in workers with an 8-hour TWA TDI exposure level of 

0.0082 ppm, but no effects were observed in workers with an 8-hour TWA TDI level of 0.0017 ppm.  

Animal studies have reported histological lesions in the nasal cavity and lungs after acute, intermediate, 

or chronic TDI exposure. The nasal lesions typically consisted of rhinitis, necrosis, ulceration, and 

metaplasia; the severity of the lesions and location within the nasal cavity appear to be concentration- and 

duration-related. Rhinitis was reported at 0.02 ppm in intermediate-duration studies; chronic or necrotic 

rhinitis was reported at 0.05 ppm in a chronic mouse study.  Interstitial pneumonitis and catarrhal 

bronchitis was observed at slightly higher concentrations in the chronic mouse study.  In addition to the 

histological alterations, airway hyperresponsiveness and increases in respiratory rates have been observed 

in laboratory animal studies exposed for acute or intermediate durations. 

A limited number of other adverse health effects have been reported in humans and animals.  A chronic 

study in rats and mice examined major tissues and organs and only reported adverse effects in the 

respiratory tract.  Dermal irritation and ocular irritation have also been reported in TDI workers. 

Reproductive and developmental toxicity of TDI has been investigated in rats.  No evidence of 

reproductive toxicity was observed in a 2-generation study in which rats were exposed to concentrations 

as high as 0.3 ppm.  An increase in litters with poorly ossified cervical centrum was observed in the 

offspring of rats exposed to 0.5 ppm on gestation days (GDs) 6–15; this concentration was also associated 

with significant maternal toxicity, including a 45% decrease in maternal weight gain and labored 

breathing. 

Although the carcinogenicity of TDI specifically has not been investigated in occupational exposure 

studies, three studies have examined workers at polyurethane foam manufacturing facilities and found 

associations between work in the polyurethane foam manufacturing facility and lung cancer in female 

workers; none of the studies examined associations specifically with TDI exposure. A chronic-duration 

study in rats and mice did not find significant increases in neoplastic tumors. HHS has classified TDI as 

reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from 



    
 

   
 
 

 
 
 
 
 

      

      

     

   

  

      

     

    

    

      

      

    

   

        

      

            

        

  

     

 

  

  

         

   

     

    

    

      

       

    

  

      

       

  

10 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

2. RELEVANCE TO PUBLIC HEALTH

studies in experimental animals. The International Agency for Research on Cancer (IARC) has classified 

TDI as a Group 2B carcinogen (possibly carcinogenic to humans) based on inadequate evidence of 

carcinogenicity in humans and sufficient evidence of carcinogenicity in experimental animals. EPA has 

not classified the carcinogenicity of TDI. 

TDI is rapidly hydrolyzed in water and is not likely to be detected in aquatic environments; thus, it is 

unlikely that the general population will be exposed via this route. The oral toxicity of commercial-grade 

TDI has been investigated in a series of gavage studies in rats and mice; there is some question regarding 

the relevance of these data to humans due to likely pharmacokinetic differences between ingestion of TDI 

and gavage administration directly into the acidic environment of the stomach, which could result in the 

formation of 2,4-toluene diamine (TDA). Mucoid bronchopneumonia was observed in rats following 

intermediate exposure to 240 mg/kg/day, 5 days/week for 13 weeks or following chronic exposure 30 or 

60 mg/kg/day, 5 days/week for 2 years; decreases in survival were also observed at these 

doses. Bronchopneumonia was not observed in mice; however, an increased incidence of cytomegaly in 

the renal tubules was observed in male mice administered 120 mg/kg/day, 5 days/week for 

2 years. Decreases in survival were also observed in mice chronically exposed to 240 mg/kg/day. The 

chronic study also found clear evidence of carcinogenicity in rats and female mice. In rats, there were 

increases in the incidence of subcutaneous fibromas and fibrosarcomas, pancreatic acinar cell adenomas 

and islet cell adenomas, mammary gland fibroadenomas, and neoplastic nodules of the liver. In the 

female mice, the incidences of hemangiomas or hemangiosarcomas and hepatocellular adenomas were 

increased. 

MDI. Similar to TDI, the respiratory tract is the primary target of toxicity for MDI. Occupational

exposure can result in occupational asthma, asthma-like symptoms, and decreases in lung 

function. Although a number of studies have reported MDI-induced asthma or asthma-like symptoms, no 

reliable concentration-response data or prevalence data are available. As with TDI, occupational asthma 

likely results from exposure to very high concentrations of MDI or prolonged exposure to high levels that 

result in sensitization. Approximately half of workers reporting asthma-like symptoms such as wheezing, 

dyspnea, and chest tightness have a positive response to a short MDI-challenge. Many MDI-sensitized 

workers also respond to nonspecific irritants; the prevalence of subjects with asthma-like symptoms 

exhibiting bronchial hyperresponsiveness following exposure to methacholine was significantly higher 

than in non-exposed subjects or other MDI workers. Unlike TDI, a small number of workers with 

asthma-like symptoms also reported chills, fever, and malaise, which are considered symptoms of 

hypersensitivity pneumonitis. 
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2. RELEVANCE TO PUBLIC HEALTH

Decreases in lung function were observed in MDI workers. Other studies have not found decreases in 

lung function when pre-shift levels were compared to post-shift levels; one of these studies that examined 

27 workers noted that the MDI levels at the facility ranged from 0.0005 to 0.001 ppm. 

A limited number of studies have been conducted in laboratory animals. A study measuring respiratory 

rates in mice reported increases in respiratory rates at 7 mg/m3, which were followed by a gradual decline 

in respiratory rate; the investigators suggested that this pattern was indicative of pulmonary irritation 

rather than sensory irritation. Airway hyperresponsiveness to acetylcholine was observed in guinea pigs 

exposed to 0.01 ppm MDI 6 hours/day for 5 days or 6 hours/day, 5 days/week for 4 weeks. A chronic-

duration study with polymeric MDI containing about 50% monomeric MDI found increases in nasal 

lesions (basal cell hyperplasia and Bowman’s gland hyperplasia) and lung lesions (localized fibrosis and 

alveolar duct epithelialization in rats exposed to 1.0 mg/m3 polymeric MDI 6 hours/day, 5 days/week for 

2 years. Many of these lesions were observed after 1 year of exposure to 6.0 mg/m3. An unpublished 

study reported similar lung effects in female rats exposed to 0.23 mg/m3 monomeric MDI 18 hours/day, 

5 days/week for 2 years. 

The chronic study in rats did not find any other systemic effects. In a rat developmental toxicity study, an 

increased incidence of litters with fetuses displaying asymmetric sternebrae was observed at 9 mg/m3 

MDI administered on GDs 6–15; a decrease in maternal food consumption was also observed at that 

exposure level. 

No occupational exposure studies have examined the possible association between MDI exposure and 

cancer risk. As discussed in the TDI section, a possible association between lung cancer and employment 

at polyurethane foam manufacturing facilities was reported in female workers. The chronic inhalation rat 

study found increases in lung adenomas in male rats exposed to 6.0 mg/m3 polymeric MDI; one incident 

of lung adenocarcinoma was also found. IARC has classified 4,4’-MDI as a Group 3 carcinogen (not 

classifiable as to its carcinogenicity to humans) based on inadequate evidence of carcinogenicity in 

humans and inadequate or limited evidence in experimental animals. EPA has characterized the 

carcinogenicity of MDI/polymeric MDI as “cannot be determined, but for which there is suggestive 

evidence that raises concern for carcinogenic effects”. 
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2.3  MINIMAL RISK LEVELS (MRLs) 

Estimates of exposure levels posing minimal risk to humans (MRLs) have been established for TDI and 

MDI.  An MRL is defined as an estimate of daily human exposure to a substance that is likely to be

without an appreciable risk of adverse effects (noncarcinogenic) over a specified duration of exposure.  

MRLs are derived when reliable and sufficient data exist to identify the target organ(s) of effect or the 

most sensitive health effect(s) for a specific duration within a given route of exposure. MRLs are based 

on noncancerous health effects only and do not consider carcinogenic effects.  MRLs can be derived for 

acute, intermediate, and chronic duration exposures for inhalation and oral routes.  Appropriate 

methodology does not exist to develop MRLs for dermal exposure. 

Although methods have been established to derive these levels (Barnes and Dourson 1988; EPA 1990), 

uncertainties are associated with these techniques.  Furthermore, ATSDR acknowledges additional 

uncertainties inherent in the application of the procedures to derive less than lifetime MRLs.  As an 

example, acute inhalation MRLs may not be protective for health effects that are delayed in development 

or are acquired following repeated acute insults, such as hypersensitivity reactions, asthma, or chronic 

bronchitis.  As these kinds of health effects data become available and methods to assess levels of 

significant human exposure improve, these MRLs will be revised. 

Inhalation MRLs for TDI 

Acute Duration 

• An MRL of 1x10-5 ppm has been derived for acute-duration inhalation exposure (≤14 days) to
TDI.

A limited number of human studies have evaluated the acute toxicity of TDI.  No respiratory symptoms 

were reported in healthy subjects exposed to 0.005 ppm TDI for 6 hours followed by a 20-minute 

exposure to 0.02 ppm TDI; however, slight, but statistically significant, decreases in specific airway 

conductance and MEF at 25% of FVC were observed (Vandenplas et al. 1999).  No alterations in specific 

airway resistance were observed in healthy or asthmatic subjects exposed to 0.02 ppm for 20 minutes 

(Chester et al. 1979).  Acute-duration animal inhalation studies have reported rhinitis, lung damage, and 

airway hyperresponsiveness. The severity of rhinitis was concentration-related; moderate rhinitis was 

observed in mice exposed to 0.07 ppm 6 hours/day for 4 days (Zissu 1995), moderate-to-severe rhinitis 

was observed in mice exposed to 0.4 ppm 6 hours/day for 5 days (Buckley et al. 1984), and severe nasal 
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lesions were observed in mice exposed to 1 ppm 6 hours/day for 3 days (Arts et al. 2008).  Interstitial 

inflammation, pleural thickening, and goblet cell hyperplasia were observed in the lungs of guinea pigs 

exposed to 1.4 ppm TDI 3 hours/day for 3 days (Wong et al. 1985).  Airway hyperresponsiveness to 

methacholine or acetylcholine was also observed in guinea pigs and mice exposed to ≥0.01 ppm 

(Gagnaire et al. 1996; Gordon et al. 1985; Marek et al. 1999); a no-observed-adverse-effect level 

(NOAEL) of 0.005 ppm for airway hyperresponsiveness was identified in guinea pigs exposed to TDI 

6 hours/day for 5 days (Marek et al. 1999).  An increase in the incidence of litters with poorly ossified 

cervical centrum was observed in the offspring of rats exposed to 0.5 ppm commercial-grade TDI 

6 hours/day on GDs 6–15 (Tyl et al. 1999a); this concentration was also associated with maternal toxicity 

including a marked decrease in body weight gain and signs of nasal irritation and audible respiration. 

The Vandenplas et al. (1999) human study identified the lowest lowest-observed-adverse-effect level 

(LOAEL) (0.005 ppm) for respiratory effects caused by acute inhalation exposure to TDI; the lowest 

LOAEL in animals is approximately 10-fold higher. The Vandenplas et al. (1999) study was considered 

suitable for derivation of an MRL.  The LOAEL of 0.005 ppm was adjusted to continuous 24-hour 

exposure; the resulting LOAELADJ was 0.00125 ppm.  The MRL of 0.00001 ppm (1x10-5 ppm) was 

calculated by dividing the LOAELADJ by an uncertainty factor of 100 (10 for the use of a LOAEL and 

10 for human variability).  There is some uncertainty whether the acute-duration MRL based on the 

Vandenplas et al. (1999) single exposure study would be protective of continuous exposure to TDI for 

14 days.  Chronic-duration occupational exposure studies provide some support for this MRL.  The 

lowest LOAEL values identified in longitudinal studies of workers exposed to TDI are 0.0012 and 

0.0019 ppm (Clark et al. 1998; Diem et al. 1982); the effects observed at these concentrations included 

decreases in lung function (FEV1 and/or FVC).  These LOAELs are roughly 2–4 times lower than the 

LOAEL from the Vandenplas et al. (1999) study.  However, since there is uncertainty that the MRL 

would be protective for continuous exposure for 14 days, it is recommended that measured air 

concentrations should not exceed the MRL of 1x10-5 ppm during a 24-hour period. 

Intermediate Duration. No human studies have examined the intermediate-toxicity of TDI; several 

animal studies have examined the respiratory tract following intermediate-duration exposure.  Nasal and 

lung inflammation were observed in mice exposed to 0.02 ppm commercial-grade TDI 4 hours/day, 

5 days/week for 6 weeks (Matheson et al. 2005); increased airway hyperresponsiveness was also observed 

at this concentration.  At a slightly higher concentration (0.07 ppm), severe rhinitis with metaplasia and 

necrosis of the nasal respiratory epithelium was observed (Zissu 1995). The LOAELs in the animal 

studies are >10 times higher than the LOAELs identified in occupational exposure studies (see Chronic 
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Duration section) and may not be protective for declines in lung function.  In a study by Clark et al. 

(1998), lung function declines were observed within the first couple of months of exposure.  Thus, the 

data were not considered suitable for an intermediate-duration inhalation MRL for TDI. 

Chronic Duration 

• An MRL of 3x10-6 ppm has been derived for chronic-duration inhalation exposure (≥1 year) to
TDI.

A number of studies of workers at TDI production facilities and polyurethane foam manufacturing 

facilities have reported respiratory effects consisting of asthma, asthma-like symptoms, and declines in 

lung function.  TDI-induced asthma is a type of occupational asthma characterized as bronchial 

inflammation and/or airway hyperresponsiveness.  The wheezing, dyspnea, and chest tightness observed 

in individuals with asthma often persists for years after exposure termination (Mapp et al. 1988; Moller et 

al. 1986; Moscato et al. 1991; Padoan et al. 2003; Paggiaro et al. 1984).  Individuals with TDI-induced 

asthma are considered to be sensitized to TDI, in that brief exposures to nonirritating concentrations can 

result in a worsening of symptoms and a decline in lung function.  Other workers reported asthma-like 

symptoms of wheezing and dyspnea, but do not respond to a TDI inhalation challenge; although the 

workers may not have asthma, the observed respiratory effects may still be indicative of TDI 

sensitization.  The exposure level resulting in TDI sensitization is not known; TDI sensitization may 

result from a brief exposure to very high TDI concentrations or prolonged exposure to lower 

concentrations.  It is believed that <10% of workers become sensitized to TDI; lower rates of sensitization 

(<1%) have been found since the occupational exposure limit has been lowered to 0.005 ppm (Ott et al. 

2003).  

The available data suggest that the primary effect in non-sensitized workers is a decline in lung function. 

Several longitudinal studies have evaluated the effect of TDI exposure on the annual decline in lung 

function (Adams 1975; Bodner et al. 2001; Butcher et al. 1977; Clark et al. 1998, 2003; Diem et al. 1982; 

Jones et al. 1992; Omae et al. 1992; Ott et al. 2000; Peters et al. 1970; Wegman et al. 1977, 1982).  

Although the results across studies are not consistent, several factors may contribute to this inconsistency, 

including differences in peak exposure levels, difference in the length of exposure, exposure to higher 

TDI levels prior to the start of the study, and inclusion of sensitized workers.  A 5-year study of a new 

TDI manufacturing facility found greater annual declines in FEV1 and forced expiratory flow at 25–50% 

of FVC (FEF25–50%) among nonsmoking workers with a cumulative TDI exposure of ≥0.0682 ppm-

months (Diem et al. 1982).  Another study that examined workers at a polyurethane foam manufacturing 
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facility with no prior TDI exposure found significant annual declines in FEV1 and FVC; however, no 

significant alterations in lung function were observed in the entire cohort.  The mean 8-hour TWA TDI 

concentration for the entire cohort (naïve workers and workers with prior TDI exposure) was 0.0012 ppm 

(Clark et al. 1998).  When the naïve worker subcohort was examined several years later, the declines in 

lung function did not significantly vary from predicted levels (Clark et al. 2003).  Clark et al. (1998) 

suggested that the decline in lung function observed in the naïve subcohort may have been due to 

respiratory irritation. Another study found greater-than-expected declines in maximal midexpiratory flow 

(MMF), ratio of FEV1 to FVC, and peak expiratory flow (PEF) in polyurethane foam manufacturing 

workers with an 8-hour TWA TDI level of 0.0082 ppm, with peak levels of 0.02–0.03 ppm (Omae et al. 

1992).  No alterations were found in workers with a TWA level of 0.0017 ppm with peak levels of 

0.0003–0.004 ppm.  A fourth study found significant declines in FEV1 levels in workers with TDI 

exposure levels ≥0.0035 ppm (Wegman et al. 1977, 1982).  No alterations in lung function were observed 

in other longitudinal studies with TDI levels of 0.0015–0.015 ppm (Bodner et al. 2001; Butcher et al. 

1977; Jones et al. 1992; Ott et al. 2000).  

Only one study examined the chronic toxicity of airborne TDI in laboratory animals; significant increases 

in the incidence and severity of chronic or necrotic rhinitis with epithelial atrophy and mucous and 

squamous metaplasia were observed in mice exposed to ≥0.05 ppm TDI 6 hours/day, 5 days/week for 

2 years (Loeser 1983).  Interstitial pneumonitis and catarrhal bronchitis was also noted in mice exposed to 

0.15 ppm; however, the incidence was not reported. 

The adverse effect levels for declines in lung function in TDI workers were about 5 times lower than the 

LOAEL for nasal effects in mice; thus, the occupational exposure studies were selected as the basis of the 

MRL.  The results of the Diem et al. (1982) and Clark et al. (1998) studies suggest that the greatest 

declines in lung function occur during the first several years of exposure to TDI; thereafter, the declines 

are not significantly different from predicted levels. Thus, these studies were considered as the basis of 

the MRL. The Clark et al. (1998) study was selected over the Diem et al. (1982) because it identified a 

slightly lower adverse effect level (0.0012 versus 0.0019 ppm) and did not rely on unpublished 

monitoring data.  The mean daily exposure level of the exposed group of 0.0012 ppm was adjusted for 

intermittent exposure (8 hours/day, 5 days/week).  This adjusted adverse effect level of 0.00029 ppm was 

divided by a total uncertainty factor of 100 (10 for use of an adverse effect level and 10 for human 

variability) resulting in an MRL 0.000003 ppm (3x10-6 ppm or 0.003 ppb). 

http:0.02�0.03
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Oral MRLs for TDI 

TDI is rapidly hydrolyzed in water and is not likely to be detected in aquatic environments.  Thus, oral 

exposure to TDI in humans is unlikely, thereby lessening the need for oral MRLs. 

Inhalation MRLs for MDI 

Acute Duration. Several case reports of acute-duration inhalation exposure to MDI have been identified 

(Banks et al. 1986; Chang and Karol 1984; Stingeni et al. 2008; Suojalehto et al. 2011).  The reports 

described breathing difficulties (Stingeni et al. 2008), asthma (Chang and Karol 1984; Suojalehto et al. 

2011), and asthma-like respiratory symptoms (Banks et al. 1986).  Although the exposure levels were not 

reported, they were likely to be relatively high based on the severity of the observed effects.  In guinea 

pigs, exposure to 0.01 ppm MDI 6 hours/day for 5 days resulted in increased airway hyperresponsiveness; 

a NOAEL of 0.005 ppm was identified for this effect (Marek et al. 1999).  The Marek et al. (1999) study 

was not considered a suitable basis for an MRL because the study did not include a histological 

examination of the respiratory tract and it is possible that histological alterations, particularly in the nasal 

cavity, may occur at lower concentrations than airway hyperresponsiveness. 

Intermediate Duration.  Bascom et al. (1985) reported a case of a male who exhibited dyspnea, fever, 

malaise, and hypoxemia, effects characteristic of hypersensitivity pneumonitis, 2 months after beginning 

a job involving the use of a polyurethane foam containing MDI.  Malo and Zeiss (1982) also described a 

case of a foundry worker who developed dyspnea and restrictive breathing 1 month after beginning work.  

Neither case included information on exposure levels.  Exposure of guinea pigs to 0.01 ppm MDI 

6 hours/day, 5 days/week for 4 weeks resulted in increased airway hyperresponsiveness to acetylcholine 

(Marek et al. 1999). This study did not include a histological examination of the respiratory tract.  As 

noted in the discussion for the acute-duration MRL, the lack of a histological examination precludes using 

the Marek et al. (1999) study as the basis for deriving an MRL. 

Chronic Duration  

• An MRL of 0.001 mg/m3 has been derived for chronic-duration inhalation exposure (≥1 year) to
polymeric MDI.

The primary effects of MDI observed in occupational exposure studies include occupational asthma in 

sensitized individuals and decreases in lung function.  Asthma and/or asthma-like symptoms were 
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reported by several investigators (Hur et al. 2008; Wang and Petsonk 2004; Woellner et al. 1997; 

Zammit-Tabona et al. 1983); none of these studies provided exposure information.  Symptoms of 

hypersensitivity pneumonitis (e.g., chills, fever, malaise) have also been reported in a study of workers 

with asthma-like symptoms (Baur 1995).  Liss et al. (1988) found a significant decrease in FEV1 levels 

when pre-shift levels were compared to post-shift levels in workers at a steel foundry using MDI; the 

study did not provide monitoring data.  Comparison of pre- and post-shift lung function levels did not 

reveal significant differences in a study of 27 polyurethane foam workers (Sulotto et al. 1990); the MDI 

levels ranged from 0.0005 to 0.001 ppm.  Musk et al. (1982) also found no differences in lung function 

when pre- and post-shift values were compared in workers at two polyurethane plastic manufacturing 

facilities.  Monitoring data were provided by the facilities and were measured by the investigators; 

however, there was a large discrepancy between the values. 

The chronic toxicity of inhaled MDI has been investigated in rats exposed to an aerosol of polymeric 

MDI, which contained 44.8–50.2% monomeric MDI 6 hours/day, 5 days/week for 2 years (Reuzel et al. 

1994).  Exposure to 1.0 mg/m3 resulted in significant increases in the incidence of basal cell hyperplasia 

and Bowman’s gland hyperplasia in the nasal cavity and mild to moderate localized fibrosis in the lungs 

and alveolar duct epithelialization.  Localized alveolar bronchiolization was also observed at 6.0 mg/m3 . 

The study identified a NOAEL of 0.2 mg/m3 . An unpublished study conducted by Hoyemann and 

associates and reviewed by Feron et al. (2001) found similar results in female rats exposed to monomeric 

MDI 18 hours/day, 5 days/week for 2 years.  In this study, an increased incidence of bronchiolo-alveolar 

hyperplasia and fibrosis were observed at ≥0.23 mg/m3 . After adjusting for intermittent exposure, the 

LOAEL value identified in the Reuzel et al. (1994) study (0.178 mg/m3) is very similar to the LOAEL 

from the Hoyemann study (0.123 mg/m3). 

The NOAELs from the Sulotto et al. (1990) occupational exposure study and the Reuzel et al. (1994) rat 

study were both considered as possible points of departure for the chronic-duration inhalation MRL (the 

Hoyemann study was not considered as the basis of the MRL because the study was not available to 

ATSDR for review).  Two TDI studies (Clark et al. 1998; Diem et al. 1982) showed that the greatest 

declines in lung function occurred within the first year of exposure to TDI.  Sulotto et al. (1990) is not a 

prospective study, so it is possible that exposure to 0.005–0.001 ppm might have resulted in a decline in 

lung function in naïve workers that would have gone undetected.  Due to this uncertainty, the Reuzel et al. 

(1994) study was selected as the basis of the MRL. The incidence data for basal cell hyperplasia in the 

nasal cavity, Bowman’s duct hyperplasia in the nasal cavity, and lung fibrosis were fit to all available 

dichotomous models in EPA’s Benchmark Dose Software (BMDS, version 2.4.0) using the extra risk 
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option.  The BMCL10 values predicted from the selected models for basal cell hyperplasia and lung 

fibrosis were 0.48 and 0.70 mg/m3, respectively; none of the models provided an adequate fit to the 

incidence data for Bowman’s gland hyperplasia.  The BMCL10 of 0.48 mg/m3 was selected as the point of 

departure for the MRL and was adjusted for intermittent exposure (6 hours/day, 5 days/week) resulting in 

a BMCLADJ of 0.086 mg/m3 . A human equivalent concentration (BMCLHEC) was calculated by 

multiplying the BMCLADJ by a regional deposited dose ratio (RDDR) of 0.453.  The chronic-duration 

inhalation MRL of 0.001 mg/m3 for polymeric MDI was derived by dividing the BMCLHEC of 

0.039 mg/m3 by a total uncertainty factor of 30 (3 for extrapolation from animals to human with 

dosimetric adjustments and 10 for human variability). 

Oral MRLs for MDI 

MDI is rapidly hydrolyzed in water and is not likely to be detected in aquatic environments.  Thus, oral 

exposure to MDI in humans is unlikely, thereby lessening the need for oral MRLs. 
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3.1  INTRODUCTION 

The primary purpose of this chapter is to provide public health officials, physicians, toxicologists, and 

other interested individuals and groups with an overall perspective on the toxicology of TDI and MDI.  It 

contains descriptions and evaluations of toxicological studies and epidemiological investigations and 

provides conclusions, where possible, on the relevance of toxicity and toxicokinetic data to public health. 

A glossary and list of acronyms, abbreviations, and symbols can be found at the end of this profile. 

3.2  DISCUSSION OF HEALTH EFFECTS BY ROUTE OF EXPOSURE 

To help public health professionals and others address the needs of persons living or working near 

hazardous waste sites, the information in this section is organized first by route of exposure (inhalation, 

oral, and dermal) and then by health effect (e.g., death, systemic, immunological, neurological, 

reproductive, developmental, and carcinogenic effects).  These data are discussed in terms of three 

exposure periods: acute (14 days or less), intermediate (15–364 days), and chronic (365 days or more). 

Levels of significant exposure for each route and duration are presented in tables and illustrated in 

figures.  The points in the figures showing no-observed-adverse-effect levels (NOAELs) or lowest-

observed-adverse-effect levels (LOAELs) reflect the actual doses (levels of exposure) used in the studies. 

LOAELs have been classified into "less serious" or "serious" effects. "Serious" effects are those that 

evoke failure in a biological system and can lead to morbidity or mortality (e.g., acute respiratory distress 

or death).  "Less serious" effects are those that are not expected to cause significant dysfunction or death, 

or those whose significance to the organism is not entirely clear.  ATSDR acknowledges that a 

considerable amount of judgment may be required in establishing whether an end point should be 

classified as a NOAEL, "less serious" LOAEL, or "serious" LOAEL, and that in some cases, there will be 

insufficient data to decide whether the effect is indicative of significant dysfunction.  However, the 

Agency has established guidelines and policies that are used to classify these end points.  ATSDR 

believes that there is sufficient merit in this approach to warrant an attempt at distinguishing between 

"less serious" and "serious" effects. The distinction between "less serious" effects and "serious" effects is 

considered to be important because it helps the users of the profiles to identify levels of exposure at which 

major health effects start to appear.  LOAELs or NOAELs should also help in determining whether or not 
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the effects vary with dose and/or duration, and place into perspective the possible significance of these 

effects to human health.  

The significance of the exposure levels shown in the Levels of Significant Exposure (LSE) tables and 

figures may differ depending on the user's perspective.  Public health officials and others concerned with 

appropriate actions to take at hazardous waste sites may want information on levels of exposure 

associated with more subtle effects in humans or animals (LOAELs) or exposure levels below which no 

adverse effects (NOAELs) have been observed.  Estimates of levels posing minimal risk to humans 

(Minimal Risk Levels or MRLs) may be of interest to health professionals and citizens alike. 

Levels of exposure associated with carcinogenic effects (Cancer Effect Levels, CELs) of TDI and MDI 

are indicated in Tables 3-2 and 3-5 and Figures 3-2, and 3-3.  

A User's Guide has been provided at the end of this profile (see Appendix B).  This guide should aid in 

the interpretation of the tables and figures for Levels of Significant Exposure and the MRLs. 

3.2.1 Inhalation Exposure 

The highest NOAEL values and all LOAEL values from each reliable study for each end point in each 

species and duration category are recorded in Tables 3-1 and 3-2 and plotted in Figures 3-1 and 3-2 for 

TDI and MDI, respectively. 

3.2.1.1  Death 

Available literature did not include human studies evaluating lethality after inhalation exposure to TDI or 

MDI. 

TDI. Acute-duration exposure to commercial-grade TDI at concentrations up to 1.0 ppm did not result in 

any deaths when groups of eight pregnant CD rats were exposed during GDs 6–15 in a dose-range finding 

study (Tyl et al. 1999a).  Likewise, exposure concentrations up to 0.5 ppm did not result in maternal 

deaths in the main developmental toxicity study (Tyl et al. 1999a) or in F0 or F1 parental animals in a 

2-generation reproductive toxicity study using rats (Tyl et al. 1999b).  Chronic (2-year) exposure to

0.15 ppm production-grade TDI (80:20 mix of 2,4- and 2,6-TDI) did not affect survival rates of Sprague-

Dawley rats (Loeser et al. 1983). In CD-1 mice, a significantly increased rate of mortality was seen with
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Systemic 
1 Human 6 hr 

System 

Resp 

NOAEL 
(ppm) 

Less Serious 
(ppm) 

b 
0.005 (slight decrease in 

specific airway 
conductance) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form 

Vandenplas et al. 1999 
TDI, not specified 

Comments 

2 Rat 
(Wistar) 

4 hours/day 
5 days Resp 0.41 F (hypersensitivity 

symptoms, central airway 
goblet cell metaplasia, 
central and peripheral 
airway eosinophil 
infiltration) 

Kouadio et al. 2014 
2,4-TDI 

3 Rat 
(CD) 

6 hr/d 
Gd 6-15 Resp 0.02 F (red nasal discharge in 

5/21 dams) 
Tyl et al. 1999a 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

Hepatic 0.5 F 

Bd Wt 0.5 F (45% decrease in 
maternal body weight 
gain during exposure) 

4 Rat 
(CD) 

6 hr/d 
Gd 6-15 Resp 1 F (maternal nasal 

discharge and labored 
respiration; blood gas 
changes indicative of 
respiratory acidosis) 

Tyl et al. 1999a 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

Bd Wt 1 F (27% decrease in body 
weight) 
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (continued) 

a 
Key to Species 
Figure (Strain) 

5 Mouse 
(BALB/c) 

6 Mouse 
(Swiss-
Webster) 

7 Mouse 
(C57BL/6N) 

8 Mouse 
(C57BL/6N) 

9 Mouse 
(Swiss-
Webster) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

45, 90, 180, or 
360 min/d 
3 d 

Resp 1 M (severe nasal lesions and 
slight laryngeal lesions) 

Arts et al. 2008 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

6 hr/d 
5 d Resp 0.4 M  (moderate to severe 

nasal lesions) 
Buckley et al. 1984 
TDI, not specified 

4 hr/d 
12 d Resp 0.05 F (cellular inflammation 

and hyperplasia in 
anterior nasal cavity) 

Johnson et al. 2007 
TDI, not specified 

2 hr Resp 0.5 F  (nasal and lung 
inflammation, airway 
hyperresponsiveness) 

Matheson et al. 2005 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

3 hr/d 
5 d Resp 0.031 M 

0.018 M 

0.25 M (histological damage to 
nasal respiratory 
epithelium) 

0.023 M (decreased respiratory 
rate) 

Sangha and Alarie 1979 
2,4-TDI 



5244
0.07

5229

0.02

0.2

5233
3

5234
0.1

5235
0.05

5236
2
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

10 Mouse 
(Swiss) 

6 hr/d 
4 d Resp 0.07 M (moderate rhinitis with 

metaplasia and necrosis 
in the nasal respiratory 
epithelium) 

Zissu 1995 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

11 Gn Pig 
(Hartley) 

3 hr/d 
5 d Resp 0.02 F 0.2 F (pulmonary response to 

TDI challenge) 
Aoyama et al. 1994 
2,4/2,6-TDI 

12 Gn Pig 
(Dunkin-Hartle 

1 hr Resp 3 F (airway 
hyperresponsiveness) 

Gagnaire et al. 1996 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

13 Gn Pig 
(Dunkin-Hartle 

continuously 
48 hr Resp 0.1 F (airway 

hyperresponsiveness) 
Gagnaire et al. 1996 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

14 Gn Pig 
(Dunkin-Hartle 

continuously 
1 wk Resp 0.05 F  (airway 

hyperresponsiveness) 
Gagnaire et al. 1996 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

15 Gn Pig 
(Hartley) 

1 hr Resp 2 M (airway 
hyperresponsiveness, 
tracheal epithelial 
damage, acute airway 
inflammation) 

Gordon et al. 1985 
TDI, not specified 



5238

0.005

0.01

5242
1.4

5197

0.1

0.5

5227
0.02

0.3

0.3

0.3

0.3
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

16 Gn Pig 6 hr/d 
(Dunkin 5 d 
Hartley) 

17 Gn Pig 3 hr/d 
5 d(English 

smooth 
haired) 

Developmental 
18 Rat 6 hr/d 

Gd 6-15(CD) 

INTERMEDIATE EXPOSURE 
Systemic 
19 Rat 2-generation, 

19 wk(CD) 
5 or 7 d/wk 
6 hr/d 

System 

Resp 

Resp 

Resp 

Hepatic 

Renal 

Endocr 

Bd Wt 

NOAEL 
(ppm) 

0.005 F 

0.1 

0.3 

0.3 F 

0.3 

0.3 

LOAEL 

Less Serious Serious 
(ppm) (ppm) 

0.01 F  (increased airway 
responsiveness) 

1.4 F (diminished response to 
CO2, pulmonary 
hypersensitivity, 
interstitial inflammation, 
pleural thickening and 
goblet cell hyperplasia in 
the lungs) 

0.5 (increased incidence of 
litters with poorly ossified 
cervical centrum no. 5) 

0.02 (rhinitis in F1 parental 
animals) 

Reference 
Chemical Form 

Marek et al. 1999 
2,4/2,6-TDI 

Wong et al. 1985 
2,4/2,6-TDI 

Tyl et al. 1999a 
2,4/2,6-TDI 

Tyl et al. 1999b 
2,4/2,6-TDI 

Comments 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 



5239
0.02

5245
0.07

5243

0.2

5228
0.08

5220
0.05

5250

0.0023
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (continued) 

LOAEL 

NOAEL Less Serious Serious 
System (ppm) (ppm) (ppm) 

a 
Key to 
Figure 

20 

21 

22 

Species 
(Strain) 

Mouse 
(C57BL/6N) 

Mouse 
(Swiss) 

Gn Pig 
(English 
smooth 
haired) 

Developmental 
23 Rat 

(CD) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

4 hr/d 
5 d/wk 
6 wk 

6 hr/d 
5 d/wk 
9 or 14 
exposures 

6 hr/d 
4 d/wk 
14 wk 

2-generation, 
19 wk 
5 or 7 d/wk 
6 hr/d 

CHRONIC EXPOSURE 
Death 
24 Mouse 104 wk 

(CD-1) 5 d/wk 
6 hr/d 

Systemic 
Human occupational 

exposure 

Resp 0.02 F (nasal and lung 
inflammation, airway 
hyperresponsiveness) 

Resp 0.07 M (severe rhinitis with 
metaplasia and necrosis 
in the nasal respiratory 
epithelium) 

Resp 0.2 F 

0.08 (9% lower body weight 
gain of F2 pups during 
lactation) 

0.05 F 

Resp 0.0023 

(significantly increased 
mortality, 77% vs 60% in 
controls) 

Reference 
Chemical Form 

Matheson et al. 2005 
2,4/2,6-TDI 

Zissu 1995 
2,4/2,6-TDI 

Wong et al. 1985 
2,4/2,6-TDI 

Tyl et al. 1999b 
2,4/2,6-TDI 

Loeser 1983 
2,4/2,6-TDI 

Bodner et al. 2001 
2,4/2,6-TDI 

Comments 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

25 
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0.015

5252
0.0012

5253
0.00105

5256

0.0082
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0.0042
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(ppm) 
Less Serious 

(ppm) 

LOAEL 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

26 

27 

Human 

Human 

occupational 
exposure 

occupational 
exposure 

Resp 

Resp 

0.015 

c 
0.0012 

(respiratory symptoms) 

(decline in FEV1 in naive 
subjects) 

Butcher et al. 1977 
2,4/2,6-TDI 

Clark et al. 1998 
2,4/2,6-TDI 

28 Human occupational 
exposure Resp 0.00105 (increased reporting of 

wheezing) 
Clark et al. 2003 
2,4/2,6-TDI 

29 

30 

31 

Human 

Human 

Human 

occupational 
exposure 

occupational 
exposure 

occupational 
exposure 

Resp 

Resp 

Resp 

0.0042 

0.0082 

0.0035 

(decreased lung function) 

(decreased lung function) 

Omae et al. 1992 
2,4/2,6-TDI 

Ott et al. 2000 
2,4/2,6-TDI 

Wegman et al. 1977, 1982 
2,4/2,6-TDI 



5215

0.15

0.15

0.15

0.15

0.15

0.15

0.15

0.15

5219
0.05

0.15

0.15

0.15

0.15

0.15

0.15

0.15
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (continued) 

Exposure/ 
Duration/

a 
Key to Species Frequency 
Figure (Strain) (Route) 

32 Rat 
(Sprague-
Dawley) 

108-110 wk 
5 d/wk 
6 hr/d 

33 Mouse 
(CD-1) 

104 wk 
5 d/wk 
6 hr/d 

System 

Cardio 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

Bd Wt 

Resp 

Cardio 

Gastro 

Hemato 

Musc/skel 

Hepatic 

Renal 

Endocr 

LOAEL 

NOAEL 
(ppm) 

Less Serious 
(ppm) 

Serious 
(ppm) 

Reference 
Chemical Form Comments 

0.15 Loeser 1983 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

0.15 

0.15 

0.15 

0.15 

0.15 

0.15 

0.15 

0.05 (chronic or necrotic 
rhinitis) 

Loeser 1983 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

0.15 

0.15 

0.15 

0.15 

0.15 

0.15 

0.15 
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Table 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (continued) 

Exposure/ LOAEL 
Duration/

a 
Key to Species Frequency NOAEL Less Serious Serious Reference 

(Route)Figure (Strain) System (ppm) (ppm) (ppm) Chemical Form Comments 

Bd Wt 0.15 (significantly reduced 
weight gain) 

a The number corresponds to entries in Figure 3-1. 

b Used to derive an acute-duration inhalation MRL of 0.00001 ppm. The LOAEL was adjusted for intermittent exposure (6 hours/day) and divided by an uncertainty factor of 100 (10 
for the use of a LOAEL and 10 for human variability). 

c Used to derive a chronic-duration inhalation MRL of 0.000003 ppm. The mean daily exposure level was adjusted for intermittent exposure and divided by an uncertainty factor of 
100 (10 for the use of a LOAEL and 10 for human variability). 

Bd Wt = body weight; Cardio = cardiovascular; d = day(s); Endocr = endocrine; F = Female; FEV1 = forced expiratory volume in 1 second; Gastro = gastrointestinal; Gd = gestational 
day; Gn Pig = guinea pig; Hemato = hematological; hr = hour(s); LOAEL = lowest-observed-adverse-effect level; M = male; min = minute(s); Musc/skel = musculoskeletal; NOAEL = 
no-observed-adverse-effect level; Resp = respiratory; wk = week(s) 



Re  He  Bo  De  ppm 

10 

12g 
15g 
17g

1 5m 

8m
6m 

9m
11g 

0.1 13g 
10m 

14g 7m 

9m 
9m11g 9m

0.01 16g 

16g 1 

0.001 

0.0001 

1E-5 

2r 

4r 4r 

3r 3r 18r 

18r 

3r 

c-Cat 
d-Dog
r-Rat 
p-Pig
q-Cow 

k-Monkey
m-Mouse 
h-Rabbit 
a-Sheep 

f-Ferret 
j-Pigeon
e-Gerbil 
s-Hamster 
g-Guinea Pig 

n-Mink 
o-Other

 Cancer Effect Level-Animals
 LOAEL, More Serious-Animals
LOAEL, Less Serious-Animals
NOAEL - Animals

 Cancer Effect Level-Humans
 LOAEL, More Serious-Humans
LOAEL, Less Serious-Humans
NOAEL - Humans

 LD50/LC50
Minimal Risk Level
 for effects
 other than
 Cancer 

spiratory

patic
dy W

eight

velopmental

 

TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE

3. HEALTH EFFECTS

29

Figure 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation 

Acute (≤14 days) 
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Figure 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (Continued) 
Intermediate (15-364 days) 
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Figure 3-1. Levels of Significant Exposure to Toluene Diisocyanate - Inhalation (Continued) 
Chronic (≥365 days) 
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Table 3-2. Levels of Significant Exposure to Methylene Diphenyl Diisocyanate - Inhalation 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(Wistar) 
Gd 6-15 
6 hr/d 

Systemic 
2 Rat 

(Wistar) 
Gd 6-15 
6 hr/d 

System 

Resp 

NOAEL 
(mg/m³) 

9 F 

LOAEL 

Less Serious 
(mg/m³) 

Serious 
(mg/m³) 

9 F (24% increase in relative 
lung weight) 

Reference 
Chemical Form 

Buschmann et al. 1996 
4,4'-MDI 

Buschmann et al. 1996 
4,4'-MDI 

Comments 

Bd Wt 9 F 

3 Gn Pig 
(Dunkin 
Hartley) 

6 hr/d 
5 d Resp 0.0005 F 0.001 F (increased airway 

responsiveness) 
Marek et al. 1999 
4,4'-MDI 

Developmental 
4 Rat 

(Wistar) 
Gd 6-15 
6 hr/d 9 (increased litter incidence 

of asymmetric 
sternebrae) 

Buschmann et al. 1996 
4,4'-MDI 

INTERMEDIATE EXPOSURE 
Systemic 
5 Gn Pig 

(Dunkin 
Hartley) 

6 hr/d 
5 d/wk 
4 wk 

Resp 0.001 F (increased airway 
responsiveness) 

Marek et al. 1999 
4,4'-MDI 

CHRONIC EXPOSURE 
Death 
6 Rat 

(Wistar) 
24 mo 
5 d/wk 
6 hr/d 

6 Reuzel et al. 1994 
Polymeric MDI, aerosolized 
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Table 3-2. Levels of Significant Exposure to Methylene Diphenyl Diisocyanate - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form Comments 

Systemic 
7 Human occupational 

exposure Resp 0.0005 Sulotto et al. 1990 
4,4'-MDI 

8 Rat 
(Wistar) 

24 mo 
5 d/wk 
6 hr/d 

Resp 
b 

0.2 1 (minimal to mild 
pulmonary fibrosis and 
macrophage 
accumulation; alveolar 
duct epithelialization; 
basal cell and Bowman's 
gland hyperplasia in the 
nasal cavity) 

Reuzel et al. 1994 
Polymeric MDI, aerosolized 

Cardio 6 

Hemato 6 

Hepatic 6 

Renal 6 

Endocr 6 

Immuno/ Lymphoret 
9 Rat 

(Wistar) 
24 mo 
5 d/wk 
6 hr/d 

Bd Wt 6 

0.2 M 1 M (minimal to mild 
macrophage 
accumulation in 
mediastinal lymph nodes) 

Reuzel et al. 1994 
Polymeric MDI, aerosolized 

Neurological 
10 Rat 

(Wistar) 
24 mo 
5 d/wk 
6 hr/d 

6 Reuzel et al. 1994 
Polymeric MDI, aerosolized 
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Table 3-2. Levels of Significant Exposure to Methylene Diphenyl Diisocyanate - Inhalation (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 
(mg/m³) 

Less Serious 
(mg/m³) 

LOAEL 

Serious 
(mg/m³) 

Reference 
Chemical Form Comments 

Reproductive 
11 Rat 

(Wistar) 
24 mo 
5 d/wk 
6 hr/d 

6 M Reuzel et al. 1994 
Polymeric MDI, aerosolized 

Cancer 
12 Rat 

(Wistar) 
24 mo 
5 d/wk 
6 hr/d 

6 M (CEL: lung adenomas 
and adenocarcinomas) 

Reuzel et al. 1994 
Polymeric MDI, aerosolized 

a The number corresponds to entries in Figure 3-2. 

b Used to derive a chronic-duration inhalation MRL of 0.001 mg/m3 for polymeric MDI based on a BMDL of 0.48 mg/m3. The BMDL was adjusted for intermittent exposure and 
multiplied by the regional deposited dose ratio for extrathoracic effects to calculate the human equivalent concentration (HEC).  The BMDL(HEC) of 0.039 mg/m3 was divided by an 
uncertainty factor of 30 (3 for extrapolation from animals to humans with dosimetric adjustment and 10 for human variability). 

Bd Wt = body weight; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); Endocr = endocrine; F = female; Gd = gestational day; Gn Pig = guinea pig; Hemato = 
hematological; hr = hour(s); Immuno/Lymphoret = immunological/lymphoreticular; LOAEL = lowest-observed-adverse-effect level; M = male; mo = month(s); NOAEL = 
no-observed-adverse-effect level; Resp = respiratory; wk = weeks(s) 
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Figure 3-2. Levels of Significant Exposure to Methylene Diphenyl Diisocyanate - Inhalation 

Acute (≤14 days) 
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Figure 3-2. Levels of Significant Exposure to Methylene Diphenyl Diisocyanate - Inhalation (Continued) 
Intermediate (15-364 days) 
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Figure 3-2. Levels of Significant Exposure to Methylene Diphenyl Diisocyanate - Inhalation (Continued) 
Chronic (≥365 days) 
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chronic exposure to ≥0.05 ppm production-grade TDI; deaths occurred in 60% of controls and in 77 and 

74% of low- and high-exposure females, respectively (Loeser et a. 1983). 

MDI. No deaths were observed in acute- or intermediate-duration studies in guinea pigs exposed up to 

20 ppb 4,4’-MDI (Marek et al. 1999), in a developmental toxicity study in which rats were exposed to 

9 mg/m3 4,4’-MDI aerosol on GDs 6–15 (Buschmann et al. 1996), or in a chronic-duration study in which 

rats were exposed to 6.0 mg/m3 for 2 years (Reuzel et al. 1994).  

3.2.1.2  Systemic Effects 

Respiratory Effects. 

TDI. A large number of epidemiology and experimental studies have examined the toxicity of TDI to the 

respiratory tract.  Data from a limited number of acute-duration studies identify respiratory irritation as 

the primary effect at low concentrations and severe respiratory symptoms and possibly asthma occurring 

after exposure to high concentrations.  As reviewed by Ott et al. (2003), a 30-minute exposure to TDI 

resulted in the following effects in healthy subjects:  ocular irritation at 0.050 ppm, nasal irritation at 

0.080 ppm, eye, nose, and throat irritation, which was considered tolerable, at 0.100 ppm; tearing and 

burning in the throat at 0.50 ppm, and nasal discharge and severe cough after several minutes of exposure 

to 1.3 ppm.  Another study reviewed by Ott et al. (2003) reported chest tightness, cough, and burning of 

the throat in asthmatics (asthma was not due to occupational exposure to TDI) exposed to 0.01 or 

0.02 ppm TDI for 1 hour.  By comparison, another study reported a mild cough in 1/10 healthy subjects 

exposed to 0.02 ppm TDI for 2 hours.  A longer study in healthy subjects exposed to 0.005 ppm TDI for 

6 hours followed by a 20-minute exposure to 0.02 ppm did not result in respiratory symptoms 

(Vandenplas et al. 1999).  However, slight, but statistically significant, decreases in specific airway 

conductance (sGAW) and MEF at 25% of FVC (MEF25%) were observed. The decreases in sGAW and 

MEF25% started within the first 60 minutes of exposure.  Another study (Chester et al. 1979) did not find 

alterations in specific airway resistance (sRAW) in healthy or asthmatic (not TDI-induced) subjects 

exposed to 0.02 ppm TDI for 20 minutes. 

The primary respiratory effects observed following longer-term occupational exposure are TDI-induced 

bronchial asthma, asthma-like respiratory symptoms, and a decline in pulmonary function.  TDI-induced 

asthma is a type of occupational asthma that can be characterized as bronchial inflammation and/or 

airway hyperresponsiveness.  Respiratory symptoms often reported in workers with TDI-induced asthma 
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include wheezing, dyspnea, coughing, and chest tightness, which often persist after TDI exposure has 

ceased (Mapp et al. 1988; Moller et al. 1986; Moscato et al. 1991; Padoan et al. 2003; Paggiaro et al. 

1984).  Individuals with TDI-induced asthma are considered to be sensitized to TDI, in that brief 

exposures to nonirritating concentrations can result in a worsening of symptoms and a decline in lung 

function.  TDI exposure can result in four types of asthmatic reactions in sensitized individuals:  an 

immediate response, a late response, a dual response (individuals having immediate and late responses), 

or an irregular response.  Two studies, each examining about 100 workers suspected of having TDI-

induced asthma based on respiratory symptoms (e.g., wheezing, dyspnea, chest tightness, or dry cough), 

found that more workers (41 or 44% of responders) had a late response to a TDI challenge (0.011 ppm for 

30 minutes or 0.015–0.025 ppm for 10–15 minutes) than had a dual response (35 or 41%) or immediate 

response (28 or 21%) (Moscato et al. 1991; Paggiaro et al. 1986).  A smaller scale study of 10 subjects 

reported that 8/10 workers had a late reaction to a TDI challenge (0.005–0.006 ppm) and 2/10 had a dual 

reaction (Saetta et al. 1995).  Siracuse et al. (1978) reported a case of a worker who had recurrent 

nocturnal asthma as a result of TDI exposure.  Although the cause of the different responses is not known, 

Paggiaro et al. (1986) noted that subjects who had a dual response to a TDI challenge had a significantly 

longer duration of symptoms before diagnosis than the immediate or late responders. 

The prevalence of TDI-induced asthma among TDI workers has not been well established.  A comparison 

of the prevalence of TDI-induced asthma across studies is difficult due to differences in the criteria used 

to define asthma.  Some studies define asthma as removal from workplace or job due to respiratory 

symptoms, particularly wheezing and dyspnea, and others as a decrease in lung function following a 

TDI-challenge.  Ott et al. (2003) calculated annual induction rates of TDI-induced asthma using data from 

a number of cross-sectional and longitudinal studies and found rates of approximately 5–6% prior to the 

1970s and rates of <1% since the mid-1970s when TDI levels were typically maintained at ≤0.005 ppm 

and many of the cases were attributable to incidents involving exposure to TDI levels well above 

0.02 ppm. In a study of 49 workers at a new TDI polyurethane foam manufacturing facility, new 

symptoms of asthma were observed in 7.1% of the workers after 6 months of exposure (Gui et al. 2014).  

The investigators noted that 90% of the air samples were less than the 0.0001 ppm detection limit, with a 

maximum exposure level of 0.01 ppm. 

Inhalation challenge testing in which subjects with respiratory symptoms characteristic of asthma are 

exposed to a non-irritating concentration of TDI (typically ≤0.02 ppm) for a short period is often used to 

diagnose TDI-induced asthma.  However, not all subjects have a positive reaction, such as a decline in 

FEV1, to the challenge test (Banks et al. 1989; Burge 1982; Mapp et al. 1988; Moller et al. 1986; Moscato 
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et al. 1991; O’Brien et al. 1979).  For example, a study of 58 workers reporting wheezing and dyspnea 

found that only 43% had a positive response in the TDI challenge test (Banks et al. 1989).  Another study 

of 51 workers with respiratory symptoms found a positive reaction to the TDI challenge in 52% of the 

workers (Burge 1982). 

The mechanism of TDI sensitization has not been elucidated; some investigators have suggested that 

immune mechanisms may be involved.  Specific IgG antibodies to TDI-human serum albumin (HSA) 

conjugates (Park et al. 1999) or IgE antibodies to TDI-HSA (Baur and Fruhmann 1981; Cvitanovic et al. 

1989; Park and Nahm 1996; Park et al. 1999; Pezzini et al. 1984; Sharifi et al. 2013) have been found in 

workers with TDI-induced asthma. However, TDI-HSA-specific IgG or IgE antibodies were typically 

found in less than half of the sensitized workers (16–57%).  

A number of studies have tracked the prognosis of workers with probable TDI-induced asthma.  Some 

recovery from respiratory symptoms and/or an absence of a response to a TDI challenge have been 

observed (Banks and Rando 1988; Banks et al. 1990; Lemiere et al. 1996; Mapp et al. 1998; Moller et al. 

1986; Padoan et al. 2003; Paggiora et al. 1984, 1993; Park and Nahm 1997; Saetta et a. 1995).  A small 

improvement in the prevalence of respiratory symptoms was observed 2 years after exposure termination 

in workers with verified TDI-induced asthma (Paggiaro et al. 1984).  Dyspnea and wheezing were 

reported by 8/12 subjects, as compared to 12/12 subjects at the initial examination.  In 16 asthmatic 

subjects who left the workplace, 56% did not respond to a TDI challenge administered 4 years after 

leaving the workforce (Paggiaro et al. 1993).  Padoan et al. (2003) also reported a decline in the 

prevalence of respiratory symptoms of asthma and hyperresponsiveness to methacholine in subjects who 

ceased TDI exposure for an average of 11 years. However, 60% of the subjects removed from TDI 

exposure for >10 years still complained of asthmatic symptoms.  Improvement in respiratory symptoms 

or response to a TDI challenge was not observed in workers who continued TDI exposure (Banks et al. 

1990; Mapp et al. 1988; Padoan et al. 2003; Paggiaro et al. 1984).  A study of 35 subjects with TDI-

induced asthma monitored for 2 years after cessation of exposure found that 49% were no longer 

hyperresponsive to methacholine, 31% had significant improvements in the first year, and 20% did not 

show evidence of improvement.  Subjects who recovered had a shorter duration of asthmatic symptoms 

before diagnosis, immediately ceased TDI exposure after diagnosis, had a milder degree of airway 

hyperresponsiveness, and had specific IgE antibodies to TDI-HSA (Park and Nahm 1997).  A case report 

suggested that re-exposure to TDI may result in a reversal of the recovery (Banks and Rando 1988). 

Eleven years after a worker with asthma ceased TDI exposure, there were no respiratory symptoms and 
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no response when challenged with a subirritant concentration of TDI.  However, within 5 months of 

returning to work, the subject developed asthma and had a positive response to a TDI challenge. 

TDI-induced asthma is typically associated with acute exposure to very high concentrations or prolonged 

exposure to lower concentrations.  Two studies have examined communities near a polyurethane foam 

manufacturing facility in Finland (Nuorteva et al. 1987) or TDI-emitting sources in North Carolina 

(Wilder et al. 2011).  In the Finnish study of 3,153 adults living near the facility, asthma was diagnosed in 

2.2% of the subjects, compared to 2.4% of the 1,029 subjects living in a referent area.  In the subjects 

with asthma, IgE antibodies specific to TDI, MDI, or hexamethylene diisocyanate (HDI) were only found 

in one subject who was occupationally exposed.  No differences in the prevalence of respiratory 

symptoms were found.  Wilder et al. (2011) did not find a significant increase in the prevalence of asthma 

or asthma-like respiratory symptoms in the residents living near TDI sources compared to the referent 

communities.  Of the 161 residents living near TDI sources, only 1 had IgG antibodies specific to TDI 

and none had IgE antibodies specific to TDI. 

The primary effect in workers not sensitized to TDI is a decline in lung function.  Ott et al. (2003) noted 

that the decline in lung function, particularly airflow limitations, may be due to increased airway wall 

thickness, subepithelial fibrosis, obstruction of airway lumen by exudate or mucus, and changes in elastic 

properties of airway walls or loss of the interdependence between airways and surrounding parenchyma.  

Longitudinal studies, summarized in Table 3-3, have examined possible changes in lung function in TDI 

workers over time and found mixed results based on reported 8-hour TWA TDI levels (Adams 1975; 

Bodner et al. 2001; Butcher et a. 1977; Clark et al. 1998, 2003; Diem et al. 1982; Jones et al. 1992; Omae 

et al. 1992; Ott et al. 2000; Peters et al. 1970; Wegman et al. 1977, 1982).  Conflicting results may be due 

to differences in peak exposure levels, length of exposure, historical TDI exposure, or inclusion of 

subjects with possible TDI-induced asthma.  Diem et al. (1982) conducted a 5-year study of a new TDI 

manufacturing facility and found a greater decline in FEV1 and FEF25–50% among workers with a 

cumulative TDI exposure of ≥0.0682 ppm-months and who never smoked.  A greater decline in FEV1 

was also observed in smokers with high cumulative exposure; however, the mean annual decline was 

similar to expected values from cross-sectional studies of normal populations.  Based on unpublished 

information from Janet Hughes, EPA (IRIS 2003) reported a mean 8-hour TWA TDI level in the high 

cumulative exposure, never-smoking group of 0.0019 ppm; the mean 8-hour TWA TDI level for the low 

cumulative exposure, never-smoking group was 0.0009 ppm.  Clark et al. (1998) found a significant 
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Table 3-3.  Summary of Occupational Exposure Studies Examining the Effects of 
TDI on Lung Function 

Study Exposure Effect 
Adams 1975 
Longitudinal study 
565 TDI workers at two TDI 
manufacturing facilities examined 
between 1961 and 1972 

Bodner et al. 2001 
Longitudinal study 
305 TDI manufacturing workers 
employed for at least 
3 consecutive months; referent 
group consisted of 581 workers in 
hydrocarbon departments at the 
same facility; workers were 
examined every 1–2 years for 
26 years 
Butcher et al. 1977 
Longitudinal study 
166 TDI manufacturing workers 
examined prior to working in TDI-
related job and at 6-month 
intervals for a total of 2.5 years 

Clark et al. 1998 
Longitudinal study 
644 workers at 12 polyurethane 
foam manufacturing facilities and 
136 referents examined over a 
5-year period 

Clark et al. 2003 
Longitudinal study 
251 polyurethane foam 
manufacturing workers 
(217 workers were part of the 
Clark et al. 1988 cohort) 
Diem et al. 1982 
Longitudinal study 
114 TDI workers and 54 referents 
working at a new TDI 
manufacturing facility; workers 
divided in to low, medium, and 
high exposure groups and into 
high and low cumulative exposure 
groups; workers examined 9 times 
in 5-year period 

Exposure levels not reported; the 
percentage of TDI levels that 
exceeded 0.02 ppm was 58–67% in 
1962–1964 (most readings between 
0.05 and 0.1 ppm) in plant 1, 21% 
and 13% in 1965 in plants 1 and 2, 
and 1–4 and 2-8% in 1966–1970 in 
plants 1 and 2  
Mean TDI level at the last study 
examination was 0.0023 ppm 

The TWA TDI level was estimated to 
be 0.015 ppm based on area 
monitoring; a comparison between 
some area monitoring and personal 
monitoring data suggests that the 
area monitoring may overestimate 
the worker’s exposure levels 
The mean daily 8-hour TWA was 
0.0012 ppm 

Workers divided into three groups; 
mean 8-hour TWA TDI levels were 
0.00105, 0.0006, and 0.00029 ppm 

Mean 8-hour TWA TDI levels were 
0.0016, 0.0032, and 0.0068 ppm 

TDI levels in the low and high 
cumulative exposure groups were 
<0.0682 and ≥0.0682 ppm-months 

No association between 
exposure and decline in FVC 
and FEV1 levels 

No correlations between lung 
function (FEV1 and FVC) and 
TDI exposure 

No exposure-related decline in 
lung function 

No exposure-related decline in 
lung function; in a subset of 
157 workers who entered the 
study after the first year, 
longitudinal analysis showed a 
significant decline in FEV1 and 
FVC 
No effect of exposure on FEV1 

levels for the full cohort 

Greater decline in FEV1 and 
FEF25–50% in never-smokers in 
the high cumulative exposure 
group, as compared to low 
cumulative exposure group; no 
effect on FEV1 when TDI was 
expressed as a continuous 
variable 
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Table 3-3.  Summary of Occupational Exposure Studies Examining the Effects of 
TDI on Lung Function 

Study Exposure Effect 
Gui et al. 2014 
Longitudinal study 
49 workers at a new TDI 
manufacturing facility 

Huang et al. 1991a 
Cross-sectional study 
15 painters applying polyurethane 
varnish; included 7 workers with 
chronic bronchitis and 4 workers 
with dyspnea and wheezing 
Huang et al. 1991b 
Cross-sectional study 
48 workers at spraying 
polyurethane varnish at three 
facilities included workers at 
facilities A and B with chronic 
bronchitis (46.7 and 15%), 
dyspnea and wheezing (26.7 and 
15%) 
Jones et al. 1992 
Longitudinal study 
386 workers at polyurethane foam 
manufacturing facility examined ≥1 
time in a 2-year period; 
227 examined at least 3 times and 
initial lung function testing 
performed on 294 workers 
Olsen et al. 1989 
Cross-sectional study 
57 workers at TDI manufacturing 
facility and 89 referents 
Omae et al. 1992 
Longitudinal study 
57 polyurethane foam 
manufacturing workers and 
24 referents followed for 4 years 

Ott et al. 2000 
Longitudinal study 
219 TDI manufacturing workers 
and 77 referents examined over a 
16-year period (average duration 
of employment was 4.7–5.7 years) 

90% air samples had TDI levels 
below the detection limit of 
0.0001 ppm 

TDI levels ranged from 0.07 to 0.17 
ppm 

Mean TDI levels at facilities A, B, and 
C were 0.11, 0.043, and 0.015 ppm, 
respectively 

Mean TDI levels ranged from 
0.00117 to 0.00447 ppm 

Exposure levels not reported; TDI 
levels did not exceed the permissible 
level of 0.02 ppm 

Mean TWA TDI levels in low and high 
exposure groups were 0.0001 and 
0.0057 ppm 

High exposure group further divided 
into high-1 and high-2 groups; TWA 
TDI concentrations were 0.0082 ppm 
(maximum TWA TDI level of 0.02– 
0.03 ppm) and 0.0017 ppm 
(maximum TWA TDI level of 0.003– 
0.004 ppm) 
TWA TDI level across jobs and times 
was 0.0042 ppm 

No significant alteration in 
FEV1, FVC, or FEV1/FVC; 
decline in FEV1 levels of >15% 
in 9.1% workers after 12 
months of exposure 
Decreased FVC, FEV1, and 
FEV1% 

Decreased FEV1, and MMF at 
facilities A and B 

No relationship between TDI 
exposure and decline in FVC 
or FEV1 (excluded workers 
with TDI-induced asthma) 

No association between TDI 
exposure (current, highest 
career, or cumulative) and 
FEV1 levels. 
Larger than expected annual 
losses of MMF, ratio of 
FEV1%, FEF25%, and PEF in 
high-1 group; MMF, FEV1%, 
and PEF25% in the high-1 
group were significantly higher 
than low exposure group 

No association between FVC 
and FEV1 and exposure 
(annual or cumulative 
exposure measures) in 
smokers or nonsmokers 
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Table 3-3.  Summary of Occupational Exposure Studies Examining the Effects of 
TDI on Lung Function 

Study Exposure Effect 
Peters et al. 1970 
Longitudinal study 
28 workers at a polyurethane foam 
manufacturing facility examined 
every 6 months for 2 years 
Peters et al. 1968 
Cross-sectional study 
38 workers at a polyurethane foam 
manufacturing facility 
Świerczyńska-Machura et al. 
2015 
Cross sectional study 
30 workers at polyurethane foam 
manufacturing facility 
Wegman et al. 1977 
Longitudinal study 
57 polyurethane foam 
manufacturing workers originally 
examined in 1972 were re-
examined in 1974 
Wegman et al. 1982 
Longitudinal study 
48 TDI workers from Wegman et 
al. (1977) re-examined in 1976 

White et al. 1980 
Cross-sectional study 
147 machinists making seat 
covers with a fabric backed with 
flame-bonded polyurethane foam; 
30% workers reported wheezing 
and/or dyspnea 

Maximum TDI levels at examinations 
1, 2, 3, and 4 were 0.003, 0.012, 
0.0015, and 0.0145 ppm, respectively 

TDI levels ranged from 0.0001 to 
0.003 ppm (levels were 
approximately 10-fold higher the 
previous year) 
Arithmetic mean TDI levels at 
different work areas ranged from 
0.0005 to 0.0037 ppm 

TDI levels were ≤0.0015, 0.0025-
0.0030, and ≥0.0035 ppm 

TDI levels were ≤0.0015, 0.0025-
0.0030, and ≥0.0035 ppm 

TDI levels ranged from 0.0003 to 
0.003 ppm 

FEV1 levels on Monday 
morning were significantly 
lower at the second 
examination than first 
examination 
Decreased FVC, FEV1, FR50%, 
and FR25% during the workday 

Changes indicative of mild 
bronchial obstruction noted in 
17% of workers 

Decline in FEV1 was dose-
related and exceeded 
predicted levels in the highest 
two groups 

4-Year change in FEV1 was 
significantly greater in 
≥0.0035 ppm group than low 
exposure group; most of the 
decline occurred in the first 
2 years of the study 
Higher prevalence of peak 
flow rates <90% of predicted, 
as compared to 45 workers 
who never machined 
polyurethane foam 

FEF25–75% = forced expiratory flow between 25 and 75% of FVC; FEV1 = forced expiratory volume in 1 second; 
FEV1% = ratio of FEV1 to FVC; FR50% = flow rate at 50% vital capacity; FR25% = flow rate at 25% vital capacity; 
FVC = forced vital capacity; MMF = maximal mid-expiratory flow; PEF = peak expiratory flow; TDI = toluene 
diisocyanate; TWA = time-weighted average 
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increase in annual declines in FEV1 and FVC among workers at a polyurethane foam manufacturing 

facility who entered the study with no prior exposure to TDI (naïve group).  It was noted that the greatest 

decline in lung function occurred during the first few months of employment.  The mean 8-hour TWA 

TDI level for the entire cohort of exposed workers was 0.0012 ppm.  No exposure-related effects on lung 

function were found in the whole cohort of exposed workers.  A follow-up of this cohort (Clark et al. 

2003) did not find significant increases in annual declines in lung function in the whole cohort or the 

naïve group in subsequent years.  Another study of polyurethane manufacturing workers found larger-

than-expected annual losses of MMF, ratio of FEV1 to FVC (FEV1%), and PEF in workers with an 8-hour 

TWA TDI level of 0.0082 ppm with maximal TWA peak concentrations of 0.02–0.03 ppm (Omae et al. 

1992).  Annual declines in lung function parameters were not observed in workers with an 8-hour TWA 

TDI level of 0.0017 ppm with maximal TWA peak concentrations of 0.0003–0.004 ppm. In another 

study of a new polyurethane foam production facility, no significant alterations in FEV1, FVC, or 

FEV1/FVC ratio were found after 6 or 12 months of exposure (Gui et al. 2014).  However, it was noted 

that in 9.1% of the 33 workers, there was a decrease in FEV1 of >15% between 6 and 12 months of 

exposure.  TWA TDI levels were not reported; the investigators noted that the TDI levels in >90% of the 

air samples were below the detection limit of 0.0001 ppm.  

Other longitudinal studies of workers at TDI manufacturing facilities (Adams 1975; Bodner et al. 2001; 

Butcher et al. 1977; Ott et al. 2000) or polyurethane foam manufacturing facilities (Clark et al. 2003; 

Jones et al. 1992) have not found significant associations between TDI exposure and declines in lung 

function (Table 3-3).  In longitudinal analysis of FVC and FEV1 levels and TDI exposure, Ott et al. 

(2000) did not find statistically significant associations in TDI manufacturing workers with a TWA TDI 

level of 0.0042 ppm.  Similar findings were reported in another study of TDI manufacturing workers with 

a mean TDI exposure level of 0.0023 ppm (Bodner et al. 2001). Ott et al. (2003) concluded that among 

nonsensitized TDI workers, exposure to ≤5 ppb (8-hour TWA) was not associated with decreases in 

FEV1.  However, it is noted that the investigators did not consider the possibility of increased toxicity 

among naïve workers, as found by Clark et al. (1998) and Diem et al. (1982). 

Cross-sectional studies, summarized in Table 3-3, also examined declines in lung function due to TDI 

exposure (Huang et al. 1991a, 1991b; Olsen et al. 1989; Peters et al. 1968; Świerczyńska-Machura et al. 

2015; White et al. 1989). The interpretation of the results of some of the studies is limited by the 

inclusion of workers with asthma-like respiratory symptoms (Huang et al. 1991a, 1991b; White et al. 

1980) or the lack of controls (Świerczyńska-Machura et al. 2015).  Olsen et al. (1989) did not find 

associations between TDI exposure (current exposure, highest career exposure, cumulative exposure, or 

http:0.02�0.03
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cumulative highest-to-date exposure) and FEV1 levels in a study of TDI manufacturing workers. 

Although the TDI levels were not reported, the investigators noted that TDI levels at the facility did not 

exceed the permissible level of 0.02 ppm; the investigators did not provide definitions of highest career 

exposure, cumulative exposure, or cumulative highest-to-date exposure or information on how they were 

calculated.  In a study of polyurethane foam manufacturing workers, Peters et al. (1968) reported 

significant decreases in FVC, FEV1, flow rate at 50% vital capacity (FR50%), and FR25% when end-of-shift 

values were compared to start-of-shift values.  Further declines in FVC, peak flow rate (PFR), FR50%, and 

FR25% were found when Monday afternoon values were compared to Monday morning values.  The TDI 

levels ranged from 0.0001 to 0.003 ppm. 

Animal studies support the findings from human studies that the respiratory tract is a sensitive target of 

TDI toxicity.  Signs of irritation and histological damage have been observed following acute-, 

intermediate-, and chronic-duration exposure.  Acute studies in mice and rats demonstrated that TDI was 

a sensory irritant and that the level of response was related to the concentration and the duration of 

exposure (Pauluhn 2014; Sangha and Alarie 1979). RD50 values (concentration resulting in a 50% 

decrease in respiration rate) in mice exposed for 10, 30, 60, 120, 180, or 240 minutes were 0.813, 0.498, 

0.386, 0.249, 0.199, and 0.199 ppm, respectively (Sangha and Alarie 1979).  When the animals were 

repeatedly exposed, the RD50 values were lower on subsequent days; after 3 days of exposure to 0.023– 

1.18 ppm, pre-exposure respiratory rates were lower than day 1, indicating an incomplete recovery. 

Histological alterations have been observed in the nasal cavity (Arts et al. 2008; Buckley et al. 1984; 

Johnson et al. 2007; Loeser 1983; Matheson et al. 2005; Sangha and Alarie 1979; Zissu 1995), trachea 

(Gordon et al. 1985), and lung (Loeser 1983; Wong et al. 1985) in laboratory animals.  The nasal lesions 

consist of inflammation, hyperplasia, degeneration, ulceration, and metaplasia; the severity and the 

location of the damage appear to be concentration and duration related.  At lower concentrations and 

shorter durations, only the nares (most anterior region of the nasal cavity) are affected; at high 

concentrations, the damage extends to the olfactory epithelium.  The only NOAEL identified for nasal 

effects is 0.031 ppm in mice exposed 3 hours/day for 5 days (Sangha and Alarie 1979).  When the 

duration was extended to at least 6 weeks (4 hours/day, 5 days/week), exudate, goblet cell metaplasia, and 

inflammation were observed in the nares of mice exposed to 0.02 ppm (Matheson et al. 2005).  Rhinitis 

was also observed in rats exposed to 0.02 ppm in a 2-generation study (Tyl et al. 1999b).  Exposure to 

0.05 ppm 4 hours/day for 12 days resulted in extensive inflammatory cell infiltration into the lamina 

propria in the nasoturbinates and maxilloturbinates of mice; goblet cell metaplasia was also observed in 

the maxilloturbinates (Johnson et al. 2007).  Extending exposure to 0.07 ppm from 4 to 9 days resulted in 
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an increase in the severity of the rhinitis and respiratory epithelia metaplasia and necrosis observed in 

mice (Zissu 1995).  The TDI concentration associated with olfactory epithelial damage was 0.4 ppm 

(6 hours/day for 5 days), which resulted in moderate olfactory epithelial ulceration and necrosis and slight 

degeneration of the olfactory nerve (Buckley et al. 1984). Concentration-related increases in the 

incidence and severity of chronic or necrotic rhinitis with epithelial atrophy and mucous and squamous 

metaplasia were observed in mice exposed to ≥0.05 ppm TDI for 2 years (Loeser 1983). 

Slight laryngeal epithelial hyperplasia was observed in mice exposed to 1.0 ppm TDI for 6 hours (Arts et 

al. 2008).  Exposure of guinea pigs to 2 ppm for 1 hour resulted in patchy loss of cilia and disruption of 

the surface epithelium in the trachea (Gordon et al. 1985).  Matheson et al. (2005) reported goblet cell 

inflammation, epithelial hyperplasia, regeneration, and loss of structure in the lungs of mice exposed to 

0.5 ppm for 2 hours.  However, other acute studies at similar (0.4 ppm 6 hours/day for 5 days) or higher 

(1 ppm for 6 hours) concentrations did not find histological alterations in the lungs (Arts et al. 2008; 

Buckley et al. 1984).  Interstitial inflammation, localized pleural thickening, and goblet cell hyperplasia 

were observed in the lungs of guinea pigs 50 days after exposure to 1.4 ppm 3 hours/day for 5 days 

(Wong et al. 1985). Similarly, goblet cell metaplasia in the central airway mucosa and eosinophil 

infiltration in the central and peripheral airways were observed in rats exposed to 0.41 ppm 2,4-TDI 

4 hours/day for 5 days (Kouadio et al. 2014); the severity of the lesions increased with exposure 

concentration.  In a chronic mouse study, interstitial pneumonitis and catarrhal bronchitis were observed 

in “some mice,” with a higher incidence at 0.15 ppm (Loeser 1983). 

In addition to the histological alterations, studies in guinea pigs, rats, and mice have demonstrated TDI 

sensitization (Aoyama et al. 1994), bronchial hyperresponsiveness (Gagnaire et al. 1996; Gordon et al. 

1985; Kouadio et al. 2014; Marek et al. 1999; Matheson et al. 2005), and nasal hyperresponsiveness 

(Kouadio et al. 2014).  An increase in respiratory rate was observed in guinea pigs exposed to 0.2 ppm 

TDI 3 hours/day for 5 days and challenged with 0.02 ppm TDI (15-minute exposure) 26 days after the 

initial exposure (Aoyama et al. 1994).  The TDI challenge concentration did not elucidate a response in 

guinea pigs previously exposed to 0.02 ppm for 5 days.  Challenge tests with acetylcholine or 

methacholine resulted in airway hyperresponsiveness in guinea pigs and mice previously exposed to a 

TDI concentration as low as 0.01 ppm (6 hours/day for 5 days) (Marek et al. 1999); a NOAEL of 

0.005 ppm was identified in the same study.  Airway hyperresponsiveness was also observed following a 

1-hour exposure to a relatively high concentration (3 ppm) (Gagnaire et al. 1996).  The effects were 

observed 30 minutes after exposure and persisted for 48 hours. A TDI challenge following 4-hour/day 

exposure to 2,4-TDI resulted in severe labored breathing as evidenced by gasping and breathing with an 
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open mouth after 4 days of exposure to 1.14 ppm (Kouadio et al. 2014); the severity of the labored 

breathing was less severe after 2 or 3 exposure days. Labored breathing was also observed in rats 

similarly exposed to 0.41 ppm for 4 or 5 days.  Symptoms of nasal hyperresponsiveness (sneezing and 

hyperrhinorrhea) were also observed at both concentrations (Kouadio et al. 2014). 

MDI. The toxicity of MDI to the respiratory tract has not been as well investigated as TDI, but the effects 

appear to be similar.  The primary effects observed include occupational asthma in sensitized individuals 

and decreased lung function.  MDI-induced asthma has been reported in occupational exposure studies 

and case reports (Bonauto et al. 2005; Burge 1982; Chang and Karol 1984; Helaskoski et al. 2015; Hur et 

al. 2008; Liss et al. 1988; Suojalehto et al. 2011; Woellner et al. 1997; Zammit-Tabona et al. 1983); 

however, no reliable dose-response data are available. Asthma symptoms were noted in 18 of the 

106 workers at a wood products plant using heated MDI in the manufacture of synthetic wood (Woellner 

et al. 1997).  Symptoms occurred within the first 12 months of operation; half reported symptoms within 

the first 7 months of operation when operational problems would likely have resulted in MDI levels that 

exceeded the permissible level of 0.02 ppm.  Bonauto et al. (2005) used worker’s compensation claims to 

estimate the rate of asthma in the spray-on truck bed lining industry.  A rate of 200 per 10,000 full-time 

employees was found; however, no testing was done on any of the claims to determine whether MDI was 

causative agent.  Approximately half of subjects reporting asthma-like symptoms (wheezing, dyspnea, 

and/or cough) had a positive response in a methacholine-challenge test.  A study of 11 foundry workers 

with asthma-like symptoms found that 6 had a positive response in a MDI-challenge test (Zammit-Tabona 

et al. 1983).  Another study of 40 MDI workers found that 24 responded to MDI challenge at test 

atmospheres of up to 0.02 ppm (Burge 1982).  A third study (Hur et al. 2008) diagnosed MDI-induced 

asthma or eosinophilic bronchitis in 6 of 13 car upholstery factory workers with lower respiratory 

symptoms.  The incidence of nonspecific bronchial hyperresponsiveness to a challenge with methacholine 

was significantly higher among MDI workers with asthma-like symptoms, as compared to controls and 

TDI workers (Jang et al. 2000).  Several case reports of MDI workers (Bascom et al. 1985; Baur et al. 

1984; Malo and Zeiss 1982; Zeiss et al. 1980) and a study of MDI workers (Baur 1995) with asthma-like 

symptoms also reported chills, fever, and malaise, which are consistent with symptoms of 

hypersensitivity pneumonitis. 

Several occupational exposure studies have examined the effect of MDI exposure on lung function (Liss 

et al. 1988; Musk et al. 1982; Sulotto et al. 1990).  Lung function was examined in 27 polyurethane foam 

workers who were asymptomatic for asthma; the MDI concentrations ranged from 0.0005 to 0.001 ppm.  

A comparison of lung function values of the workers to an age-matched control group of 27 clerks did not 
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show statistically significant differences between the groups.  Additionally, no differences in the change 

in lung function over a work week (Monday values compared to Friday values) or over the work shift 

were found.  Musk et al. (1982) examined 107 workers at two polyurethane plastic manufacturing 

facilities over a 5-year period; 25 of the subjects were only exposed to MDI, 17 to only TDI, 6 to MDI 

and TDI, and 42 were not exposed to diisocyanates. The geometric mean MDI levels reported by the 

plants during the last year of the study were 0.0006 and 0.0003 ppm at plants 1 and 2, respectively; 

however, the mean MDI levels measured by the investigators ranged from 0.001 to 0.003 ppm.  It should 

be noted that MDI exists as an aerosol; thus, the method used to measure MDI air levels (impinged 

method) may have underestimated MDI levels (EPA 1998a).  Lung function tests were conducted on 

Monday morning and afternoon and on Monday morning and afternoon following a 2-week vacation.  No 

significant alterations in FEV1 or FVC levels were found over the 5-year period, over a workday, or after 

a 2-week non-exposure period among the MDI-only exposed group. 

Several studies of MDI workers have examined the possible association between specific 

immunoglobulin antibodies to MDI and MDI-induced asthma (Hur et al. 2008; Pezzini et al. 1984; Tse et 

al. 1985; Zeiss et al. 1980).  In a study of 76 foundry workers (10 with asthma-like symptoms and 

bronchial hyperreactivity, 40 with respiratory symptoms but no evidence of bronchial hyperreactivity, and 

26 with no respiratory symptoms), specific IgE antibodies to MDI-HSA conjugates were found in 

2 workers (1 with asthma-like symptoms and one with other symptoms) and specific IgG antibodies to 

MDI-HSA conjugates were found in 5 workers (3 with asthma-like symptoms, 1 with other symptoms, 

and 1 with no symptoms) (Tse et al. 1985).  Another study of car upholstery factory workers found 

specific IgG antibodies to MDI-HSA conjugates in 20.7% of the 58 workers (4/12 of the responders were 

diagnosed with MDI-induced asthma or eosinophilic bronchitis) and specific IgE antibodies to MDI-HSA 

conjugates in 8.6% of the workers (2/5 of the responders were diagnosed with MDI-induced asthma or 

eosinophilic bronchitis) (Hur et al. 2008). 

A limited number of laboratory animal studies have examined the toxicity of MDI to the respiratory tract. 

An RD50 of 32 mg/m3 in mice exposed to 4,4’-MDI for 4 hours was calculated (Weyel and Schaffer 

1985).  Exposure to concentrations as low as 7 mg/m3 initially resulted in increases in respiratory rate 

followed by a gradual decline in respiratory rate; a similar respiratory pattern was observed in mice 

administered 4,4’-MDI via tracheal cannulation. The investigators suggested that this respiratory pattern 

was indicative of a pulmonary irritant rather than a sensory irritant.  Increases in airway hyper-

responsiveness to acetylcholine were observed in guinea pigs exposed to 0.01 ppm MDI 6 hours/day for 
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5 days or 6 hours/day, 5 days/week for 4 weeks (Marek et al. 1999); a NOAEL of 0.005 ppm was 

identified in the 5-day study. 

In a chronic-duration study (Reuzel et al. 1994), rats were exposed to polymeric MDI (containing 44.8– 

50.2% monomeric MDI) for 1 or 2 years.  After 2 years of exposure, nasal and pulmonary lesions were 

observed at 1.0 and 6.0 mg/m3 and no alterations were observed at 0.2 mg/m3. The nasal lesions 

consisted of basal cell hyperplasia and Bowman’s gland hyperplasia in males at ≥1.0 mg/m3 (basal cell 

hyperplasia was also observed in females at 6.0 mg/m3) and minimal to severe olfactory epithelial 

degeneration in males and females at 6.0 mg/m3; after 1 year of exposure, the only nasal lesion with a 

significantly increased incidence was minimal to moderate olfactory epithelial disarrangement in males 

exposed to 6.0 mg/m3. The lung lesions in rats exposed to 1.0 or 6.0 mg/m3 for 2 years consisted of mild 

to moderate localized fibrosis and alveolar duct epithelialization; exposure to 6.0 mg/m3 also resulted in 

localized alveolar bronchiolization.  Additionally, an accumulation of macrophages with yellow pigment 

was observed at 1.0 and 6.0 mg/m3. After 1 year of exposure, minimal to moderate localized fibrosis, 

alveolar duct epithelialization, and localized alveolar bronchiolization were observed at 6.0 mg/m3; 

alveolar duct epithelialization was also observed in the females exposed to 1.0 mg/m3. 

An unpublished study conducted by Hoyemann and associates in 1995 also evaluated the chronic toxicity 

of MDI in rats; this study was reviewed by Feron et al. (2001).  Groups of 80 female Wistar rats were 

exposed to 0, 0.23, 0.70, or 2.05 mg/m3 monomeric MDI aerosols (mass median aerodynamic diameter 

[MMAD] of approximately 1.0 µm) 18 hours/day, 5 days/week for approximately 2 years.  As reviewed 

by Feron et al. (2001), significant increases in absolute and relative lung weight were observed at 

2.05 mg/m3. A number of histological alterations were observed at 0.23 mg/m3 including bronchiolo-

alveolar hyperplasia, mononuclear cell infiltration, and fibrosis; the incidence and severity of the lesions 

appeared to be concentration related. These effects are similar to those observed in Reuzel et al. (1994). 

The LOAELs from the two studies are similar after adjusting for intermittent exposure: 0.178 mg/m3 for 

the Reuzel et al. (1994) study and 0.123 mg/m3 for the Hoyemann study. 

Cardiovascular Effects. 

TDI. No histological alterations were observed in the aorta or heart of rats or mice exposed to 0.15 ppm 

commercial-grade TDI for 2 years (Loeser 1983). 
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MDI. No histological alterations were observed in the heart of rats exposed to 6.0 mg/m3 polymeric MDI 

for 2 years (Reuzel et al. 1994). 

Gastrointestinal Effects. 

TDI. Workers with accidental exposure to unknown quantities of TDI spilled from tanks have reported 

nausea and vomiting during exposure (Axford et al. 1976; Singer and Scott 1987). 

Shadnia et al. (2013) reported a case of intestinal obstruction in a 16-year-old male worker in an Iranian 

sponge production factory.  The subject’s symptoms began after he was exposed to TDI for 2 hours; 

details of his exposure prior to this incident, or coexposures during the incident, were not provided.  The 

authors noted that the subject had a past history of surgery for stomach lymphoma, and during surgery to 

correct the obstruction, mild adhesions from the previous surgery were seen.  However, the authors noted 

that the surgery did not identify any possible causes of the obstruction; they postulated several possible 

mechanisms by which TDI may have induced the effect, including triggering an inflammatory response, 

interrupting parasympathetic nervous system function, or decreasing bowel motility via an effect on 

intestinal smooth muscle. 

No gastrointestinal lesions were observed in rats or mice exposed to 0.15 ppm commercial-grade TDI for 

2 years (Loeser 1983). 

MDI. No histological alterations were observed in the gastrointestinal tract of rats exposed to 6.0 mg/m3 

polymeric MDI for 2 years (Reuzel et al. 1994). 

Hematological Effects. 

TDI. No hematological alterations were noted in rats or mice exposed to 0.15 ppm commercial-grade 

TDI for 2 years (Loeser 1983). 

MDI. No hematological alterations were observed in rats exposed to 6.0 mg/m3 polymeric MDI for 

2 years (Reuzel et al. 1994). 
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Musculoskeletal Effects. 

TDI. No histological alterations were observed in the femur or skeletal muscle (quadriceps) of rats or 

mice exposed to 0.15 ppm commercial-grade TDI for 2 years (Loeser 1983). 

MDI. Reuzel et al. (1994) examined 43 organs and tissues, which likely included bones and skeletal 

muscles, of rats exposed to 6.0 mg/m3 polymeric MDI for 2 years and did not find histological alterations 

outside of the respiratory tract. 

Hepatic Effects. 

TDI. No histological alterations in the liver or alterations in serum chemistry parameters were observed 

in rats or mice exposed to 0.15 ppm commercial-grade TDI for 2 years (Loeser 1983). 

MDI. No histological alterations were observed in the liver of rats exposed to 6.0 mg/m3 polymeric MDI 

for 2 years (Reuzel et al. 1994); additionally, no alterations in serum clinical chemistry parameters were 

observed. 

Renal Effects. 

TDI. No histological alterations were observed in the kidneys in rats or mice exposed to 0.15 ppm 

commercial-grade TDI for 2 years (Loeser 1983). 

MDI. No histological alterations in the kidneys or alterations in urinalysis parameters were observed in 

rats exposed to 6.0 mg/m3 polymeric MDI for 2 years (Reuzel et al. 1994). 

Dermal Effects. 

TDI. In a study of 114 workers at a flexible foam manufacturing facility (Daftarian et al. 2002), 

production workers who were exposed to TDI reported skin conditions such as dermatitis, eczema, or 

other red rash in the previous 12 months more than twice as often as unexposed non-production workers 

(prevalence rate ratio of 2.66; 95% confidence interval [CI] 1.14–16.32, p<0.02).  Skin patch testing and 

blood samples for specific IgG or IgE antibodies to TDI were largely negative (only 2/100 workers had a 

http:1.14�16.32


    
 

    
 
 

 
 
 
 
 

     

    

 

        

 

 

      
 

    

    

  

  

  

    

     

 

  

 

   

   

 

 

   

 

 

     
 

   

  

  

  

  

       

  

53 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

3. HEALTH EFFECTS 

positive result to any of these tests, and only for specific IgG); thus, the effects were considered to be 

related to irritation rather than an immune response. 

MDI. Stingeni et al. (2008) reported a case of facial urticaria in a worker using a polyurethane glue 

containing MDI. 

Ocular Effects. 

TDI. In a case series of ocular effects in humans or animals exposed to diisocyanates, Luckenbach and 

Kielar (1980) evaluated visual acuity and ophthalmologic status in nine workers exposed to TDI during 

the production of polyurethane foam.  No information on exposure levels was provided; the various cases 

had worked in the facility for durations ranging from 10 days to 2 years.  All nine workers reported ocular 

symptoms such as “smoky” or “foggy” vision or eye irritation, usually resolving during weekends or 

overnight.  In all nine, microcystic edema of the corneas and conjunctival injection (dilation of 

conjunctival blood vessels leading to appearance of redness) were observed upon ophthalmologic 

examination, with more severe cases associated with diminished visual acuity.  None of the cases 

exhibited abnormal Schirmer I tear test or tear break-up time (Luckenbach and Kielar 1980). 

Littorin et al. (2007) noted a significant association between self-reported eye symptoms and continuous 

measures of TDI exposure in workers.  When the 2,4-TDI and 2,6-TDI levels were examined separately, a 

stronger association was found between eye symptoms and 2,4-TDI levels than with 2,6-TDI levels. 

MDI. No information was located regarding ocular effects in humans or animals following inhalation 

exposure to MDI. 

Body Weight Effects. 

TDI. Significant decreases (45% relative to controls) in maternal body weight gain were seen in CD rats 

during exposure (6 hours/day on GDs 6–15) to 0.5 ppm commercial-grade TDI in a developmental 

toxicity study (Tyl et al. 1999a); in a range-finding study, significant weight loss was observed at 1 ppm.  

In a 2-generation reproductive toxicity study, intermediate-duration exposure (19 weeks including 

premating, mating, gestation, and lactation) to 0.3 ppm commercial-grade TDI did not alter body weight 

of male or female F0 or F1 parental CD rats (Tyl et al. 1999b).  Chronic exposure of rats to 0.15 ppm 

commercial-grade TDI resulted in significant reductions in body weight gain (Loeser et al. 1983).  
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However, the magnitude of change was not reported; the investigators did not report any changes in body 

weight gain at 0.05 ppm. 

MDI. Acute-duration exposure of Wistar rats to 4,4’-MDI during gestation (6 hours/day on GDs 6–15) 

did not alter maternal body weight or body weight gain at exposure concentrations up to 9 mg/m3 

(Buschmann et al. 1996).  No significant alterations in body weight gain were observed in rats exposed to 

6.0 mg/m3 polymeric MDI for 2 years (Reuzel et al. 1994). 

3.2.1.3  Immunological and Lymphoreticular Effects 

Although the exact mechanism of toxicity of TDI and MDI has not been elucidated, there is some 

indication that occupational asthma observed in some workers has an immune component, and several 

studies have reported alterations in TDI or MDI specific IgG and IgE antibodies in workers with asthma 

(Baur and Fruhmann 1981; Cvitanovic et al. 1989; Hur et al. 2008; Park and Nahm 1996; Park et al. 

1999; Pezzini et al. 1984; Sharifi et al. 2013; Tse et al. 1985; Zeiss et al. 1980).  These findings are 

discussed in detail in the Respiratory Effects section. 

3.2.1.4  Neurological Effects 

TDI. Le Quesne et al. (1976) described the immediate and long-term neurological effects in 

23 firefighters who were “heavily exposed” during a fire at a polyurethane foam factory; approximately 

4,500 L of TDI had spilled from storage tanks during the fire (Axford et al. 1976).  The firefighters were 

exposed via inhalation, and some also had dermal contact.  Other chemicals were stored at the factory, but 

the spillage was apparently limited to TDI; however, exposure to other chemicals cannot be ruled out.  

Additionally, exposure to carbon monoxide or anoxia may have contributed to the observed effects; the 

investigators noted that there was no evidence that the fumes were sufficiently dense for the firefighters to 

become anoxic.  Five of the exposed men reported symptoms during the fire including euphoria, ataxia, 

and transient loss of consciousness; two reported headache the next day.  Seventeen of the firefighters 

were medically evaluated 3 weeks later and 14 of these men reported symptoms of confusion, poor 

memory, headache, irritability, difficulty concentrating, or depression.  Neurological examination showed 

slight changes including ataxia and mild sensory loss; electroencephalography recordings on nine men 

were unremarkable.  At follow-up of 18 men 4 years later, memory problems were still reported by most 

of the subjects, and some reported persistence of concentration difficulty, irritability, and depression.  No 

abnormalities were seen on neurological examination; however, a statistically significant (p<0.02) 

impairment in long-term recall was noted in the Wechsler memory scale when tests in exposed men who 
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reported persistent effects were compared with unexposed firemen from another area (Le Quesne et al. 

1976). 

Singer and Scott (1987) reported neurological symptoms and neuropsychological and electrophysiology 

test results for three male wharf workers who were exposed to spilled TDI.  Both dermal contact and 

inhalation exposure were described, and the total duration of exposure was about 4 hours for all three 

workers.  The workers reported feeling dizzy during exposure.  The workers were evaluated 2 and 

16 months after exposure using neuropsychological tests and nerve conduction velocity measurements. 

Test results showed statistically significant decreases (p<0.0003) in verbal, performance, and full-scale IQ 

at 16 months postexposure compared with 2 months postexposure (full scale IQ dropped between 20 and 

26 points in all three subjects); while the tests administered at each time were slightly different (WAIS at 

2 months versus WAIS-R at 16 months), on average, these tests differ only by 7–8 points (Singer and 

Scott 1987).  In addition to IQ change, statistically significant impairments in both the Benton Visual 

Retention and Wechsler Memory Scale: Logical Memory were observed. Two of the three subjects 

exhibited significantly reduced nerve conduction velocities, one in the median sensory nerve and the other 

in the sural nerve, while the third showed no change in nerve conduction.  The study authors also reported 

that testing at 16 months postexposure showed severe deficits in manual dexterity, visuomotor tracking, 

mental flexibility, ability to detect figure-ground relationships, and word fluency (additional details of 

these findings were not provided). The small number of subjects, lack of a control group, and small 

magnitude of the effects limit the interpretation of the results. 

Hughes et al. (2014) recently evaluated the available data on the neurotoxicity of diisocyanates to 

determine whether a causal association could be established between diisocyanate exposure (the studies 

involved exposure to TDI, MDI, HDI, or unspecified diisocyanates) and neurotoxicity.  Using the Hill 

criteria for causality, Hughes et al. (2014) concluded that there was limited evidence for strength of 

association and consistency, and the data were inadequate to establish a casual association between 

diisocyanates and neurotoxicity.  The investigators noted several limitations of the studies included in 

their systematic review such as limited exposure information (including the lack of objective exposure 

measures and no dose-response assessment), co-exposure to known neurotoxicants, and lack of objective 

measures of neurotoxicity.  Additionally, they noted that no plausible mechanisms of toxicity were 

identified.  
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No animal studies have examined the potential of TDI to induce neurological effects.  No histological 

alterations were observed in the brain, sciatic nerve, or spinal cord of rats or mice exposed to 0.15 ppm 

commercial-grade TDI for 2 years (Loeser 1983). 

MDI. Information on the neurotoxicity of MDI is limited to a chronic study that did not find histological 

alterations in the brain of rats exposed to 6.0 mg/m3 polymeric MDI for 2 years (Reuzel et al. 1994). 

3.2.1.5  Reproductive Effects 

TDI. No information was located regarding reproductive effects in humans following inhalation exposure 

to TDI.  When groups of 28 CD rats were exposed via inhalation to commercial-grade TDI (80:20 mix of 

2,4- and 2,6-TDI), no effects on reproductive toxicity parameters (including mating, fecundity, or fertility 

indices; gestation length; numbers of live litters or live birth indices; gross necropsy findings; or 

histopathology of reproductive organs) were seen at exposures up to 0.3 ppm, 6 hours/day, 5 days/week 

for 2 generations (Tyl et al. 1999b).  A 2-year study in rats and mice did not find histological alterations 

in the gonads of male and female rats and mice (Loeser 1983). 

MDI. No information was located regarding reproductive effects in humans following inhalation 

exposure to MDI.  A 2-year study in male and female rats did not find histological alterations in the 

gonads at 6.0 mg/m3 polymeric MDI (Reuzel et al. 1994). 

3.2.1.6  Developmental Effects 

TDI. No information was located regarding developmental effects in humans following inhalation 

exposure to TDI. Exposure of rats to 0.5 ppm TDI (80:20 mix of 2,4- and 2,6-TDI) during GDs 6–15 

resulted in an increased incidence of litters with poorly ossified cervical centrum no. 5, but no other 

treatment-related increases in anomalies or variations (Tyl et al. 1999a).  Maternal toxicity, including 

markedly reduced body weight gain and respiratory symptoms, was seen at 0.5 ppm, and the observed 

developmental effects may have been secondary to the maternal toxicity. 

MDI. No information was located regarding developmental effects in humans following inhalation 

exposure to MDI.  After exposure of rats to 9 mg/m3 4,4’-MDI aerosol for 6 hours/day on GDs 6–15, 

there was an increase in the incidence of litters with fetuses displaying asymmetric sternebrae (10/23 

litters versus 2/25 control litters, p<0.05); no effects of treatment were seen on other gestational 

parameters or on malformation or variation incidences at lower exposure concentrations (Buschmann et 
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al. 1996).  The investigators noted that the incidence was within the limits of biological variability. Apart 

from reduced food consumption, dams did not exhibit signs of toxicity at any exposure concentration in 

this study; an increase in lung weight was also observed in the dams. 

3.2.1.7  Cancer 

Human data on the potential association between inhalation exposure to diisocyanates and cancer are 

available from studies of three cohorts of workers engaged in polyurethane foam manufacture.  Studies of 

these cohorts (Mikoczy et al. 2004; Schnorr et al. 1996; Sorahan and Nichols 2002) have suggested an 

association between work in the polyurethane foam manufacturing industry and lung cancer in female 

workers, but an association with diisocyanate exposure was not established.  Significant limitations of all 

three studies included lack of control for confounding factors such as smoking and alcohol consumption 

and coexposure to mixtures of compounds including those other than diisocyanates. 

Cohort studies of cancer and diisocyanate exposure include: a cohort of 4,611 workers from 4 plants in 

the United States (Schnorr et al. 1996); a cohort of 4,175 workers from 9 plants in Sweden (Mikoczy et al. 

2004; Hagmar et al. 1993a, 1993b); and a cohort of 8,288 workers in 11 plants in the United Kingdom 

(Sorahan and Nichols 2002; Sorahan and Pope 1993).  Sorahan and Nichols (2002) reported data on the 

largest number of person-years at risk (200,262); Schnorr et al. (1996) reported on 90,393 person-years at 

risk, and Mikoczy et al. (2004) reported on 83,023 person-years at risk.  None of the studies provided 

quantitative estimates of individual exposures. Workers in all three cohorts were exposed to a mixture of 

TDI isomers, and those at some plants were also exposed to unspecified isomers of MDI.  In addition, all 

of the cohorts included workers who may have been exposed to other airborne contaminants such as 

methylene chloride, aliphatic amines, acrolein, acrylonitrile, styrene, amine accelerators such as 

bis(2-dimethylaminoethyl) ether, and others (Mikoczy et al. 2004; Schnorr et al. 1996).  

Table 3-4 shows the results of the most recent studies in the three cohorts.  Increased standardized 

mortality ratios (SMRs) for lung cancer were reported for women in all three cohorts; the increases were 

statistically significant in the U.K. (Sorahan and Nichols 2002) and Swedish (Mikoczy et al. 2004) 

cohorts, but not the U.S. cohort (Schnorr et al. 1996).  Mikoczy et al. (2004) also reported a significantly 

increased incidence of lung cancer in females (standardized incidence ratio [SIR] of 3.0; 95% CI 1.55– 

5.24) compared with the expected incidence in the general Swedish population.  However, when stratified 
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Table 3-4.  Results of Cohort Studies of Diisocyanate Exposure and Mortality 
from Specific Cancers 

U.S. cohort U.K. cohort Swedish cohort 
Reference Schnorr et al. 1996 Sorahan and Nichols Mikoczy et al. 2004 

2002 
Cohort size (number of 4,611 (4) 8,288 (11) 4,175 (9) 
plants) 
Time period of follow-up 1958–1993 1958–1998 1959–1998 
Person-years at risk 90,393 200,262 83,023 

Number SMR (95% Number of SMR (95% Number 
Cancer site of cases CI) cases CI) of cases SMR (95% CI) 
Females 

Lung 8 173 35 181a (126– 10 352a (169– 
251) 648) 

Rectum 0 NA 2 53 (6–192) – – 
Non-Hodgkin’s lymphoma – – 3 110 (23, 321) – – 
Hodgkin’s disease – – 0 NA – – 

Males 
Lung 12 79 134 107 (90–127) 7 49 (20–101) 
Rectum 3 390 10 65 (31–120) – – 
Non-Hodgkin’s lymphoma – – 6 65 (24–142) – – 
Hodgkin’s disease – – 1 44 (1–243) – – 

Females and males (combined) 
Lung 20b 101 (62–156) – – 17 99 (58–159) 
Rectum 3 278 (57–813) – – – – 
Non-Hodgkin’s lymphoma 4 154 (42–395) – – – – 
Hodgkin’s disease 2 232 (28–838) – – – – 

aSignificantly different from null hypothesis at p<0.05. 
bIncludes tumors of the lung, trachea, and bronchus. 

– = not reported; CI = confidence interval; SMR = standardized mortality ratio 
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by “apparent” versus “no or low” exposure to TDI or MDI, women with “apparent” exposure did not 

exhibit a higher risk of lung cancer.  In addition, Mikoczy et al. (2004) conducted a nested case-referent 

study of the 12 lung cancer cases among female workers, and observed no greater prevalence of exposure 

to polyurethane dust in cases compared with referents.  Similarly, Sorahan and Nichols (2002) observed a 

statistically significant increased incidence of lung and bronchus cancer in women (standardized 

registration ratios [SRR] 199; 95% CI 135–282), but reported that all of the female lung cancers in the 

cohort were in women who did not work for any period in an isocyanate-exposed setting.  Schnorr et al. 

(1996) did not evaluate the effect of isocyanate exposure duration on lung cancer risk in women alone, 

but in both male and female workers, there was no trend of increased lung cancer mortality by duration of 

exposure or time since first exposure. 

Schnorr et al. (1996) reported nonsignificant increases in the SMRs for rectal cancer, Hodgkin’s disease, 

and non-Hodgkin’s lymphoma in the U.S. cohort; however, studies of the Swedish and U.K. cohorts 

(Mikoczy et al. 2004 and Sorahan and Nichols 2002, respectively) did not support these findings, as 

SMRs for these neoplasms were reduced in the exposed workers of these cohorts (Table 3-4). 

TDI. When groups of 126/sex Sprague-Dawley rats and 120/sex CD-1 mice were exposed to vapors of 

commercial-grade TDI via whole-body inhalation on 6 hours/day, 5 days/week for 108–110 weeks 

(Loeser 1983), there were no treatment-related increased tumor incidences in rats or mice.  

The authors noted that histopathology of the nasal turbinates in rats was still in progress, but that there 

were no grossly visible effects of treatment on the upper respiratory tract.  No follow-up study was 

identified in the literature search.  This study lacked some details in methodology, and did not describe 

the approach to statistical analysis. 

MDI. Groups of 60 Wistar rats per sex were exposed to aerosolized polymeric MDI at nominal 

concentrations of 0, 0.2, 1.0, or 6.0 mg/m3 via whole-body inhalation 6 hours/day, 5 days/week for 

2 years (Reuzel et al. 1994).  A significantly increased incidence (6/60) of lung adenoma, as well as one 

lung adenocarcinoma, was observed in male rats exposed to 6.0 mg/m3 polymeric MDI.  No lung tumors 

occurred in control, 0.2, or 1.0 mg/m3 exposure groups of male or female rats.  In female rats exposed to 

6.0 mg/m3, 2/59 animals developed lung adenomas; there were no adenocarcinomas (Reuzel et al. 1994). 

In a second study conducted by Hoyemann and associates (reviewed by Feron et al. 2001) in which 

female Wistar rats were exposed to monomeric MDI 18 hours/day, 5 days/week for 2 years, the 
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occurrence of lung tumors was limited to a bronchiolo-alveolar adenoma observed in 1/80 rats exposed to 

2.05 mg/m3. 

3.2.2 Oral Exposure 

It is noted that TDI and MDI are rapidly hydrolyzed in aqueous environments and it is unlikely that 

humans will be exposed to these compounds in water. The only available information on the toxicity of 

TDI administered via the oral route comes from gavage studies in which rats and mice were administered 

TDI in corn oil for 14 days, 13 weeks, or 2 years (NTP 1986).  There is some question regarding the 

applicability of the results of the gavage studies to humans due to likely differences in the metabolism of 

ingested TDI compared to gavage administered TDI.  Direct instillation of TDI into the acidic stomach 

could result in the formation of 2,4-TDA, which is unlikely to occur following ingestion because TDI is 

likely to react with itself and macromolecules to form urea and polyurea in the neutral pH milieu of the 

mouth. No information was located regarding health effects in humans or animals following oral 

exposure to MDI. 

The highest NOAEL values and all LOAEL values for TDI from each reliable study for each end point in 

each species and duration category are recorded in Table 3-5 and plotted in Figure 3-3. 

3.2.2.1  Death 

No information was located regarding death in humans following oral exposure to TDI.  In acute-duration 

gavage studies of commercial-grade TDI administered in corn oil (NTP 1986), treatment-related deaths 

occurred at doses ≥240 mg/kg/day in rats and ≥500 mg/kg/day in mice exposed for up to 14 consecutive 

days; however, because sporadic deaths among male mice at lower doses (as low as 30 mg/kg/day), it is 

difficult to identify a clear and reliable effect level for death in mice.  Data on effect levels for death of 

mice and rats exposed for intermediate durations are also uncertain as a consequence of sporadic deaths 

occurring at low doses; however, based on the study authors’ determinations, treatment-related deaths of 

female rats and mice occurred at doses of 240 and 120 mg/kg/day, respectively (NTP 1986).  In 2-year 

studies of commercial-grade TDI, doses ≥30 mg/kg/day reduced survival of male and female rats, while 

the high dose of 240 mg/kg/day reduced the survival of male mice (NTP 1986).  Importantly, NTP (1986) 

reported that analysis of the test material in the chronic study showed that the TDI had reacted with the 

corn oil vehicle, yielding actual gavage doses 77–90% of nominal doses.  It is reasonable to assume that 

similar reactions occurred in the acute- and intermediate-duration studies. 
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Table 3-5. Levels of Significant Exposure to Toluene Diisocyanate - Oral 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

ACUTE EXPOSURE 
Death 
1 Rat 

(F344/N) 
single dose 
(G) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

2150 M (2/5 M died) 

Reference 
Chemical Form 

NTP 1986 
2,4/2,6-TDI 

Comments 

80: 20 mixture of 2,4-
and 2,6-TDI 

2 Rat 
(F344) 

14 d, 1 x/d 
(G) 

240 (1/5 males and 1/5 
females died) 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

3 Mouse 
(B6C3F1) 

Systemic 
4 Rat 

(F344) 

single dose 
(G) 

14 d, 1 x/d 
(G) 

Bd Wt 60 M 120 M (12% decrease in body 
weight) 

4640 (4/5 M and 1/5 F died) NTP 1986 
2,4/2,6-TDI 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

5 Mouse 
(B6C3F1) 

14 d, 1 x/d 
(G) 

INTERMEDIATE EXPOSURE 
Systemic 
6 Rat 

(Fischer- 344) 
13 wk, 5 d/wk 
(G) 

Bd Wt 

Bd Wt 

500 

60 M 120 M (10% decrease or greater 
in body weight) 

NTP 1986 
2,4/2,6-TDI 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

CHRONIC EXPOSURE 
Death 
7 Rat 

(F344/N) 
105 wk, 5 d/wk 
(G) 

30 (significantly decreased 
survival) 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

8 Mouse 
(B6C3F1) 

105 wk, 5 d/wk 
(G) 

240 M (significantly decreased 
survival) 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 
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Table 3-5. Levels of Significant Exposure to Toluene Diisocyanate - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

Systemic 
9 Rat 

(F344/N) 
105 wk, 5 d/wk 
(G) 

Resp 

Cardio 120 F 

30 M (bronchopneumonia) NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

Gastro 120 F 

Musc/skel 120 F 

Hepatic 120 F 

Renal 120 F 

Bd Wt 30 M (12% decrease in 
terminal body weight) 
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Table 3-5. Levels of Significant Exposure to Toluene Diisocyanate - Oral (continued) 

a 
Key to 
Figure 

Species 
(Strain) 

Exposure/ 
Duration/ 

Frequency 
(Route) 

System 
NOAEL 

(mg/kg/day) 
Less Serious 

(mg/kg/day) 

LOAEL 

Serious 
(mg/kg/day) 

Reference 
Chemical Form Comments 

10 Mouse 
(B6C3F1) 

105 wk, 5 d/wk 
(G) 

Resp 

Cardio 

240 F 

240 F 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

Musc/skel 240 F 

Hepatic 240 F 

Renal 120 M 240 M (cytomegaly of tubular 
epithelium) 

Endocr 240 F 

Bd Wt 120 M 240 M (body weight decrement 
of ~10% throughout most 
of the study) 

Cancer 
11 Rat 

(F344/N) 
105 wk, 5 d/wk 
(G) 

60 CEL: subcutaneous 
fibromas/fibrosarcomas 
(M); pancreatic acinar 
cell adenomas (M); 
mammary gland 
fibroadenomas (F); 
pancreatic islet cell 
adenomas (F); neoplastic 
nodules of liver (F) 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

12 Mouse 
(B6C3F1) 

105 wk, 5 d/wk 
(G) 

120 F CEL: hemangiomas, 
hemangiosarcomas, and 
hepatocellular adenomas 

NTP 1986 
2,4/2,6-TDI 

80: 20 mixture of 2,4-
and 2,6-TDI 

a The number corresponds to entries in Figure 3-3. 

Bd Wt = body weight; Cardio = cardiovascular; CEL = cancer effect level; d = day(s); Endocr = endocrine; F = Female; (G) = gavage; Gastro = gastrointestinal; LOAEL = 
lowest-observed-adverse-effect level; M = male; Musc/skel = musculoskeletal; NOAEL = no-observed-adverse-effect level; Resp = respiratory; wk = week(s); x = time(s) 
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Figure 3-3. Levels of Significant Exposure to Toluene Diisocyanate - Oral 
Acute (≤14 days) 
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Figure 3-3 Levels of Significant Exposure to Toluene Diisocyanate - Oral (Continued) 
Intermediate (15-364 days) 
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Figure 3-3 Levels of Significant Exposure to Toluene Diisocyanate - Oral (Continued) 
Chronic (≥365 days) 
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In an acute lethality study using five animals/sex/dose, two of five male F344 rats given a single gavage 

dose of 2,150 mg/kg (the lowest dose tested) commercial-grade TDI in corn oil died on days 5 and 9 of 

the observation period (NTP 1986).  No females died at this dose, but at 3,160 mg/kg, two of five female 

rats died.  Dose-related increases in mortality were observed in both sexes at higher doses. There were no 

untreated controls in this study.  In a 14-day gavage study of rats by NTP (1986), there were clear dose-

related increases in mortality at doses ≥500 mg/kg/day.  A second study by this group reported that one 

male and one female each in the 30 and 240 mg/kg/day dose groups, and one female in the 500 mg/kg/day 

group died prematurely, but there were no deaths at 60 or 120 mg/kg/day.  Taken together with the first 

study, these data suggest a severe LOAEL of 240 mg/kg/day for death in rats (NTP 1986).  

In the acute lethality study of mice performed by NTP (1986), a dose-related increase in mortality was 

observed at doses ≥ 4,640 mg/kg.  At 4,640 mg/kg, one of five female mice and four of five male mice 

died between days 2 and 8 of the observation period.  No deaths occurred at doses of 2,150 mg/kg (males 

only were exposed to this dose) or 3,160 mg/kg (males and females).  As with the rat study, there were no 

untreated controls in this study.  In 14-day gavage studies of commercial-grade TDI in mice (NTP 1986), 

all animals died in the first study using doses 500 mg/kg/day.  A second study using doses of 30– 

500 mg/kg/day was performed, and deaths of one to two male mice per group were seen at all doses. Two 

females died at 240 mg/kg/day, but there were no female deaths at any other dose.  An effect level for 

death is difficult to ascertain from this study due to the lack of a dose-response relationship in the male 

deaths at doses between 30 and 500 mg/kg/day in the second study and the deaths of all animals at 

≥500 mg/kg/day in the first study. 

Intermediate-duration (13 weeks, 5 days/week) gavage studies of commercial-grade TDI in rats and mice 

were performed by NTP (1986).  In both species, the 13-week studies were repeated due to mortality in 

the first study. As with the 14-day studies, deaths occurred at various doses without a clear dose-response 

relationship.  The study authors considered a single female rat death at 240 mg/kg/day, and deaths of 

1/10 and 2/10 female mice exposed to 120 and 240 mg/kg/day (respectively), to be treatment-related 

(NTP 1986). 

Chronic (2-year) exposure to gavage doses ≥30 mg/kg/day TDI for 5 days/ week significantly decreased 

survival of F344 rats (NTP 1986).  At termination, survival of male rats was 36/50, 14/50, and 8/50 at 0, 

30, and 60 mg/kg/day, respectively; survival of female rats was 36/50, 19/50, and 6/50 at 0, 60, and 

120 mg/kg/day, respectively. In the chronic study of mice (NTP 1986), survival of high-dose 

(240 mg/kg/day) male mice was significantly lower than controls; at termination, 46/50 controls, 40/50 in 



    
 

    
 
 

 
 
 
 
 

 

 

 

   
 

  

 

      

   

  

      

    

        

 

      

 

  

 

 

  

   

  

 

       

   

 

 

        

  

 

     
  

 

68 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

3. HEALTH EFFECTS 

the 120 mg/kg/day group, and 26/50 in the 240 mg/kg/day group remained.  Survival of female mice was 

not diminished by treatment.  

3.2.2.2  Systemic Effects 

No information was located regarding systemic effects in humans following oral exposure to TDI. 

Respiratory Effects. No information on respiratory effects of acute-duration oral exposure to TDI in 

animals was located.  In rats exposed via gavage to commercial-grade TDI for 13 weeks (5 days/week), 

mucoid bronchopneumonia was reported in one of 2 male rats that received 120 mg/kg/day and died 

prematurely; this effect was also seen in 8/10 males and 2/10 females exposed to 240 mg/kg/day (NTP 

1986).  Histopathology examination was not performed on other rats in the 120 mg/kg/day group or in 

any rats of the lower dose groups; thus, an effect level cannot be determined for this end point.  In the 

13-week study of mice, few results of the histopathology examination of high dose animals were reported, 

but results that were reported did not indicate lesions of the respiratory tract at 240 mg/kg/day. 

When F344 rats were exposed via gavage to commercial-grade TDI on 5 days/week for 2 years, acute 

bronchopneumonia was seen in both sexes (NTP 1986).  The incidences of bronchopneumonia in male 

rats were 2/50, 6/50, and 14/50 (control, 30, and 60 mg/kg/day groups, respectively) and incidences in 

female rats were 1/50, 10/50, and 25/49 (control, 60, and 120 mg/kg/day groups, respectively).  In 

contrast, B6C3F1 mice exhibited no respiratory effects when exposed for 2 years to commercial-grade 

TDI doses up to 120 mg/kg/day in females and 240 mg/kg/day in males (NTP 1986). 

Cardiovascular Effects. No histological alterations were observed in the hearts of rats or mice 

administered doses up to 120 or 240 mg/kg/day commercial-grade TDI 5 days/week for 2 years (NTP 

1986). 

Gastrointestinal Effects. Chronic gavage studies with TDI in rats and mice did not result in 

gastrointestinal lesions (NTP 1986). 

Hematological Effects. No information was located regarding hematological effects in animals 

following oral exposure to TDI.  
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Musculoskeletal Effects. No histological alterations were observed in the musculoskeletal system 

of rats or mice administered doses up to 120 or 240 mg/kg/day commercial-grade TDI 5 days/week for 

2 years (NTP 1986). 

Hepatic Effects. No non-neoplastic lesions resulted from a 2-year administration of commercial-

grade TDI to rats and mice (NTP 1986). 

Renal Effects. No histological alterations were observed in the kidneys of administered doses up to 

120 mg/kg/day commercial-grade TDI 5 days/week for 2 years (NTP 1986).  An increased incidence of 

cytomegaly of tubular epithelium was observed in male mice administered 240 mg/kg/day commercial-

grade TDI 5 days/week for 2 years (NTP 1986); no alterations were observed in male or female mice 

exposed to 120 mg/kg/day. 

Dermal Effects. Administration of commercial-grade TDI for 2 years did not result in dermal lesions 

in rats or mice (NTP 1986). 

Ocular Effects. Administration of commercial-grade TDI for 2 years did not result in ocular lesions 

in rats or mice (NTP 1986). 

Body Weight Effects. Decreases in body weight gain were observed in male and female rats 

administered via gavage ≥30 mg/kg/day commercial-grade TDI 5 days/week for 2 years (NTP 1986).  A 

similar exposure of mice resulted in decreases in body weight gain at 240 mg/kg/day (males only); no 

alterations in weight gain were observed in male or female mice at 120 mg/kg/day (NTP 1986). 

3.2.2.3  Immunological and Lymphoreticular Effects 

No information was located regarding immunological and lymphoreticular effects in humans or animals 

following oral exposure to TDI.  

3.2.2.4  Neurological Effects 

No information was located regarding neurological effects in humans or animals following oral exposure 

to TDI. 
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3.2.2.5  Reproductive Effects 

No information was located regarding reproductive effects in humans or animals following oral exposure 

to TDI.  

3.2.2.6  Developmental Effects 

No information was located regarding developmental effects in humans or animals following oral 

exposure to TDI. 

3.2.2.7  Cancer 

Data on cancer effects of diisocyanates in humans and animals orally exposed to diisocyanates are limited 

to bioassays in rats and mice exposed to commercial-grade TDI via gavage (NTP 1986).  Based on the 

bioassays, NTP (1986) concluded that there was clear evidence that commercial-grade TDI in corn oil 

was carcinogenic to female mice and to rats of both sexes. Tumor types occurring at increased incidences 

in the exposed rats included subcutaneous fibromas and fibrosarcomas, pancreatic acinar cell adenomas 

and islet cell adenomas, mammary gland fibroadenomas, and neoplastic nodules of the liver.  In exposed 

female mice, the following tumor types occurred at increased incidences: hemangiomas or 

hemangiosarcomas and hepatocellular adenomas. The findings of the study are limited by reduced 

survival in rats and high dose male mice, as well as instability of the test material in the vehicle. 

NTP (1986) administered commercial-grade TDI in corn oil via gavage to groups of 50/sex F344 rats and 

B6C3F1 mice on 5 days/week for 104 weeks.  Doses were 0, 60, or 120 mg/kg/day in female rats and 

mice; 0, 30, or 60 mg/kg/day in male rats; and 0, 120, or 240 mg/kg/day in male mice.  Analysis of the 

administered material indicated that the TDI had reacted with corn oil, yielding actual gavage doses 77– 

90% of nominal doses.  In rats, survival was significantly lower than controls in all exposed groups; NTP 

(1986) concluded that the maximum tolerated dose had been exceeded.  Statistically significant increases 

in the incidence of neoplasia were observed in both male and female rats; the data are shown in Table 3-6.  

Increased incidences of subcutaneous tissue fibromas or fibrosarcomas and pancreatic acinar cell 

adenomas occurred in male rats.  In female rats, mammary gland fibroadenomas, pancreatic islet cell 

adenomas, and neoplastic nodules of the liver were observed; mammary gland and pancreatic tumor 

incidences were significantly higher than controls at both doses, while the incidence of hepatic neoplastic 

nodules was significantly increased only at the high dose in female rats (NTP 1986).  Survival of high-

dose male mice was significantly lower than controls, but survival of female mice was not diminished by 
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treatment (NTP 1986).  Statistically significant increases in the incidence of neoplasia were observed only 

in high dose female mice, and included hemangiosarcomas or hemangiomas and hepatocellular adenomas 

or carcinomas (Table 3-6). NTP (Dieter et al. 1990) noted that the liver, mammary gland, and 

subcutaneous tissue tumors observed in rats and hemangiomas and liver tumors observed in mice were 

the same types of tumors observed in rats and mice exposed to 2,4-diaminotoluene, a known carcinogen.  

Dieter et al. (1990) suggested that the carcinogenic activity observed in the NTP (1986) study could be 

attributed to the metabolism of 2,4-TDI to products identical to those of 2,4-diaminotoluene metabolism. 

An industry-sponsored statistical analysis of the results of the NTP TDI study and NTP 2,4-diamino-

toluene study concluded that hydrolyzation of 5% of the TDI dose to form 2,4-aminotoluene could 

explain carcinogenic responses observed in the NTP TDI study (Sielken et al. 2012).  

3.2.3 Dermal Exposure 

3.2.3.1  Death 

No information was located regarding deaths in humans or animals following dermal exposure to TDI or 

MDI. 

3.2.3.2  Systemic Effects 

No information was located regarding systemic effects in humans or animals following dermal exposure 

to TDI.  Data on the dermal toxicity of MDI are limited to a human study that reported respiratory effects.  

Respiratory Effects. 

MDI. Workers at a newly established wood products facility with no prior exposure to MDI were asked 

to complete symptom questionnaires prior to beginning work and 2, 9, 14, and 20 months after production 

began (Petsonk et al. 2000; Wang and Petsonk 2004); the workers were exposed to liquid MDI resin.  

Asthma-like symptoms were reported by 15 of the 56 workers with the highest potential for exposure to 

liquid MDI and prepolymer, as compared to 0 of 43 workers with the lowest exposure potential.  MDI-

exposed workers had significantly increased odds of dyspnea with wheezing, dyspnea or cough at rest, 

chest tightness, and phlegm after adjusting for age, smoking, and wood dust exposure (Wang and Petsonk 

2004). There were no increases in the prevalence of eye or nasal symptoms.  MDI exposure was likely 

via the inhalation and dermal routes of exposure.  The workers wore respirators; however, the incidence 
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Table 3-6.  Tumor Incidences in Rats and Mice Exposed to Commercial-Grade 
Toluene Diisocyanate for 2 Years by Gavagea,b 

Control 30 mg/kg/day 60 mg/kg/day 120 mg/kg/day 
Male rats 

Subcutaneous fibroma or fibrosarcoma 3/50 (6%) 6/50b (12%) 12/50b (24%) Not tested 
Pancreatic acinar cell adenoma 1/47 (2%) 3/47 (6%) 7/49b (14%) Not tested 
Pancreatic islet cell adenoma or 1/47 (2%) 0/47 (0%) 4/49b (8%) Not tested 
carcinoma 

Female rats 
Subcutaneous fibroma or fibrosarcoma 2/50 (4%) Not tested 1/50 (2%) 5/50b (10%) 
Mammary gland tumors 17/50 Not tested 25/50b (50%) 21/50b (42%) 

(34%) 
Pancreatic islet cell adenoma 0/50 (0%) Not tested 6/49b (12%) 2/47 (4%) 
Hepatic neoplastic nodules 3/50 (6%) Not tested 8/50b (16%) 8/48b (17%) 

Female mice 
Hemangioma or hemangiosarcoma 0/50 (0%) Not tested 1/50 (2%) 5/50b (10%) 
Hepatocellular adenoma or carcinoma 4/50 (8%) Not tested 5/50 (10%) 15/50b (30%) 

aData are presented as the number of animals with tumor per total number of animals examined in each exposure 
group (percentages in parentheses).
bSignificantly different from control by either life table or incidental tumor test or both, p<0.05. 

Source: NTP 1986 
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of asthma symptoms was significantly higher among those who reported removing their respirator during 

work.  The incidence of asthma symptoms was also significantly higher in workers reporting skin or 

clothing MDI staining (Petsonk et al. 2000). 

3.2.3.3  Immunological and Lymphoreticular Effects 

No information was located regarding immunological and lymphoreticular effects in humans following 

dermal exposure to TDI or MDI. 

In mice, dermal exposure to 2,4-TDI or MDI followed by an oral challenge dose resulted in airway 

hyperreactivity, lung tissue hyperreactivity, and increases in serum IgE levels (Pollaris et al. 2016). 

However, no evidence of cross-reactivity was observed in mice exposed to 2,4-TDI and challenged with 

MDI or exposed to MDI and challenged with 2,4-TDI. 

3.2.3.4  Neurological Effects 

No information was located regarding neurological effects in humans or animals following dermal 

exposure to TDI or MDI.  

3.2.3.5  Reproductive Effects 

No information was located regarding reproductive effects in humans or animals following dermal 

exposure to TDI or MDI.  

3.2.3.6  Developmental Effects 

No information was located regarding developmental effects in humans or animals following dermal 

exposure to TDI or MDI.  

3.2.3.7  Cancer 

No information was located regarding cancer in humans or animals following dermal exposure to TDI or 

MDI. 
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3.3  GENOTOXICITY 

TDI. Results of in vitro genotoxicity testing of TDI are shown in Table 3-7.  2,4-TDI, 2,6-TDI, and the 

commercial-grade mixture (80:20 mixture of 2,4- and 2,6-TDI) have all been tested for mutagenicity in 

various strains of Salmonella typhimurium (Anderson and Styles 1978; Anderson et al. 1980; NTP 1986; 

Seel et al. 1999; Zeiger et al. 1987).  All of the studies have shown negative results in the absence of 

metabolic activation.  

All of the studies other than Seel et al. (1999) used dimethylsulfoxide (DMSO) as a solvent for the test 

compounds, and these studies suggested that each of the individual isomers and the mixture was 

mutagenic with metabolic activation in at least one strain of S. typhimurium (NTP 1986; Zeiger et al. 

1987).  Seel et al. (1999) showed that 2,4-TDI is not stable in DMSO (a hygroscopic solvent that 

increases reaction of TDI with water), and that use of this solvent yielded a variety of degradation 

products, including 2,4-TDA (a known mutagen), in the reaction medium.  To assess the role of toluene 

diamines in the observed responses of TDI in these tests, Seel et al. (1999) conducted parallel 

mutagenicity tests using DMSO and ethylene glycol dimethylether (EGDE) as solvents and quantifying 

levels of TDI and TDA in the first 45 seconds after the test was started. These tests showed that 2,6-TDI 

was relatively more stable in EGDE than in DMSO; when DMSO was used as a solvent, only 12.3% of 

dose of 2,6-TDI remained at the start of mutagenicity testing, while 9.1% of the dose existed as 2,6-TDA 

(other reaction products were not analyzed).  In contrast, when EGDE was used, 99.5% of the dose 

existed as 2,6-TDI at the start of testing, with only 0.5% as 2,6-TDA (Seel et al. 1999).  Analyses over 

time showed formation of TDA in mixtures using either DMSO or EGDE; levels of TDA were lower 

when EGDE was used, but not substantially lower after the first 45 seconds (2,6-TDA was 5.6% of the 

TDI dose in the EGDE mixture, compared with 8.3% of the TDI dose in the DMSO mixture).  These 

experiments indicated that mutagenicity testing of TDI using DMSO as a solvent yields unreliable results 

due to the conversion of TDI to TDA prior to plating. 

In mutagenicity tests using EGDE as the solvent (Seel et al. 1999) and with metabolic activation, all three 

test materials tested positive in TA98 and TA100 and all three tested negative in TA1535. 2,4-TDI was 

also positive in strain TA1537, and the 80:20 mixture was weakly positive in this strain, while 2,6-TDI 

was negative.  The authors attributed the positive and weakly positive results to the TDA formed over 

time even when EGDE was used. 
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Table 3-7.  Genotoxicity of TDI and MDI In Vitro 

Results 
With Without 

Species (test system) End point activation activation Purity Vehicle Reference 
2,6-TDI 
Prokaryotic organisms: 
Salmonella Gene + – 94% DMSO NTP 1986; Zeiger 
typhimurium (TA100, mutation et al. 1987 
TA98) 
S. typhimurium Gene + – NR EGDE Seel et al. 1999 
(TA98) mutation 
S. typhimurium Gene – – 94% DMSO NTP 1986; Zeiger 
(TA1535, TA1537a) mutation et al. 1987 
S. typhimurium Gene – – NR EGDE Seel et al. 1999 
(TA1537) mutation 

Mammalian cells: 
L5178Y mouse Gene + + NR DMSO McGregor et al. 
lymphoma cells mutation 1991 
Chinese hamster Sister – + 99% DMSO Gulati et al. 1989 
ovary cells chromatid 

exchange 
Chinese hamster Chromosomal – + 99% DMSO Gulati et al. 1989 
ovary cells aberrations 

2,4-TDI 
Prokaryotic organisms: 
S. typhimurium Gene + – 99% DMSO Zeiger et al. 1987 
(TA100, TA98) mutation 
S. typhimurium Gene (+/–) – 99% DMSO Zeiger et al. 1987 
(TA1535, TA97) mutation 
S. typhimurium Gene – NT NR DMSO Anderson and 
(TA98, TA100, mutation Styles 1978 
TA1535, TA1538) 
S. typhimurium Gene + – NR EGDE Seel et al. 1999 
(TA1537, TA98) mutation 

Mammalian cells: 
L5178Y mouse Gene + + NR DMSO McGregor et al. 
lymphoma cells mutation 1991 
Chinese hamster Sister – (+/–) 94% DMSO Gulati et al. 1989 
ovary cells chromatid 

exchange 
Chinese hamster Chromosomal – – 94% DMSO Gulati et al. 1989 
ovary cells aberrations 
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Table 3-7.  Genotoxicity of TDI and MDI In Vitro 

Results 
With Without 

Species (test system) End point activation activation Purity Vehicle Reference 
Commercial-grade 2,4- and 2,6-TDI (80:20 mixture) 
Prokaryotic organisms: 
S. typhimurium Gene + – Commercial DMSO NTP 1986; Zeiger 
(TA100, TA98) mutation grade et al. 1987 
S. typhimurium Gene + – Commercial EGDE Seel et al. 1999 
(TA100, TA98, mutation grade 
TA1537) 
S. typhimurium Gene + – Commercial DMSO Anderson et al. 
(TA100, TA98, mutation grade 1980 
TA1538) 
S. typhimurium Gene – – Commercial DMSO Anderson et al. 
(TA1537) mutation grade 1980 
S. typhimurium Gene – – Commercial DMSO NTP 1986; Zeiger 
(TA1535, TA1537) mutation grade et al. 1987 

Mammalian cells: 
F-344 rat hepatocyte Unscheduled – – NR DMSO Shaddock et al. 
primary cultures DNA 1990 

synthesis 
4,4’-MDI (monomer) 
Prokaryotic organisms: 
S. typhimurium Gene + – NR DMSO Herbold et al. 1998 
(TA100, TA98) mutation 
S. typhimurium Gene + – 98% DMSO Shimizu et al. 1985 
(TA100, TA98) mutation 
S. typhimurium Gene + – Commercial DMSO Anderson et al. 
(TA100, TA98) mutation grade 1980 
S. typhimurium Gene – – NR EGDE Herbold et al. 1998 
(TA100, TA98) mutation 
S. typhimurium Gene – – 98% DMSO Shimizu et al. 1985 
(TA1535, TA1537, mutation 
TA1538) 
S. typhimurium Gene – – NR DMSO, Herbold et al. 1998 
(TA1535, TA1537) mutation EGDE 
S. typhimurium Gene – – Commercial DMSO Anderson et al. 
(TA1537) mutation grade 1980 

Mammalian cells: 
Human lung DNA double- NT –(c) NR EGDE Vock et al. 1998 
epithelial cells strand breaks 
(A549) 
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Table 3-7.  Genotoxicity of TDI and MDI In Vitro 

Results 
With Without 

Species (test system) End point activation activation Purity Vehicle Reference 
2,4-MDI 
S. typhimurium Gene + – NR DMSO Herbold et al. 1998 
(TA98, TA1538) mutation 
S. typhimurium Gene – – NR EGDE Herbold et al. 1998 
(TA98, TA1538) mutation 
S. typhimurium Gene – – NR DMSO, Herbold et al. 1998 
(TA100) mutation EGDE 

Mixture of isomers monomeric MDI (4,4’-, 2,4’-, and 2,2’-) 
S. typhimurium Gene + – NR DMSO Herbold et al. 1998 
(TA100, TA98) mutation 
S. typhimurium Gene – – NR EGDE Herbold et al. 1998 
(TA100, TA98, mutation 
TA1535, TA1537) 
S. typhimurium Gene – – NR DMSO Herbold et al. 1998 
(TA1535, TA1537) mutation 

Polymeric MDI 
S. typhimurium Gene + – NR DMSO Herbold et al. 1998 
(TA100, TA98) mutation 
S. typhimurium Gene – – NR EGDE Herbold et al. 1998 
(TA100, TA98, mutation 
TA1535, TA1537) 
S. typhimurium Gene – – NR DMSO Herbold et al. 1998 
(TA1535, TA1537) mutation 

aZeiger et al. (1987) incorrectly show the tested strain as TA97; the data shown are identical to those shown for 
TA1537 in the original report (NTP 1986). 

– = negative result; +/– = mixed results; + = positive result; –(c); positive only at cytotoxic concentrations; 
DMSO = dimethylsulfoxide; DNA = deoxyribonucleic acid; EGDE = ethylene glycol dimethylether; 
MDI = methylenediphenyl diisocyanate; NR = not reported; NT = not tested; TDI = toluene diisocyanate 
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Experiments conducted by Seel et al. (1999) also included using two different S9 microsome quantities: 

10 and 30%. The authors observed that the mutagenic responses were slightly diminished in the tests 

with higher S9 content, and postulated that the higher protein content in the 30% S9 mix provided 

alternative substrates for TDI reaction, yielding relatively lower amounts of the mutagenic TDA 

degradation products. 

TDI has also been tested in mammalian cell systems for mutagenicity (McGregor et al. 1991), 

chromosomal aberrations, and sister chromatid exchanges (Gulati et al. 1989), as well as unscheduled 

DNA synthesis (Shaddock et al. 1990), as shown in Table 3-7.  All of the tests used DMSO as the test 

material solvent. 

Only commercial-grade TDI has been tested for in vivo genotoxicity (see Table 3-8); data on the 

individual isomers are not available.  In workers exposed occupationally to TDI (0.007–0.016 mg/m3) 

during plastic production, significantly increased numbers of sister chromatid exchanges, micronuclei, 

and structural chromosomal aberrations were observed in peripheral blood lymphocytes, when compared 

with unexposed persons from the same geographic area (Bilban et al. 2004).  The study did not adjust for 

the statistically significant differences in average age and smoking index (number of cigarettes smoked 

per day per years of smoking) between the exposed and unexposed groups; the exposed group was older 

and had a higher smoking index.  In a controlled exposure experiment, Marczynski et al. (2005) compared 

the frequency of DNA strand breaks in lymphocytes before and after exposure of 5 workers with prior 

diisocyanate exposure and airway symptoms and 10 subjects without prior exposure but with asthma or 

bronchial hyperresponsiveness.  The subjects were exposed to industrial-grade TDI (80:20 mixture of 

2,4- and 2,6-TDI) in the following sequence: 30 minutes at 5 ppb, 30 minutes at 10 ppb, 90-minute 

break, 30 minutes at 20 ppb, 90-minute break, and ending with 30 minutes at 30 ppb.  Blood was sampled 

for use in the comet assay before as well as 30 minutes and 19 hours after the end of exposure.  Blood 

was also collected at the same time points from a group of 10 healthy subjects who were not subjected to 

any exposure.  Mean values of the olive tail moment before and after exposure did not differ significantly, 

nor were there significant differences between the groups. In workers exposed to isocyanates, primarily 

TDI and MDI (mean TDI levels ranged from <1 to 60 µg/m3), and several tertiary amines, no significant 

increases in chromosomal aberrations, sister chromatid exchanges, or micronuclei frequency in peripheral 

lymphocytes were observed, as compared to a referent group (Holmen et al. 1988).  Exposing 

S. typhimurium T98 or E. coli WP2 uvrA to urinary samples from the exposed workers did not result in 

increases in mutagenic activity. 
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Table 3-8.  Genotoxicity of TDI and MDI In Vivo 

Route of 
Species (test system) End point Results Purity or grade exposure Reference 
2,6-TDI 
No data 
2,4-TDI 
No data 
Commercial-grade 2,4- and 2,6-TDI (80:20 mixture) 
Humans 

Peripheral blood Micronuclei + NA Inhalation Bilban 2004 
lymphocytes 
Peripheral blood Structural + NA Inhalation Bilban 2004 
lymphocytes chromosomal 

aberrations 
Peripheral blood Sister chromatid + NA Inhalation Bilban 2004 
lymphocytes exchange 
Peripheral blood DNA strand breaks – Industrial Inhalation Marczynski et al. 
lymphocytes grade 2005 

Non-human mammals 
Mouse bone marrow Micronuclei – Production Inhalation Loeser et al. 1983 

grade 
Mouse bone marrow Micronucleated – NR Inhalation Lindberg et al. 2011 

PCEs 
Mouse bone marrow Chromosomal + 95% Inhalation Ji et al. 2008 

aberrations 
Mouse bone marrow Sister chromatid + 95% Inhalation Ji et al. 2008 

exchange 
Mouse peripheral Micronucleated – NR Inhalation Lindberg et al. 2011 
blood PCEs 
Rat bone marrow Micronuclei – Production inhalation Loeser et al. 1983 

grade 
Non-mammalian systems 
Drosophila Sex-linked recessive + 99% Feeding Foureman et al. 
melanogaster post- lethal mutation (ethanol 1994 
meiotic and meiotic vehicle) 
germ cells 
D. melanogaster post- Translocation + 99% Feeding Foureman et al. 
meiotic and meiotic (ethanol 1994 
germ cells vehicle) 
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Table 3-8.  Genotoxicity of TDI and MDI In Vivo 

Route of 
Species (test system) End point Results Purity or grade exposure Reference 
4,4’-MDI (monomer) 

Peripheral blood 
lymphocytes 

DNA strand breaks – Industrial 
grade: 60% 
methylene-
diphenyl 
diisocyanate, 
30% triiso-

Inhalation Marczynski et al. 
2005 

cyanates, 10% 
diisocyanates 

Mouse bone marrow Micronucleated 
PCEs 

– 98% Inhalation Lindberg et al. 2011 

Mouse peripheral 
blood 

Micronucleated 
PCEs 

– 98% Inhalation Lindberg et al. 2011 

Rat bone marrow Micronucleated 
PCEs 

+ Inhalation Zhong and Siegel 
2000 

Rat bone marrow Micronuclei – 99% Inhalation Pauluhn et al. 2001 
Rat epidermis and 
liver 

DNA adduct 
formation 

– NR Dermal Vock and Lutz 1997 

Rat epidermis DNA adduct 
formation 

– NR Dermal Vock et al. 1995 

– = negative result; + = positive result; (+/–) = mixed results; DNA = deoxyribonucleic acid; MDI = methylenediphenyl 
diisocyanate; NA = not applicable; NR = not reported; NT = not tested; PCE = polychromated erythrocyte; 
TDI = toluene diisocyanate 
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Lindberg et al. (2011) observed no increase in the frequency of micronucleated polychromatic 

erythrocytes (PCEs) in mouse bone marrow or peripheral blood after five daily 1-hour periods of 

exposure to TDI vapor (63% 2,4-TDI and 37% 2,6-TDI) at concentrations up to 2.4 mg/m3 (0.34 ppm).  

Similarly, Loeser et al. (1983) did not observe an increase in micronucleated erythrocytes in bone marrow 

of rats or mice exposed for 4 weeks to vapor concentrations of 0, 0.05, or 0.15 ppm, 6 hours/day for 

5 days/week.  Ji et al. (2008) reported a significant increase in the frequencies of chromosomal 

aberrations and sister chromatid exchanges in bone marrow of mice exposed for 4 hours/day on 

14 consecutive days to TDI vapor (composition not specified, but reported as 95% pure) at a 

concentration characterized as one-fourth of the LC50 (no other exposure details were provided).  

However, given the lack of study details, especially the absence of information on exposure 

concentration, the results reported by Ji et al. (2008) cannot be evaluated in the context of the other 

available data. 

In in vivo tests of sex-linked recessive lethal mutation and translocation using male Drosophila exposed 

by feeding, commercial-grade TDI (mixture of 2,4- and 2,6- isomers of unknown composition, 

administered in ethanol) yielded positive results (Foureman et al. 1994).  

MDI. Studies of the in vitro genotoxicity of MDI are shown in Table 3-7.  As was seen with experiments 

on TDI, stability testing of MDI in DMSO showed diminished levels of free MDI as a function of time in 

the solvent (Herbold et al. 1998).  However, in contrast to TDI, the rate of MDI degradation in both 

DMSO and EGDE was much slower.  In fact, MDI was stable in EGDE; even in the presence of 

12.78 mM water, <1% of the tested mass of MDI (tested as 4,4’-MDI, monomeric MDI isomers, and 

polymeric MDI) had degraded after 4 hours (Herbold et al. 1998).  Consistent with its greater stability in 

EGDE, MDI was uniformly negative in mutagenicity testing using this solvent (Herbold et al. 1998), 

while positive results (in TA98 and TA100 for monomeric and polymeric MDI and 4,4’-MDI and in 

TA1538 for 2,4-MDI) were observed when DMSO was used as the solvent (Anderson et al. 1980; 

Herbold et al. 1998; Shimizu et al. 1985). 

Only 4,4’-MDI has been tested for genotoxicity in mammalian cells; Vock et al. (1998) observed double-

strand DNA breaks in human lung epithelial cells (A549) at 4,4’-MDI concentrations (in EGDE) that 

were cytotoxic. The authors noted that cytotoxicity in the test system was exacerbated both by the slight 

toxicity of the EGDE solvent and by the lack of nutrients and growth factors in the test solution 

(phosphate-buffered saline was used instead of growth medium to minimize reaction between MDI and 
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medium constituents like proteins).  The study authors concluded that the observed DNA damage was a 

function of cytotoxicity rather than direct genotoxicity. 

Likewise, 4,4’-MDI is the only isomer or composition that has been tested for genotoxicity in in vivo 

systems (Table 3-8).  Marczynski et al. (2005) assessed the potential of MDI to induce DNA strand 

breaks.  MDI workers (n=25) and controls (n=10) were exposed to 4,4’-MDI in the same sequences as the 

TDI study:  30-minute exposure to 5 ppb, 30-minute exposure to 10 ppb, 90-minute break, 30-minute 

exposure to 20 ppb, 90-minute break, and 30-minute exposure to 30 ppb.  4,4’-MDI exposure did not 

significantly increase DNA strand breaks, as assessed using olive tail moment comet assay. Lindberg et 

al. (2011) observed no increase in the frequency of micronucleated PCEs in mouse bone marrow or 

peripheral blood after five daily 1-hour periods of exposure to 4,4’-MDI aerosol at concentrations up to 

23.3 mg/m3. Zhong and Siegel (2000) reported a concentration-dependent increase in the frequency of 

micronucleated PCEs in the bone marrow of male Brown-Norway rats 7 days following exposure to 

4,4’-MDI.  The rats were exposed for 3 weeks, 1 hour/week to concentrations of 7 and 113 mg/m3 

4,4’-MDI aerosol.  Pauluhn et al. (2001) also exposed male Brown-Norway rats for 1 hour/week for 

3 weeks at concentrations up to 118 mg/m3 of 4,4’-MDI aerosol.  Pauluhn et al. (2001) sacrificed the rats 

on post-exposure days 1, 2, and 7; no increase in micronucleated PCEs was seen at any time point.  Vock 

and colleagues (Vock and Lutz 1997; Vock et al. 1995) observed minimal to no induction of isocyanate-

DNA adducts (assessed by 32P postlabelling) in the skin liver, kidney, lung, and bladder of female Wistar 

rats exposed to 6.9–9 mg 4,4’-MDI in acetone via topical application. 

3.4  TOXICOKINETICS 

Both TDI and MDI combine readily with biological macromolecules including hemoglobin, albumin, and 

others.  As a consequence of their reactivity, these compounds or their reaction products are often found 

at higher concentrations at the site of entry into the body early in exposure, and may continue to be 

distributed from the site of entry long after exposure has terminated.  

Many studies in humans and laboratory animals use levels of diamines (TDA or methylenediphenyl 

diamine [MDA]) as a biomarker to evaluate TDI and MDI toxicokinetic properties.  Most studies are not 

measuring free TDA or MDA levels that are the result of TDI or MDI metabolism.  Rather, the studies are 

treating the plasma and urine samples with acids or bases to hydrolyze the diisocyanate-protein or 

diamine-protein conjugates and acetylated diamines, resulting in the formation of free diamine (Sennbro 

et al. 2004; Sepai et al. 1995). 
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TDI is absorbed after human exposure, but available data are not adequate to permit estimation of the rate 

or extent of absorption.  In rats, absorption of inhaled 2,4-TDI was estimated to be between 61 and 90% 

(Timchalk et al. 1994).  One study in rats exposed to monomeric 4,4’-MDI as an aerosol estimated that 

32% of an inhaled dose of 0.078 mg was systemically available (Gledhill et al. 2005). Limited data are 

available on the oral absorption of TDI or MDI.  Following gavage administration of 2,4-TDI, 12–20% of 

the dose was absorbed (Timchalk et al. 1994); no data on the oral absorption of MDI are available.  There 

is evidence that both TDI and MDI are absorbed across the skin to some extent, but the available data do 

not provide clear estimates of the rate or extent of absorption. 

Once absorbed into the body, TDI is bound to macromolecules, forming adducts with hemoglobin, 

albumin, glutathione, and other macromolecules.  The binding of TDI to glutathione appears to be 

reversible (Day et al. 1997), and may represent a mechanism by which TDI is transported between 

tissues.  After inhalation (Kennedy et al. 1994; Timchalk et al. 1994) and gavage administration 

(Timchalk et al. 1994) exposure of rats to radiolabeled TDI, radioactivity was detected in a number of 

tissues, albeit at low levels. Systemic distribution of low levels of radioactivity has also been observed 

after inhalation (Gledhill et al. 2005) and dermal exposure (Vock et al. 1997) of rats to radiolabeled MDI. 

The metabolic fate of TDI depends on the exposure route.  After oral exposure, TDI is hydrolyzed in the 

gastrointestinal tract to TDA, and subsequently either absorbed and metabolized further or reacted with 

unhydrolyzed TDI to form polyurea polymers that pass unabsorbed through the gastrointestinal tract. 

However, after inhalation exposure, the primary fate of TDI appears to be conjugation reactions; little to 

no TDI is hydrolyzed to TDA.  Little information on the metabolism of MDI was located; the single 

available study (Gledhill et al. 2005) indicated that after inhalation exposure of rats to MDI aerosol, the 

primary metabolites in the urine and bile were N-acetylated and N-acetylated hydroxylated products of 

MDI, and the primary product in feces is believed to be mixed molecular weight polyureas resulting from 

spontaneous reaction of MDI. 

In humans exposed experimentally, TDA levels in hydrolyzed urine exhibits a biphasic pattern, with an 

initial rapid phase followed by a slower phase.  The primary route of TDI elimination after inhalation or 

oral exposure of rats is via the feces, which may include material absorbed and excreted via the bile.  Data 

on the elimination of MDI are limited.  Like TDI, MDI is excreted primarily in the feces of rats after 

inhalation exposure, and there is evidence for biliary excretion of MDI.  No studies of MDI elimination 

after oral exposure were located in the available literature. 
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3.4.1 Absorption 

3.4.1.1  Inhalation Exposure 

TDI. Two studies reporting urinary concentrations of diisocyanate-derived amines in volunteers exposed 

to mixtures of TDI in exposure chambers showed absorption of both the 2,4- and 2,6-TDI isomers 

(Brorson et al. 1991; Skarping et al. 1991).  These studies show that at least 20%, and possibly more, of 

an inhaled dose of TDI is absorbed, based on analysis of TDA levels in hydrolyzed urine.  Brorson et al. 

(1991) exposed each of two men to a mixture of 70% 2,6-TDI with 30% 2,4-TDI in an exposure chamber 

at concentrations of 25, 50, and 70 μg/m3 for 4-hour periods.  Hydrolyzed plasma samples collected 

immediately after exposure showed detectable levels of 2,4-TDA after exposure to the highest 

concentration and detectable levels of 2,6-TDA after exposure to 50 and 70 μg/m3. Analysis of 24-hour 

hydrolyzed urine samples showed excretion of 2,4-TDA estimated to represent 14–19% of the inhaled 

2,4-TDI dose and levels of 2,6-TDA estimated to represent 17–23% of the inhaled 2,6-TDI dose.  In 

another experiment, Skarping et al. (1991) exposed five men to a mixture of 52% 2,6-TDI and 48% 

2,4-TDI at a concentration of 36 to 43 μg/m3 for 7.5 hours, and measured TDA levels in hydrolyzed urine 

samples.  Urinary levels of 2,4-TDA was estimated to represent 8–14% of the inhaled dose of 2,4-TDI 

and urinary levels of 2,6-TDA was estimated to represent 14–18% of the inhaled 2,6-TDI dose.  As these 

urinary excretion levels reflected only the first 24–28 hours of excretion and fecal levels of TDI were not 

measured, the total absorption of 2,4- and 2,6-TDI may have been higher than estimated. 

The results of a study in male F344 rats exposed to 14C ring-labeled 2,4-TDI vapor (2 ppm) via inhalation 

for 4 hours suggest that approximately 61–90% of the radioactivity was absorbed; the remaining 

radioactivity was likely rapidly cleared from the respiratory tract and swallowed (Timchalk et al. 1994).  

Using guinea pigs, Kennedy et al. (1989) showed a linear relationship between 14C TDI exposure 

concentrations multiplied by exposure duration and radioactivity levels in blood samples taken 

immediately after 1-hour exposure to concentrations ranging from 0.0005 to 0.146 ppm, suggesting that 

absorption via the lung is not saturable in this concentration range.  Blood samples taken during exposure 

via arterial cannula showed steady, essentially linear uptake during the 60-minute exposure period 

(Kennedy et al. 1989). 

MDI. A single study examined the toxicokinetics of inhaled MDI in rats (Gledhill et al. 2005). The male 

Wistar rats were exposed, head only, to 14C-4,4’-MDI (monomeric, as a condensation aerosol) at a 
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concentration of 2 mg/m3 for 6 hours.  A separate group of bile-cannulated rats was similarly exposed. 

Using data on urinary, biliary, and fecal excretion as well as radioactivity in the carcass measured 

168 hours after exposure, the authors estimated that approximately 32% of the inhaled dose (calculated to 

be equivalent to 0.078 mg MDI per animal) was systemically available. 

3.4.1.2  Oral Exposure 

TDI. The absorption of TDI after oral exposure has only been examined in one gavage administration 

study. Timchalk et al. (1994) administered a single gavage dose of 14C ring-labeled 2,4-TDI (60 mg/kg) 

to male F344 rats and analyzed excreta collected over the next 48 hours for radioactivity.  Based on the 

measured radioactivity in the urine and carcass, at least 12% of the oral dose was absorbed; the 

investigators suggested that another 8% may have been eliminated through biliary excretion into the feces 

(Timchalk et al. 1994).  It was also suggested that the radioactivity was absorbed as 14C-2,4-TDA rather 

than as the parent compound.  TDI absorption is likely to differ between ingestion and gavage 

administration due to differences in the pH of the oral cavity and stomach.  Installation of TDI directly 

into the acidic stomach is likely to favor the formation of TDA, ureas, and polyureas.  Comparatively, the 

neutral pH of the oral cavity would likely favor the binding of TDI to macromolecules and the formation 

of urea and polyureas. 

MDI. No data on the absorption of MDI after oral exposure were located in the available literature. 

3.4.1.3  Dermal Exposure 

TDI. The limited available data demonstrate that TDI is absorbed across the skin, but the data are not 

adequate to estimate the rate and extent of absorption.  Hoffman et al. (2010) detected <1% of a dermally-

applied dose of 350 mg/kg body weight (12 mg/cm2) 14C-2,4-TDI in the urine, plasma, and carcasses of 

male rats exposed for 0.5, 1, or 8 hours; no detectable radioactivity was found in the feces.  However, the 

animals were sacrificed immediately after exposure. Yeh et al. (2008) demonstrated dermal absorption of 

2,4- and 2,6-TDI in male rats by measuring TDA levels in hydrolyzed urine for 6 days after a 5-hour 

dermal exposure to commercial-grade TDI at concentrations of 0.2, 1, and 5%.  The maximum 

concentration in urine, as well as the area under the urinary concentration versus time curve both showed 

dose-related increases, providing evidence for dermal absorption.  

MDI. Henriks-Eckerman et al. (2015) suggested that a comparison between urinary acetylated MDA 

levels at the end of the workshift to levels after a day off from work provides evidence of dermal 
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absorption of MDI since the workers wore respiratory protection.  However, the investigators also noted 

that respiratory protection only reduced the inhalable amount by 60%.  

When male rats were exposed to a topical dose of 15 or 165 mg/kg 14C-4,4’-MDI and sacrificed at the end 

of the 8-hour exposure, or 24 or 120 hours after the commencement of exposure, <1% of the applied 

radioactivity was detected in the urine, feces, tissues, gut and its contents, and carcass (Hoffman et al. 

2010).  At both doses, the estimated amount of 4,4’-MDI absorbed was higher in rats sacrificed at later 

time points; for example, absorbed amounts were estimated to be 0.21, 0.66, and 0.88% of the applied 

dose of 165 mg/kg in rats sacrificed at 8, 24, and 120 hours after the beginning of exposure, respectively.  

However, in female rats exposed to topical doses of ~30 mg/kg 14C-4,4’-MDI for 48 hours, 29–30% of 

the applied radioactivity was recovered in the feces during the first 48 hours after treatment, indicating 

significant dermal uptake (Vock and Lutz 1997).  It is not clear whether the greater absorption suggested 

by the study by Vock and Lutz (1997) reflects a gender difference or an impact of longer exposure, or 

whether the rats in that study had unintended oral exposure via grooming.  Hoffman et al. (2010) took 

measures to prevent oral exposure, while Vock and Lutz (1997) did not. 

3.4.2 Distribution 

3.4.2.1  Inhalation Exposure 

TDI. Immediately after inhalation exposure to 2 ppm 14C ring-labeled TDI for 4 hours, radioactivity 

levels were highest in the carcass, skin, gastrointestinal contents, and gastrointestinal tracts of male F344 

rats (Timchalk et al. 1994).  When examined 48 hours later, the highest percentage of recovered dose was 

found in the gastrointestinal contents (~17%), followed by the carcass (10%) and skin (6%).  Table 3-9 

shows the distribution of radioactivity immediately after exposure and 48 hours after exposure.  Kennedy 

et al. (1994) measured radioactivity in tissues immediately after 4-hour exposure of rats to concentrations 

of 0.026, 0.143, and 0.821 ppm 14C-2,4-TDI.  The highest specific activities (μgEq/g) were located in the 

airways (trachea and lung) followed by the gastrointestinal tract (esophagus and stomach) and systemic 

circulation (blood, liver, kidney, spleen, and heart). When expressed as percent of dose /total tissue, the 

highest level was in the blood, followed by the liver or stomach, kidney or lung, and trachea.  In guinea 

pigs exposed to 14C-2,4-TDI concentrations ranging from 0.00005 to 0.146 ppm for 1, 4, or 5 hours, the 

highest levels of radioactivity were detected in the trachea and lung, followed by the kidney, heart, spleen, 

and liver (Kennedy et al. 1989). 
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Table 3-9.  Tissue Distribution of 14C in Male F344 Rats Exposed to 14C Ring-
Labelled 2,4-Toluene Diisocyanate Via Gavage or Inhalation 

Percent of administered dose after Percent of recovered dose after inhalation 
oral exposure (60 mg/kg) exposure (2 ppm, 4 hours) 
2 hours 48 hours Immediately after 48 hours 

Tissue postdosing postdosing exposure postexposure 
Blood NA 0.05±0.02 NA 0.23±0.15 
Gastrointestinal contents 65.82±8.35 2.56±0.84 9.76±2.31 16.63±9.18 
Carcass 5.50±3.62 0.77±0.20 71.54±2.99 10.02±2.69 
Gastrointestinal tract 10.10±3.09 0.10±0.05 3.75±1.56 0.76±0.37 
Skin 1.12±0.53 0.15±0.02 9.86±3.12 5.59±1.61 
Lung 0.99±0.52 <0.01 2.50±1.13 0.28±0.12 
Liver 0.50±0.15 0.11±0.00 1.68±0.13 0.37±0.01 
Kidney 0.08±0.02 0.02±0.00 0.69±0.08 0.25±0.04 
Fat <0.01 <0.01 0.02±0.00 <0.01 
Total 83.18±7.19 3.77±0.87 – 34.14±11.53 

Source: Timchalk et al. 1994 



    
 

    
 
 

 
 
 
 
 

  

   

   

   

  

     

  

  

   

   

  

   

   

  

 

      

   

  

 

    

   

   

   

     

    

  

 

   
 

     

  

   

   

   

88 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

3. HEALTH EFFECTS 

Kennedy et al. (1994) quantified the distribution of radioactivity in blood components after a 4-hour 

inhalation exposure of rats to 14C-2,4-TDI.  Radioactivity was primarily recovered from the plasma (74– 

87%), but radioactivity was also detected in the cell pellet. The plasma was fractionated by molecular 

weight, showing that the vast majority of the radioactivity (97–100%) was associated with high molecular 

weight (>10 kDa) components; electrophoresis was then used to demonstrate that the majority of the 

radioactivity was associated with a 70 kDa protein, which the authors suggested was likely albumin. 

Analysis of stomach contents by fractionation and electrophoresis showed that a higher proportion of the 

radioactivity in the stomach (28%) was in the low molecular weight fraction (<10 kDa) compared with 

the fraction in plasma.  High performance liquid chromatography (HPLC) analysis of the low molecular 

weight fraction showed a TDA peak in addition to other products, demonstrating that TDA is not the 

primary reaction product after inhalation exposure.  The authors postulated that the inhaled TDI reacted 

with macromolecules in the airway prior to being transported to the stomach, where proteolysis occurred, 

yielding the low molecular weight adducts. 

Day et al. (1996) analyzed hemoglobin adducts of TDI in guinea pigs exposed to 1 ppm 2,4-TDI for 

3 hours/day on 5 consecutive days, and identified several TDI-derived adducts that demonstrated that the 

isocyanate moiety was capable being transported from the lung into the blood and across the erythrocyte 

membrane to form a hemoglobin adduct. 

MDI. Systemic distribution of radioactivity was measured in male Wistar rats exposed head-only for 

6 hours to an aerosol of 14C-4,4’-MDI (2 mg/m3) (Gledhill et al. 2005).  The results are shown in 

Table 3-10.  As the table indicates, the largest percentages of received radioactivity were recovered from 

the respiratory and gastrointestinal tracts, but radioactivity was detected in all of the tissues examined 

(Gledhill et al. 2005).  The authors suggested that the radioactivity in the gastrointestinal tract and its 

contents likely resulted from oral intake during grooming after the exposure period and/or mucociliary 

clearance of material from the respiratory tract (Gledhill et al. 2005). 

3.4.2.2  Oral Exposure 

TDI. In male F344 rats given a single gavage dose of 60 mg/kg 14C ring-labeled TDI, the highest 

proportion of administered dose was recovered from the gastrointestinal tract and contents when sampled 

2 or 48 hours postdosing (Timchalk et al. 1994).  Radioactivity levels in the skin, lung, liver, and kidney 

reflected 1.1, 1.0, 0.5, and 0.08% of the administered dose, respectively, at 2 hours postdosing; lower 

concentrations were seen at 48 hours postdosing (Timchalk et al. 1994). 
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Table 3-10.  Tissue Distribution of 14C in Male Wistar Rats Exposed to 14C Ring-
Labelled 4,4’-Methylenediphenyl Diisocyanate Aerosol Via Inhalation 

Percent of received radioactivity 
Tissue 0 hours postexposure 24 hours postexposure 168 hours postexposure 
Adrenals 0.025±0.01 0.021±0.005 0.025±0.004 
Brain 0.051±0.018 0.031±0.007 <0.016±<0.006 
Gastrointestinal 4.173±0.801 0.992±0.406 <0.141±<0.007 
Gonads 0.356±0.022 0.201±0.032 0.054±0.021 
Heart 0.375±0.068 0.157±0.041 0.053±0.013 
Kidneys 0.524±0.089 0.363±0.03 0.103±0.014 
Liver 3.379±0.756 2.004±0.408 0.424±0.058 
Lungs 12.771±2.521 5.558±0.944 3.558±0.503 
Nasal tissue (olfactory) 0.115±0.018 0.047±0.017 0.029±0.032 
Nasal tissue (respiratory) 1.44±1.873 0.182±0.247 0.058±0.01 
Esophagus 0.074±0.02 0.014±0.005 <0.039±<0.048 
Pancreas 0.046±0.008 0.031±0.005 0.021±0.009 
Spleen 0.102±0.021 0.071±0.012 0.043±0.009 
Stomach 0.335±0.22 0.234±0.185 0.039±0.026 
Thyroid 0.024±0.021 0.004±0.001 0.004±0.003 
Trachea 0.167±0.168 0.095±0.103 0.012±0.002 
Residual carcass 37.106±9.752 18.539±4.058 5.001±1.187 
Total 61.063 54.901 5.159 
Stomach contents <0.921±<1.564 0.351±0.358 <0.103±<0.039 
Gastrointestinal contents 31.787±5.133 13.177±5.487 0.617±0.13 

Source: Gledhill et al. 2005 
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MDI. No data on the distribution of MDI after oral exposure were located in the available literature. 

3.4.2.3  Dermal Exposure 

TDI. The carcasses of male rats exposed to 330 mg/kg 14C-2,4-TDI for 0.5, 1,0, or 8.0 hours via topical 

application contained 0.25, 0.44, and 0.52% of the applied radioactivity, respectively (Hoffman et al. 

2010).  

MDI. No radioactivity was detected in the tissues of male rats exposed for 8 hours to a topical dose of 

15 or 165 mg/kg 14C-4,4’-MDI and sacrificed 8, 24, or 120 hours after the commencement of exposure 

(Hoffman et al. 2010).  Vock and Lutz (1997) detected small amounts of radioactivity (≤ 1% of applied 

radioactivity in total) in the lung, liver, kidney, and muscle of female rats exposed to topical doses of 11– 

15 mg/kg 14C-4,4’-MDI for 24 hours or to 29–30 mg/kg for 48 hours.  Of the applied radioactivity, 9– 

12% was recovered in the epidermis (Vock and Lutz 1997).  

3.4.3 Metabolism 

TDI reacts readily with sulfhydryl, amine, and hydroxyl groups, forming adducts with hemoglobin, 

glutathione, albumin, and other macromolecules.  After gavage exposure, TDI is hydrolyzed in the 

gastrointestinal tract to TDA, which may be absorbed and metabolized further (acetylated, conjugated, or 

metabolized to aminophenolic or aminobenzoic acid compounds) (Timchalk et al. 1994).  In the gut, TDA 

may also react with unhydrolyzed TDI to form polyurea polymers that pass unabsorbed through the 

gastrointestinal tract.  In contrast, after inhalation exposure, little TDI, if any, is hydrolyzed to TDA; 

conjugation reactions are believed to represent be the primary fate of inhaled TDI.  These route-specific 

differences in the fate of TDI were observed when rat urine was analyzed after gavage and inhalation 

exposure; after gavage exposure to TDI, 35% of the detected metabolites were free or acetylated TDA 

(the balance reflected acid-labile conjugates of TDI or TDA), while only 10% of the metabolites detected 

after inhalation exposure were acetylated TDA (Timchalk et al. 1994).  The acidic pH of the stomach 

favors the hydrolysis of TDI to form TDA.  At neutral pH levels, TDI is more likely to form polyurea 

polymers (as discussed in Sielken et al. 2012); thus, TDA formation may not occur following inhalation, 

ingestion, or dermal exposure to TDI. 

Figure 3-4 shows the proposed metabolic scheme for 2,4-TDI in the rat.  
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Figure 3-4.  Proposed Metabolic Scheme for 2,4-Toluene Diisocyanate in the Rat 
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A single study evaluating the metabolism of MDI was located.  In male rats exposed via inhalation to 

MDI aerosol, five metabolites were identified in the urine, feces, and bile (Gledhill et al. 2005). 

Table 3-11 shows the percentage of administered dose represented by each metabolite.  Four metabolites 

were identified as N-acetylated and N-acetylated hydroxylated products of MDI, while the fifth could not 

be identified. The primary product detected in feces was proposed to be mixed molecular weight 

polyureas resulting from spontaneous reaction of MDI.  No free MDA was detected in excreta or bile 

(Gledhill et al. 2005). 

3.4.3.1  Inhalation Exposure 

TDI. When rats were exposed by inhalation to 2 ppm 2,4-TDI for 4 hours, no free TDA was detected in 

the urine (Timchalk et al. 1994).  A total of 0.26 μg equivalents of 2,4-TDA were detected in the 

hydrolyzed urine as mono- and diacetylated products, while 2.53 μg equivalents were detected as acid-

labile conjugates of 2,4-TDI or TDA. Another inhalation study (Kennedy et al. 1994) showed that 95% 

of the TDI in plasma was conjugated to macromolecules, which the investigators suggested demonstrated 

that macromolecules successfully competed with hydrolysis to form the diamine. 

In one study, TDI was shown to induce a decrease in CYP2B1 expression.  Exposure of male Sprague-

Dawley rats to commercial-grade TDI (80:20 mix of 2,4- and 2,6-TDI) at a concentration of 1 ppm for 

8 hours resulted in decreased CYP2B1 mRNA (33%) and protein (40%) levels in the lung when 

compared with control rats (Pons et al. 2000).  TDI exposure did not alter expression of other CYPs 

investigated (1A1, 2E1, or 3A1) or glutathione S-transferase (GST). 

MDI. A total of five metabolites of 4,4’-MDI monomer were observed in the urine, feces, and bile of 

male rats exposed to 2 mg/m3 radiolabeled MDI aerosol for 6 hours; four were identified by liquid 

chromatography-mass spectrometry (LC-MS) and LC-MS3 analysis as N-acetylated and N-acetylated 

hydroxylated products of MDI, while the fifth could not be identified (Gledhill et al. 2005).  The primary 

product detected in feces was proposed to be mixed molecular weight polyureas resulting from 

spontaneous reaction of MDI.  Free MDA was not detected in excreta or bile.  After acid hydrolysis of the 

6-, 12-, and 24-hour urine samples, MDA was detected at concentrations of 483, 120, and 131 ng/mL, 

respectively.  Analysis of the acid-hydrolyzed urine also revealed deacetylated products of the metabolites 

N,N’-diacetyl-4,4’-diaminobenzhydrol and N,N’-diacetyl 4,4’-diaminobenzophenone (Gledhill et al. 

2005). 
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Table 3-11.  Metabolites of Methylenediphenyl Diisocyanate (MDI) in Male F344 
Rats Exposed to 14C Ring-Labelled 4,4’-MDI Monomer Via Inhalation 

Percentage of administered Percentage of administered 
dose in intact rats dose in bile-cannulated rats 

Metabolite Urine Feces Urine Bile Feces 
N,N’-Diacetyl-4,4’-diaminobenzhydrol 1 ND 6 1 ND 
N,N’-Diacetyl-4,4’-diaminophenyl- 0.5 ND 4 4 ND 
methane 
N-Acetyl-4, 4’-diaminophenylmethane 0.3 ND ND ND ND 
N,N’-Diacetyl 4,4’-diaminobenzophenone 0.4 ND ND ND ND 
Metabolite V; not identified 0.2 ND <1 ND ND 
Proposed as mixed molecular weight ND 56 ND 9 24 
polyureas derived from MDI 
Total 2.4 56 10 14 24 

ND = not detected 

Source: Gledhill et al. 2005 
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3.4.3.2 Oral Exposure 

TDI. After rats were given a single gavage dose of 60 mg/kg 2,4-TDI, 2,4-TDA was detected (by HPLC) 

in the urine collected during the first 12 hours postdosing (Timchalk et al. 1994).  In the urine, 2.08 μg 

equivalents of free 2,4-TDA were detected, while monoacetylated, and diacetylated 2,4-TDA were 

measured to be 5.12 and 8.17 μg equivalents of 2,4-TDA.  Approximately 44.51 μg equivalents existed in 

the urine as acid-labile conjugates of 2,4-TDA and/or 2,4-TDI (Timchalk et al. 1994).  The relevance of 

these gavage data in which the TDI is instilled into the acidic stomach to human ingestion is questionable. 

At neutral pH levels, such as found in the mouth, TDI is more likely to react with other TDI molecules to 

form polyurea polymers than to hydrolyze to TDA (as discussed in Sielken et al. 2012). 

MDI. No data on the metabolism of MDI after oral exposure were located in the available literature. 

3.4.3.3  Dermal Exposure 

TDI. No data on the metabolism of TDI after dermal exposure of humans or animals were located in the 

available literature. 

MDI. No data on the metabolism of MDI after dermal exposure of humans or animals were located in the 

available literature. 

3.4.4 Elimination and Excretion 

3.4.4.1  Inhalation Exposure 

TDI. Budnik et al. (2011) evaluated urinary excretion of diamines following specific inhalation challenge 

exposure to known concentrations ranging from 0.5 to 30 ppb of 2,4-TDI (n=18) or 2,6-TDI (n=18).  The 

subjects were workers with prior exposure to these compounds who were being evaluated for 

occupational asthma.  Levels of TDA in the spot urine samples collected over the following 24 hours 

were subjected to acid hydrolysis prior to analysis by gas chromatography (GC)/MS.  In subjects exposed 

to 2,4- and 2,6-TDI, creatinine-corrected urinary levels of the corresponding diamines peaked at 4.1 and 

4.8 hours, respectively.  The half-life for TDA in urine was estimated to be 6 hours.  Subjects exposed to 

higher concentrations of either isomer of TDI (mean exposure 1,569 ppb) did not exhibit correspondingly 

higher urinary peak levels of TDA when compared with the low exposure group (496 ppb). 
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The plasma elimination rate for both 2,4- and 2,6-TDI was estimated to average 21 days in workers 

chronically exposed to airborne concentrations between 0.4 and 4 μg/m3 TDI (mixture of 2,4- and 

2,6-TDI with varying composition) (Lind et al. 1996). 

TDA levels in hydrolyzed urine in humans experimentally exposed for 4–7.5 hours to mixtures of 

2,4- and 2,6-TDI exhibited a biphasic pattern, with an initial rapid phase followed by a slower phase 

(Brorson et al. 1991; Skarping et al. 1991).  The half-time for urinary excretion in the initial rapid phase 

was estimated to be between 1.6 and 2.5 hours for 2,6-TDI and between 1.9 and 5 hours for 2,4-TDI 

(Brorson et al. 1991; Skarping et al. 1991).  The half-time for the slower phase was reportedly about 

5 hours for both isomers (Skarping et al. 1991). 

In guinea pigs, 2,3-TDI is cleared slowly from the blood.  Kennedy et al. (1989) observed a gradual 

decline in blood radioactivity over the course of 72 hours following exposure of guinea pigs to 

concentrations of 14C-2,4-TDI ranging from 0.004 to 0.336 ppm.  Radioactivity remaining in the blood at 

72 hours postexposure persisted at that level for a second week, suggesting that the molecule to which the 

radioactivity was bound was saturated, and that the adduct did not have a rapid turnover rate (Kennedy et 

al. 1989). 

The primary excretory pathway for 2,4-TDI in rats exposed via inhalation was fecal (Timchalk et al. 

1994).  Forty-eight hours after a 4-hour exposure to 2 ppm 14C ring-labeled 2,4-TDI, male F344 rats 

excreted 47% of the recovered radioactivity in the feces and 15% in the urine.  No radioactivity was 

detected in exhaled CO2 or volatile organics (Timchalk et al. 1994).  Detection of significant amounts of 

radioactivity in the gastrointestinal contents both immediately after exposure (10% of recovered dose) and 

48 hours later (17% of recovered dose) (Timchalk et al. 1994) suggests biliary excretion of 2,4-TDI. 

MDI. In addition to evaluating urinary excretion of diamines in workers undergoing specific inhalation 

challenge with TDI, Budnik et al. (2011) measured levels of 4,4’-MDA in acid hydrolyzed urine 

following specific inhalation challenge exposure to 4,4’-MDI (0.5–30 ppb; n=36 subjects).  The peak 

level of 4,4’-MDA in urine occurred at 14 hours after exposure.  Urinary excretion of 4,4’-MDA was 

slower and more prolonged than that of the TDAs, and excretion was not complete during the 24-hour 

study period.  In addition, the excretion time course was longer in those subjects exposed to higher 

concentrations of 4,4’-MDI (mean exposure 1,569 ppb) compared with those exposed to lower 

concentrations (mean exposure 496 ppb). 



    
 

    
 
 

 
 
 
 
 

 

     

   

  

    

 

   
 

    

     

   

    

 

     

 

  
 

      

    

  

   

   

     

    

  

 

    

   

 

 

   

  

    

   

96 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

3. HEALTH EFFECTS 

Male rats exposed (head only) to aerosols of 14C-4,4’-MDI monomer for 6 hours at 2 mg/m3 excreted the 

majority of the received radioactivity in the feces (80%), with about 5% excreted in urine during the 

168-hour follow-up time (Gledhill et al. 2005).  In bile duct-cannulated rats exposed similarly, biliary 

excretion was estimated to be 14% of the dose and urinary excretion was 12%. 

3.4.4.2  Oral Exposure 

TDI. After gavage exposure to a 60 mg/kg 14C ring-labeled 2,4-TDI, 81% of the administered dose was 

recovered in the feces and 8% was recovered in the urine of male F344 rats; total radioactivity recovered 

represented 94% of the administered dose (Timchalk et al. 1994).  Quantifiable levels of radioactivity 

were not detected in exhaled CO2 or volatile organics. 

MDI. No data on the elimination of MDI after oral exposure were located in the available literature. 

3.4.4.3  Dermal Exposure 

TDI. Hoffman et al. (2010) detected <1% of a dermally-applied dose of 330 mg/kg 14C-TDI in the urine 

of rats after exposure durations up to 8 hours; no radioactivity was detected in the feces.  Yeh et al. (2008) 

evaluated the kinetics of urinary excretion of 2,4- and 2,6-TDI in male rats by measuring urinary TDA for 

6 days after topical application of commercial-grade TDI (80:20 mixture of 2,4- and 2.6-TDI) at 

concentrations of 0.2, 1, and 5%.  2,4- and 2,6-TDA were measured in acid-hydrolyzed urine samples 

collected at 12-hour intervals. The results are shown in Table 3-12.  For both compounds and regardless 

of applied concentration, the maximum concentration in urine was reached during the first 12-hour 

interval.  At the highest exposure level, urinary excretion was not complete at the end of the 6-day 

collection period, but was essentially complete at the lower concentrations.  The half-life for urinary 

elimination of 2,4- and 2.6-TDA ranged between 18.4 and 26.6 hours.  The data readily fit a first-order 

kinetic linear model (p<0.05), but the pattern at the highest exposure demonstrated a non-linear saturation 

at 60 hours after Cmax was reached (Yeh et al. 2008). 

MDI. Hoffman et al. (2010) detected only small amounts of radioactivity in the feces of male rats 

exposed via dermal application of 15 or 165 mg/kg 14C-4,4’-MDI for 8 hours and sacrificed 8, 24, or 

120 hours after treatment.  In contrast, approximately 29–30% of the applied radioactivity was recovered 

in the feces during a 48-hour exposure of female rats to topical doses of ~30 mg/kg 14C-4,4’-MDI (Vock 
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Table 3-12.  Kinetics of Urinary Toluene Diamine (TDA) Excretion in Rats 
Exposed to Toluene Diisocyanate Via Topical Application 

2,4-TDA 2,6-TDA 
Applied dose 0.2% 1% 5% 0.2% 1% 5% 
Tmax (hours) 12 12 12 12 12 12 
Cmax (μg/mL) 0.062± 

0.009 
0.238± 
0.060 

6.116± 
0.429 

0.056± 
0.004 

0.268± 
0.060 

3.777± 
0.384 

AUC (μg*hour/mL) 2.186± 
0.376 

8.395± 
0.919 

158.599± 
5.517 

2.046± 
0.263 

10.558± 
0.538 

133.994± 
20.35 

Accumulative amount (μg) 2.682± 
0.631 

12.940± 
4.224 

83.843± 
29.542 

2.622± 
0.779 

14.978± 
2.628 

69.810± 
11.541 

k (1/hour) 0.0376± 
0.002 

0.0341± 
0.003 

0.0325± 
0.003 

0.0329± 
0.0020 

0.0339± 
0.0027 

0.0264± 
0.004 

t1/2 (hours) 18.4±0.8 20.4±01.5 21.5±2.2 21.1±1.3 20.5±1.6 26.6±3.7 

Source: Yeh et al. 2008 
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and Lutz 1997).  Hoffman et al. (2010) took measures to prevent oral exposure of the rats via grooming, 

while Vock and Lutz (1997) did not.  In both studies, recovery of radioactivity in the urine was <1% of 

the applied dose (Hoffman et al. 2010; Vock and Lutz 1997). 

3.4.5 Physiologically Based Pharmacokinetic (PBPK)/Pharmacodynamic (PD) Models 

Physiologically based pharmacokinetic (PBPK) models use mathematical descriptions of the uptake and 

disposition of chemical substances to quantitatively describe the relationships among critical biological 

processes (Krishnan et al. 1994).  PBPK models are also called biologically based tissue dosimetry 

models.  PBPK models are increasingly used in risk assessments, primarily to predict the concentration of 

potentially toxic moieties of a chemical that will be delivered to any given target tissue following various 

combinations of route, dose level, and test species (Clewell and Andersen 1985).  Physiologically based 

pharmacodynamic (PBPD) models use mathematical descriptions of the dose-response function to 

quantitatively describe the relationship between target tissue dose and toxic end points.  

PBPK/PD models refine our understanding of complex quantitative dose behaviors by helping to 

delineate and characterize the relationships between: (1) the external/exposure concentration and target 

tissue dose of the toxic moiety, and (2) the target tissue dose and observed responses (Andersen and 

Krishnan 1994; Andersen et al. 1987).  These models are biologically and mechanistically based and can 

be used to extrapolate the pharmacokinetic behavior of chemical substances from high to low dose, from 

route to route, between species, and between subpopulations within a species.  The biological basis of 

PBPK models results in more meaningful extrapolations than those generated with the more conventional 

use of uncertainty factors. 

The PBPK model for a chemical substance is developed in four interconnected steps: (1) model 

representation, (2) model parameterization, (3) model simulation, and (4) model validation (Krishnan and 

Andersen 1994).  In the early 1990s, validated PBPK models were developed for a number of 

toxicologically important chemical substances, both volatile and nonvolatile (Krishnan and Andersen 

1994; Leung 1993).  PBPK models for a particular substance require estimates of the chemical substance-

specific physicochemical parameters, and species-specific physiological and biological parameters. The 

numerical estimates of these model parameters are incorporated within a set of differential and algebraic 

equations that describe the pharmacokinetic processes.  Solving these differential and algebraic equations 

provides the predictions of tissue dose.  Computers then provide process simulations based on these 

solutions.  
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The structure and mathematical expressions used in PBPK models significantly simplify the true 

complexities of biological systems.  However, if the uptake and disposition of the chemical substance(s) 

are adequately described, this simplification is desirable because data are often unavailable for many 

biological processes. A simplified scheme reduces the magnitude of cumulative uncertainty. The 

adequacy of the model is, therefore, of great importance, and model validation is essential to the use of 

PBPK models in risk assessment. 

PBPK models improve the pharmacokinetic extrapolations used in risk assessments that identify the 

maximal (i.e., the safe) levels for human exposure to chemical substances (Andersen and Krishnan 1994). 

PBPK models provide a scientifically sound means to predict the target tissue dose of chemicals in 

humans who are exposed to environmental levels (for example, levels that might occur at hazardous waste 

sites) based on the results of studies where doses were higher or were administered in different species. 

Figure 3-5 shows a conceptualized representation of a PBPK model. 

No physiologically based pharmacokinetics models for TDI or MDI were located in the available 

literature. 

3.5  MECHANISMS OF ACTION 

3.5.1 Pharmacokinetic Mechanisms 

The metabolic fate of TDI is route-dependent.  After oral exposure, TDI is hydrolyzed in the 

gastrointestinal tract to TDA, which may be absorbed and metabolized further (acetylated, conjugated, or 

metabolized to aminophenolic or aminobenzoic acid compounds) (Timchalk et al. 1994).  In the gut, TDA 

may also react with unhydrolyzed TDI to form polyurea polymers that pass unabsorbed through the 

gastrointestinal tract.  In contrast, after inhalation exposure, little TDI, if any, is hydrolyzed to TDA; 

conjugation reactions are believed to represent be the primary fate of inhaled TDI.  As a consequence of 

these route differences, exposure to TDI via the gastrointestinal tract will likely result in higher tissue 

concentrations of TDA and its downstream products than would occur after inhalation exposure. 
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Figure 3-5.  Conceptual Representation of a Physiologically Based 
Pharmacokinetic (PBPK) Model for a 
Hypothetical Chemical Substance 
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Lungs 

Liver 

Fat 

Slowly 
perfused 
tissues 

Richly 
perfused 
tissues 

Kidney 

Skin 

A 
R 
T 
E 
R 
I 
A 
L 

B 
L 
O 
O 
D 

Vmax 
Km 

Ingestion 

GI 
Tract 

Feces 

Urine 

Chemicals 
contacting skin 

V 
E 
N 
O 
U 
S 

B 
L 
O 
O 
D 

Note:  This is a conceptual representation of a physiologically based pharmacokinetic (PBPK) model for a 
hypothetical chemical substance.  The chemical substance is shown to be absorbed via the skin, by inhalation, or by 
ingestion, metabolized in the liver, and excreted in the urine or by exhalation. 

Source:  Krishnan and Andersen 1994 
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3.5.2 Mechanisms of Toxicity 

The respiratory tract is the primary target of TDI and MDI toxicity resulting in declines in lung function 

and occupational asthma; chronic airway inflammation likely plays a key role in both effects. The 

mechanisms of diisocyanate-induced occupational asthma have been more extensively investigated than 

those involved in reduced lung function.  The pathogenesis of TDI/MDI asthma has not been fully 

elucidated; it appears to be multifaceted and involves a number immunological and non-immunological 

mechanisms.  TDI/MDI occupational asthma has many similar features to allergic asthma, including 

persistent airway inflammation and subsequent airway hyperresponsiveness; however, there are several 

features present in TDI/MDI asthma not seen in allergic asthma including airway neutrophilia, increases 

in interleukin (IL)-8 levels, low prevalence of diisocyanate-specific IgE antibodies, and lack of 

association with atopy (Furusho et al. 2006).  It is believed that diisocyanates bind to airway cell proteins 

and are taken up by epithelial cells resulting in cytokine and chemokine production and cellular 

recruitment, which leads to airway inflammation (Kim et al. 2010).  Wisnewski et al. (2013) speculated 

that albumin is the primary protein target of diisocyanate reactivity; the diisocyanate-albumin conjugate 

can trigger innate and adaptive cellular responses associated with airway inflammation and asthma.  

Glutathione serves as a carbamoylating intermediate through which diisocyanate is transported from the 

airways to the blood where there are higher levels of albumin.  This shuttle mechanism could explain the 

rapid accumulation of diisocyanate-albumin conjugates in the peripheral blood in animals exposed to 

diisocyanates (Wisnewski et al. 2013). 

The immunological mechanisms appear to involve hypersensitivity response, although other types of 

immune response are likely involved. There is suggestive evidence that all types of hypersensitivity are 

involved.  An immediate response to a diisocyanate challenge is likely indicative of Type 1 

hypersensitivity, which is mediated by IgE.  Specific IgE antibodies to TDI-HSA (Baur and Fruhmann 

1981; Cvitanovic e t al. 1989; Park and Nahm 1996; Park et al. 1999; Pezzini et al. 1984; Sharifi et al. 

2013) or MDI-HSA (Hur et al. 2008; Pezzini et al. 1984; Tse et al. 1985) have been found.  However, 

only a small percentage of TDI and MDI workers with occupational asthma have elevated levels of IgE, 

suggesting that other mechanisms are likely involved.  The delayed response to a TDI or MDI challenge 

is suggestive of one or more subtype of Type IV hypersensitivity.  This type of response is typically 

driven by leukotrienes, chemokines, and cytokines synthesized by activated mast cells and CD4+ Th2 

cells.  A study of CD4 knockout mice sensitized to TDI showed a significant reduction in airway 

hyperresponsiveness to a TDI challenge as compared to wild-type controls.  A marked reduction of 

pulmonary inflammation by neutrophils, lymphocytes, eosinophils, and macrophage infiltration and 
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decreases in Th2 cytokines—IL-4, IL-5, and IL-13—were also observed in the CD4 knockout mice 

(Matheson et al. 2005).  The role of CD4+ Th2 subtype of Type IV hypersensitivity in diisocyanate-

induced asthma is supported by the findings of increased IL-4 and IL-6 levels in the bronchoalveolar 

lavage (BAL) fluid of rats sensitized to TDI (Zheng et al. 2001a, 2001b).  Increases in the production of 

IL-1β, IL-1α, and tumor necrosis factor (TNF)-α expression were observed in the lungs of mice with 

TDI-induced asthma; increases in IL-1β and TNF-α expression were also observed in the lung biopsy 

samples from workers with TDI-induced asthma (Johnson et al. 2005).  Studies in TDI-sensitized mice in 

which IL-1β or IL-1α was suppressed showed that they have unique and overlapping roles (Johnson et al. 

2005).  A central role for TNF-α in the propagation of airway inflammation and hyperresponsiveness is 

supported by a study of TNF-α deficient mice that found a reduction in TDI-induced inflammation, 

airway hyperresponsiveness, and migration of airway dendritic cells to the draining lymph nodes 

(Matheson et al. 2002).  The increases in IFN-γ and TNF-α observed in TDI sensitized mice also support 

a Th1 response mechanism (Świerczyńska-Machura et al. 2014).  There is also some evidence to support 

mechanisms for the other two subtypes of Type IV hypersensitivity.  A significant reduction in the Th1 

cytokine, interferon-γ (INF-γ), was observed in CD4 knockout mice (Matheson et al. 2005).  In contrast, 

Zheng et al. (2001a) did not find significant differences in Th1 cytokines (IL-2 or IFN-γ) levels in TDI-

sensitized rats, as compared to controls.  The Matheson et al. (2005) study also provides some evidence of 

the CD8+ subtype of Type IV hypersensitivity; reductions in airway hyperresponsiveness and pulmonary 

inflammation were observed in CD8 knockout mice sensitized to TDI as compared to TDI-sensitized 

wild-type mice. 

In addition to immune hypersensitivity mechanism, there is evidence to suggest that other immune and 

non-immune mechanisms are involved in TDI/MDI-induced inflammation and airway 

hyperresponsiveness.  In vitro studies in bronchial epithelial cells have showed enhanced production of 

IL-8 in the presence of TDI-HSA conjugate (Lee et al. 2003; Ogawa et al. 2006).  The IL-8 attracts and 

activates neutrophils, and increased neutrophil counts have been observed in the BAL fluid of sensitized 

workers exhibiting a delayed response to a TDI challenge (Fabbri et al. 1987).  A marked infiltration of 

eosinophils, as well as neutrophils, was observed in the central and peripheral airways of TDI-sensitized 

rats (Zheng et al. 2001a); in sensitized mice, increased leukocyte levels were observed in the BAL fluid 

with the eosinophils having the greatest increase (Zheng et al. 2004). De Vooght et al. (2013) showed 

that granulocytes played a key role in TDI-induced airway hyperresponsiveness.  Ogawa et al. (2006) 

showed that TDI-HSA increased cytokine and chemokine production through the epidermal growth factor 

(EGFR) and p38 mitogen-activated protein kinase (MAPK) pathways. Results from studies conducted by 
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Pham et al. (2014) suggest that TDI can bind to tissue transglutaminase and that this conjugate can induce 

specific IgG antibody production, which can increase airway inflammation. 

Intercellular adhesion molecule-1 (ICAM-1) plays a key regulatory role in TDI-induced inflammation by 

mediating the adhesion of blood leukocytes to the vascular epithelium (Furusho et al. 2006).  In ICAM-1 

knockout mice sensitized and challenged with TDI, there is a reduction in neutrophil, lymphocyte, 

eosinophil, and macrophage airway infiltration, a blocking of airway hyperresponsiveness, and marked 

decreases in TNF-α, IL-4, IL-5, and IFN-γ levels in the BAL fluid.  Another mediator of airway 

inflammation that is overexpressed in response to TDI-HSA conjugates is vascular endothelial growth 

factor (VEGF) (Zhao et al. 2009).  Overexpression of VEGF can result in increased vascular permeability 

and Th2 cell sensitization.  Incubating bronchial cells with TDI-HSA resulted in increased cell 

permeability; however, neutralizing VEGF partially inhibited this increase in cell permeability (Zhao et 

al. 2009).  Kim et al. (2011) found higher VEGF levels in workers with TDI-induced asthma, as 

compared to asymptomatic TDI-exposed workers. 

Several investigators have shown that oxidative stress plays an essential role in diisocyanate-induced 

inflammation.  Studies of workers with TDI- or MDI-induced asthma have shown increased transferrin 

levels and decreased ferritin levels (Hur et al. 2009; Kim et al. 2010).  Ferritin is used for detoxification 

during oxidative stress-induced inflammation.  Kim et al. (2010) found that TDI suppressed the synthesis 

of ferritin light chain in human airway epithelial cells.  Several other antioxidant proteins were also found 

to be downregulated by TDI, including heme oxygenase-1, thioredoxins-1, glutathione peroxidase, 

peroxiredoxin-1, and catalase.  Heme oxygenase-1/ferritin light chain expression was likely suppressed 

through the MAPK-Nrf2 signaling pathway (Kim et al. 2010).  Studies in epithelial cells have also shown 

that TDI exposure induces the generation of reactive oxygen species (Hur et al. 2009). 

3.5.3 Animal-to-Human Extrapolations 

Kennedy et al. (1994) compared the quantities of TDI-derived components (as radioactivity) in the blood 

of guinea pigs, rats, and humans exposed by inhalation to 14C- 2,4-TDI in several studies, and observed a 

linear relationship between the log-transformed microgram equivalents of the tolyl group per mL of blood 

and the log-transformed exposure concentration x time metric (ppm-hours).  This observation suggests 

limited interspecies differences in the absorption of inhaled TDI into the blood stream.  No data on 

interspecies differences in the pharmacokinetic behavior of MDI were located in the available literature. 
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3.6  TOXICITIES MEDIATED THROUGH THE NEUROENDOCRINE AXIS 

Recently, attention has focused on the potential hazardous effects of certain chemicals on the endocrine 

system because of the ability of these chemicals to mimic or block endogenous hormones.  Chemicals 

with this type of activity are most commonly referred to as endocrine disruptors. However, appropriate 

terminology to describe such effects remains controversial.  The terminology endocrine disruptors, 

initially used by Thomas and Colborn (1992), was also used in 1996 when Congress mandated the EPA to 

develop a screening program for “...certain substances [which] may have an effect produced by a 

naturally occurring estrogen, or other such endocrine effect[s]...”. To meet this mandate, EPA convened a 

panel called the Endocrine Disruptors Screening and Testing Advisory Committee (EDSTAC), and in 

1998, the EDSTAC completed its deliberations and made recommendations to EPA concerning endocrine 

disruptors. In 1999, the National Academy of Sciences released a report that referred to these same types 

of chemicals as hormonally active agents. The terminology endocrine modulators has also been used to 

convey the fact that effects caused by such chemicals may not necessarily be adverse.  Many scientists 

agree that chemicals with the ability to disrupt or modulate the endocrine system are a potential threat to 

the health of humans, aquatic animals, and wildlife.  However, others think that endocrine-active 

chemicals do not pose a significant health risk, particularly in view of the fact that hormone mimics exist 

in the natural environment.  Examples of natural hormone mimics are the isoflavinoid phytoestrogens 

(Adlercreutz 1995; Livingston 1978; Mayr et al. 1992).  These chemicals are derived from plants and are 

similar in structure and action to endogenous estrogen.  Although the public health significance and 

descriptive terminology of substances capable of affecting the endocrine system remains controversial, 

scientists agree that these chemicals may affect the synthesis, secretion, transport, binding, action, or 

elimination of natural hormones in the body responsible for maintaining homeostasis, reproduction, 

development, and/or behavior (EPA 1997).  Stated differently, such compounds may cause toxicities that 

are mediated through the neuroendocrine axis.  As a result, these chemicals may play a role in altering, 

for example, metabolic, sexual, immune, and neurobehavioral function.  Such chemicals are also thought 

to be involved in inducing breast, testicular, and prostate cancers, as well as endometriosis (Berger 1994; 

Giwercman et al. 1993; Hoel et al. 1992). 

No studies were located regarding endocrine disruption in humans and/or animals after exposure to TDI 

or MDI. No in vitro studies were located regarding endocrine disruption of TDI or MDI. 
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3.7  CHILDREN’S SUSCEPTIBILITY 

This section discusses potential health effects from exposures during the period from conception to 

maturity at 18 years of age in humans, when most biological systems will have fully developed.  Potential 

effects on offspring resulting from exposures of parental germ cells are considered, as well as any indirect 

effects on the fetus and neonate resulting from maternal exposure during gestation and lactation.  

Relevant animal and in vitro models are also discussed. 

Children are not small adults.  They differ from adults in their exposures and may differ in their 

susceptibility to hazardous chemicals.  Children’s unique physiology and behavior can influence the 

extent of their exposure.  Exposures of children are discussed in Section 6.6, Exposures of Children. 

Children sometimes differ from adults in their susceptibility to adverse health effects from exposure to 

hazardous chemicals, but whether there is a difference depends on the chemical(s) (Guzelian et al. 1992; 

NRC 1993).  Children may be more or less susceptible than adults to exposure-related health effects, and 

the relationship may change with developmental age (Guzelian et al. 1992; NRC 1993).  Vulnerability 

often depends on developmental stage.  There are critical periods of structural and functional 

development during both prenatal and postnatal life that are most sensitive to disruption from exposure to 

hazardous substances.  Damage from exposure in one stage may not be evident until a later stage of 

development. There are often differences in pharmacokinetics and metabolism between children and 

adults.  For example, absorption may be different in neonates because of the immaturity of their 

gastrointestinal tract and their larger skin surface area in proportion to body weight (Morselli et al. 1980; 

NRC 1993); the gastrointestinal absorption of lead is greatest in infants and young children (Ziegler et al. 

1978).  Distribution of xenobiotics may be different; for example, infants have a larger proportion of their 

bodies as extracellular water, and their brains and livers are proportionately larger (Altman and Dittmer 

1974; Fomon 1966; Fomon et al. 1982; Owen and Brozek 1966; Widdowson and Dickerson 1964).  Past 

literature has often described the fetus/infant as having an immature (developing) blood-brain barrier that 

is leaky and poorly intact (Costa et al. 2004).  However, current evidence suggests that the blood-brain 

barrier is anatomically and physically intact at this stage of development, and the restrictive intracellular 

junctions that exist at the blood-CNS interface are fully formed, intact, and functionally effective 

(Saunders et al. 2008, 2012). 

However, during development of the brain, there are differences between fetuses/infants and adults that 

are toxicologically important. These differences mainly involve variations in physiological transport 
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systems that form during development (Ek et al. 2012).  These transport mechanisms (influx and efflux) 

play an important role in the movement of amino acids and other vital substances across the blood-brain 

barrier in the developing brain; these transport mechanisms are far more active in the developing brain 

than in the adult.  Because many drugs or potential toxins may be transported into the brain using these 

same transport mechanisms—the developing brain may be rendered more vulnerable than the adult.  

Thus, concern regarding possible involvement of the blood-brain barrier with enhanced susceptibility of 

the developing brain to toxins is valid.  It is important to note however, that this potential selective 

vulnerability of the developing brain is associated with essential normal physiological mechanisms; and 

not because of an absence or deficiency of anatomical/physical barrier mechanisms. 

The presence of these unique transport systems in the developing brain of the fetus/infant is intriguing; 

whether these mechanisms provide protection for the developing brain or render it more vulnerable to 

toxic injury is an important toxicological question.  Chemical exposure should be assessed on a case-by-

case basis.  Research continues into the function and structure of the blood-brain barrier in early life 

(Kearns et al. 2003; Saunders et al. 2012; Scheuplein et al. 2002). 

Many xenobiotic metabolizing enzymes have distinctive developmental patterns. At various stages of 

growth and development, levels of particular enzymes may be higher or lower than those of adults, and 

sometimes unique enzymes may exist at particular developmental stages (Komori et al. 1990; Leeder and 

Kearns 1997; NRC 1993; Vieira et al. 1996).  Whether differences in xenobiotic metabolism make the 

child more or less susceptible also depends on whether the relevant enzymes are involved in activation of 

the parent compound to its toxic form or in detoxification.  There may also be differences in excretion, 

particularly in newborns given their low glomerular filtration rate and not having developed efficient 

tubular secretion and resorption capacities (Altman and Dittmer 1974; NRC 1993; West et al. 1948).  

Children and adults may differ in their capacity to repair damage from chemical insults.  Children also 

have a longer remaining lifetime in which to express damage from chemicals; this potential is particularly 

relevant to cancer. 

Certain characteristics of the developing human may increase exposure or susceptibility, whereas others 

may decrease susceptibility to the same chemical.  For example, although infants breathe more air per 

kilogram of body weight than adults breathe, this difference might be somewhat counterbalanced by their 

alveoli being less developed, which results in a disproportionately smaller surface area for alveolar 

absorption (NRC 1993). 
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Limited data for TDI and MDI on children’s susceptibility were identified.  In the absence of data, it is 

assumed that the respiratory tract would be the most sensitive target of toxicity for both compounds.  Two 

studies have examined the developmental toxicity and both reported skeletal effects.  Exposure to TDI on 

GDs 6–15 resulted in poorly ossified cervical vertebrae at a concentration also resulting in markedly 

reduced maternal weight gain and respiratory symptoms (Tyl et al. 1999a).  An increase in the occurrence 

of asymmetric sternebrae was observed in rats; maternal toxicity was limited to a decrease in food 

consumption (Buchsmann et al. 1996). 

3.8  BIOMARKERS OF EXPOSURE AND EFFECT 

Biomarkers are broadly defined as indicators signaling events in biologic systems or samples. They have 

been classified as markers of exposure, markers of effect, and markers of susceptibility (NAS/NRC 

1989). 

A biomarker of exposure is a xenobiotic substance or its metabolite(s) or the product of an interaction 

between a xenobiotic agent and some target molecule(s) or cell(s) that is measured within a compartment 

of an organism (NAS/NRC 1989).  The preferred biomarkers of exposure are generally the substance 

itself, substance-specific metabolites in readily obtainable body fluid(s), or excreta.  However, several 

factors can confound the use and interpretation of biomarkers of exposure.  The body burden of a 

substance may be the result of exposures from more than one source. The substance being measured may 

be a metabolite of another xenobiotic substance (e.g., high urinary levels of phenol can result from 

exposure to several different aromatic compounds).  Depending on the properties of the substance (e.g., 

biologic half-life) and environmental conditions (e.g., duration and route of exposure), the substance and 

all of its metabolites may have left the body by the time samples can be taken.  It may be difficult to 

identify individuals exposed to hazardous substances that are commonly found in body tissues and fluids 

(e.g., essential mineral nutrients such as copper, zinc, and selenium).  Biomarkers of exposure to TDI and 

MDI are discussed in Section 3.8.1. 

Biomarkers of effect are defined as any measurable biochemical, physiologic, or other alteration within an 

organism that, depending on magnitude, can be recognized as an established or potential health 

impairment or disease (NAS/NRC 1989). This definition encompasses biochemical or cellular signals of 

tissue dysfunction (e.g., increased liver enzyme activity or pathologic changes in female genital epithelial 

cells), as well as physiologic signs of dysfunction such as increased blood pressure or decreased lung 

capacity.  Note that these markers are not often substance specific. They also may not be directly 
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adverse, but can indicate potential health impairment (e.g., DNA adducts). Biomarkers of effects caused 

by TDI and MDI are discussed in Section 3.8.2. 

A biomarker of susceptibility is an indicator of an inherent or acquired limitation of an organism's ability 

to respond to the challenge of exposure to a specific xenobiotic substance.  It can be an intrinsic genetic or 

other characteristic or a preexisting disease that results in an increase in absorbed dose, a decrease in the 

biologically effective dose, or a target tissue response. If biomarkers of susceptibility exist, they are 

discussed in Section 3.10, Populations That Are Unusually Susceptible. 

3.8.1  Biomarkers Used to Identify or Quantify Exposure to TDI and MDI 

A number of potential urinary and plasma biomarkers of exposure to TDI and MDI have been 

investigated. TDA, likely released by hydrolysis of protein adducts, has been measured in plasma and in 

acid- or alkaline-hydrolyzed urine as a biomarker of exposure to 2,4- and 2,6-TDI (Austin et al. 2007; 

Brorson et al. 1991; Geens et al. 2012; Sennbro et al. 2004; Sepai et al. 1995; Skarping et al. 1991; 

Tinnerberg et al. 1997, 2014).  Both Geens et al. (2012) and Sennbro et al. (2004) observed strong 

correlations (coefficients ranging from 0.75 to 0.88) between personal air concentrations of 2,4- and 

2,6-TDI and plasma and urinary levels of 2,4-, 2,6-, and total TDA in occupationally exposed persons.  

Similarly, the diamine metabolite of MDI (MDA) has been studied as a biomarker of exposure (Sabbioni 

et al. 2007; Schutze et al. 1995; Sennbro et al. 2003, 2006; Sepai et al. 1995).  Sennbro et al. (2006) 

reported statistically significant, but not strong, correlation coefficients of 0.51–0.65 for the association 

between personal air measurements of MDI and plasma or urinary levels of MDA (samples collected the 

same day as the air measurements; urinary samples were hydrolyzed).  The authors noted that there was 

significant interindividual variation. Tinnerberg et al. (2014) also found correlations between TDA levels 

in hydrolyzed urine (creatinine adjusted or specific gravity adjusted) and TDA levels in hydrolyzed 

plasma; strong correlations were also found for MDA levels in hydrolyzed urine and hydrolyzed plasma.  

It was noted that GSTM1 polymorphisms modified the association between urine and plasma TDA levels. 

To facilitate the distinction between background levels of exposure and occupational exposure, Sennbro 

et al. (2005) measured plasma and hydrolyzed urinary 2,4- and 2,6-TDA and MDA in workers with and 

without occupational exposure to isocyanates. Upper reference limits on the background biomarker levels 

were calculated using the receiver operator characteristic curve method; the results are shown in 

Table 3-13.  TDA was detected infrequently in unexposed persons (detection frequencies ranging from 

http:0.51�0.65
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2 to 15%), while MDA was detected in nearly all (97%) urinary and plasma samples (Sennbro et al. 

2005).  

Diamines may be present in the plasma and urine as a result of exposure to the corresponding 

diisocyanate or exposure to the diamine itself; thus, this biomarker is not specific to isocyanate exposure. 

Sabbioni et al. (2010, 2012) and Kumar et al. (2009) developed methods for measuring TDI and MDI 

adducts of albumin that are specific to isocyanates.  Sabbioni et al. (2012) detected 2,4- and 2,6-TDI 

adducts with the lysine of albumin in blood samples taken from 10 workers 26 days after they were 

accidentally exposed to TDI (details of the exposure were not provided). Three lysine adducts were 

detected: Nε-[({3-amino-4-methylphenyl}amino)carbonyl]-lysine (3A4MP-Lys); Nε-[({5-amino-

2-methylphenyl}amino)carbonyl]-lysine (5A2MP-Lys); and Nε-[({3-amino-2-methylphenyl}amino)-

carbonyl]-lysine (3A2MP-Lys). The adducts were detected at concentrations ranging from 29 to 

269 fmol/mg.  Repeat analysis of selected samples showed coefficients of variation ranging from 2.1 to 

6.6% for the three adducts.  Half-lives of the albumin adduct levels were estimated to be 21.7 days for 

3A4MP-Lys, 40.3 days for 5A2MP-Lys, and 19.6 days for 3A2MP-Lys. 

Sabbioni et al. (2010, 2016) likewise detected albumin adducts of MDI in workers exposed to MDI; the 

adducts were identified as N6-[({4-[4-aminobenzyl]phenyl}amino)carbonyl]lysine (MDI-Lys) and 

N6-[({4-[4-acetylaminobenzyl]phenyl}amino)carbonyl]lysine (AcMDI-Lys).  The level of MDI-Lys was 

correlated with MDA in acid- and alkaline-hydrolyzed urine, but not with measurements of hemoglobin 

adducts of MDA. The authors (Sabbioni et al. 2010) noted that measurement of hemoglobin adducts only 

would have underestimated the number of exposed workers; only 27% of workers exhibited hemoglobin 

adducts of MDI, while albumin adducts were observed in 64% of workers. 

In summary, recent exposure to diisocyanates may be reflected in TDA or MDA levels in acid- or 

alkaline-hydrolyzed urine or plasma, but these biomarkers may also be present in urine and plasma as a 

result of exposure to the diamines themselves (TDA and MDA).  Background levels of TDA and MDA in 

urine and plasma should be considered in the interpretation of measured values from subjects with 



    
 

    
 
 

 
 
 
 
 

 Table 3-13.  Upper Reference Limits for Biomarkers of Exposure to Toluene  
 Diisocyanate and Methylenediphenyl Diisocyanate 

 
 Frequency of Upper  

Mediana   Rangea detectiona  reference  Sensitivity  Specificity 
 Biomarker (μg/L)  (μg/L)   (%)  limit (μg/L)   (%)  (%) 

 Urinary 2,4-TDA  <0.1  <0.1–0.4   7 0.4  94  100  
 Plasma 2,4-TDA <0.1  <0.1–0.1   2 0.1  100  100  
 Urinary 2,6-TDA <0.1  <0.1–0.2  15  0.2  97  100  
 Plasma 2,6-TDA <0.1  <0.1–0.1   2 0.2  99  100  

Urinary MDA  0.2  <0.05–3.0  97  0.5  100  97  
Plasma MDA  0.2  <0.05–0.4  97  0.4  88  100  
 

   aTDA and MDA measured in 120 unexposed workers from five workplaces in Sweden. 
 

 MDA = methylenediphenyl amine; TDA = toluene diamine 
 

 Source:  Sennbro et al. 2005 
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unknown exposure.  Finally, serum levels of albumin adducts of TDI or MDI are specific to diisocyanate 

exposure and, due to their longer half-life, may be useful in assessing exposure over the preceding weeks. 

These biomarkers have been shown to be useful for identifying exposure to TDI or MDI; however, no 

biomarkers have been identified that allow for quantification of exposure. 

3.8.2 Biomarkers Used to Characterize Effects Caused by TDI and MDI 

One of the prominent health effects associated with inhalation exposure to TDI or MDI is the induction of 

occupational asthma.  Several tests have been developed to diagnosis occupational asthma; these include 

measurement of peak expiratory flow rate, nonspecific bronchial provocation testing, specific 

immunological testing, skin-prick testing, specific inhalational challenge testing, and nasal lavage testing 

(Jolly et al. 2015; Ott et al. 2007).  With the exception of the specific immunological and specific 

inhalational challenge tests, these tests are not specific to TDI or MDI exposure. Although specific 

inhalational challenge testing is considered one of the better tests for diagnosing sensitizer-induced 

occupational asthma (Jolly et al. 2015; Ott et al. 2007; Vandenplas et al. 2014), the American College of 

Occupational and Environmental Medicine notes that it is a highly technical test and has the potential for 

inducing severe adverse effects, including fatalities (Jolly et al. 2015).  Several investigators have 

evaluated the usefulness of specific immunological tests, TDI-/MDI-specific IgE and IgG levels, for 

diagnosing TDI-/MDI-induced occupational asthma.  As discussed in Section 3.2.1.2, a number of 

occupational exposure studies have reported IgG- or IgE-specific antibodies to TDI-HSA in workers with 

TDI-induced asthma (Baur and Fruhmann 1981; Cvitanovic et al. 1989; Park and Nahm 1996; Park et al. 

1999; Pezzini et al. 1984; Sharifi et al. 2013) or MDI-HSA in MDI workers (Hur et al. 2008; Pezzini et al. 

1984; Tse et al. 1985; Zeiss et al. 1980).  However, specific IgG or IgE antibodies were typically 

observed in a small percentage of TDI workers (16–57%).  In a small study of MDI workers (Budnik et 

al. 2013), MDI-specific IgE antibodies were detected in four of seven workers with confirmed MDI-

induced asthma, none of the four workers with hypersensitivity pneumonitis, and none of the six 

asymptomatic workers.  In contrast, IgG antibody levels were detected in four of seven workers with 

asthma, four of four subjects with hypersensitivity pneumonitis, and one of six asymptomatic workers. In 

a review conducted by Wisnewski (2007), isocyanate-specific serum IgE has been found in up to 50% of 

workers.  It is noted that isocyanate-specific IgE levels have a half-life of approximately 2 days and levels 

can drop below the detection limit following brief periods with no exposure (Wisnewski 2007).  Palikhe 

et al. (2011) also noted that the prevalence of IgG antibodies was not a reliable biomarker because the 

prevalence was too low. This is less of an issue for IgG, which has a half-life of approximately 30 days.  

The American College of Occupational and Environmental Medicine concluded that there is insufficient 
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evidence to assess the usefulness of IgE testing for low molecular weight antigens (Jolly et al. 2015); it is 

noted that this recommendation is not specific to isocyanates. 

Several studies have examined other biomarkers that could be used for early diagnosis of TDI-induced 

asthma. Significantly lower matrix metalloproteinase-9 (MMP-9) level and higher VEGF levels were 

found in workers with TDI-induced asthma, as compared to asymptomatic workers (Kim et al. 2011; 

Palikhe et al. 2011).  The sensitivity and specificity of the MMP-9 were 79.7 and 80.0%, respectively 

(Kim et al. 2011).  Combining several variables (MMP-9, VEGF, and interleukin-8) increased the 

sensitivity to 82.6%, but decreased the specificity to 75.8%. Kim et al. (2012) found that the levels of 

vitamin D-binding protein (VDBP) were significantly higher in workers with isocyanate-induced 

occupational asthma, as compared to asymptomatic workers from the same working environment, or in 

unexposed healthy subjects; the sensitivity and specificity was 69 and 81%, respectively.  Ye et al. (2006) 

examined the usefulness of three cytokeratins (CK8, CK18, and CK19) for identifying TDI-induced 

asthma.  Significantly higher IgG antibody levels of CK8, CK18, and CK19 were found in the workers 

with TDI-induced asthma as compared to asymptomatic workers, subjects with allergic asthma, and 

healthy subjects.  The sensitivity and specificity for C8, CK18, and CK19 antibodies were 18.2 and 

95.2%, 26.2 and 93.5%, and 26.2 and 93.5%, respectively. 

3.9  INTERACTIONS WITH OTHER CHEMICALS 

No studies were identified examining the influence of other chemical on the toxicity or toxicokinetics of 

TDI or MDI. 

3.10  POPULATIONS THAT ARE UNUSUALLY SUSCEPTIBLE 

A susceptible population will exhibit a different or enhanced response to TDI or MDI than will most 

persons exposed to the same level of TDI or MDI in the environment.  Factors involved with increased 

susceptibility may include genetic makeup, age, health and nutritional status, and exposure to other toxic 

substances (e.g., cigarette smoke).  These parameters result in reduced detoxification or excretion of TDI 

and MDI, or compromised function of organs affected by TDI and MDI.  Populations who are at greater 

risk due to their unusually high exposure to TDI and MDI are discussed in Section 6.7, Populations with 

Potentially High Exposures. 

There are data to suggest that there is a genetic susceptibility factor that may predispose certain 

individuals to develop occupational asthma as a result of exposure to TDI or MDI.  Several investigators 
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have examined possible associations between genetic polymorphisms and diisocyanate-induced asthma. 

Vucesoy et al. (2012) demonstrated that genetic variants of antioxidant defense genes are associated with 

increased susceptibility to diisocyanate (TDI, MDI, or HDI)-induced asthma in a study of diisocyanate 

workers with confirmed occupational asthma, workers reporting respiratory symptoms who did not react 

to diisocyanate challenge, and asymptomatic HDI workers.  Significant associations between 

diisocyanate-induced asthma and three types of variant genotypes (manganese superoxide dismutase 

[SOD2] rs4880, microsomal epoxide hydrolase [EPHX1] 2740171, and a glutathione S-transferase 

[GSTP1] rs1695) were noted.  Blindow et al. (2015) also found greater responses to specific inhalation 

challenges among symptomatic isocyanate workers with GST1 deletions and a higher risk of developing 

IgE-mediated reactions in workers with GSTM1 deletions.  In a study of 84 workers with TDI-induced 

occupational asthma, higher bronchial hyperresponsiveness was observed in TDI workers with asthma 

with polymorphisms of catenin alpha 3, alpha-T-catenin (CTNNA3) (Kim et al. 2009). Similar results 

were observed in a second study of diisocyanate workers; increased risks of CTNNA3 polymorphisms 

were found among workers with occupational asthma, but not among workers without asthma (Bernstein 

et al. 2013).  

Several studies have examined the frequency of human leukocyte antigen class II (HLA) haplotypes 

among with TDI-induced asthma.  Higher frequencies of haplotypes DRB1*15-DPB1*05 (Kim et al. 

2006) and DRB1*1501-DQB1*0602-DPB1*0501 (Choi et al. 2009) and the allele DQB1*0503 and the 

allelic combination of DQB1*0201/0301 (Bignon et al. 1994) were found among workers with TDI-

induced asthma.  Similarly, Yucesoy et al. (2014) found increases in the susceptibility to diisocyanate-

induced asthma among diisocyanate workers with single nucleotide polymorphisms in HLA-E HLA-

DPB1, HLA-DOA, or HLA-DQA2 genes. Both Kim et al. (2006) and Beghe et al. (2004) found an 

alteration in the distribution of HLA class I antigens in subjects with TDI-induced asthma.  Ye et al. 

(2010) found no differences in the allelic, genotypic, or haplotypic frequencies of beta 2-adrenergic 

receptor gene (ADRB2) polymorphisms among TDI workers with occupational asthma, asymptomatic 

workers, or controls with no TDI exposure.  However, significant associations between two ADRB2 

polymorphisms (Arg16Gly and Arg173Arg single nucleotide polymorphisms) and the prevalence of 

specific IgE antibodies to TDI-HSA were found among TDI workers and a significantly higher TDI-HSA 

specific IgE sensitization was found in workers with the ADRB2 ht1/ht1 homozygote.  Broberg et al. 

(2008) found that an increased risk of eye symptoms was associated with the CYP1A1*2A variant and an 

increased risk of wheezing was associated with CYP1A1*2B.  Studies by Yucesoy et al. (2015, 2016) 

identified several gene and single nucleotide polymorphisms that may be associated with susceptibility to 

diisocyanate-induced asthma. Single nucleotide polymorphisms mapping to several genes including 
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TNFα, TGB1, PTGS1, PTGS2, HERC2, CDH17, and ODZ3 have been found to contribute to 

diisocyanate-induced asthma susceptibility. 

Studies examining clinical features of subjects with suspected occupational asthma found no differences 

in the incidence of atopy among workers who reacted to a TDI challenge and workers not reacting to the 

TDI challenge (Mapp et al. 1988; Moscato et al. 1991; Paggiaro et al. 1984).  Significantly fewer subjects 

reacting to TDI were found to be current smokers; although a higher percentage of ex-smokers were 

found among the TDI reactors (Moscato et al. 1991; Paggiaro et al. 1984). One study found a higher 

number of workers with positive skin tests to common allergens among the reactors (Paggiaro et al. 

1984). 

3.11  METHODS FOR REDUCING TOXIC EFFECTS 

This section will describe clinical practice and research concerning methods for reducing toxic effects of 

exposure to TDI and MDI.  Because some of the treatments discussed may be experimental and unproven, 

this section should not be used as a guide for treatment of exposures to TDI and MDI.  When specific 

exposures have occurred, poison control centers, board certified medical toxicologists, board-certified 

occupational medicine physicians and/or other medical specialists with expertise and experience treating 

patients overexposed to TDI and MDI can be consulted for medical advice.  The following texts provide 

specific information about treatment following exposures to TDI and MDI: 

Blanc PD.  2018.  Section II: Specific poisons and drugs: Diagnosis and treatment:  Isocyanates.  In: 
Poisoning & drug overdose.  7th ed.  McGraw-Hill Education.  
https://accessmedicine.mhmedical.com/book.aspx?bookid=2284. May 30, 2018. 

Leikin JB, Paloucek FP.  2008.  Methylene diisocyanate and toluene diisocyanate.  In:  Poisoning and 
toxicology handbook.  4th ed.  Boca Raton, FL:  CRC Press, 824; 857-858. 

Vena J, McKay C.  2007. Isocyanates and related compounds.  In:  Haddad and Winchester's clinical 
management of poisoning and drug overdose.  4th ed.  Philadelphia, PA:  Saunders Elsevier, 1317-1322. 

Additional relevant information can be found in the front section of this profile under QUICK 

REFERENCE FOR HEALTH CARE PROVIDERS. 

3.11.1 Reducing Peak Absorption Following Exposure 

No studies were identified that examined reducing peak absorption of TDI or MDI following exposure. 

https://accessmedicine.mhmedical.com/book.aspx?bookid=2284
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3.11.2 Reducing Body Burden 

No studies were identified that examined reducing body burden of TDI or MDI following exposure. 

3.11.3 Interfering with the Mechanism of Action for Toxic Effects 

Several studies have examined the effectiveness of asthma medication or corticosteroid medication 

inhibiting the asthmatic reaction and nonspecific airway reactivity associated with TDI exposure in 

sensitized individuals.  An acute treatment course with ketotifen, atropine, slow-release verapamil, or 

cromolyn did not prevent dual and/or late asthmatic reactions in TDI-sensitized individuals receiving an 

inhalation challenge with TDI (Mapp et al. 1987; Paggiaro et al. 1987; Tossin et al. 1989). Ketotifen, 

verapamil, and cromolyn also did not alter bronchial responsiveness to methacholine (Mapp et al. 1987; 

Tossin et al. 1989). In contrast, administration of beclomethasone or prednisone prevented the asthmatic 

reaction and airway hyperresponsiveness following a TDI inhalation challenge (Boschetto et al. 1987; 

Mapp et al. 1987).  Slow-release theophylline partially inhibited the immediate and late asthmatic reaction 

to TDI but did not alter airway hyperresponsiveness (Mapp et al. 1987).  In subjects receiving a 5-month 

treatment with beclomethasone, there was an improvement in the response to TDI inhalation challenge 

1 month post-treatment; however, a similar improvement was found in untreated controls (Maestrelli et al. 

1993). However, beclomethasone treatment did improve airway hyperresponsiveness to methacholine, a 

finding not observed in the untreated controls.  

3.12  ADEQUACY OF THE DATABASE 

Section 104(I)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of TDI and MDI is available. Where adequate information is 

not available, ATSDR, in conjunction with the National Toxicology Program (NTP), is required to assure 

the initiation of a program of research designed to determine the adverse health effects (and techniques 

for developing methods to determine such health effects) of TDI and MDI. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health risk assessment. This definition should not be interpreted to 

mean that all data needs discussed in this section must be filled.  In the future, the identified data needs 

will be evaluated and prioritized, and a substance-specific research agenda will be proposed. 
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3.12.1 Existing Information on Health Effects of TDI and MDI 

The existing data on health effects of inhalation, oral, and dermal exposure of humans and animals to TDI 

and MDI are summarized in Figure 3-6 and 3-7, respectively.  The purpose of these figures is to illustrate 

the existing information concerning the health effects of TDI and MDI. Each dot in the figure indicates 

that one or more studies provide information associated with that particular effect.  The dot does not 

necessarily imply anything about the quality of the study or studies, nor should missing information in 

this figure be interpreted as a “data need”.  A data need, as defined in ATSDR’s Decision Guide for 

Identifying Substance-Specific Data Needs Related to Toxicological Profiles (ATSDR 1989), is 

substance-specific information necessary to conduct comprehensive public health assessments. 

Generally, ATSDR defines a data gap more broadly as any substance-specific information missing from 

the scientific literature. 

3.12.2 Identification of Data Needs 

Acute-Duration Exposure. Although several case reports of single exposures to TDI (Axford et al. 

1976; Le Quesne et al. 1976; Schmidt-Nowara et al. 1973; Singer and Scott 1987; Vandenplas et al. 1992; 

Yoshizawa et al. 1989) and MDI (Chang and Karol 1984; Suojalehto et al. 2011) have reported 

respiratory effects following an acute exposure, they did not include monitoring data.  Several acute 

exposure experimental studies have examined lung function following a single exposure to TDI (Chester 

et al. 1979; Vandenplas et al. 1999).  Animal studies have examined the toxicity of TDI (Aoyama et al. 

1994; Arts et al. 2008; Buckley et al. 1984; Gagnaire et al. 1996; Gordon et al. 1985; Johnson et al. 2007; 

Marek et al. 1999; Sangha and Alarie 1979; Wong et al. 1985; Zissu 1995) and MDI (Marek et al. 1999); 

the observed effects on the respiratory system include histological damage to the nasal cavity and lungs 

and increased airway responsiveness.  In general, these studies did not examine end points outside of the 

target tissues, the respiratory tract. The database for TDI was considered adequate for derivation of an 

acute-duration inhalation MRL; however, a repeated exposure study examining lung function in humans 

would provide support for this MRL.  The database was not considered adequate for derivation of an 

acute-duration inhalation MRL for MDI and studies are needed that provide concentration-response data.  

Acute-duration data on the toxicity of TDI following oral exposure are limited to single and 14-day 

exposure studies that found increases in mortality and decreases in body weight gain (NTP 1986); other 
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Figure 3-6.  Existing Information on Health Effects of Toluene Diisocyanate 
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Figure 3-7.  Existing Information on Health Effects of Methylenediphenyl 
Diisocyanate 
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end points were not examined.  No studies examined the acute-duration oral toxicity of MDI.  Studies that 

examine the dermal toxicity of TDI and MDI are needed, particularly since ocular and dermal irritation 

has been reported in workers exposed to airborne TDI and MDI. 

Intermediate-Duration Exposure. Occupational exposure studies typically involve chronic-

duration exposure; however, there is suggestive evidence that effects can occur after several months of 

exposure (Clark et al. 1998).  Three studies have examined the toxicity of TDI to the respiratory tract of 

animals following intermediate-duration exposure (Matheson et al. 2005; Wong et al. 1985; Zissu 1995).  

The studies reported histological damage in the nasal cavity and lungs and an increase in airway 

hyperresponsiveness.  One study examined the intermediate-duration toxicity of MDI in animals (Marek 

et al. 1999), but the study was limited to the examination of airway hyperresponsiveness and did not 

include a histological examination of the respiratory tract.  Although the database was considered 

inadequate for the derivation of intermediate-duration inhalation MRLs, the chronic-duration inhalation 

MRLs could be used for intermediate duration.  

Chronic-Duration Exposure and Cancer. The chronic toxicity of TDI and MDI has been 

extensively investigated in occupational studies of production facilities and polyurethane manufacturing 

facilities and in workers applying polyurethane varnishes (Bodner et al. 2001; Burge 1982; Clark et al. 

1998, 2003; Diem et al. 1982; Jang et al. 2000; Liss et al. 1988; Mapp et al. 1998; Moscato et al. 1991; 

Musk et al. 1982; Ott et al. 2000; Paggiaro et al. 1986, 1993; Sulotto et al. 1990; Zammit-Tabona et al. 

1983). These studies provide strong evidence that the respiratory tract is the most sensitive target of TDI 

or MDI toxicity.  Longitudinal studies of TDI workers provide sufficient monitoring data to allow for the 

derivation of a chronic-duration inhalation MRL (Clark et al. 1998; Diem et al. 1982).  Monitoring data in 

the MDI studies were not considered adequate.  The chronic toxicity of TDI and MDI has also been 

investigated in two animal studies (Loeser 1983; Reuzel et al. 1994); these studies also identify the 

respiratory tract as the most sensitive target. A chronic-duration rat study (Reuzel et al. 1994) was used to 

derive a chronic-duration inhalation MRL for MDI.  Data on the chronic toxicity of orally administered 

TDI was investigated by NTP (1986).  No long-term studies on the dermal toxicity of TDI or MDI were 

located. 

There are limited human data on the carcinogenicity of TDI or MDI.  Three studies of polyurethane foam 

manufacturing workers provide some suggestive evidence of an increased lung cancer risk, but the 

association with diisocyanates was not established (Mikoczy et al. 2004; Schnorr et al. 1996; Sorahan and 

Nichols 2002).  No significant increases in lung cancer were observed in animals following TDI (Loeser 
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1983) or MDI (Reuzel et al. 1994) exposure.  Increases in tumor incidence were observed in a chronic-

duration gavage study of TDI (NTP 1986). The relevance of the findings in this gavage study to humans 

exposed to TDI via ingestion has been questioned due to likely toxicokinetic differences between 

ingestion and gavage administration of this very reactive compound.  Additional studies are needed to 

address these concerns. 

Genotoxicity. Both TDI and MDI have been tested for genotoxicity in prokaryotic and mammalian 

systems in vitro. TDI is not stable in most in vitro test systems; TDA is formed rapidly in the vehicles 

used in available genotoxicity tests, and it has been suggested that TDA is responsible for positive 

mutagenicity tests of TDI (Seel et al. 1999). Mixed results have been found in in vivo tests for genotoxic 

end points. However, the interpretation of the results of some of the studies is limited by methodological 

problems or poor reporting.  Additional in vivo studies would facilitate assessing the interpretation of the 

genotoxicity data.   

MDI also degrades to MDA in in vitro test systems using DMSO or EGDE, but at a much slower rate 

than TDI does.  When MDI was tested for genotoxicity in EGDE (in which MDI is more stable), the 

results were negative, while positive results were seen when DMSO was used as the solvent (Herbold et 

al. 1998).  There is little information on genotoxicity of MDI in humans or non-human mammalian 

systems tested in vivo. 

Reproductive Toxicity. The available data on the reproductive toxicity of TDI consists of a 

2-generation study in rats exposed via inhalation (Tyl et al. 1999b) in which no effects on reproductive 

parameters were observed.  No data on the reproductive toxicity of MDI in humans or animals exposed by 

any route were located in the available literature. 

Developmental Toxicity. A single developmental toxicity study of TDI in rats exposed via 

inhalation (Tyl et al. 1999a) showed poorly ossified cervical centra at an exposure concentration that also 

resulted in maternal toxicity; no other exposure-related effects were seen in the offspring.  Similarly, there 

is one study of MDI developmental toxicity in rats exposed via inhalation (Buchsmann et al. 1996); an 

increased incidence of litters with asymmetric sternebrae was the only treatment-related effect.  There are 

no data on the developmental toxicity of TDI or MDI via oral or dermal exposure routes.  

Immunotoxicity. Available literature did not include human or animal studies evaluating 

immunological effects after exposure to TDI or MDI.  Occupational asthma observed in TDI (Mapp et al. 
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1988; Moller et al. 1986; Moscato et al. 1991; Padoan et al. 2003; Paggiaro et al. 1984, 1986; Saetta et al. 

1995) and MDI (Bonauto et al. 2005; Burge 1982; Chang and Karol 1983; Hur et al. 2008; Liss et al. 

1988; Suojalehto et al. 2011; Woellner et al. 1997; Zammit-Tabona et al. 1983) workers may be the result 

of immunotoxicity; however, additional research is needed to identify the mechanism of toxicity. 

Neurotoxicity. The database for diisocyanates (including both TDI and MDI) does not include any 

information on neurological effects of chronic-duration exposure.  Human and/or animal studies are 

warranted given the suggestive evidence for long-term impairment after acute exposure (Le Quesne et al. 

1976; Singer and Scott 1987).  In addition, no information on potential neurotoxicity of MDI was located; 

animal and/or mechanistic studies are needed to evaluate this end point.  

Epidemiological and Human Dosimetry Studies. Numerous studies have examined the toxicity 

of TDI (Bodner et al. 2001; Clark et al. 1998, 2003; Diem et al. 1982; Mapp et al. 1998; Moscato et al. 

1991; Ott et al. 2000; Paggiaro et al. 1986, 1993) and MDI (Burge 1982; Jang et al. 2000; Liss et al. 1988; 

Musk et al. 1982; Sulotto et al. 1990; Zammit-Tabona et al. 1983) in occupationally exposed subjects; 

additionally, two studies have examined possible adverse health outcomes in residents living near TDI 

sources (Nuorteva et al. 1987; Wilder et al. 2011). These studies provide strong evidence that the 

respiratory tract is the most sensitive target resulting in occupational asthma, respiratory symptoms, and 

impaired lung function.  However, many studies are lacking reliable monitoring data, particularly in 

studies examining workers exposed to MDI. Several occupational exposure studies have also assessed 

the potential association between inhalation exposure to diisocyanates and cancer (Mikoczy et al. 2004; 

Schnorr et al. 1996; Sorahan and Nichols 2002) and found suggestive evidence between work in the 

polyurethane foam manufacturing industry and lung cancer in female workers, but an association with 

diisocyanate exposure was not established.  Significant limitations of all three studies included the lack of 

control for confounding factors, such as smoking and alcohol consumption, and coexposure to mixtures 

of compounds including those other than diisocyanates.  Continued epidemiological research focused on 

improving exposure estimates (for example, using biomarkers of exposure) and control for confounding is 

recommended. 

Biomarkers of Exposure and Effect. 

Exposure. Biomarkers of exposure to TDI and MDI include the diamine hydrolysis products (TDA and 

MDA) as well as hemoglobin and albumin adducts of the isocyanates.  Improvements in the 

standardization of methods used to pretreat biological samples (e.g., acid- and alkaline-hydrolysis) prior 
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to analysis could help to refine the predictive relationship between levels of metabolites or adducts in the 

samples and exposure. 

Effect. Given the continued decline in lung function and the delay in recovery when TDI- or MDI-

sensitized workers remain in jobs involving TDI/MDI exposure (Banks et al. 1990; Mapp et al. 1988; 

Padoan et al. 2003; Paggiaro et al. 1984; Park and Nahm 1997), biomarkers that would allow for early 

detection of sensitization are needed. Investigators have identified several potential biomarkers of effect 

including MMP-9 (Kim et al. 2011), VEGF (Kim et al. 2011), cytokeratins (Ye et al. 2006), which may 

be useful for early detection of occupational asthma. Additional studies in sensitized workers are needed 

to evaluate the usefulness of these biomarkers and others for early detection of TDI and/or MDI 

sensitization. 

Absorption, Distribution, Metabolism, and Excretion. Human and animal data suggest that 

TDI and MDI are absorbed to some extent via all exposure routes.  Both TDI and MDI combine readily 

with biological macromolecules including hemoglobin, albumin, and others.  As a consequence of their 

reactivity, these compounds or their reaction products are often found at higher concentrations at the site 

of entry into the body early in exposure, and may continue to be distributed from the site of entry long 

after exposure has terminated. Once in the body, conjugated TDI and MDI are distributed to a large 

number of tissues, albeit at low levels. 

The metabolic fate of TDI depends on the exposure route.  After oral exposure, TDI is hydrolyzed in the 

gastrointestinal tract to TDA, and subsequently either absorbed and metabolized further or reacted with 

unhydrolyzed TDI to form polyurea polymers that pass unabsorbed through the gastrointestinal tract. 

However, after inhalation exposure, the primary fate of TDI appears to be conjugation reactions; little 

TDI, if any, is hydrolyzed to TDA.  In humans exposed experimentally, urinary excretion of the TDI 

metabolite TDA exhibits a biphasic pattern, with an initial rapid phase followed by a slower phase.  The 

primary route of TDI elimination after inhalation or oral exposure of rats is via the feces, which may 

include material absorbed and excreted via the bile. 

Few data on the metabolism and elimination of MDI were identified in the available literature.  Like TDI, 

MDI is excreted primarily in the feces of rats after inhalation exposure, and there is evidence for biliary 

excretion of MDI.  As there are no data on the pharmacokinetic behavior of MDI after oral exposure in 

humans or animals, research on the route-dependence of MDI metabolism would be particularly 

beneficial.  
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PBPK models of TDI and MDI pharmacokinetics have not yet been developed. 

Comparative Toxicokinetics. There are few data on species differences in the toxicokinetics of 

TDI, and no data on this issue for MDI. Research to assess species differences in MDI toxicokinetics 

would provide important information regarding the extrapolation from animal toxicity information to 

human effects. 

Methods for Reducing Toxic Effects. Several investigators have examined the effectiveness of 

asthma medication or corticosteroids for treating occupational asthma induced by TDI (Boschetto et al. 

1987; Maestrelli et al. 1993; Mapp et al. 1987; Paggiaro et al. 1987; Tossin et al. 1989). Although some 

beneficial effects were observed when asthmatic subjects were challenged with TDI during the treatment 

course (Boschetto et al. 1987; Mapp et al. 1987), long-term benefits have not been found (Maestrelli et al. 

1993). Since a large number of subjects with occupational asthma do not recover even after exposure 

cessation, additional research is needed on the treatment of TDI- or MDI-induced occupational asthma. 

In addition, studies are needed to assess the treatment of other TDI- or MDI-related health effects such as 

decreased lung function. 

Children’s Susceptibility. Data needs relating to both prenatal and childhood exposures, and 

developmental effects expressed either prenatally or during childhood, are discussed in detail in the 

Developmental Toxicity subsection above. 

No information on children’s susceptibility to TDI or MDI toxicity was identified and it is not known if 

children would be more susceptible to the irritating properties of TDI or MDI. Although TDI/MDI 

exposure primarily occurs in the workplace, communities living near TDI or MDI sources or the 

commercial use of products containing uncured TDI or MDI can result in exposure to children. Two 

studies have examined communities living near a TDI source (Nuorteva et al. 1987; Wilder et al. 2011), 

one of these studies included children (Nuorteva et al. 1987); however, the data were not analyzed by age 

group. Given the potential for exposure, studies are needed to address this data gap. 

Child health data needs relating to exposure are discussed in Section 6.8.1, Identification of Data Needs: 

Exposures of Children. 
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3.12.3 Ongoing Studies 

The following ongoing studies pertaining to TDI and MDI have been identified in the National Institutes 

of Health (NIH) Research Portfolio Online Reporting Tools (RePORTER 2016) database. 

Adam Wisnewski at L2 Diagnostics, LLC is developing two immunoassays that can be used to 

biomonitor MDI exposure in the workplace. The two biomarkers being investigated are MDI-specific 

IgG antibodies and MDI albumin conjugates 
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4.1  CHEMICAL IDENTITY 

Information regarding the chemical identity of TDI and MDI is provided in Table 4-1. 

TDI and MDI have widespread commercial use due to their reactivity and versatility.  TDI and MDI and 

their related polyisocyanates make up >90% of the commercial market (EPA 2011a).  Commercial-grade 

TDI is made up of an 80:20 mixture of isomers 2,4- and 2,6-TDI and represents >95% of TDI industrial 

use (NIOSH 1989). 

Commercial-grade MDI consists of several isomers, including 4,4’-, 2,4’-, and 2,2’-MDI, as well as 

oligomers and polymeric compounds.  The principal commercial product of MDI is made up of a mixture 

of all of these components, with a typical composition in the range of 40–50% 4,4’-MDI, 2.5–4.0% 

2,4’-MDI, and 0.1–0.2% 2,2’-MDI; the remainder is oligomers.  4,4’-MDI is the most commercially 

common isomer and is referred to as pure MDI (IARC 1999a). 

4.2  PHYSICAL AND CHEMICAL PROPERTIES 

Information regarding the physical and chemical properties of TDI and MDI is provided in Table 4-2. 
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Table 4-1. Chemical Identity of Toluene Diisocyanate and Methylenediphenyl 
Diisocyanatea 

Characteristic Methylenediphenyl diisocyanate Toluene diisocyanate 
Chemical name Benzene, 1,1’-methylenebis(4-isocyanato-) Benzene, 1,3-diisocyanato-

methyl-
Synonyms(s) 4,4’-Methylenedi(phenyl isocyanate); Diisocyanatotoluene; isocyanic 

4,4’-methylenebis(phenyl isocyanate); acid, methylphenylene ester; 
4,4’-methylenediphenyl diisocyanate; methylphenylene isocyanate; 
bis(4-isocyanatophenyl)methane; isocyanic TDI 
acid, methylenedi-p-phenylene ester; MDI 

Registered trade name(s) Caradate 30; Desmodur 44; Hylene M; TDI 80/20; Mondur TD; Hylene 
Isonate M; Nacconate T; Rubinate TDI; Niax TDI 

Chemical formula C15H10N2O2 C9H6N2O2 

Chemical structure O C N O 
C 

N 

C 
N 

O 

N 
C 
O 

* CH3 

Identification numbers: 
CAS registry 101-68-8 26471-62-5 (mixture of 2,4-TDI 

9016-87-9 (polymeric MDI) and 2,6-TDI) 
NIOSH RTECS NQ9350000b NQ9490000e 

EPA hazardous waste No data U223 
OHM/TADS No data No data 
DOT/UN/NA/IMCO UN 2489c UN 2078 
shipping IMO 6.1d IMO 6.1 
HSDB 2630 6003 
NCI C50668 No data 
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Table 4-1. Chemical Identity of Toluene Diisocyanate and Methylenediphenyl 
Diisocyanatea 

Characteristic 2,4-Toluene diisocyanate 2,6-Toluene diisocyanate 
Chemical name 

Synonyms(s) 

Registered trade name(s) 
Chemical formula 
Chemical structure 

Benzene, 2,4-diisocyanato-1-methyl 

2,4-Diisocyanatotoluene; isocyanic acid, 
4-methyl-m-phenylene ester; 4-methyl-
phenylene diisocyanate; toluene-
2,4-diisocyanate; 2,4-TDI 
Hylene T; Mondur TDS 
C9H6N2O2 

CH3 

N 
C 

O 

Benzene, 1,3-diisocyanato-
2-methyl 
2,6-Diisocyanatotoluene; 
2,6-diisocyanto-1-methylbenzene; 
2-methyl-phenylene diisocyanate; 
toluene-2,6-diisocyanate; 2,6-TDI 
Hylene T; Mondur TDS 
C9H6N2O2 

CH3 

N 
C 

N 
C 

OO 

N 
C 

O 
Identification numbers: 

CAS registry 584-84-9 91-08-7 
NIOSH RTECS CZ6300000f CZ6310000g 

EPA hazardous waste U223 U223 
OHM/TADS No data No data 
DOT/UN/NA/IMCO UN 2206/2207/2478/3080d UN 2207d 

shipping IMO 6.1 IMO 6.1 
HSDB 874 5272 
NCI C50533 No data 

aAll information obtained from HSDB (2012), unless otherwise noted.
bRTECS 2009a 
cChemSpider 2013
dLewis 2004 
eNIOSH 1989 
fRTECS 2009b 
gRTECS 2009c 

CAS = Chemical Abstracts Services; DOT/UN/NA/IMCO = Department of Transportation/United Nations/North 
America/Intergovernmental Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; 
HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for 
Occupational Safety and Health; OHM/TADS = Oil and Hazardous Materials/Technical Assistance Data System; 
RTECS=Registry of Toxic Effects of Chemical Substances 
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Table 4-2.  Physical and Chemical Properties of Toluene Diisocyanate and 
Methylenediphenyl Diisocyanatea 

Property Methylenediphenyl diisocyanate Toluene diisocyanate 
Molecular weight 250.252 174.16 
Color Light-yellow Clear, colorless to pale yellow 
Physical state Solid/crystals Liquid 
Melting point 37°C 11–14°C 
Boiling point 196°C (at 5 mm Hg) 250°C 
Density: 

at 25°C No data 1.22 g/mL 
at 70°C 1.197 g/cm3 No data 

Odor Odorless Pungent 
Odor threshold: 

Water Not applicableb Not applicableb 

Air No data 360–920 μg/m3 

Solubility: 
Water at 25°C Not applicableb Not applicableb 

Organic solvents Soluble in acetone, benzene, Miscible with alcohol, ether, 
kerosene, and nitrobenzene acetone, carbon tetrachloride, 

benzene, and kerosene 
Partition coefficients: 

Log Kow Not applicableb Not applicableb 

Log Koc Not applicableb Not applicableb 

Vapor pressure at 25°C 5.1x10-6 mm Hg 2.30x10-2 mm Hg 
Henry's law constant at 25°C Not applicableb Not applicableb 

Autoignition temperature No data No data 
Flashpoint 202°C (open cup) 132°C (closed cup) 
Flammability limits Flammablec 0.9–9.5 volume % 
Conversion factors 1 ppm=10.24 mg/m3 No data 
Explosive limits No data Explosive (vapor) 

http:ppm=10.24


    
 

  
 
 

 
 
 
 
 

 

 
   

   
   

   
   
   

 
      
      

 
 
 

 
 

 
   

   
    
    

   
    
   

 
 

 

 

 

   
    
     

     
     

   
   

   
   

   
 

   
   

 
 

129 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

4.  CHEMICAL AND PHYSICAL INFORMATION 

Table 4-2.  Physical and Chemical Properties of Toluene Diisocyanate and 
Methylenediphenyl Diisocyanatea 

Property 2,4-Toluene diisocyanate 2,6-Toluene diisocyanate 
Molecular weight 174.16 174.16 
Color Colorless to pale yellow Colorless to pale yellow 
Physical state Liquid Liquid 
Melting point 20.5°C 18.3°C 
Boiling point 251°C 129–133°C (at 18 mm Hg) 
Density: 

at 20°C/4°C 1.2244 No data 
at 25°C No data 1.22 

Odor Sharp, pungent Pungent 
Odor threshold: 

Water Not applicableb Not applicableb 

Air 0.4–2.14 ppm No data 
Solubility: 

Water at 25°C Not applicableb Not applicableb 

Organic solvents Miscible with alcohol Soluble in acetone and benzene 
(decomposition), ether, acetone, 
benzene, carbon tetrachloride, 
chlorobenzene, diglycol 
monomethyl ether, kerosene, and 
olive oil 

Partition coefficients: 
Log Kow Not applicableb Not applicableb 

Log Koc Not applicableb Not applicableb 

Vapor pressure at 25°C 8.0x10-3 mm Hg (20°C) 2.09x10-2 mm Hg 
Henry's law constant at 25°C Not applicableb Not applicableb 

Autoignition temperature 620°C No data 
Flashpoint 132°C (open cup)c No data 
Flammability limits 0.9–9.5 volume % Flammable 
Conversion factors No data 1 mg/m3=0.14 ppm 
Explosive limits Explosive (vapor) No data 

aAll information obtained from HSDB (2012), unless otherwise noted. 
bDiisocyanates hydrolyze rapidly in water; therefore, these end points are not applicable. 
cLewis 2004 
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4.  CHEMICAL AND PHYSICAL INFORMATION 
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131 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

5.1  PRODUCTION 

TDI is manufactured via the dinitration of toluene with mixed acid to produce a mixture of 2,4- and 

2,6-dinitro isomers in a 80:20 ratio.  Catalytic reduction of these isomers under hydrogen pressure forms 

the corresponding diamines, which are then treated with phosgene to yield TDI, made up of an 

80:20 mixture of isomers 2,4- and 2,6-TDI (HSDB 2012). 

MDI is produced through a two-step process starting with the condensation reaction between aniline and 

formaldehyde in the presence of hydrochloric acid to yield MDA, followed by the phosgenation to MDI.  

The production of polymeric MDI also proceeds via this reaction, with the percent distribution of 

homologues and isomers being dependent on the ratio of aniline to formaldehyde, the acid concentration, 

and the reaction conditions (HSDB 2012). 

The worldwide production of polyurethanes was around 15.9 million tons in 2007, which corresponds to a 

total consumption of 1.9 million tons of TDI (Geens et al. 2012).  The worldwide production volume of 

MDI in 2008 was approximately 1.4 million tons (Gries and Leng 2013).  Also in 2008, the demand for 

pure MDI and polymeric MDI was 192.1 and 1,418 million pounds, respectively, in the United States 

(EPA 2011a).  The demand for TDI in 2008 in the United States was 425.2 million pounds (EPA 2011b).  

2,4-TDI, 2,6-TDI, and 4,4’-MDI are listed by the EPA as High Production Volume (HPV) chemicals. 

Chemicals listed under the HPV Challenge Program were produced or imported into the United States in 

quantities >1 million pounds in 1990 and/or 1994 (HSDB 2012).  The aggregated national production 

volumes reported for 2,4-TDI, 2,6-TDI, and 4,4’-MDI under the EPA’s 2010 Inventory Update Rule were 

10–<50, <500,000, and 100–<500 million pounds (EPA 2010).  TDI (mixed isomers) had a reported 

aggregated national production volume of ≥1 billion pounds (EPA 2010). 

TDI (mixed isomers), 2,4-TDI, and 2,6-TDI are chemicals that manufacturing and processing facilities 

would be required to report under Section 313 of the Emergency Planning and Community Right-to-

Know Act (Title III of the Superfund Amendments and Reauthorization Act of 1986 [SARA]) (EPA 

1998a).  Tables 5-1, 5-2, and 5-3 list the production year, number of facilities, the state where each 

facility is located, and the range (in pounds) for each domestic manufacturer that reported the production 

or formulation of TDI (mixed isomers), 2,4-TDI, and 2,6-TDI, respectively in 2016 (TRI16 2017).  The 

TRI category diisocyanates contains data for MDI and 20 other diisocyanates (not including TDI); 

however, since there is no way to parse out the data for MDI separately, it was not included. 



    
 

   
 
 

 
 
 
 
 

  
 

 

 
 

 

 

     
     
     
      
     
     
     

     
      
     
     
     
      
     
     
     

      
      
     
     
     
     
     
     
      
     
     
     
     
      
      
      
     

132 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1.  Facilities that Produce, Process, or Use Toluene Diisocyanate 
(Mixed Isomers) 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AR 1 100,000 999,999 6 
AZ 1 No data No data No data 
CA 11 100 9,999,999 6, 7, 8, 11 
DE 2 10,000 99,999 6, 7 
FL 3 10,000 999,999 6, 7 
GA 6 10,000 999,999 6 
IA 2 10,000 999,999 6, 7 
IL 3 1,000 999,999 6, 7, 12 
IN 6 1,000 9,999,999 6, 7 
KS 2 1,000 9,999,999 6 
KY 2 100,000 49,999,999 6, 9 
LA 3 100,000 9,999,999 1, 4, 6, 12 
MA 4 10,000 9,999,999 6, 7 
MD 2 100,000 999,999 6, 7 
ME 2 10,000 99,999 6 
MI 5 10,000 9,999,999 6, 7, 9, 10, 11 
MN 1 1,000 9,999 6, 7, 8 
MO 5 100,000 999,999 6 
MS 6 100,000 9,999,999 6, 7 
NC 11 10,000 9,999,999 6, 7 
NH 1 1,000 9,999 6 
NJ 7 10,000 999,999 6, 7 
NM 2 100,000 999,999 6, 7 
OH 8 1,000 999,999 6, 7, 8, 9, 12 
OR 1 100,000 999,999 6 
PA 7 1,000 999,999 6, 7 
PR 1 No data No data No data 
SC 2 10,000 99,999 6 
TN 4 1,000 999,999 6, 7, 9 
TX 14 1,000 9,999,999 1, 3, 6, 7, 12 
VA 4 100,000 9,999,999 6, 7, 9, 12 
WA 2 10,000 999,999 6, 7 



    
 

   
 
 

 
 
 
 
 

  
 

 

 
 

 

 

     
     
      

 
  

    
 

 
 

 
 

 

 
 

   
 

 

 
 

 
 

 
      

  

133 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-1.  Facilities that Produce, Process, or Use Toluene Diisocyanate 
(Mixed Isomers) 

Statea 
Number of 
facilities 

Minimum 
amount on site 
in poundsb 

Maximum 
amount on site 
in poundsb Activities and usesc 

WI 2 100,000 999,999 6, 7 
WV 1 1,000,000 9,999,999 6, 7, 9 

aPost office state abbreviations used. 
bAmounts on site reported by facilities in each state. 
cActivities/Uses: 
1.  Produce 
2.  Import 
3.  Onsite use/processing 
4.  Sale/Distribution 
5.  Byproduct 

6.  Impurity 
7.  Reactant 
8. Formulation Component 
9.  Article Component 
10.  Repackaging 

11.  Chemical Processing Aid 
12.  Manufacturing Aid 
13.  Ancillary/Other Uses 
14.  Process Impurity 

Source: TRI16 2017 (Data are from 2016) 



    
 

   
 
 

 
 
 
 
 

 
 

 
 

 

 

     
     
     
     
     
     

     
     
     
     
     
     
     

      
     
      
      
     
     
     
     
      
      

     
     
     
     
     
     
      

 
  

    
 

 
 

 
 

 

 
 

 
 

 

 
 

   
 

 
     

 

134 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-2.  Facilities that Produce, Process, or Use 2,4-Toluene Diisocyanate 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AL 1 10,000 99,999 7 

IL 1 No data No data No data 

KS 1 No data No data No data 

RI 1 No data No data No data 

AR 2 100,000 999,999 9, 12 
CO 1 1,000,000 9,999,999 6, 8 
CT 1 1,000 9,999 6 
GA 2 100,000 999,999 10 
IA 1 1,000 9,999 10 

IN 2 1,000 999,999 6 

KY 1 10,000 99,999 6 
MA 1 10,000 99,999 6 
MD 1 1,000 9,999 6, 7 
MI 5 10,000 999,999 6, 7, 11 
MN 1 10,000 99,999 12 
MO 2 10,000 99,999 6, 7, 12 
MS 4 0 9,999,999 6, 7, 12 
NC 1 100,000 999,999 6 
NE 1 100,000 999,999 6 
NJ 3 10,000 99,999 6 
NY 1 10,000 99,999 6, 7 
OH 5 1,000 99,999 6, 7, 8, 12 
PA 4 1,000 999,999 6, 7, 8 

TN 2 1,000 999,999 6, 10, 11 
TX 3 1,000 9,999,999 9, 12 
UT 1 10,000 99,999 12 
VA 1 10,000 99,999 8 
WI 2 0 99 12 
WV 1 100,000 999,999 2, 3, 7 

aPost office state abbreviations used. 
bAmounts on site reported by facilities in each state. 
cActivities/Uses: 
1.  Produce 6.  Impurity 11.  Chemical Processing Aid 
2.  Import 7.  Reactant 12.  Manufacturing Aid 
3.  Onsite use/processing 8.  Formulation Component 13. Ancillary/Other Uses 
4.  Sale/Distribution 9.  Article Component 14.  Process Impurity 
5.  Byproduct 10.  Repackaging 

Source: TRI16 2017 (Data are from 2016) 



    
 

   
 
 

 
 
 
 
 

 
 

 
 

 

 

     
     
     
     

     
     
     
     
     

      
     
     
     
      
      
      
     
     
      

 
  

    
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
      

  

135 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-3.  Facilities that Produce, Process, or Use 2,6-Toluene Diisocyanate 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AR 1 10,000 99,999 12 
CO 1 100,000 999,999 6, 8 
GA 1 10,000 99,999 10 
IL 1 No data No data No data 
IN 1 10,000 99,999 6 
KS 1 No data No data No data 
MA 1 1,000 9,999 6 
MD 1 1,000 9,999 6, 7 
MI 4 10,000 999,999 6, 7, 8 
MO 2 1,000 99,999 6, 7 
MS 2 10,000 9,999,999 6, 7 
NE 1 10,000 99,999 6 
OH 5 100 99,999 6, 7, 8, 12 
PA 1 10,000 99,999 6, 7, 1 
TN 2 1,000 999,999 6, 7, 10, 11 
TX 1 No data No data No data 
WI 2 0 99 12 
WV 1 10,000 99,999 2, 3, 6, 7 

aPost office state abbreviations used. 
bAmounts on site reported by facilities in each state. 
cActivities/Uses: 
1.  Produce 6.  Impurity 11.  Chemical Processing Aid 
2.  Import 7.  Reactant 12.  Manufacturing Aid 
3.  Onsite use/processing 8.  Formulation Component 13.  Ancillary/Other Uses 
4.  Sale/Distribution 9.  Article Component 14.  Process Impurity 
5.  Byproduct 10.  Repackaging 

Source: TRI16 2017 (Data are from 2016) 



    
 

   
 
 

 
 
 
 
 

 
 

 
 

 

 

     
       
      
     
       
      
      
     
      
       

      
     
       
          
      
       
       
      
      
      

          
       
       
      
     
      
     
      
       
      
     
      
       
       
      
          
       
     

      
       
     

136 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-4.  Facilities that Produce, Process, or Use Diisocyanates 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

AL 32 1,000 9,999,999 1, 3, 4, 6, 7, 8, 10, 11, 12 
AR 13 0 999,999 2, 4, 6, 7 
AZ 12 1,000 999,999 6, 10 
CA 63 100 9,999,999 2, 4, 6, 7, 8, 9, 10, 11 
CO 8 10,000 9,999,999 6, 7, 8 
CT 13 1,000 999,999 6, 7, 8, 9, 10, 11 
DE 4 10,000 99,999 6, 7 
FL 28 100 9,999,999 6, 7, 8, 9, 14 
GA 54 1,000 9,999,999 2, 3, 4, 6, 7, 8, 9, 10 
IA 20 1,000 999,999 6, 7, 8, 11, 12 
ID 3 10,000 999,999 8, 12 
IL 49 0 9,999,999 2, 3, 6, 7, 8, 9, 11, 12 
IN 84 100 9,999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14 
KS 15 10,000 999,999 6, 7, 8, 11, 12 
KY 25 10,000 9,999,999 1, 4, 6, 7, 8, 9, 10, 11 
LA 14 0 49,999,999 1, 2, 3, 4, 6, 7, 9, 12 
MA 23 1,000 9,999,999 6, 7, 8, 9, 11 
MD 5 1,000 999,999 6, 7, 9, 11 
ME 3 10,000 9,999,999 1, 5, 6, 8 
MI 90 100 9,999,999 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14 
MN 40 1,000 999,999 2, 3, 4, 6, 7, 8, 9, 11, 12 
MO 55 100 9,999,999 2, 3, 6, 7, 8, 9, 10, 11, 12 
MS 22 1,000 999,999 6, 7, 8, 10, 11, 12 
MT 2 No data No data No data 
NC 54 1,000 49,999,999 6, 7, 8, 9, 10, 11, 12 
ND 2 10,000 9,999,999 7 
NE 10 1,000 9,999,999 6, 8, 9, 10, 12 
NH 5 1,000 999,999 2, 3, 6, 7, 8, 9 
NJ 17 100 999,999 6, 7, 8, 11 
NM 2 100,000 999,999 6 
NV 7 10,000 999,999 6, 7, 12 
NY 23 1,000 9,999,999 2, 3, 6, 7, 8, 9 
OH 89 100 499,999,999 1, 5, 6, 7, 8, 9, 10, 11, 12 
OK 15 1,000 999,999 6, 7, 8, 11 
OR 23 0 9,999,999 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13 
PA 64 0 9,999,999 2, 3, 6, 7, 8, 9, 10, 11, 12 
PR 2 1,000 9,999 12 
RI 7 1,000 999,999 6, 7, 8, 9 
SC 32 0 9,999,999 1, 3, 5, 6, 7, 8, 9, 10, 11, 12 
SD 2 No data No data No data 



    
 

   
 
 

 
 
 
 
 

 
 

 
 

 

 

     
       
          
       
      
     
      

       
       

 
  

    
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
  

 

  

137 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Table 5-4.  Facilities that Produce, Process, or Use Diisocyanates 

Minimum Maximum 
Number of amount on site amount on site 

Statea facilities in poundsb in poundsb Activities and usesc 

TN 58 100 9,999,999 2, 3, 6, 7, 8, 9, 11, 12 
TX 85 100 499,999,999 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12 
UT 14 1,000 9,999,999 2, 3, 6, 7, 8, 9, 10, 12 
VA 20 1,000 999,999 6, 7, 8, 9, 10, 11, 12 
VT 1 No data No data No data 
WA 11 1,000 9,999,999 6, 7, 11, 12 
WI 71 1,000 9,999,999 2, 3, 6, 7, 8, 9, 10, 11, 12 
WV 13 1,000 9,999,999 2, 3, 6, 7, 8, 9, 11 

aPost office state abbreviations used. 
bAmounts on site reported by facilities in each state. 
cActivities/Uses: 
1.  Produce 6.  Impurity 11.  Chemical Processing Aid 
2.  Import 7.  Reactant 12.  Manufacturing Aid 
3.  Onsite use/processing 8.  Formulation Component 13.  Ancillary/Other Uses 
4.  Sale/Distribution 9.  Article Component 14.  Process Impurity 
5.  Byproduct 10.  Repackaging 

Source:  TRI16 2017 (Data are from 2016) 



    
 

   
 
 

 
 
 
 
 

    

     

   

 

   
 

 

 

    

    

    

   

 

   

   

 

 

    

 

  
 

   

   

   

   

    

 

  

      

 

 

 

 

138 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

Manufacturers are required to report Toxics Release Inventory (TRI) data to satisfy EPA requirements. 

The TRI data should be used with caution since only certain types of facilities are required to report (EPA 

2005).  This is not an exhaustive list. 

5.2  IMPORT/EXPORT 

U.S. imports of mixed isomers of TDI were 984,000 kg (2.1 million pounds) in 1989, and decreased to 

1,000 kg (2,200 pounds) in 1996 but increased again to 15 million kg (32 million pounds) in 2006; 2008 

imports were reported as 500,000 kg (1.1 million pounds) (NTP 2011).  U.S. imports of unmixed isomers 

of TDI were reported as 426,000 kg (939,000 pounds) in 1989, and reached a low of 9,000 kg 

(19,800 pounds) in 1998.  U.S. imports of unmixed isomers peaked at 1.3 million kg (2.8 million pounds) 

in 2004; 2008 imports were 130,000 kg (286,000 pounds).  U.S. exports of mixed isomers of TDI were 

62 million kg (125 million pounds) in 1989, rising to 277 million kg (609 million pounds) in 2003.  

U.S. exports of unmixed isomers of TDI peaked in 1994 at 46 million kg (101 million pounds), falling to 

a low of 3.9 million kg (8.6 million pounds) in 2008 (NTP 2011). 

It was reported that 5% of the total U.S. production volume of MDI was exported in 2000 (HSDB 2012).  

No export data could be located for MDI in the available literature. 

5.3  USE 

TDI and MDI have widespread commercial use due to their reactivity and versatility.  TDI and MDI and 

their related polyisocyanates make up >90% of the commercial market (EPA 2011a).  Commercial- grade 

TDI is made up of an 80:20 mixture of isomers 2,4- and 2,6-TDI and represents >95% of TDI industrial 

use (NIOSH 1989).  Technical MDI products vary in composition and consist of several MDI isomers and 

oligomeric derivatives with increasing number of aromatic rings (Bobeldijk et al. 2008). 

Diisocyanates, such as MDI and TDI, are generally supplied as raw materials to formulators who use their 

reactivity to combine them with other chemicals to create various polyurethanes with a wide diversity of 

applications (EPA 2011a, 2011b).  

TDI is a widely used industrial intermediate in the manufacture of polyurethane products (Bilban 2004).  

In the presence of amines, TDI reacts rapidly with polyols to form polyurethane foam for the furniture, 

bedding, and automotive industries (Austin 2007). 



    
 

   
 
 

 
 
 
 
 

 

  

 

 

 

  

    

  

   

    

 

 

   
 

   

 

 

   

  

  

   

 

    

    

   

 

 

 

  

  

   

139 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

MDI, polymeric MDI, and TDI are used predominantly in the production of flexible and rigid 

polyurethane foams.  Rigid foams are mainly used for insulation, while flexible foams are used for 

cushioning.  A smaller amount of the total production volume of MDI, polymeric MDI, and TDI is used 

in the non-foam polyurethane sector, including coatings, adhesives, binders, and sealants (EPA 2011a, 

2011b). 

Prior to reaching the consumer market, the majority of polyurethane products made with TDI and MDI 

undergo a curing process (process by which TDI and MDI react with other product components to form 

polyurethane).  However, polyurethane products such as spray foams, coatings, sealants, and adhesives 

may be sold and used containing uncured TDI and MDI (EPA 2011a, 2011b). In general, polyurethane 

products sold to the consumer have low concentrations of uncured TDI and MDI and are generally 

accompanied by product safety information.  

5.4  DISPOSAL 

TDI is designated with an EPA hazardous waste number U223, and therefore, generators of waste 

containing this contaminant must conform with EPA regulations in storage, transport, treatment, and 

disposal (HSDB 2012). 

TDI and MDI wastes from distillation equipment are preferably sent to special waste incinerators for 

burning.  Hydrolysis reaction products of TDI and MDI contained in waste waters can be biodegraded by 

treatment with activated sludge.  Recommended methods of TDI and MDI disposal include incineration, 

and alkaline hydrolysis.  Disposal to landfills is not recommended (HSDB 2012). 

A study was conducted to assess the effectiveness of using wet sand in the event of a spill to detoxify TDI 

in situ.  A 30-L container holding 5 kg of TDI was covered with a mixture of 30 kg of sand and 5 kg of 

water at ambient temperature.  After 24 hours, it was observed that only 5.5% of the TDI remained 

unreacted.  The reaction degradation product, TDA, was not present above the detection limit (10 ppb) 

(Duff 1983). 

Another study described a procedure to decontaminate diisocyanates by which liquid TDI or MDI was 

added to a decontamination solution containing water (90%), concentrated ammonia solution (8%), and 

liquid detergent (2%) to effect safe disposal (Duff 1983). 
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5.  PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 

The EPA proposed “low part per million concentration level” criteria of 10 ppm for TDI, which would 

allow a pronouncement that the spilled TDI residues treated in situ could be considered nonhazardous, if 

the criteria are achieved (Duff 1983). 



    
 
 
 
 

 
 
 
 
 

 
 

   
 

      

     

  

  

 

 

    

 

  

      

 

 

   

 

  

 

 

 

   
 

  

    

        

    

  

  

      

   

  

141 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

6. POTENTIAL FOR HUMAN EXPOSURE 

6.1  OVERVIEW 

TDI has been identified in 4 of the 1,854 hazardous waste sites that have been proposed for inclusion on 

the EPA National Priorities List (NPL) (ATSDR 2017).  Diisocyanates were not found at the sites most 

likely due to their rapid hydrolysis in the environment.  The frequency of these sites can be seen in 

Figure 6-1. 

TDI and MDI are extremely reactive compounds that are widely used in the production of polyurethane 

materials. There are no natural sources of diisocyanates.  Almost all of the potential exposures to these 

compounds are associated with the production, handling, use, and disposal of diisocyanates and 

diisocyanate-containing products and material.  Exposure of the general population to diisocyanates could 

potentially result from industrial exposures, as well as from the use of consumer products containing 

uncured TDI and MDI (EPA 2011a, 2011b).  

The dominant process affecting the overall environmental fate, transport, and bioaccumulation potential 

of diisocyanates is hydrolysis (EPA 2011a, 2011b).  Diisocyanates react with water forming the 

respective amines, which in turn may react with more diisocyanates to produce inert, insoluble polyureas 

(WHO 2000).  Hydrolysis half-lives of MDI and TDI have been measured to be on the order of a few 

minutes to a few hours (HSDB 2012). 

6.2  RELEASES TO THE ENVIRONMENT 

The Toxics Release Inventory (TRI) data should be used with caution because only certain types of 

facilities are required to report (EPA 2005).  This is not an exhaustive list.  Manufacturing and processing 

facilities are required to report information to the TRI only if they employ 10 or more full-time 

employees; if their facility is included in Standard Industrial Classification (SIC) Codes 10 (except 1011, 

1081, and 1094), 12 (except 1241), 20–39, 4911 (limited to facilities that combust coal and/or oil for the 

purpose of generating electricity for distribution in commerce), 4931 (limited to facilities that combust 

coal and/or oil for the purpose of generating electricity for distribution in commerce), 4939 (limited to 

facilities that combust coal and/or oil for the purpose of generating electricity for distribution in 

commerce), 4953 (limited to facilities regulated under RCRA Subtitle C, 42 U.S.C. section 6921 et seq.), 



    
 

   
 
 

 
 
 
 
 

  
 
 

 

142 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

6. POTENTIAL FOR HUMAN EXPOSURE 

Figure 6-1.  Frequency of NPL Sites with 1,3-Toluene Diisocyanate Contamination 



    
 

   
 
 

 
 
 
 
 

  

    

   

  

 

    

    

 

  

      

     

   

    

   

 

     
 

    

  

       

      

    

    

 

   

    

 

   

  

 

 

  

     

143 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

6. POTENTIAL FOR HUMAN EXPOSURE 

5169, 5171, and 7389 (limited S.C. section 6921 et seq.), 5169, 5171, and 7389 (limited to facilities 

primarily engaged in solvents recovery services on a contract or fee basis); and if their facility produces, 

imports, or processes ≥25,000 pounds of any TRI chemical or otherwise uses >10,000 pounds of a TRI 

chemical in a calendar year (EPA 2005). 

TDI can enter the environment through industrial releases, such as through vent stacks of facilities 

handling this compound or as an accidental spillage to land or surface waters during transit (Duff 1983). 

EPA’s National Emission Inventory (NEI) database contains comprehensive and detailed estimates 

regarding sources that emit criteria air pollutants and their precursors, and hazardous air pollutants 

(HAPs) for the 50 United States, Washington DC, Puerto Rico, and the U.S. Virgin Islands. The NEI 

database includes point and non-point source emissions, on-road sources, non-road sources, and event 

sources such as emissions from wildfires.  According to data from the 2014 NEI, 26,0381 pounds of MDI 

were released and 764,987 pounds of TDI were released (EPA 2014f). 

6.2.1 Air 

Estimated releases of 19,050, 737, and 381 pounds (~8.64, 0.33, and 0.17 metric tons) of TDI (mixed 

isomers), 2,4-TDI, and 2,6-TDI to the atmosphere from 134, 53, and 29 domestic manufacturing and 

processing facilities in 2016 (TRI16 2017) are summarized in Tables 6-1, 6-2, and 6-3.  Table 6-4 

summarizes releases of 207,137 pounds (~93.96 metric tons) of the diisocyanates category, which 

consists of MDI and 19 other substances, to the atmosphere from 1,304 domestic manufacturing and 

processing facilities in 2016 (TRI16 2017). 

There is no information on releases of MDI to the atmosphere from manufacturing and processing 

facilities because these releases are not required to be reported (EPA 1998a). 

During processing in a polyurethane foam plant, TDI emissions are removed from the workplace air by 

ventilation systems.  However, any residual TDI leaving the plant vent stack is then dispersed into the 

atmosphere (Duff 1983). 

Researchers studying six flexible foam manufacturing plants in Germany found that discharge 

concentrations of TDI emitted in factory exhaust gases ranged from 3 to 8 mg/m3. Concentrations 
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Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or 
Use Toluene Diisocyanate (Mixed Isomers)a 

Reported amounts released in pounds per yearb 

Total release 
On- and 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek off-site 
AR 1 373 0 0 0 0 373 0 373 
AZ 1 No data No data No data No data No data No data No data No data 
CA 11 1,993 0 0 70 32 1,993 102 2,095 
DE 2 4 0 0 0 0 4 0 4 
FL 3 1,230 0 0 0 9,563 1,230 9,563 10,793 
GA 6 623 0 0 0 209 623 209 832 
IA 2 382 0 0 0 0 382 0 382 
IL 3 234 0 0 3 0 234 3 237 
IN 6 960 0 0 0 0 960 0 960 
KS 2 295 0 0 0 0 295 0 295 
KY 2 2,555 0 0 7 0 2,561 0 2,561 
LA 3 37 0 0 77 0 37 77 114 
MA 4 167 0 0 0 0 167 0 167 
MD 2 294 0 0 0 0 294 0 294 
ME 2 5 0 0 0 574 5 574 579 
MI 5 48 0 0 11 0 59 0 59 
MN 1 325 0 0 0 0 325 0 325 
MO 5 121 0 0 0 0 121 0 121 
MS 6 2,070 0 0 0 0 2,070 0 2,070 
NC 11 894 0 0 0 0 894 0 894 
NH 1 1 0 0 0 352 1 352 353 
NJ 7 625 0 0 0 9,129 625 9,129 9,754 
NM 2 214 0 0 0 2,195 214 2,195 2,409 
OH 8 468 0 0 14,195 0 14,363 300 14,663 
OR 1 122 0 0 0 0 122 0 122 
PA 7 1,547 0 0 0 430 1,547 430 1,977 
PR 1 No data No data No data No data No data No data No data No data 
SC 2 No data No data No data No data No data No data No data No data 
TN 4 676 0 0 0 0 676 0 676 
TX 14 916 0 892 223 52 916 1,167 2,084 
VA 4 610 0 0 0 0 610 0 610 
WA 2 276 0 0 0 0 276 0 276 
WI 2 500 0 0 0 0 500 0 500 
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Table 6-1.  Releases to the Environment from Facilities that Produce, Process, or 
Use Toluene Diisocyanate (Mixed Isomers)a 

Reported amounts released in pounds per yearb 

Total release 
On- and 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek off-site 
WV 1 486 0 0 0 0 486 0 486 
Total 134 19,050 0 892 14,586 22,536 32,963 24,101 57,064 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 
exhaustive list. Data are rounded to nearest whole number. 
bData in TRI are maximum amounts released by each facility. 
cPost office state abbreviations are used. 
dNumber of reporting facilities. 
eThe sum of fugitive and point source releases are included in releases to air by a given facility. 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal 
and metal compounds). 
gClass I wells, Class II-V wells, and underground injection. 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 
impoundments, other land disposal, other landfills. 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for 
disposal, unknown. 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 
kTotal amount of chemical transferred off-site, including to POTWs. 

RF = reporting facilities; UI = underground injection 

Source: TRI16 2017 (Data are from 2016) 
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Table 6-2.  Releases to the Environment from Facilities that Produce, Process, or 
Use 2,4-Toluene Diisocyanatea 

Reported amounts released in pounds per yearb 

Total release 
Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek On- and off-site 
AL 1 5 0 0 0 0 5 0 5 
AR 2 1 0 0 2 0 1 2 3 
CO 1 5 0 0 0 0 5 0 5 
CT 1 1 0 0 0 0 1 0 1 
GA 2 255 250 0 0 0 505 0 505 
IA 1 No data No data No data No data No data No data No data No data 
IL 1 No data No data No data No data No data No data No data No data 
IN 2 47 0 0 0 0 47 0 47 
KS 1 No data No data No data No data No data No data No data No data 
KY 1 10 0 0 0 0 10 0 10 
MA 1 0 0 0 0 545 0 545 545 
MD 1 10 0 0 0 0 10 0 10 
MI 5 28 0 0 0 0 28 0 28 
MN 1 0 0 0 1,020 0 0 1,020 1,020 
MO 2 59 0 0 0 0 59 0 59 
MS 4 173 0 0 0 0 173 0 173 
NC 1 No data No data No data No data No data No data No data No data 
NE 1 22 0 0 0 0 22 0 22 
NJ 3 10 0 0 0 0 10 0 10 
NY 1 10 0 0 0 0 10 0 10 
OH 5 28 0 0 4,745 0 4,773 0 4,773 
PA 4 1 0 0 0 540 1 540 541 
RI 1 No data No data No data No data No data No data No data No data 
TN 2 23 0 0 0 250 23 250 273 
TX 3 22 0 0 0 0 22 0 22 
UT 1 No data No data No data No data No data No data No data No data 
VA 1 21 0 0 0 0 21 0 21 
WI 2 1 0 0 0 0 1 0 1 
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6. POTENTIAL FOR HUMAN EXPOSURE 

Table 6-2.  Releases to the Environment from Facilities that Produce, Process, or 
Use 2,4-Toluene Diisocyanatea 

Reported amounts released in pounds per yearb 

Total release 
Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek On- and off-site 
WV 1 2 0 0 0 0 2 0 2 
Total 53 737 250 0 5,767 1,335 5,732 2,357 8,088 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 
exhaustive list.  Data are rounded to nearest whole number. 
bData in TRI are maximum amounts released by each facility. 
cPost office state abbreviations are used. 
dNumber of reporting facilities. 
eThe sum of fugitive and point source releases are included in releases to air by a given facility. 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal 
and metal compounds). 
gClass I wells, Class II-V wells, and underground injection. 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 
impoundments, other land disposal, other landfills. 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for 
disposal, unknown 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 
kTotal amount of chemical transferred off-site, including to POTWs. 

RF = reporting facilities; UI = underground injection 

Source:  TRI16 2017 (Data are from 2016) 
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Table 6-3.  Releases to the Environment from Facilities that Produce, Process, or 
Use 2,6-Toluene Diisocyanatea 

Reported amounts released in pounds per yearb 

Total release 
Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek On- and off-site 
AR 1 No data No data No data No data No data No data No data No data 
CO 1 1 0 0 0 0 1 0 1 
GA 1 255 5 0 0 0 260 0 260 
IL 1 No data No data No data No data No data No data No data No data 
IN 1 11 0 0 0 0 11 0 11 
KS 1 No data No data No data No data No data No data No data No data 
MA 1 1 0 0 0 2,365 1 2,365 2,366 
MD 1 10 0 0 0 0 10 0 10 
MI 4 8 0 0 0 0 8 0 8 
MO 2 2 0 0 0 0 2 0 2 
MS 2 27 0 0 0 0 27 0 27 
NE 1 11 0 0 0 0 11 0 11 
OH 5 3 0 0 1,726 0 1,729 0 1,730 
PA 1 No data No data No data No data No data No data No data No data 
TN 2 47 0 0 0 250 47 250 297 
TX 1 No data No data No data No data No data No data No data No data 
WI 2 3 0 0 0 0 3 0 3 
WV 1 2 0 0 0 0 2 0 2 
Total 29 381 5 0 1,726 2,615 2,112 2,615 4,727 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 
exhaustive list.  Data are rounded to nearest whole number. 
bData in TRI are maximum amounts released by each facility. 
cPost office state abbreviations are used. 
dNumber of reporting facilities. 
eThe sum of fugitive and point source releases are included in releases to air by a given facility. 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal 
and metal compounds). 
gClass I wells, Class II-V wells, and underground injection. 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 
impoundments, other land disposal, other landfills. 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for 
disposal, unknown 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 
kTotal amount of chemical transferred off-site, including to POTWs. 

RF = reporting facilities; UI = underground injection 

Source: TRI16 2017 (Data are from 2016) 
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Table 6-4.  Releases to the Environment from Facilities that Produce, Process, or 
Use Diisocyanatesa 

Reported amounts released in pounds per yearb 

Total release 
On- and 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek off-site 
AL 32 301 5 0 251 2,921 306 3,172 3,478 
AR 13 1,554 0 0 18,609 0 1,554 18,609 20,163 
AZ 12 7 0 0 0 0 7 0 7 
CA 63 399 0 0 5,036 6,526 400 11,561 11,961 
CO 8 7 0 0 0 3,672 7 3,672 3,679 
CT 13 659 0 0 0 180 659 180 839 
DE 4 4 0 0 0 2,015 4 2,015 2,019 
FL 28 44 0 0 26,109 43,418 44 69,527 69,570 
GA 54 15,813 0 0 26,578 0 15,813 26,578 42,391 
IA 20 11,548 0 0 750 2,291 11,548 3,041 14,589 
ID 3 4 0 0 45,081 0 45,085 0 45,085 
IL 49 13,788 0 0 172 1,118 13,836 1,242 15,079 
IN 84 4,666 0 0 50,317 1,285 4,786 51,482 56,267 
KS 15 491 0 0 250 0 491 250 741 
KY 25 12,781 0 0 99,504 0 12,781 99,504 112,285 
LA 14 2,142 0 0 13,200 17,998 2,142 31,198 33,340 
MA 23 411 0 0 4 15,799 411 15,803 16,214 
MD 5 1,300 0 0 0 28,549 1,300 28,549 29,849 
ME 3 2,223 0 0 0 3,675 2,223 3,675 5,898 
MI 90 28,009 0 0 790,863 58,974 28,044 849,802 877,846 
MN 40 2,430 0 0 77,725 23,754 2,430 101,479 103,910 
MO 55 58,809 0 0 12,306 20,397 58,819 32,693 91,512 
MS 22 2,583 0 0 5,736 0 2,583 5,736 8,319 
MT 2 No data No data No data No data No data No data No data No data 
NC 54 1,166 0 0 12,125 18,204 1,166 30,329 31,495 
ND 2 44 0 0 0 0 44 0 44 
NE 10 896 0 0 673 0 896 673 1,569 
NH 5 3 0 0 0 1,500 3 1,500 1,503 
NJ 17 1,390 0 0 5 0 1,395 0 1,395 
NM 2 2 0 0 0 2,512 2 2,512 2,514 
NV 7 59 0 0 16,324 40 14,847 1,576 16,423 
NY 23 1,224 0 0 403 2,365 1,224 2,768 3,992 
OH 89 7,483 0 0 68,334 126,119 13,683 188,253 201,936 
OK 15 3,841 0 0 0 594 3,841 594 4,435 
OR 23 3,293 0 0 0 566 3,293 566 3,859 
PA 64 6,188 0 0 146,145 12,487 6,188 158,632 164,819 
PR 2 No data No data No data No data No data No data No data No data 
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6. POTENTIAL FOR HUMAN EXPOSURE 

Table 6-4.  Releases to the Environment from Facilities that Produce, Process, or 
Use Diisocyanatesa 

Reported amounts released in pounds per yearb 

Total release 
On- and 

Statec RFd Aire Waterf UIg Landh Otheri On-sitej Off-sitek off-site 
RI 7 0 0 0 0 5,512 0 5,512 5,512 
SC 32 2,097 0 0 5,013 0 2,097 5,013 7,110 
SD 2 No data No data No data No data No data No data No data No data 
TN 58 1,687 0 0 102,845 622 1,687 103,467 105,154 
TX 85 6,936 38 0 130,388 5,839 87,152 56,049 143,201 
UT 14 1,154 0 0 0 723 1,154 723 1,877 
VA 20 564 0 0 2 5,609 564 5,611 6,175 
VT 1 No data No data No data No data No data No data No data No data 
WA 11 272 0 0 0 250 272 250 522 
WI 71 2,234 0 0 10,263 121,093 2,234 131,356 133,590 
WV 13 6,634 0 0 44,014 1,500 6,634 45,514 52,147 
Total 1,304 207,137 43 0 1,709,025 538,106 353,646 2,100,666 2,454,312 

aThe TRI data should be used with caution since only certain types of facilities are required to report.  This is not an 
exhaustive list.  Data are rounded to nearest whole number. 
bData in TRI are maximum amounts released by each facility. 
cPost office state abbreviations are used. 
dNumber of reporting facilities. 
eThe sum of fugitive and point source releases are included in releases to air by a given facility. 
fSurface water discharges, waste water treatment-(metals only), and publicly owned treatment works (POTWs) (metal 
and metal compounds). 
gClass I wells, Class II-V wells, and underground injection. 
hResource Conservation and Recovery Act (RCRA) subtitle C landfills; other onsite landfills, land treatment, surface 
impoundments, other land disposal, other landfills. 
iStorage only, solidification/stabilization (metals only), other off-site management, transfers to waste broker for 
disposal, unknown 
jThe sum of all releases of the chemical to air, land, water, and underground injection wells. 
kTotal amount of chemical transferred off-site, including to POTWs. 

RF = reporting facilities; UI = underground injection 

Source: TRI16 2017 (Data are from 2016) 
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released were dependent on the foam density produced at a given time.  The study reported that only 

0.005% of all of the TDI processed within the facilities was lost to the atmosphere (Duff 1983). 

It has been reported that 2,6-TDI dominates TDI emissions to air from newly manufactured polyurethane 

foams, despite the 80:20 ratio of 2,4-TDI to 2,6-TDI in the original TDI formulation used.  This is due to 

the lower reactivity of 2,6-TDI (Kelly et al. 1999). This information mainly relates to releases to indoor 

air. 

Due to the diversity of applications and wide variety of MDI formulations, typical emission levels of MDI 

are difficult to quantify.  Emissions may be comprised of MDI vapor, MDI aerosol, or a reacting mix of 

aerosol and vapor, which is predominantly converted to polyurethane.  Emission levels are generally 

much lower than those of TDI flexible foam processes.  A survey conducted in the United Kingdom of 

polyurethane production facilities (comprising 50% of total U.K. rigid foam manufacture) producing 

insulation board by spray and liquid laydown techniques and rigid foam slabstock produced by both 

continuous and discontinuous processes found typical emission levels to be ≤0.2 mg/m3 (Gilbert 1988). 

The American Chemistry Council Center for the Polyurethane Industry has developed an emissions 

calculator to estimate emissions from typical process applications and activities, which may be 

downloaded at https://polyurethane.americanchemistry.com. Tury et al. (2003) estimated that typical 

environmental loadings are less than 1 gram per metric ton of MDI used and about 25 grams per metric 

ton of TDI used. 

Developments in polyurethane processing to control emissions of TDI and MDI include increasing the 

use of reaction injection moulding closed-circuit technology and advancement in the carbon absorption of 

emissions (Gilbert 1988). 

During the application of MDI in foam or film coating of surfaces by spray gun techniques, the measured 

environmental contamination during application showed levels of total MDI as high as 5 mg/m3. More 

than 95% of air samples contained MDI particulates of respirable size, and counts were from 2 to 

8 million parts/feet3 (ACGIH 2001). 

Available information on the releases of TDI and MDI to the air in occupational settings and indoor air, 

along with exposure levels, are discussed in Section 6.5. 

https://polyurethane.americanchemistry.com/
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6.2.2 Water 

Estimated releases of 0, 250, and 5 pounds (~0, 0.11, and 0.002 metric tons) of TDI (mixed isomers), 

2,4-TDI, and 2,6-TDI to surface water from 134, 53, and 29 domestic manufacturing and processing 

facilities in 2016 (TRI16 2017) are summarized in Tables 6-1, 6-2, and 6-3.  Table 6-4 summarizes 

releases of 43 pounds (~0.02 metric tons) of the diisocyanates category, which consists of MDI and 

19 other substances, to surface water from 1,304 domestic manufacturing and processing facilities in 2016 

(TRI16 2017). 

Because of their reactivity with water, TDI and MDI are not likely to be found in waste water streams or 

in other aquatic environments, except possibly near point sources after immediate release. 

6.2.3 Soil 

Estimated releases of 14,586, 5,767, and 1,726 pounds (~6.62, 2.62, and 0.78 metric tons) of TDI (mixed 

isomers), 2,4-TDI, and 2,6-TDI to soils from 134, 53, and 29 domestic manufacturing and processing 

facilities in 2016 (TRI16 2017) are summarized in Tables 6-1, 6-2, and 6-3.  Table 6-4 summarizes 

releases of 1,709,025 pounds (~775.2 metric tons) of the diisocyanates category, which consists of MDI 

and 19 other substances, to soils from 1,304 domestic manufacturing and processing facilities in 2016 

(TRI16 2017).  Estimated releases of 892, 0, and 0 pounds (~0.4, 0, and 0 metric tons) of TDI (mixed 

isomers), 2,4-TDI, and 2,6-TDI via underground injection from 134, 53, and 29 domestic manufacturing 

and processing facilities in 2016 (TRI16 2017) are summarized in Tables 6-1, 6-2, and 6-3. There were 

no releases of the diisocyanates category, which consists of MDI and 19 other substances, via 

underground injection (TRI16 2017). These releases are summarized in Tables 6-4. 

6.3  ENVIRONMENTAL FATE 

Diisocyanates are extremely reactive compounds (Geens et al. 2012), especially with water.  The 

dominant process affecting the overall environmental fate, transport, and bioaccumulation potential of 

diisocyanates is hydrolysis (EPA 2011b). 

6.3.1 Transport and Partitioning 

Based on their vapor pressures (see Table 4-2), MDI is expected to exist in both the vapor and particulate 

phases in the ambient atmosphere, while TDI isomers are expected to exist solely as a vapor (Bidleman 
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1988; Eisenreich et al. 1981).  Based on a study of the atmospheric hydrolysis of TDI (Dyson and 

Hermann 1971), it is likely that wet deposition of particulate-phase MDI from the atmosphere is not an 

important removal process because of its reactivity with water. TDI and MDI may be stable enough to be 

transported some distances under conditions of low humidity (EPA 2011a, 2011b); however, no studies 

were found on long distance transport in the available literature. 

If released to water or moist soil/sediment, TDI and MDI will rapidly undergo hydrolysis (EPA 2011a, 

2011b), and therefore, the potential to volatilize to air and leaching or adsorption to soil and sediments 

will be negligible. The rapid hydrolysis of these compounds also suggests that they will not 

bioconcentrate in aquatic organisms or bioaccumulate in the food chain.  This is supported by a study 

using three artificial ponds to determine the fate and biological effects from a simulated accidental 

pollution event with MDI on an aquatic ecosystem.  MDI did not accumulate in fish after 119 days post-

MDI addition due to its rapid reaction on the sediment surface with water to form polyurea and carbon 

dioxide (Heimbach et al. 1996).  Also, during another study by the International Isocyanate Institute 

(1981), no accumulation of TDI or its respective amine hydrolysis product was found in the whole bodies 

of carp after 8 weeks of exposure in a model river system with an initial TDI concentration of 0.1 ppm.  

No bioconcentration factors (BCFs) for TDI or MDI were found in the available literature. 

Volatilization from dry soil surfaces is not expected to be an important fate process for TDI, TDI isomers, 

or MDI based on their vapor pressures (see Table 4-2). 

6.3.2 Transformation and Degradation 

TDI and MDI are extremely reactive compounds and are well known to react with water (Yakabe et al. 

1999).  Hydrolysis is the dominant environmental process for TDI and MDI (EPA 2011a, 2011b), 

forming the respective amines, which in turn may react with more diisocyanates to produce inert, 

insoluble polyureas (WHO 2000). 

6.3.2.1  Air 

Kelly et al. (1994) reported that TDI and MDI have half-lives of <1 day due to reaction with OH radicals 

in the atmosphere. The International Isocyanate Institute (1987) also measured the rate constant for the 

reaction of TDI with OH radicals in the atmosphere to be 7.4x10-12 cm3/molecule-second, which 

corresponds to a half-life of 26 hours.  These experimental half-lives are in good agreement with 

estimated half-lives for the reaction with photochemically produced hydroxyl radicals of 20 and 11 hours 
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based on vapor phase reaction rate constants of 7.07x10-12 and 1.2x10-11 cm3/molecule-second at 25°C, for 

TDI and MDI respectively, determined using a structure estimation method (HSDB 2012).  Aromatic 

isocyanates, such as TDI and MDI, do not absorb light in the ultraviolet region (wavelengths >290 nm) 

(Lyman et al. 1990), and therefore, direct photolysis by sunlight is not expected to be an important 

degradation process in the atmosphere. 

In an experiment using an environmental chamber to assess the impact of photolysis, reaction with free 

radicals, and adsorption onto particulate matter as atmospheric removal processes of TDI, the loss rate of 

TDI in irradiated clean air was first order, with a half-life of 3.3 hours.  It was shown that free radicals 

were responsible for removal, not photolysis.  The removal rate was not altered by the addition of an 

urban surrogate hydrocarbon mixture to simulate urban air, demonstrating that adsorption onto particulate 

matter had minimal effect (Duff 1985). 

Gas-phase TDI was originally thought to react with water vapor in the atmosphere to form TDA.  One 

study measured a maximum reduction of 50% for TDI concentrations of 0.4 and 0.034 ppm after 

8 seconds and showed that the disappearance of TDI in air depends almost solely on the water vapor 

concentration.  The percent reduction of TDI increased 3.2% per unit increase in absolute humidity 

(g water/kg dry air) and a 50% reduction was obtained at 15 g water/kg dry air (Dyson and Hermann 

1971).  A study conducted by Holdren et al. (1984) contradicts early findings of TDI reaction with water 

vapor, indicating that TDI loss was likely due to gas-surface or heterogeneous reactions in reaction 

chambers with large surface to volume ratios.  In this study, gas-phase reactions between TDI and water 

vapor were observed in a room-sized environmental chamber.  It was found that the loss rate of TDI was 

independent of humidity, measured over a relative humidity range of 7–70%, and that no TDA or other 

hydrolysis product could be detected.  Loss was stated to be caused by the adsorption of TDI to the 

chamber walls. These studies, however, did not investigate the condensed phase atmospheric hydrolysis 

of TDI, such as reactions with rain drops, fog, or clouds.  The average hydrolysis half-lives of TDI and 

MDI are on the order of a few minutes to a few hours (HSDB 2012), which suggests that the 

heterogeneous condensed phase atmospheric hydrolysis of these compounds may be rapid.  

6.3.2.2  Water 

Diisocyanates that are released to water hydrolyze rapidly, forming amines that can react with residual 

diisocyanates, ultimately producing inert insoluble polyureas (WHO 2000).  Polyureas have been reported 

to be the main degradation products resulting from environmental contact of TDI and MDI with water, 
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with smaller amounts of soluble diamines being formed (Yakabe et al. 1999).  Hydrolysis half-lives of 

MDI and TDI have been measured to be on the order of a few minutes to a few hours (HSDB 2012). The 

hydrolysis half-lives of polyureas are on the order of millennia (Sendijarevic et al. 2004). 

TDI added to a model river system and a seawater system at initial concentrations of 50 ppm was 

monitored over the course of 30 days.  In the freshwater system, the concentration of TDI declined 

rapidly ranging from not detected to 0.1 ppm after 1 day.  Low levels of diamine degradation products 

were detectable only during early sampling periods.  In the seawater system, the concentration of TDI 

also declined rapidly to 0.1 ppm after 1 day (Duff 1983).  The concentration of MDI added to a model 

marine system and a model river to simulate spill situations fell to a maximum of 5% of the initial value 

within 1 day (Gilbert 1988). 

Yakabe et al. (1999) examined the kinetics of the hydrolysis of TDI and MDI in well-stirred and unstirred 

environments, with unstirred reactions representing conditions of an environmental spill.  The reported 

half-life was 30 seconds for 28 mg/L of TDI in a well-stirred water system, while with less efficient 

stirring, the half-life for TDI was in the region of 3–5 minutes.  At a loading of 1,000 mg/L, the half-lives 

of 2,4- and 2,6-TDI were about 0.7 and 1.7 hours, respectively, demonstrating that reaction rate was a 

function of the concentration of TDI.  After 30 minutes in well-stirred water, the extent of TDI reacted 

varied from 85% at 10 mg/L to 20% at 10,000 mg/L.  The observed half-life of about 20 hours for 

polymeric MDI was much slower than TDI, due to its greater viscosity.  Because of the viscosity and 

difficulty mixing with water, the reaction rate was affected by surface area contact with water and not on 

concentration.  The well-stirred, homogeneous environments showed that TDI and MDI are expected to 

be rapidly degraded in water and never attain any significant concentrations.  However, the complete 

reaction of both TDI and MDI may take several weeks under poorly mixed conditions, typical of an 

environmental spill, due to the formation of insoluble, solid polyurea crusts. These predictions are 

consistent with field observations.  For example, when 14 tons of TDI were accidentally spilled onto 

marshy woodland in 1975, the material was covered with wet sand and monitored for 6 years.  The TDI 

was converted to polyureas within 6 weeks, while no TDA was detected in soil (<3 mg/kg) or water 

(<50 µg/L) at any point and no adverse environmental effects were reported.  In another accidental spill 

involving 20 tons of TDI into a fast-moving stream, the TDI reacted to form polyureas that were 

distributed for 2–3 km downstream, while TDA was detected at 5 mg/L downstream after 2 days, but fell 

below the detection limit after 2 weeks.  In 1991, about 50 tons of prepolymeric MDI was spilled into a 

river and a majority was reported to have formed solid polyureas when it was scooped out after 2 days.  

The EPA testing of the river ceased after 3 days and the material in the river was declared nonhazardous. 
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During a study using three artificial ponds to determine the fate and biological effects from a simulated 

accidental pollution event with MDI on an aquatic ecosystem, MDI was not detected in water after 

119 days post-MDI addition due to its rapid reaction on the sediment surface with water to form polyurea 

and carbon dioxide (Heimbach et al. 1996). 

TDI and MDI are expected to be hydrolyzed much more quickly than they would undergo biodegradation 

in water, although the resulting diamines should be subject to biodegradation (HSDB 2012).  TDI, MDI, 

and prepolymeric MDI, at concentrations of 50 ppm each, were reported to be completely biodegraded 

within 15 days at 25 °C in a freshwater model river system with bottom sludge, and in a saltwater system, 

TDI could not be detected after 4 days, while MDI disappeared after 1 day (International Isocyanate 

Institute 1980, 1983, 1987).  However, hydrolysis was not taken into account during these experiments, 

and it should be the predominant degradation process, not biodegradation. 

6.3.2.3  Sediment and Soil 

No studies of the transformation and degradation of TDI and MDI in dry soil could be located in the 

available literature.  When monomeric MDI, and under many circumstances TDI, are handled as a liquid, 

they will solidify on contact with soil (Gilbert 1988). TDI and MDI will hydrolyze in moist soil and 

sediment due to their rapid reaction with water to form diamines and polyureas (HSDB 2012; WHO 

2000) and hydrolysis is expected to occur much more rapidly than biodegradation (HSDB 2012).  

Therefore, reaction with water is expected to be the only significant fate process in moist soil and 

sediment.  

In a laboratory experiment involving TDI in undisturbed moist sand, 5.5 and 3.5% of unreacted TDI 

remained after 24 hours and 8 days, respectively, indicating that TDI is converted to polyureas at a 

decreasing rate.  The diamine hydrolysis product was not found above the detection limit (0.01 ppm).  

These results suggest the encapsulation of unreacted TDI within a rapidly forming water-insoluble 

polyurea crust (Gilbert 1988). 

Ten days after a spill of 13 tons of TDI onto swampy, wet forest soil, the TDI solidified and the area was 

covered with sand.  The concentration of TDI and degradation product, TDA, combined declined from the 

parts per thousand to the parts per million range in the soil between 10 days and 12 weeks after the spill. 
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After 6 years, soil samples showed only TDI-derived polyureas (Brochhagen and Grieveson 1984; HSDB 

2012). 

6.4  LEVELS MONITORED OR ESTIMATED IN THE ENVIRONMENT 

Reliable evaluation of the potential for human exposure to TDI and MDI depends in part on the reliability 

of supporting analytical data from environmental samples and biological specimens.  Concentrations of 

TDI and MDI in unpolluted atmospheres and in pristine surface waters are often so low as to be near the 

limits of current analytical methods.  In reviewing data on TDI and MDI levels monitored or estimated in 

the environment, it should also be noted that the amount of chemical identified analytically is not 

necessarily equivalent to the amount that is bioavailable. The analytical methods available for monitoring 

TDI and MDI in a variety of environmental media are detailed in Chapter 7. 

6.4.1 Air 

Most monitored TDI and MDI concentrations in air are found in occupational settings (see Section 6.5).  

Limited data were located in the available literature on measured concentration of TDI and MDI in the 

ambient atmosphere, likely due to their relatively short half-lives (<1 day) (Kelly et al. 1994) from 

reaction with hydroxyl radicals. 

Detectable concentrations may be found near point sources of TDI and MDI, such as near waste streams 

from manufacturing and processing facilities and hazardous waste sites.  In an exposure assessment to 

TDI from a polyurethane foam manufacturing plant in North Carolina conducted in 1997, concentrations 

of TDI in ambient air were as high as 29 ppbv at a monitoring station approximately 100 feet outside the 

facilities fence line (MMWR 1998).  Stack exhaust streams from a polyurethane foam manufacturing 

plant had reported concentrations of 100–17,700 µg/m3 of TDI (HSDB 2012). In a study conducted by 

the North Carolina Department of Health and Human services from 2007 to 2010, TDI was detected in 

only one air sample at a concentration of 0.001 ppbv near polyurethane foam plants in North Carolina 

(NCDHHS 2017).  Levels of MDI and TDI were monitored at six schools in the United States in order to 

assess outdoor air quality in representative schools (EPA 2017). MDI and TDI were not detected in the 

outdoor air near these schools.  

A monitoring study conducted from 1984 to 1999 analyzed 4,551 area and 3,583 personal air samples in 

which airborne MDI concentrations were measured in a wide variety of manufacturing processes that use 

either polymeric MDI (PMDI) or monomeric (pure) MDI (Booth et al. 2009).  Nearly 50% of the area 
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samples were below the level of quantification.  Detectable levels ranged from 8.5x10-5 to 9.5 mg/m3, 

with an arithmetic mean (standard deviation) of 0.057 (0.32) mg/m3 (Booth et al 2009).   

Both MDI and TDI are included in EPA’s National Air Toxics Assessment (NATA), which is an ongoing 

comprehensive evaluation of air toxics in the United States. Emissions inventory statistics are collected 

from data reported by large individual facilities (point sources) and estimated for area and mobile sources 

using various emissions inventory models. Ambient air levels are estimated using the air dispersion 

model, AERMOD. Nationwide estimated average concentrations of MDI and TDI from point sources 

were 7.3x10-5 and 1.4x10-5 mg/m3, respectively, for the 2011 assessment (EPA 2015). 

6.4.2 Water 

No information on the concentration of TDI or MDI in natural water was located in the available 

literature.  Significant concentrations are not likely to be found in the aquatic environment due to the 

rapid hydrolysis of these compounds; however, small amounts may be detected near point sources such as 

industrial waste streams and hazardous waste sites immediately after release. 

6.4.3 Sediment and Soil 

No information on the concentration of TDI or MDI in soil or sediment was located in the available 

literature.  Significant concentrations are not likely to be found in moist soil or sediment due to the rapid 

hydrolysis of these compounds; however, small amounts may be detected near point sources such as 

industrial waste streams and hazardous waste sites. 

6.4.4 Other Environmental Media 

Commercial TDI has been detected in a urethane foam fabric coating in concentrations of <200 mg/kg 

(HSDB 2012).  Application of a water sealant to a concrete slab resulted in measured TDI emission rates 

of 319,000 or 257,000 µg/m2/hour in 30-minute tests at 21°C and 360,000 µg/m2/hour in a 1-hour test at 

27°C (Kelly et al. 1999).  These emission rates corresponded to 35, 38, and 179 µg of total TDI emitted, 

respectively; 75.2, 97.8, and 79.2% of the TDI emitted was 2,6-TDI.  MDI emissions were detected at 

60 ppt for aluminum and wood substrates cured with polyurethane glue in the first 8 hours of sampling, 

but was below the detection limit (20 ppt) thereafter (Parekh and Karoly 2001).  No data on the 

concentrations of TDI or MDI in other environmental media, including food, were found in the available 
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literature.  Due to the rapid hydrolysis of these compounds, TDI and MDI will not bioaccumulate in the 

food chain and are therefore not expected to be found in significant concentration in fish and foods. 

6.5  GENERAL POPULATION AND OCCUPATIONAL EXPOSURE 

Exposure of the general population to TDI from its use in polyurethane products in household materials 

was once thought to be negligible.  An increase in the number of uncured diisocyanate-containing 

products used by consumers has been noted by researchers. These researchers also noted that exposure of 

the general population to TDI and MDI could potentially result from industrial exposures, as well as from 

the use of consumer products containing uncured TDI and MDI (EPA 2011a). In a study of the emission 

rates from polyurethane household product and materials, TDI emissions were not detectable from carpet 

padding, mattress and sheet foam, furniture cushion foam, spray varnishes, brush-on varnishes, general 

purpose water sealers, mastic construction adhesive, or high-performance caulk (Kelly et al. 1999). The 

only product with a large, detectable TDI emission rate was a concrete sealant. Total TDI emitted from 

these samples were 35 and 38 µg over 30 minutes at 21°C and 179 µg over 1 hour at 27°C, where 75– 

98% of the TDI released was the 2,6-isomer (Kelly et al. 1999).  The predominant possible sources of 

exposure to MDI to the general population comes from its use in the construction and installation of 

foams, glue and putty, dyes, varnishes, and furniture (EPA 2011a). 

Due to the concern about the presence of TDI and MDI in an uncured form in products used by or around 

consumers, the EPA created Action Plans to address the use of MDI, TDI, and related compounds that 

may result in consumer and general population exposures.  The Action Plans are intended to describe 

courses of action to pursue to mitigate concerns over exposure (EPA 2011a, 2011b).  It should be noted 

that these Action Plans are focused on concerns for unreacted uncured TDI and MDI products, as the 

completely cured products are considered inert and nontoxic. 

Exposure to TDI and MDI is mainly an occupational problem due to their manufacturing and processing 

in many different industries.  Diisocyanates are used in the production of polyurethane foam during 

foaming, casting, spraying, and other processes.  Exposure may also occur after production when the 

polymer is processed. Thermal degradation of polyurethane foam during processes such as heat cutting of 

foam blocks, flame lamination with textiles, and welding, cutting, or grinding of polyurethane-coated 

metal, can also release diisocyanates into the air (Dahlin et al. 2008). MDI emission levels due to thermal 

degradation from the use of polyurethane core binder materials in foundry molds was reported to be 

<0.02–1.0 mg/kg (Renman et al. 1986). 
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Workers may be predominantly exposed to TDI and MDI by inhalation of aerosol and vapor (TDI only).  

Another route is through dermal exposure (Tinnerberg et al. 1997).  Most occupational diisocyanate 

exposure studies have focused on TDI because of its widespread industrial use in the manufacture of 

polyurethane foam (Tinnerberg et al. 1997).  A common way of assessing workplace exposure is through 

air monitoring.  The average air concentration of TDI measured in a TDI flexible foam plant was 

29.8 µg/m3, while the highest exposure peak was approximately 3 mg TDI/m3 (Tinnerberg et al. 1997).  

Mean TDI levels ranged from 0.7 to 180 µg/m3 for workplace air in U.S. factories manufacturing TDI 

between 1973 and 1978 (IARC 1985).  Mean TDI levels ranged from not detected to 540 µg/m3 for 

personal and workplace air in U.S. factories producing polyurethane foam between 1972 and 1981 (IARC 

1985). A monitoring study conducted from 1984 to 1999 analyzed 3,583 personal air samples in which 

airborne MDI concentrations were measured in a wide variety of manufacturing processes that use either 

PMDI or monomeric (pure) MDI (Booth et al. 2009). Nearly 75% of the personal samples were below 

the level of quantification, and detectable levels ranged from 2x10-5 to 3.9 mg/m3 (Booth et al 2009). The 

highest airborne levels tended to occur when MDI was heated or sprayed, and control measures such as 

appropriate ventilation and protective equipment were recommended to reduce occupational exposures.  

Diem et al. (1982) performed a 5-year (April 1973 to October 1978) longitudinal study of 277 workers in 

a new TDI manufacturing plant in Louisiana in which over 2,000 personal air samples were measured for 

TDI concentrations.  The 8-hour TWAs ranged from 0.1 to 25 ppb.  Different jobs in the facility fell into 

low, moderate, and high TWA exposure categories.  The average time periods spent above 20 ppb were 

1.3, 8.6, and 28.2 minutes per 8-hour shift for workers in the low, moderate, and high exposure 

categories, respectively. 

In a study conducted in 2000 involving a plastic production plant using TDI, the concentration of TDI 

detected in the air ranged from 0.007 to 0.016 mg/m3 (Bilban 2004).  Ambient air concentrations that 

included 60 personal breathing zone samples collected from workers in a petrochemical industrial 

complex in Korea contained mean TDI and MDI concentrations of 0.0174 and 0.0013 mg/m3, 

respectively (Jang et al. 2000).  Tarlo et al. 1997 reported an air sampling study of 223 companies in 

Ontario, Canada that had potential diisocyanate exposure to workers during 1984–1988.  The highest 

exposure levels of MDI in 123 companies were <0.005 ppm in 95 companies and ≥0.005 ppm in 

38 companies.  The highest exposure levels of TDI in 78 companies were <0.005 ppm in 58 companies 

and ≥0.005 ppm in 20 companies (Tarlo et al. 1997). 
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At a facility that manufactures refrigerated tractor trailers in the United States, MDI was detected in the 

personal breathing zone of workers in the polyurethane foaming area at levels ranging from not detected 

to 9.1 µg/m3, with a mean concentration of 1.5 µg/m3 (Lushniak et al. 1998).  Workplace air sampled 

during spraying operations had MDI concentrations of 21.4, 5.9, and 2.1 mg/m3 at distances of 2, 6, and 

10 m away from production machinery, respectively (D’Eril et al. 1995). 

A study determining the workplace air exposure concentrations of MDI to sprayers, helpers, and 

personnel produced during the spray application of polyurethane foam during typical indoor and outdoor 

construction operations was conducted by Bilan et al. (1989).  In outdoor locations (three rooftops), 

sprayers were exposed to MDI air concentrations ranging from 0.003 to 0.05 ppm, helpers were exposed 

to 0.013–0.038 ppm, area personnel 5–40 feet away were exposed to 0.003–0.006 ppm, and area 

personnel 45 feet away were in an area with no detectable MDI.  In five indoor locations ranging from 

750 to 3,375 square feet, sprayers were exposed to MDI air concentrations ranging from 0.008 to 

0.129 ppm, helpers were exposed to 0.001–0.018 ppm, area personnel 6–<25 feet away were exposed to 

0.007–0.093 ppm, and area personnel 25–100 feet away were in an area with no detectable MDI to 

0.002 ppm.  This study determined that the dominant factor in worker exposure to MDI was the distance 

from the spray operation and the time spent near the spray operation (Bilan et al. 1989).  In another study 

measuring the exposure of sprayers and helpers to MDI during applications of polyurethane foam to 

dwellings and office buildings, MDI was measured in the personal air samples of sprayers at 

concentrations of 0.018–0.077 and 0.017–0.400 mg/m3 during outdoor and indoor applications, 

respectively (Crespo and Galan 1999).  Helpers were exposed to MDI concentrations of 0.034–0.045 and 

0.025–0.308 mg/m3 during outdoor and indoor applications, respectively.  Maximum airborne MDI 

concentrations measured 15, 45, and >45 minutes after spray foam application inside five single-family 

homes were 0.019 mg/m3, 0.003 mg/m3, and below the limit of quantification (LOQ) (0.036 µg/sample), 

respectively (Lesage et al. 2007). Measured MDI concentrations sampled 1–3, 3–6, and 6–12 m away 

from application in this study were 0.147–1.55, 0.005–1.12, and <LOQ–0.822 mg/m3, respectively 

(Lesage et al. 2007).  During the application of MDI in foam or film coating of surfaces by spray gun 

techniques, >95% of air samples contained MDI particulates of respirable size, and counts were from 2 to 

8 million parts/feet3. 

In general, MDI levels decreased rapidly and were undetectable 1 hour postapplication.  Many of the 

airborne MDI samples collected in the breathing zone of the applicators during spraying exceeded the 

OSHA permissible exposure limit (PEL) of 0.2 mg/m3, and thus, there are recommendations that workers 

use an air-purifying respirator equipped with a combination organic vapor cartridge and prefilter during 

http:0.005�1.12
http:0.147�1.55
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application.  Additionally, in order to decrease dermal exposure, personal protective equipment such as 

gloves, coveralls, and goggles are recommended.  Additional industry recommendations when spray 

polyurethane foam (SPF) insulation is being applied to buildings are to vacate the structure and ventilate 

the area following installation. Building occupants should not return until after the manufacturer’s 

recommended re-occupancy time (typically 24 hours) has elapsed.  

Air monitoring methods may not fully characterize exposure patterns to workers, as they do not take into 

account possible dermal absorption (Austin 2007).  In a study of 19 workers at an iron foundry, the 

average personal air concentration of MDI was 0.55 µg/m3 and dermal exposure to MDI ranged from 

0.006 to 0.34 µg, indicating that dermal exposure can be a significant exposure pathway (Liljelind et al. 

2010). Therefore, biological markers of isocyanates in urine and plasma may be valuable indicators in the 

work environment (Austin 2007).  TDI in biological samples are hydrolyzed to form TDA for analysis 

(Tinnerberg et al. 1997).  Austin (2007) conducted a study that showed how urinary TDA was a useful 

indication of the contribution of skin exposure to total TDI exposure in a polyurethane foam plant using 

80:20 mixture of 2,4- and 2,6-TDI.  This was done by comparing urinary TDA levels in two groups: 

13 workers who had physical contact with uncured polyurethane foam (handlers) and 13 workers in the 

same plant environment who had no physical contact with uncured foam (non-handlers) on the day of 

sampling.  Both groups were exposed to the same TDI air concentrations, ranging from <3.5 to 8.4 µg/m3. 

In hydrolyzed post-shift urine samples, 10 handlers were found to have urinary TDA above detection 

limits with a mean level of 2.21 µmol/mol creatinine, compared to only 2 non-handlers (mean 

0.11 µmol/mol creatinine). 

Hydrolyzed post-shift urine samples collected from 15 workers in a polyurethane foam plant had TDA 

concentrations of 0.6–4.0 µg/L, while all urine samples from 12 people with no known history of TDI 

exposure had urinary TDA concentrations of below the detection limit of 0.1 µg/L (Carbonnelle et al. 

1996).  

In a study of four exposed workers and one volunteer working 8-hour shifts in a TDI flexible foam plant 

using an 80:20 mixture of 2,4- and 2,6-TDI, plasma concentrations were 1–38 and 7–24 µg/L for 2,4- and 

2,6-TDA, respectively.  Over a 3-day period, the individual plasma levels among the workers varied 

between 7 and 73%.  An increase in plasma TDA for each workday was observed for the volunteer, and 

reached a maximum concentration 24 hours after the last exposure. The half-life in plasma was estimated 

to be about 10 days (Tinnerberg et al. 1997). In the urine samples of the workers, TDA concentrations 

varied greatly with time and exposure, reaching a maximum shortly after exposure.  Measured 
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concentrations of TDA in urine ranged from not detected to about 2.0 µg/mmol creatinine (Tinnerberg et 

al. 1997).  Lind et al. (1996) performed a study monitoring 2,4- and 2,6-TDA in plasma from 11 workers 

at two separate flexible foam polyurethane production plants after their occupational exposure to 2,4- and 

2,6-TDI.  The TDI concentration and relative percent concentrations of 2,4- and 2,6-TDI were 0.4– 

4 µg/m3 and 60/40–5/95% in plant 1, respectively, and 10–120 µg/m3 and 65/35–30/70% in plant 2, 

respectively.  The lower exposure levels in plant 1 compared to plant 2 was reflected in the plasma TDA 

concentrations.  Plasma 2,4- and 2,6-TDA concentrations were 0.4–1.3 and 1.8–5.6 ng/mL, respectively, 

in plant 1 and 2–23 and 7.0–23 ng/mL, respectively, in plant 2 before a summer holiday. 

In a study comparing the exposure to TDI in air and the concentration of TDA in urine of nine workers 

from two production lines in a polyurethane foam production plant using an 80:20 mixture of 2,4- and 

2,6-TDI, it was reported that exposure to TDI in personal air during a shift resulted in an increase in TDA 

in the urine of the workers (Geens et al. 2012).  Sampled over 4 days, personal air TDI concentrations 

ranged from 4.2 to 141.9 µg/m3 and hydrolyzed pre- and post-shift urine TDA concentrations were 1.0– 

19.5 and 4.4–142.6 µg/L, respectively (Geens et al. 2012).  Kaaria et al. (2001a) performed another study 

on the determination of airborne TDI and urinary 2,4- and 2-6-TDA during the production of flexible 

foam in two separate plants in which samples were collected during one work shift on 2 consecutive days. 

Plant 1, which applied high-pressure molding, had TDI air concentrations ranging from not detected 

(LOD 0.2 µg/m3) to 230 µg/m, while Plant 2, which applied low-pressure molding, had concentrations 

ranging from not detected to 41 µg/m3. The proportions of 2,4-and 2,6-TDI in the total exposure varied 

during different stages of the production process, but 2,6-TDI constituted about 75% of all TDI detected.  

In urine samples collected from 17 workers, total TDA (2,4- and 2,6-TDA) was detected at concentrations 

of 0.11–39 nmol/mmol creatinine in Plant 1 and <0.05–7.1 nmol/mmol creatinine in Plant 2.  The higher 

urinary TDA concentrations in Plant 1 compared to Plant 2 parallels the higher TDI concentrations in 

Plant 1.  Kaaria et al. (2001b) observed similar results in the study of exposure to airborne MDI during 

the molding of rigid polyurethane foam in a refrigerator and freezer manufacturing plant.  MDI was 

below the limit of detection (3 µg/m3) in 64% of air samples collected from the workers’ breathing zone, 

with detectable samples containing 0.03–3.3 µg/m3 MDI.  However, detectable amounts of urinary MDA 

were found in 97% of urine samples ranging from 0.12 to 0.20 nmol/mmol creatinine, showing that 

monitoring of MDA in urine may be a useful method of assessing MDI exposure in workplaces that have 

low MDI concentrations in air. 

During a study assessing MDI exposure by monitoring a specific MDI hemoglobin adduct, 5-isopropyl-

3-[4-(4-aminobenzyl)phenyl]hydantoin (ABP-Val-Hyd), in human blood, blood samples from 25 workers 
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from an MDI plant had ABP-Val-Hyd marker concentrations ranging from 0.15 to 16.2 pmol/g, while 

40 people from the general population with no known exposure had no detectable amounts of ABP-Val-

Hyd (limit of detection of 0.062 pmol/g) (Gries and Leng 2013). 

The National Occupational Exposure Survey (NOES) conducted by NIOSH in 1983 estimated that 

53,321 workers employed at 2,896 facilities were potentially exposed to MDI in the United States 

(RTECS 2009a).  The 1983 NOES also estimated that 10,921 and 2,872 workers employed at 838 and 

415 facilities were potentially exposed to 2,4- and 2,6-TDI in the United States, respectively (RTECS 

2009b, 2009c). The NOES database does not contain information on the frequency, concentration, or 

duration of exposure; the survey provides only estimates of workers potentially exposed to chemicals in 

the workplace. 

6.6  EXPOSURES OF CHILDREN 

This section focuses on exposures from conception to maturity at 18 years in humans.  Differences from 

adults in susceptibility to hazardous substances are discussed in Section 3.7, Children’s Susceptibility. 

Children are not small adults.  A child’s exposure may differ from an adult’s exposure in many ways.  

Children drink more fluids, eat more food, breathe more air per kilogram of body weight, and have a 

larger skin surface in proportion to their body volume than adults.  A child’s diet often differs from that of 

adults.  The developing human’s source of nutrition changes with age: from placental nourishment to 

breast milk or formula to the diet of older children who eat more of certain types of foods than adults.  A 

child’s behavior and lifestyle also influence exposure.  Children crawl on the floor, put things in their 

mouths, sometimes eat inappropriate things (such as dirt or paint chips), and may spend more time 

outdoors.  Children also are generally closer to the ground and have not yet developed the adult capacity 

to judge and take actions to avoid hazards (NRC 1993). 

Exposure to TDI and MDI is mainly an occupational problem due to their manufacturing and processing 

in many different industries.  There is limited data pertaining to the use and exposure of consumer and 

commercial products containing uncured TDI and MDI.  Because of this, exposure levels to children have 

not been well characterized (EPA 2011a, 2011b). 
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6.7  POPULATIONS WITH POTENTIALLY HIGH EXPOSURES 

Exposure to TDI and MDI is mainly an occupational problem.  Workers involved in the production of 

MDI and TDI, as well as those involved in the production of polyurethane foams, have the potential for 

high exposure, mostly via inhalation (Dahlin et al. 2008). However, the general population could be 

exposed to higher than background levels through the use of uncured polyurethane consumer products 

such as adhesives, sealants, paints, craft materials, and insulating foams. 

Diisocyanates, such as MDI and TDI, are generally supplied as raw materials to formulators who use their 

reactivity to combine them with other chemicals to create various polyurethanes with a wide diversity of 

applications. This diversity of applications leads to worker exposures in a broad range of production 

facilities, from small businesses to automated production lines. Diisocyanates are commonly available in 

unreacted, uncured forms as part of product mixtures that require an end-use reaction to form a final 

product.  Since some of these applications can occur beyond the confines of a controlled production 

facility, workers and formulators need to be careful to prevent exposures (EPA 2011a). 

6.8  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of TDI and MDI is available. Where adequate information is 

not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of 

research designed to determine the health effects (and techniques for developing methods to determine 

such health effects) of TDI and MDI. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment. This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 

6.8.1 Identification of Data Needs 

Physical and Chemical Properties. The physical-chemical properties of TDI and MDI are provided 

in Chapter 4.  Important properties such as melting point, boiling point, and vapor pressure are available.  
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Other properties such as water solubility and octanol/water partition coefficient are not applicable due to 

the rapid rate of hydrolysis.  No data needs are identified. 

Production, Import/Export, Use, Release, and Disposal. According to the Emergency 

Planning and Community Right-to-Know Act of 1986, 42 U.S.C. Section 11023, industries are required 

to submit substance release and off-site transfer information to the EPA. This database is updated yearly 

and should provide a list of industrial production facilities and emissions. 

Production, use, and import/export data are available (EPA 2011a; NTP 2011). Continuous updated 

information regarding these quantities is necessary. 

Environmental Fate. The environmental fate and transport of TDI and MDI is well understood.  

Hydrolysis is the dominant process affecting the overall environmental fate, transport, and 

bioaccumulation potential. Additional research on the heterogeneous condensed phase atmospheric 

hydrolysis of TDI and MDI would be helpful in determining the significance of atmospheric hydrolysis 

for these compounds. 

Bioavailability from Environmental Media. The rapid hydrolysis of TDI and MDI suggests that 

these compounds will not be biologically available in the environment.  No data needs are identified. 

Food Chain Bioaccumulation. The rapid hydrolysis of TDI and MDI suggests that these compounds 

will not bioconcentrate in aquatic organisms or bioaccumulate in the food chain.  No data needs are 

identified. 

Exposure Levels in Environmental Media. Reliable monitoring data for the levels of TDI and 

MDI in contaminated media at hazardous waste sites are needed so that the information obtained on levels 

of TDI and MDI in the environment can be used in combination with the known body burden of TDI and 

MDI to assess the potential risk of adverse health effects in populations living in the vicinity of hazardous 

waste sites. 

Exposure Levels in Humans. In order to evaluate the possible correlation between the air levels of 

diisocyanates and the urine and plasma levels of the amine metabolites, more studies monitoring the 

concentration in workplace air and concentration in biological samples of workers exposed to 

diisocyanates are needed (Tinnerberg et al. 1997). 
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There is limited exposure data pertaining to the use and exposure of consumer and commercial products 

containing uncured TDI and MDI (EPA 2011a, 2011b).  Additional studies on the personal air and dermal 

exposure characterizing the concentration of TDI and MDI during application of these products is needed 

to assess the exposure to the general population. 

This information is necessary for assessing the need to conduct health studies on these populations. 

Exposures of Children. There are limited data pertaining to the use and exposure of consumer and 

commercial products containing uncured TDI and MDI.  Because of this, exposure levels to children have 

not been well characterized (EPA 2011a, 2011b).  Additional studies on the personal air and dermal 

exposure characterizing the concentration of TDI and MDI during application of these products is needed 

to assess the exposure to children. 

Child health data needs relating to susceptibility are discussed in Section 3.12.2, Identification of Data 

Needs: Children’s Susceptibility. 

Exposure Registries. The information amassed in the National Exposure Registry facilitates the 

epidemiological research needed to assess adverse health outcomes that may be related to exposure to 

these substances; however, no exposure registries for TDI and MDI were located.  TDI and MDI are not 

currently compounds for which a sub-registry has been established in the National Exposure Registry. 

TDI and MDI will be considered in the future when chemical selection is made for sub-registries to be 

established.  

6.8.2 Ongoing Studies 

No ongoing environmental fate studies for TDI or MDI were identified using the NIH RePORTER (2014) 

or the Defense Technical Information Center (DTIC) online database. 
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The purpose of this chapter is to describe the analytical methods that are available for detecting, 

measuring, and/or monitoring TDI and MDI, their metabolites, and other biomarkers of exposure and 

effect to TDI and MDI.  The intent is not to provide an exhaustive list of analytical methods.  Rather, the 

intention is to identify well-established methods that are used as the standard methods of analysis.  Many 

of the analytical methods used for environmental samples are the methods approved by federal agencies 

and organizations such as EPA and the National Institute for Occupational Safety and Health (NIOSH).  

Other methods presented in this chapter are those that are approved by groups such as the Association of 

Official Analytical Chemists (AOAC) and the American Public Health Association (APHA). 

Additionally, analytical methods are included that modify previously used methods to obtain lower 

detection limits and/or to improve accuracy and precision. 

7.1  BIOLOGICAL MATERIALS 

Some of the methods used for determining TDI and MDI in biological media are reported in Table 7-1. 

Since diisocyanates react much more rapidly with the sulfhydryl, amino, and hydroxyl groups present on 

proteins than with water in physiological situations, they are primarily eliminated from the body as 

protein adducts. TDI and MDI can be effectively assayed in urine by first carrying out a strong acid 

extraction of the urine samples, which releases the corresponding free amine (i.e., TDA or MDA) 

(Rosenberg and Savolainen 1986b). The urine hydrolysate is then extracted with toluene and a 

perfluoroalkyl anhydride, commonly heptafluorobutyric anhydride or pentafluoropropionic anhydride, is 

added to produce perfluoroacylated amide derivatives that are analyzed by gas chromatography 

(GC)/mass spectrometry (MS) (Dalene et al. 1997; Rosenberg and Savolainen 1986b).  Instead of using 

GC/MS, these amide derivatives may also be evaporated from the toluene solution and then dissolved in a 

mobile phase consisting of 0.1 M ammonium acetate in 55/20/25% acetonitrile/methanol/water for 

analysis by liquid chromatography (LC)/MS (Skarping et al. 1994). 

Alkaline hydrolysis of diisocyanates protein adducts to amines has also been used for quantification in 

urine.  A method involving strongly alkaline conditions to hydrolyze TDI protein adducts to toluene 

diamines followed by extraction with toluene and analysis using reverse phase high performance liquid 

chromatography (HPLC) and electrochemical detection has been described (Carbonelle et al. 1996). 



    
 

   
 
 

 
 
 
 
 

    
 

 

    
 
  

 

  

 

 

  
 

 

 
 

 
 

  

 

 
  

 
 

 
 

 
 

  
  

  
 

 
 

 

    
 

 
 
 

 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

  

  
  

 
 

    
 

 
 

 

 
  

 
  

 

  

 
  

 
  

   
    

 
     

 

170 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

7. ANALYTICAL METHODS 

Table 7-1. Analytical Methods for Determining TDI and MDI in Biological 
Materials 

Sample 
Analytical detection Percent 

Sample matrix Preparation method method limit recovery Reference 
Human urine Heat with sulfuric acid; GC/MS 0.2 pmol per No data Rosenberg 
(diisocyanate- adjust pH to ~9.2; cleanup injection and 
derived amines) on SPE silica cartridge; Savolainen 

solvent extraction with 1986a 
toluene; derivatization with 
heptafluorobutyric anhydride 

Human urine Heat with sulfuric acid; GC/MS 2 pg for a 96% (3% Rosenberg 
(2,6-TDA) solvent extraction with 1 µL sample RSD) and 

toluene; derivatization with Savolainen 
heptafluorobutyric anhydride 1986b 

Human urine Acidic hydrolysis with LC/PSP-MS 0.1 pg/µL No data Skarping et 
(4,4’-MDA) sulfuric acid; extraction with al. 1994 

toluene; derivatization with 
pentafluoropropionic 
anhydride; evaporation; 
dissolution in 0.1 M 
ammonium acetate in 
55/20/25% ACN/methanol/ 
water 

Human urine Alkaline hydrolysis with RP-HPLC/ED 0.1 µg/L 87.6% Carbonnelle 
(TDAs) sodium hydroxide; (2,6-TDA); (7.9% RSD) et al. 1996 

extraction with toluene; 0.15 µg/L (2,6-TDA); 
purification with a cation- (2,4-TDA) 88.3% 
exchange column containing (5.3% RSD) 
methanol and phosphoric (2,4-TDA) 
acid solution 

Human urine, Acidic hydrolysis with GC/MS No data No data Dalene et al. 
plasma sulfuric acid; extraction with 1997 
(TDA, MDA) toluene; derivatization with 

pentafluoropropionic 
anhydride 

Human blood Blood sample centrifuged GC/MS-NCI 0.02 ng 99.8% (3.0– Gries and 
(MDI adduct ABP- and washed with 2.5 mL of ABP-Val- 9.3% RSD) Leng 2013 
Val-Hyd) 0.9% sodium chloride Hyd/g globin 

solution; hydrolysis with 
HCl; derivatization with 
heptafluorobutyric anhydride 

ABP-Val-Hyd = 5-isopropyl-3-[4-(4-aminobenzyl)phenyl]hydantoin; ACN = acetonitrile; ED = electrochemical 
detection; GC = gas chromatography; HCl = hydrochloric acid; LC = liquid chromatography; MDA = methylene 
dianiline; MDI = methylenediphenyl diisocyanate; MS = mass spectrometry; NA = not applicable; NCI = negative 
chemical ionization; PSP = plasma spray; RP-HPLC = reverse phase high performance liquid chromatography; 
RSD = relative standard deviation; SPE = solid-phase extraction; TDA = toluene diamine; TDI = toluene diisocyanate 
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Amine hydrolysis products may also be detected in plasma.  Similar to urinalysis, sample preparation 

involves heating the plasma with sulfuric acid to hydrolyze the amines diisocyanate-protein adducts, 

which are extracted with toluene and then pentafluoropropionic anhydride is added to produce 

perfluoroacylated amide derivatives that are analyzed by GC/MS (Dalene et al. 1997). 

Gries and Leng (2013) have described a method for detecting the MDI-hemoglobin adduct ABP-Val-Hyd 

in human blood as a marker for MDI exposure.  In this technique, a blood sample is centrifuged to 

separate the erythrocytes from the plasma, which are then washed with 2.5 mL of 0.9% sodium chloride 

solution.  A globin residue is produced, which is hydrolyzed using 2 mL of 2 M hydrochloric acid and 

derivatization was done by adding heptafluorobutyric anhydride to produce a perfluoroacylated amide. 

Analysis is performed by GC and high-resolution MS with negative chemical ionization. 

7.2  ENVIRONMENTAL SAMPLES 

Methods of analysis are available for the determination of TDI and MDI in air. These include HPLC, 

GC, and spectrophotometry.  The use of a bubbler that collects air through an impinger containing an 

absorbent solution is the most common sampling procedure (Rosenberg and Savolainen 1986b).  A 

critical review of sampling and analysis methods for TDI and MDI in air is presented in Levine et al. 

(1995).  A summary of analytical methods is shown in Table 7-2. 

Analysis of aromatic diisocyanates was historically performed using Marcali or Ranta colorimetric 

methods, with the Marcali method being the method of choice.  However, these methods are limited by 

their lack of specificity.  The Marcali method uses an acidified aqueous bubbler solution to collect 

diisocyanates in air and convert them into their respective diamines. The diamines then couple with 

N-1-naphthyl ethylenediamine to produce a colored complex.  The intensity of the color measured at two 

different wavelengths is a measure of the amount of diisocyanates in the bubble. The inability to 

distinguish the diisocyanates from the produced diamines is the major limitation of this method (OSHA 

1980). 

The first sensitive and diisocyanate-specific method of analysis is employed by OSHA as Method 18 

(OSHA 1980).  Diisocyanates in air are trapped in a bubbler solution consisting of a nitro reagent 

(0.0002 M p-nitrobenzyl-N-n-propylamine) in toluene.  This amine reacts with the diisocyanates to 
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Table 7-2. Analytical Methods for Determining TDI and MDI in Environmental 
Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Air 
(diisocyanates) 

Air 
(MDI) 

Air 
(diisocyanates) 

Air 
(total 
diisocyanates) 

Air 
(total 
diisocyanates) 

Air 
(2,4-TDI) 

Air drawn through a 
glass tube with a glass 
fiber filter and 0.1 mg of 
1-2PP adsorbent; 
extraction with 90:10 
(v/v) ACN/DMSO 

Air drawn through a 
glass tube with a glass 
fiber filter and 1.0 mg of 
1-2PP adsorbent; 
extraction with 90:10 
(v/v) ACN/DMSO 
Air drawn into a 
bubbler containing nitro 
reagent in toluene 

Air collected on 
fiberglass filters 
impregnated with nitro 
reagent (4-nitro-
N-propylbenzylamine); 
SPE with 4:6:1 
methanol/water/0.2M 
hydrochloric acid 
Air drawn through a 
glass tube with a glass 
fiber filter and 0.13– 
1.1 mg of MAP 
adsorbent; acetylation 
with acetic anhydride; 
extraction with 65:35 
(v/v) ACN/ 
triethylammonium 
phosphate/formate 
Air drawn through a 
tube with 200 mg of 
Tenax-TA adsorbent; 
thermal desorption 

HPLC/UV 
(Method 
42) 

HPLC/UV 
(Method 
47) 

HPLC 
(Method 
18) 

DPP 

RP-
HPLC/UV/ 
FD 
(Method 
5525) 

capGC/ 
FID-ITD 

1.6 µg/m3 

(2,6-TDI); 
1.3 µg/m3 

(2,4-TDI); for a 
15-L sample 

0.8 µg/m3 

for a 15-L sample 

0.15 ppb 
(1 µg/m3) 
(2,4-TDI); 
0.10 ppb 
(1 µg/m3) (MDI); 
for a 20-L sample 
8 µg/m3 for a 50-L 
sample 

17 ng/sample; for 
a 15-L sample 

<0.001 µg/sample 
for a 1-L sample 

86.4% 
(1.6% 
RSD) 
(2,6-TDI); 
80.3% 
(2.4% 
RSD) 
(2,4-TDI) 
94.8% 
(4.5% 
RSD) 

100% 
(2,4-TDI 
and MDI) 

98% 
(1.9% 
RSD) 

97–99% 
(1.0–3.5% 
RSD) 

99.5% 
(3.4–7% 
RSD) 

OSHA 1989a 

OSHA 1989b 

OSHA 1980 

Corbini et al. 1991 

NIOSH 2003 

Bianchi and Joyner 
1997 

http:methanol/water/0.2M
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Table 7-2. Analytical Methods for Determining TDI and MDI in Environmental 
Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Air 
(2,4-TDI) 

Air 
(TDI) 

Air 
(TDI vapor and 
aerosols) 

Air (MDI vapor 
and aerosols) 

Air 
(diisocyanates) 

Occupational 
air 
(TDI) 

Air drawn into traps 
containing silica gel 
coated with phosphoric 
acid; elution with 
sodium hydroxide and 
methanol; separation 
with 60:40 (v/v) 
phosphate buffer/ 
methanol 
Air collected into a 
glass tube; 
simultaneous 
absorption and 
derivatization with 
p-aminophenol 
Air collected onto a 
denuder coated with 
dimethylpolysiloxane 
(adsorbent) and 
dibutylamine 
(derivatization reagent) 
in series with a glass 
fiber filter; extraction 
with ACN 
Air collected onto a 
denuder coated with 
N-4-nitrobenzyl-
N-1-propylamine in 
series with a glass fiber 
filter; extraction with 
ACN 
Air drawn through a 
glass tube with a glass 
fiber filter and di-
n-butylamine in 
toluene; extraction with 
ACN 
Air collected on a 
15-mg 1-2MPP-
impregnated glass fiber 
filter; extraction with 
1 mL ACN with 0.5% 
acetic anhydride 

HPLC/UV 0.2 µg/m3 for a 
20-L sample 

HPLC/ 94 pg/sample 
ECHD 

LC-ESI/ 1.9 ng/m3 

MS-MS (2,4-TDI); 
1.5 ng/m3 

(2,6-TDI) 

HPLC/UV 0.7 µg/m3 (vapor 
phase); 
3.3 µg/m3 

(condensed 
phase) 

LC/MS 5–10 ng/mL 

RP-HPLC/ 0.1 ng per 
UV injection 

100% 
(<3% 
RSD) 

75–80% 
(<2% 
RSD) 

99.4% 
(2,4-TDI); 
99.7% 
(2,6-TDI) 

No data 

92% 
(2,6-TDI); 
96% 
(2,4-TDI); 
86% (MDI) 

No data 

Colli et al. 1993 

Meyer and Tallman 
1983 

Nordqvist et al. 2005 

Rando and Poovey 
1994 

Bobeldijk et al. 2008 

Rosenberg and 
Savolainen 1986b 
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Table 7-2. Analytical Methods for Determining TDI and MDI in Environmental 
Samples 

Sample Analytical Sample Percent 
matrix Preparation method method detection limit recovery Reference 
Occupational 
air 
(diisocyanates) 

Occupational 
air 
(diisocyanates) 

Occupational 
air 
(diisocyanates) 

Occupational 
air 
(MDI) 

Occupational 
vapor 
(2,4-TDI) 

Chemical 
products (TDI 
and MDI) 

Air collected using 
midget impinge flasks 
and derivatized with di-
n-butylamine in toluene 
followed by a glass 
fiber filter; evaporation; 
dissolution in ACN 
Air collected with an 
impinger and 
derivatized with 
1-2MPP in toluene; 
acetylation; 
evaporation; dissolution 
in ACN/methanol buffer 
Air collected using an 
impinger and 
derivatized with 
tryptamine in DMSO; 
dissolution in ACN/ 
sodium acetate buffer 
Air drawn into traps 
containing silica gel 
coated with phosphoric 
acid; elution with 
sodium hydroxide and 
methanol 
Air drawn through a 
glass tube with a 
1-2PP/methylene 
chloride adsorbent; 
extraction with 
methanol/water 
Derivatized with 
9-(methyl 
aminomethyl)-
anthracene (1% v/v) in 
dichloromethane 

LC/MS 

HPLC/ 
ECHD/UV 
(Method 
5521) 

HPLC/FD/ 
ECHD 
(Method 
5522) 

GC/NPD 

RP-HPLC/ 
UV 

HPLC/UV 

0.002 µg/m3 (TDI 
and MDI) 

0.2 µg/sample 
(2,4- and 2,6-TDI) 
0.09 µg/sample 
(MDI) 

0.1 µg/sample 
(2,4-TDI); 
0.2 µg/sample 
(2,6-TDI); 
0.3 µg/sample 
(MDI) 
0.7 µg/m3 for a 
20-L sample 

1 ppb for a 15-L 
sample 

50 ppb (MDI) 
5 ppb (TDI) 

~95% 
(<4% RSD 
for TDI); 
(12% RSD 
for MDI) 

No data 

90.5% 
(2,4-TDI); 
102.8% 
(2,6-TDI); 
96.4% 
(MDI) 
100% 
(<5% 
RSD) 

106.3% 
(10% 
RSD) 

92–97% 
(<5% 
RSD) 

Karlsson et al. 2000 

NIOSH 1994 

NIOSH 1996 

D’Eril et al. 1995 

Chang and Burg 
1982 

Rastogi 1989 

1-2MPP = 1-(2-methoxyphenyl)piperazine; 1-2PP = 1-(2-pyridyl)piperazine; ACN = acetonitrile; capGC = capillary 
gas chromatography; DMSO = dimethyl sulfoxide; DPP = differential-pulse polarography; ECHD = electrochemical 
detector; ED = electron capture detector; ESI = electrospray interface; FD = fluorescence detector; FID = flame 
ionization detector; GC = gas chromatography; HPLC = high performance liquid chromatography; ITD = ion-trap 
detector; LC = liquid chromatography; MAP = 1-(9-anthracenylmethyl)piperazine; MDI = methylenediphenyl 
diisocyanate; MS = mass spectrometry; NPD = nitrogen-phosphorus detector; RP-HPLC = reverse-phase high 
performance liquid chromatography; RSD = relative standard deviation; SPE = solid-phase extraction; TDI = toluene 
diisocyanate; UV = ultraviolet absorbance detection 
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produce ultraviolet (UV)-absorbing urea derivatives that can be easily analyzed by HPLC (OSHA 1980).  

Another nitro reagent method describes the analysis of diisocyanate monomers by collecting air onto 

fiberglass filters impregnated with 4-nitro-N-propylbenzylamine, followed by solid-phase extraction and 

determination of total diisocyanate concentration by differential-pulse polarography (Corbini et al. 1991). 

A modified Marcali technique was described that allowed for the ability to isolate specific diisocyanates. 

Colli et al. (1993) reported this method for the determination of 2,4-TDI concentrations in air.  In this 

procedure, air is collected in traps containing silica gel coated with phosphoric acid to form 2,4-TDA, 

followed by elution with methanol and sodium hydroxide and analysis using HPLC and UV detection.  A 

similar method was described for the determination of MDI in workplace air, particularly spraying 

operations, which employs analysis by GC and a nitrogen-phosphorus detector (D’Eril et al. 1995). 

Other sampling techniques collect air onto a solid sorbent media by using an impinger and a reagent-

impregnated glass-fiber filter. These methods employ the use of a derivatizing agent, such as 

1-(2-methoxyphenyl)piperazine, to form stable derivatives of the diisocyanates for HPLC and 

electrochemical detection (Rosenberg and Savolainen 1986b). Three NIOSH methods (Methods 5521, 

5522, and 5525) have been used to analyze diisocyanates and employ the use of HPLC with UV, or UV 

and fluorescence detection (NIOSH 1994, 1996, 2003).  Derivatizing agents in these methods include 

1-(2-methoxyphenyl)piperazine, 1-(9-anthracenylmethyl)piperazine, and tryptamine. Several methods 

use 1-(2-pyridyl)piperazine as a derivatizing agent to form stable urea derivatives for detection by HPLC 

with UV (Chang and Burg 1982; OSHA 1989a, 1989b).  Karlsson et al. (2000) described a method using 

a di-n-butylamine derivatizing agent followed by LC/MS analysis.  This method was validated by 

Bobeldijk et al. (2008). 

A method employing a chemosorptive denuder in series with a glass fiber filter in order to sample 

personal exposure to TDI vapor and aerosols was described (Nordqvist et al. 2005).  This method used a 

dimethylpolysiloxane denuder coating with dibutylamine as a derivatizing agent. Analysis is performed 

using LC with an electrospray interface with MS. The advantages of this method include a wide sampling 

concentration range and accurate vapor-particulate-phase distribution measurements (Nordqvist et al. 

2005).  Rando and Poovey (1994) described a similar method using a denuder in series with a glass fiber 



    
 

   
 
 

 
 
 
 
 

 

    

 

     

 

  

 

 

 

    

 

 

 

  

 

  
 

  

   

      

  

     

 

   

 

  

 

   

 

176 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

7. ANALYTICAL METHODS 

filter coated with nitro reagent, N-4-nitrobenzyl-N-1-propylamine, for collection and derivatization of 

MDI vapor and aerosol followed by HPLC analysis and UV detection. 

Bianchi and Joyner (1997) describe a method for detecting TDI in air that collects samples directly onto 

an adsorbent tube packed with Tenax-TA followed by thermal desorption and then uses capillary GC with 

simultaneous flame ionization and ion-trap detection.  

A method for determining TDI and MDI in various types of chemical products, such as adhesives, 

insulating foam, sealing waxes, surface coatings, etc., has been described (Rastogi 1989).  This method 

involves the reaction of the chemical product with 9-(methyl aminomethyl)-anthracene to form urea 

derivatives from the diisocyanates present, followed by HPLC and UV detection. 

Analytical methods for the detection of diisocyanates in other media were not located.  Diisocyanates 

hydrolyze rapidly in water, so it is therefore unlikely that significant amounts would be found in other 

environmental media, such as water, soil, sediment, or food.  

7.3  ADEQUACY OF THE DATABASE 

Section 104(i)(5) of CERCLA, as amended, directs the Administrator of ATSDR (in consultation with the 

Administrator of EPA and agencies and programs of the Public Health Service) to assess whether 

adequate information on the health effects of TDI and MDI is available. Where adequate information is 

not available, ATSDR, in conjunction with NTP, is required to assure the initiation of a program of 

research designed to determine the health effects (and techniques for developing methods to determine 

such health effects) of TDI and MDI. 

The following categories of possible data needs have been identified by a joint team of scientists from 

ATSDR, NTP, and EPA.  They are defined as substance-specific informational needs that if met would 

reduce the uncertainties of human health assessment.  This definition should not be interpreted to mean 

that all data needs discussed in this section must be filled.  In the future, the identified data needs will be 

evaluated and prioritized, and a substance-specific research agenda will be proposed. 
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7.3.1 Identification of Data Needs 

Methods for Determining Biomarkers of Exposure and Effect. 

Exposure.  TDI-protein adducts in biological samples are hydrolyzed to form TDA.  (Tinnerberg et al. 

1997).  Methods of measuring this biomarker of exposure are available (Austin 2007; Carbonelle et al. 

1996).  

Effect. Respiratory exposure to diisocyanates can lead to occupationally induced asthma.  Workers 

diagnosed with diisocyanate-induced asthma manifest characteristic physiological responses after specific 

bronchoprovocation, which correlate to changes in their airways (Bernstein 1996). 

Methods for Determining Parent Compounds and Degradation Products in Environmental 
Media. Analytical methods for measuring diisocyanates in air are available (Levine et al. 1995; NIOSH 

1994, 1996, 2003).  Diisocyanates hydrolyze rapidly in water and it is unlikely that significant amounts 

would be found in environmental media, such as water, soil, and sediment. 

7.3.2 Ongoing Studies 

L2 Diagnostics, LLC (A. Wisnewski, Principal Investigator) are developing innovative biomonitoring 

approaches to exposure surveillance for MDI.  Specifically, they aim to develop blood tests that measure 

two different MDI exposure biomarkers. The first biomarker is MDI-specific antibodies (IgG), produced 

by the immune system in response to exposure. The second biomarker is the chemical (MDI) itself 

conjugated to albumin, the major "protein adduct" in vivo (NIH RePORTER 2014). 
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MRLs are substance-specific estimates that are intended to serve as screening levels. They are used by 

ATSDR health assessors and other responders to identify contaminants and potential health effects that 

may be of concern at hazardous waste sites. 

ATSDR has derived an acute-duration inhalation MRL of 1x10-5 ppm for TDI. The MRL is based on 

LOAEL of 0.005 ppm for decreases in lung function in healthy volunteers exposed to TDI for 6 hours 

(Vandenplas et al. 1999).  The LOAEL was adjusted to continuous 24-hour exposure (from 6 hours/day) 

and divided by a total uncertainty factor of 100 (10 for the use of a LOAEL and 10 for human variability). 

Since there is uncertainty that the MRL would be protective for continuous exposure for 14 days, it is 

suggested that measured air concentrations should not exceed the MRL of 1x10-5 ppm during a 24-hour 

period. 

ATSDR has derived a chronic-duration inhalation MRL of 3x10-6 ppm for TDI. The MRL is based on the 

mean daily exposure level of 0.0012 ppm, which resulted in decreases in lung function in workers at 

flexible foam producing facilities (Clark et al. 1998). The adverse effect level of 0.0012 ppm was 

adjusted for intermittent exposure (8 hours/day, 5 days/week) and divided by a total uncertainty factor of 

100 (10 for the use of a LOAEL and 10 for human variability). 

EPA (IRIS 2003) has derived a chronic-duration reference concentration (RfC) of 7x10-5 mg/m3 

(1x10-5 ppm) based on a NOAEL of 0.0009 ppm and a LOAEL of 0.0019 ppm for decreases in lung 

function in workers at a TDI manufacturing facility (Diem et al. 1982). The NOAEL was adjusted for 

intermittent exposure ([10 m3/day]/[20 m3/day], 5 days/week) and divided by a total uncertainty factor of 

30 (3 to account for both extrapolation from a subchronic study and the lack of developmental toxicity 

data in a second species and 10 for intrahuman variability). 

ATSDR has derived a chronic-duration inhalation MRL of 0.001 mg/m3 for polymeric MDI. The MRL is 

based on a BMCL10 of 0.48 mg/m3 for basal cell hyperplasia in the nasal cavity observed in rats exposed 

to polymeric MDI for 2 years (Reuzel et al. 1994). The BMCL10 was adjusted for intermittent exposure 

(6 hours/day, 5 days/week) and multiplied by a regional deposited dose ratio for extrathoracic effect 

(RDDRET) of 0.453 to calculate the human equivalent concentration (BMCLHEC). The BMCLHEC of 

0.039 mg/m3 was divided by a total uncertainty factor of 30 (3 to extrapolate from animals to humans 
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with dosimetric adjustments and 10 for human variability); EPA notes that “the two UFs of 3 each 

coalesce to a 10, yielding a total UF of 100.” 

EPA (IRIS 2002) has derived a chronic-duration RfC of 0.0006 mg/m3 based on a BMCLADJ of 

0.14 mg/m3 for basal cell hyperplasia in rats exposed to polymeric MDI for 2 years (Reuzel et al. 

1994). The BMCLHEC was calculated by multiplying the BMCLADJ of 0.14 mg/m3 by a RDDRET of 

0.453. The BMCLHEC of 0.06 mg/m3 was divided by a total uncertainty factor of 100 (10 for 

intraindividual variation, 3 for the lack of reproductive data, and 3 for “interspecies variation inasmuch as 

dosimetric adjustments had been made”). 

The international and national regulations, advisories, and guidelines regarding TDI and MDI in air, 

water, and other media are summarized in Table 8-1.  
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to TDI and MDI 

Agency Description Information Reference 
International 
Guidelines: 

IARC Carcinogenicity classification 
TDI Group 2Ba IARC 1999b 
4,4'-MDI Group 3b IARC 1999a 

WHO Air quality guidelines Not listed WHO 2010 
Drinking water quality guidelines Not listed WHO 2017 

National 
Regulations and guidelines: 
a. Air 

ACGIH TLV-TWAc,d,e 

2,4-TDI or 2,6-TDI (or as a mixture) 0.001 ppmf ACGIH 2016a 
Monomeric 4,4’-MDI 0.005 ppm ACGIH 2001 

STEL 
2,4-TDI or 2,6-TDI (or as a mixture) 0.005 ppmf ACGIH 2016a 

DOE PAC-1g DOE 2016b 
TDI, mixed isomers 0.020 ppm 
2,4-TDI 0.020 ppm 
2,6-TDI 0.020 ppm 
Monomeric 4,4’-MDI 0.45 mg/m3 

Polymeric 4,4’-MDI 29 mg/m3 

PAC-2g 

TDI, mixed isomers 0.083 ppm 
2,4-TDI 0.083 ppm 
2,6-TDI 0.083 ppm 
Monomeric 4,4’-MDI 5 mg/m3 

Polymeric 4,4’-MDI 40 mg/m3 

PAC-3g 

TDI, mixed isomers 0.51 ppm 
2,4-TDI 0.51 ppm 
2,6-TDI 0.51 ppm 
Monomeric 4,4’-MDI 55 mg/m3 

Polymeric 4,4’-MDI 240 mg/m3 
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to TDI and MDI 

Agency Description Information Reference 
EPA 2,4-TDI EPA 2016a 

AEGL-1h 

10 minutes 0.020 ppm 
30 minutes 0.020 ppm 
60 minutes 0.020 ppm 
4 hours 0.010 ppm 
8 hours 0.010 ppm 

AEGL-2h 

10 minutes 0.24 ppm 
30 minutes 0.17 ppm 
60 minutes 0.083 ppm 
4 hours 0.021 ppm 
8 hours 0.021 ppm 

AEGL-3h 

10 minutes 0.65 ppm 
30 minutes 0.65 ppm 
60 minutes 0.51 ppm 
4 hours 0.32 ppm 
8 hours 0.16 ppm 

2,6-TDI 
AEGL-1h 

10 minutes 0.020 ppm 
30 minutes 0.020 ppm 
60 minutes 0.020 ppm 
4 hours 0.010 ppm 
8 hours 0.010 ppm 

AEGL-2h 

10 minutes 0.24 ppm 
30 minutes 0.17 ppm 
60 minutes 0.083 ppm 
4 hours 0.021 ppm 
8 hours 0.021 ppm 

AEGL-3 h 

10 minutes 0.65 ppm 
30 minutes 0.65 ppm 
60 minutes 0.51 ppm 
4 hours 0.32 ppm 
8 hours 0.16 ppm 

Hazardous air pollutant EPA 2016c 42 USC 
2,4-TDI Yes 7412 

Monomeric 4,4’-MDI Yes 



    
 

 
 
 

 
 
 
 
 

     
 

    
     
     

      
 

     
     
     
    
     
     
   

 
 

 
      

     
      

  
  

     
   

 
 

  
   

  
 

  
 

     
  

 
  

   
 

  

   
 

  

  

   

  

  
   

    
     

  
     

    
     
         

183 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

8.  REGULATIONS, ADVISORIES, AND GUIDELINES 

Table 8-1.  Regulations, Advisories, and Guidelines Applicable to TDI and MDI 

Agency Description Information Reference 
NAAQS Not listed EPA 2018b 

NIOSH REL 
2,4-TDI Potential occupational 

carcinogens 

NIOSH 2016a, 
2016b 

Monomeric 4,4’-MDI 0.05 mg/m3 

Ceiling limit (10-minute) 
Monomeric 4,4’-MDI 0.2 mg/m3 

IDLH 
2,4-TDI 2.5 ppm 
Monomeric 4,4’-MDI 75 mg/m3 

OSHA Ceiling limit (15-minute TWA) for 
general industry 

2,4-TDI 0.02 ppm 

OSHA 2017b 29 
CFR 1910.1000, 
Table Z-2 

Monomeric 4,4’-MDI 0.02 ppm 
Highly hazardous chemicals Not listed OSHA 2017a 

29 CFR 1910.119, 
Appendix A 

b.  Water 
EPA Designated as hazardous substances 

in accordance with 
Not listed EPA 2017b 

40 CFR 116.4 
Section 311(b)(2)(A) of the Clean 
Water Act 
Drinking water contaminant candidate 
list 

EPA 2016b 
81 FR 81099 

TDI Yes 
Drinking water standards and health 
advisories 

Not listed EPA 2012 

National primary drinking water 
standards 

Not listed EPA 2009b 

National recommended water quality 
criteria: human health for the 
consumption of (at 10-4 risk) 

Not listed EPA 2018c 

Reportable quantities of hazardous 
substances designated pursuant to 
Section 311 of the Clean Water Act 

Not listed EPA 2017d 
40 CFR 117.3 

c.  Food 
FDA Bottled water Not listed FDA 2017 

21 CFR 165.110 
EAFUSi Not listed FDA 2013 

d.  Other 
ACGIH Carcinogenicity classification ACGIH 2016a 

2,4-TDI or 2,6-TDI (or as a mixture) A3j 
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to TDI and MDI 

Agency Description Information Reference 
EPA Carcinogenicity classification 

TDI (toluene 2,4- (2,6-) diisocyanate) No data 
MDI (monomeric MD) and polymeric 
MDI) 

RfC 
2,4-/2,6-TDI 
MDI (monomeric MDI and polymeric 
MDI) 

RfD 
2,4-/2,4-TDI (toluene 2,4- (2,6-) 
diisocyanate) 
MDI (monomeric MDI and polymeric 
MDI) 

Identification and listing of hazardous 
waste 

Group Dk 

7x10-5 mg/m3 

6x10-4 mg/m3 

Not listed 

Not listed 

TDI (toluene 2,4- (2,6-) diisocyanate) U223 
Master Testing List 

Monomeric 4,4’-MDI 
Polymethylene polyphenyl 
isocyanate 
Polymeric 4,4’-MDI 

RCRA waste minimization PBT priority 
chemical list 
Standards for owners and operators of 
hazardous waste TSD facilities; 
groundwater monitoring list 
Superfund, emergency planning, and 
community right-to-know 

Designated CERCLA hazardous 
substance and reportable quantity 

TDI (toluene 2,4- (2,6-) 
diisocyanate)l 

2,4-TDIl 

2,6-TDIl 

Monomeric 4,4’-MDIm 

Effective date of toxic chemical 
release reporting 

TDI (toluene 2,4- (2,6-) 
diisocyanate) 
2,4-TDI 
2,6-TDI 
Monomeric 4,4’-MDI 
Diisocyanates category (including 
MDI and polymeric MDI) 

Yes 
Yes 

Yes 
Not listed 

Not listed 

100 pounds 

100 pounds 
100 pounds 
5,000 pounds 

01/01/1990 

01/01/1987 
01/01/1987 
01/01/1987 
01/01/1995 

IRIS 2002, 2003 

EPA 2017c 
40 CFR 261, 
Appendix VIII 

EPA 1996 

EPA 1998b 
63 FR 60332 
EPA 2017e 40 CFR 
264, Appendix IX 

EPA 2017f 
40 CFR 302.4 

EPA 2017g 
40 CFR 372.65 
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to TDI and MDI 

Agency Description Information Reference 
Extremely hazardous substances EPA 2017h 
and its threshold planning quantity 40 CFR 355, 

2,4-TDI 500 pounds Appendix A 

2,6-TDI 100 pounds 
TSCA chemical lists and reporting EPA 2017i 
periods 40 CFR 712.30 

Monomeric 4,4’-MDI 
Effective date 10/29/1990 
Reporting date 12/27/1990 

Polymeric 4,4’-DMDI 
Effective date 10/29/1990 
Reporting date 12/27/1990 

TSCA health and safety data EPA 2017j 
reporting 40 CFR 716.120 
TDI (2,4 and 2,6 mixed isomers); 
2,4-TDI; monomeric 4,4’-MDI; 
polymeric 4,4’-MDI 

Effective date 06/01/1987 
Reporting date 06/01/1997 

2,6-TDI 
Effective date 06/01/1987 
Reporting date 12/19/1995 

NTP Carcinogenicity classification NTP 2016 
TDI  Reasonably anticipated 

to be a human 
carcinogen 

aGroup 2B:  possibly carcinogenic to humans. 
bGroup 3:  not classifiable as to its carcinogenicity to humans. 
cSkin notation: refers to potential significant contribution to the overall exposure by the cutaneous route (ACGIH 
2016b).
dDermal sensitization notation:  refers to potential for agent to produce dermal sensitization (ACGIH 2016b). 
eRespiratory sensitization notation:  refers to potential for agent to produce respiratory sensitization (ACGIH 2016b). 
fInhalable fraction and vapor: material exerts sufficient vapor pressure such that it may be present in both particle 
and vapor phases, with each contributing a significant portion of the dose at the TLV-TWA concentration (ACGIH 
2016b). 
gDefinitions of PAC terminology are available from DOE (2016a).
hAEGL-1 is the airborne concentration of a substance above which it is predicted that the general population, 
including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory 
effects.  However, the effects are not disabling and are transient and reversible upon cessation of exposure.  AEGL-
2 is the airborne concentration of a substance above which it is predicted that the general population, including 
susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an 
impaired ability to escape.  AEGL-3 is the airborne concentration of a substance above which it is predicted that the 
general population, including susceptible individuals, could experience life-threatening health effects or death (EPA 
2018a). 
iThe EAFUS list of substances contains ingredients added directly to food that FDA has either approved as food 
additives or listed or affirmed as GRAS. 
jA3:  confirmed animal carcinogen with unknown relevance to humans. 
kGroup D:  not classifiable as to human carcinogenicity. 
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Table 8-1.  Regulations, Advisories, and Guidelines Applicable to TDI and MDI 

Agency Description Information Reference 

lDesignated CERCLA hazardous substance and reportable quantity pursuant to Section 112 of the Clean Air Act and 
Section 3001 of RCRA. 
mDesignated CERCLA hazardous substance and reportable quantity pursuant to Section 112 of the Clean Air Act. 

ACGIH = American Conference of Governmental Industrial Hygienists; AEGL = acute exposure guideline levels; 
CERCLA = Comprehensive Environmental Response, Compensation, and Liability Act; CFR = Code of Federal 
Regulations; DOE = Department of Energy; EAFUS = Everything Added to Food in the United States; 
EPA = Environmental Protection Agency; FDA = Food and Drug Administration; FR = Federal Register; 
GRAS = generally recognized as safe; IARC = International Agency for Research on Cancer; IDLH = immediately 
dangerous to life or health; IRIS = Integrated Risk Information System; MDI = methylenediphenyl diisocyanate; 
NAAQS = National Ambient Air Quality Standards; NIOSH = National Institute for Occupational Safety and Health; 
NTP = National Toxicology Program; OSHA = Occupational Safety and Health Administration; PAC = protective 
action criteria; PBT = persistent, bioaccumulative, and toxic; RCRA = Resource Conservation and Recovery Act; 
REL = recommended exposure limit; RfC = inhalation reference concentration; RfD = oral reference dose; 
SIDS = Screening Information Data Set; STEL = short-term exposure limit; TDI = toluene diisocyanate; 
TLV = threshold limit values; TSCA = Toxic Substances Control Act; TSD = treatment, storage, and disposal; 
TWA = time-weighted average; USC = United States Code; WHO = World Health Organization 
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10.  GLOSSARY 

Absorption—The taking up of liquids by solids, or of gases by solids or liquids. 

Acute Exposure—Exposure to a chemical for a duration of 14 days or less, as specified in the 
Toxicological Profiles. 

Adsorption—The adhesion in an extremely thin layer of molecules (as of gases, solutes, or liquids) to the 
surfaces of solid bodies or liquids with which they are in contact. 

Adsorption Coefficient (Koc)—The ratio of the amount of a chemical adsorbed per unit weight of 
organic carbon in the soil or sediment to the concentration of the chemical in solution at equilibrium. 

Adsorption Ratio (Kd)—The amount of a chemical adsorbed by sediment or soil (i.e., the solid phase) 
divided by the amount of chemical in the solution phase, which is in equilibrium with the solid phase, at a 
fixed solid/solution ratio.  It is generally expressed in micrograms of chemical sorbed per gram of soil or 
sediment. 

Benchmark Dose (BMD)—Usually defined as the lower confidence limit on the dose that produces a 
specified magnitude of changes in a specified adverse response.  For example, a BMD10 would be the 
dose at the 95% lower confidence limit on a 10% response, and the benchmark response (BMR) would be 
10%.  The BMD is determined by modeling the dose response curve in the region of the dose response 
relationship where biologically observable data are feasible. 

Benchmark Dose Model—A statistical dose-response model applied to either experimental toxicological 
or epidemiological data to calculate a BMD. 

Bioconcentration Factor (BCF)—The quotient of the concentration of a chemical in aquatic organisms 
at a specific time or during a discrete time period of exposure divided by the concentration in the 
surrounding water at the same time or during the same period. 

Biomarkers—Broadly defined as indicators signaling events in biologic systems or samples. They have 
been classified as markers of exposure, markers of effect, and markers of susceptibility. 

Cancer Effect Level (CEL)—The lowest dose of chemical in a study, or group of studies, that produces 
significant increases in the incidence of cancer (or tumors) between the exposed population and its 
appropriate control. 

Carcinogen—A chemical capable of inducing cancer. 

Case-Control Study— A type of epidemiological study that examines the relationship between a 
particular outcome (disease or condition) and a variety of potential causative agents (such as toxic 
chemicals).  In a case-control study, a group of people with a specified and well-defined outcome is 
identified and compared to a similar group of people without the outcome. 

Case Report—Describes a single individual with a particular disease or exposure.  These may suggest 
some potential topics for scientific research, but are not actual research studies. 

Case Series—Describes the experience of a small number of individuals with the same disease or 
exposure. These may suggest potential topics for scientific research, but are not actual research studies. 
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10.  GLOSSARY 

Ceiling Value—A concentration that must not be exceeded. 

Chronic Exposure—Exposure to a chemical for 365 days or more, as specified in the Toxicological 
Profiles. 

Cohort Study—A type of epidemiological study of a specific group or groups of people who have had a 
common insult (e.g., exposure to an agent suspected of causing disease or a common disease) and are 
followed forward from exposure to outcome.  At least one exposed group is compared to one unexposed 
group. 

Cross-sectional Study—A type of epidemiological study of a group or groups of people that examines 
the relationship between exposure and outcome to a chemical or to chemicals at one point in time. 

Data Needs—Substance-specific informational needs that, if met, would reduce the uncertainties of 
human health risk assessment. 

Developmental Toxicity—The occurrence of adverse effects on the developing organism that may result 
from exposure to a chemical prior to conception (either parent), during prenatal development, or 
postnatally to the time of sexual maturation.  Adverse developmental effects may be detected at any point 
in the life span of the organism. 

Dose-Response Relationship—The quantitative relationship between the amount of exposure to a 
toxicant and the incidence of the adverse effects. 

Embryotoxicity and Fetotoxicity—Any toxic effect on the conceptus as a result of prenatal exposure to 
a chemical; the distinguishing feature between the two terms is the stage of development during which the 
insult occurs.  The terms, as used here, include malformations and variations, altered growth, and in utero 
death. 

Environmental Protection Agency (EPA) Health Advisory—An estimate of acceptable drinking water 
levels for a chemical substance based on health effects information.  A health advisory is not a legally 
enforceable federal standard, but serves as technical guidance to assist federal, state, and local officials. 

Epidemiology—Refers to the investigation of factors that determine the frequency and distribution of 
disease or other health-related conditions within a defined human population during a specified period. 

Genotoxicity—A specific adverse effect on the genome of living cells that, upon the duplication of 
affected cells, can be expressed as a mutagenic, clastogenic, or carcinogenic event because of specific 
alteration of the molecular structure of the genome. 

Half-life—A measure of rate for the time required to eliminate one half of a quantity of a chemical from 
the body or environmental media. 

Immediately Dangerous to Life or Health (IDLH)—A condition that poses a threat of life or health, or 
conditions that pose an immediate threat of severe exposure to contaminants that are likely to have 
adverse cumulative or delayed effects on health.  

Immunologic Toxicity—The occurrence of adverse effects on the immune system that may result from 
exposure to environmental agents such as chemicals. 
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10.  GLOSSARY 

Immunological Effects—Functional changes in the immune response. 

Incidence—The ratio of new cases of individuals in a population who develop a specified condition to 
the total number of individuals in that population who could have developed that condition in a specified 
time period. 

Intermediate Exposure—Exposure to a chemical for a duration of 15–364 days, as specified in the 
Toxicological Profiles. 

In Vitro—Isolated from the living organism and artificially maintained, as in a test tube. 

In Vivo—Occurring within the living organism. 

Lethal Concentration(LO) (LCLO)—The lowest concentration of a chemical in air that has been reported 
to have caused death in humans or animals. 

Lethal Concentration(50) (LC50)—A calculated concentration of a chemical in air to which exposure for 
a specific length of time is expected to cause death in 50% of a defined experimental animal population. 

Lethal Dose(LO) (LDLo)—The lowest dose of a chemical introduced by a route other than inhalation that 
has been reported to have caused death in humans or animals. 

Lethal Dose(50) (LD50)—The dose of a chemical that has been calculated to cause death in 50% of a 
defined experimental animal population. 

Lethal Time(50) (LT50)—A calculated period of time within which a specific concentration of a chemical 
is expected to cause death in 50% of a defined experimental animal population. 

Lowest-Observed-Adverse-Effect Level (LOAEL)—The lowest exposure level of chemical in a study, 
or group of studies, that produces statistically or biologically significant increases in frequency or severity 
of adverse effects between the exposed population and its appropriate control. 

Lymphoreticular Effects—Represent morphological effects involving lymphatic tissues such as the 
lymph nodes, spleen, and thymus. 

Malformations—Permanent structural changes that may adversely affect survival, development, or 
function. 

Minimal Risk Level (MRL)—An estimate of daily human exposure to a hazardous substance that is 
likely to be without an appreciable risk of adverse noncancer health effects over a specified route and 
duration of exposure. 

Modifying Factor (MF)—A value (greater than zero) that is applied to the derivation of a Minimal Risk 
Level (MRL) to reflect additional concerns about the database that are not covered by the uncertainty 
factors. The default value for a MF is 1. 

Morbidity—State of being diseased; morbidity rate is the incidence or prevalence of disease in a specific 
population. 

Mortality—Death; mortality rate is a measure of the number of deaths in a population during a specified 
interval of time. 
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Mutagen—A substance that causes mutations.  A mutation is a change in the DNA sequence of a cell’s 
DNA.  Mutations can lead to birth defects, miscarriages, or cancer. 

Necropsy—The gross examination of the organs and tissues of a dead body to determine the cause of 
death or pathological conditions. 

Neurotoxicity—The occurrence of adverse effects on the nervous system following exposure to a 
hazardous substance. 

No-Observed-Adverse-Effect Level (NOAEL)—The dose of a chemical at which there were no 
statistically or biologically significant increases in frequency or severity of adverse effects seen between 
the exposed population and its appropriate control.  Effects may be produced at this dose, but they are not 
considered to be adverse. 

Octanol-Water Partition Coefficient (Kow)—The equilibrium ratio of the concentrations of a chemical 
in n-octanol and water, in dilute solution. 

Odds Ratio (OR)—A means of measuring the association between an exposure (such as toxic substances 
and a disease or condition) that represents the best estimate of relative risk (risk as a ratio of the incidence 
among subjects exposed to a particular risk factor divided by the incidence among subjects who were not 
exposed to the risk factor).  An OR of greater than 1 is considered to indicate greater risk of disease in the 
exposed group compared to the unexposed group. 

Organophosphate or Organophosphorus Compound—A phosphorus-containing organic compound 
and especially a pesticide that acts by inhibiting cholinesterase. 

Permissible Exposure Limit (PEL)—An Occupational Safety and Health Administration (OSHA) 
regulatory limit on the amount or concentration of a substance not to be exceeded in workplace air 
averaged over any 8-hour work shift of a 40-hour workweek. 

Pesticide—General classification of chemicals specifically developed and produced for use in the control 
of agricultural and public health pests (insects or other organisms harmful to cultivated plants or animals). 

Pharmacokinetics—The dynamic behavior of a material in the body, used to predict the fate 
(disposition) of an exogenous substance in an organism.  Utilizing computational techniques, it provides 
the means of studying the absorption, distribution, metabolism, and excretion of chemicals by the body. 

Pharmacokinetic Model—A set of equations that can be used to describe the time course of a parent 
chemical or metabolite in an animal system.  There are two types of pharmacokinetic models:  data-based 
and physiologically-based.  A data-based model divides the animal system into a series of compartments, 
which, in general, do not represent real, identifiable anatomic regions of the body, whereas the 
physiologically-based model compartments represent real anatomic regions of the body. 

Physiologically Based Pharmacodynamic (PBPD) Model—A type of physiologically based dose-
response model that quantitatively describes the relationship between target tissue dose and toxic end 
points.  These models advance the importance of physiologically based models in that they clearly 
describe the biological effect (response) produced by the system following exposure to an exogenous 
substance. 
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10.  GLOSSARY 

Physiologically Based Pharmacokinetic (PBPK) Model—Comprised of a series of compartments 
representing organs or tissue groups with realistic weights and blood flows. These models require a 
variety of physiological information: tissue volumes, blood flow rates to tissues, cardiac output, alveolar 
ventilation rates, and possibly membrane permeabilities.  The models also utilize biochemical 
information, such as blood:air partition coefficients, and metabolic parameters.  PBPK models are also 
called biologically based tissue dosimetry models. 

Prevalence—The number of cases of a disease or condition in a population at one point in time. 

Prospective Study—A type of cohort study in which the pertinent observations are made on events 
occurring after the start of the study.  A group is followed over time. 

q1*—The upper-bound estimate of the low-dose slope of the dose-response curve as determined by the 
multistage procedure.  The q1* can be used to calculate an estimate of carcinogenic potency, the 
incremental excess cancer risk per unit of exposure (usually μg/L for water, mg/kg/day for food, and 
μg/m3 for air). 

Recommended Exposure Limit (REL)—A National Institute for Occupational Safety and Health 
(NIOSH) time-weighted average (TWA) concentration for up to a 10-hour workday during a 40-hour 
workweek. 

Reference Concentration (RfC)—An estimate (with uncertainty spanning perhaps an order of 
magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) 
that is likely to be without an appreciable risk of deleterious noncancer health effects during a lifetime. 
The inhalation reference concentration is for continuous inhalation exposures and is appropriately 
expressed in units of mg/m3 or ppm. 

Reference Dose (RfD)—An estimate (with uncertainty spanning perhaps an order of magnitude) of the 
daily exposure of the human population to a potential hazard that is likely to be without risk of deleterious 
effects during a lifetime.  The RfD is operationally derived from the no-observed-adverse-effect level 
(NOAEL, from animal and human studies) by a consistent application of uncertainty factors that reflect 
various types of data used to estimate RfDs and an additional modifying factor, which is based on a 
professional judgment of the entire database on the chemical. The RfDs are not applicable to 
nonthreshold effects such as cancer. 

Reportable Quantity (RQ)—The quantity of a hazardous substance that is considered reportable under 
the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).  Reportable 
quantities are (1) 1 pound or greater or (2) for selected substances, an amount established by regulation 
either under CERCLA or under Section 311 of the Clean Water Act.  Quantities are measured over a 
24-hour period. 

Reproductive Toxicity—The occurrence of adverse effects on the reproductive system that may result 
from exposure to a hazardous substance.  The toxicity may be directed to the reproductive organs and/or 
the related endocrine system.  The manifestation of such toxicity may be noted as alterations in sexual 
behavior, fertility, pregnancy outcomes, or modifications in other functions that are dependent on the 
integrity of this system. 

Retrospective Study—A type of cohort study based on a group of persons known to have been exposed 
at some time in the past.  Data are collected from routinely recorded events, up to the time the study is 
undertaken.  Retrospective studies are limited to causal factors that can be ascertained from existing 
records and/or examining survivors of the cohort. 
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Risk—The possibility or chance that some adverse effect will result from a given exposure to a hazardous 
substance. 

Risk Factor—An aspect of personal behavior or lifestyle, an environmental exposure, existing health 
condition, or an inborn or inherited characteristic that is associated with an increased occurrence of 
disease or other health-related event or condition. 

Risk Ratio—The ratio of the risk among persons with specific risk factors compared to the risk among 
persons without risk factors.  A risk ratio greater than 1 indicates greater risk of disease in the exposed 
group compared to the unexposed group. 

Short-Term Exposure Limit (STEL)—A STEL is a 15-minute TWA exposure that should not be 
exceeded at any time during a workday.  

Standardized Mortality Ratio (SMR)—A ratio of the observed number of deaths and the expected 
number of deaths in a specific standard population. 

Target Organ Toxicity—This term covers a broad range of adverse effects on target organs or 
physiological systems (e.g., renal, cardiovascular) extending from those arising through a single limited 
exposure to those assumed over a lifetime of exposure to a chemical. 

Teratogen—A chemical that causes structural defects that affect the development of an organism. 

Threshold Limit Value (TLV)—An American Conference of Governmental Industrial Hygienists 
(ACGIH) concentration of a substance to which it is believed that nearly all workers may be repeatedly 
exposed, day after day, for a working lifetime without adverse effect. The TLV may be expressed as a 
Time Weighted Average (TLV-TWA), as a Short-Term Exposure Limit (TLV-STEL), or as a ceiling 
limit (TLV-C). 

Time-Weighted Average (TWA)—An average exposure within a given time period.  

Toxic Dose(50) (TD50)—A calculated dose of a chemical, introduced by a route other than inhalation, 
which is expected to cause a specific toxic effect in 50% of a defined experimental animal population. 

Toxicokinetic—The absorption, distribution, and elimination of toxic compounds in the living organism. 

Uncertainty Factor (UF)—A factor used in operationally deriving the Minimal Risk Level (MRL) or 
Reference Dose (RfD) or Reference Concentration (RfC) from experimental data.  UFs are intended to 
account for (1) the variation in sensitivity among the members of the human population, (2) the 
uncertainty in extrapolating animal data to the case of human, (3) the uncertainty in extrapolating from 
data obtained in a study that is of less than lifetime exposure, and (4) the uncertainty in using lowest-
observed-adverse-effect level (LOAEL) data rather than no-observed-adverse-effect level (NOAEL) data. 
A default for each individual UF is 10; if complete certainty in data exists, a value of 1 can be used; 
however, a reduced UF of 3 may be used on a case-by-case basis, 3 being the approximate logarithmic 
average of 10 and 1. 

Xenobiotic—Any substance that is foreign to the biological system. 



    
 
 
 
 

 
 
 
 
 

  
 

  

 

    

  

 

     

   

 

  

   

    

    

    

    

     

  

  

 

 

 

   

     

   

    

 

    

 

   

  

 

     

  

A-1 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

APPENDIX A.  ATSDR MINIMAL RISK LEVELS AND WORKSHEETS 

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [42 U.S.C. 

9601 et seq.], as amended by the Superfund Amendments and Reauthorization Act (SARA) [Pub. L. 99– 

499], requires that the Agency for Toxic Substances and Disease Registry (ATSDR) develop jointly with 

the U.S. Environmental Protection Agency (EPA), in order of priority, a list of hazardous substances most 

commonly found at facilities on the CERCLA National Priorities List (NPL); prepare toxicological 

profiles for each substance included on the priority list of hazardous substances; and assure the initiation 

of a research program to fill identified data needs associated with the substances. 

The toxicological profiles include an examination, summary, and interpretation of available toxicological 

information and epidemiologic evaluations of a hazardous substance.  During the development of 

toxicological profiles, Minimal Risk Levels (MRLs) are derived when reliable and sufficient data exist to 

identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a 

given route of exposure.  An MRL is an estimate of the daily human exposure to a hazardous substance 

that is likely to be without appreciable risk of adverse noncancer health effects over a specified route and 

duration of exposure.  MRLs are based on noncancer health effects only and are not based on a 

consideration of cancer effects. These substance-specific estimates, which are intended to serve as 

screening levels, are used by ATSDR health assessors to identify contaminants and potential health 

effects that may be of concern at hazardous waste sites.  It is important to note that MRLs are not 

intended to define clean-up or action levels. 

MRLs are derived for hazardous substances using the no-observed-adverse-effect level/uncertainty factor 

approach. They are below levels that might cause adverse health effects in the people most sensitive to 

such chemical-induced effects. MRLs are derived for acute (1–14 days), intermediate (15–364 days), and 

chronic (365 days and longer) durations and for the oral and inhalation routes of exposure.  Currently, 

MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method 

suitable for this route of exposure.  MRLs are generally based on the most sensitive substance-induced 

endpoint considered to be of relevance to humans.  Serious health effects (such as irreparable damage to 

the liver or kidneys, or birth defects) are not used as a basis for establishing MRLs.  Exposure to a level 

above the MRL does not mean that adverse health effects will occur. 

MRLs are intended only to serve as a screening tool to help public health professionals decide where to 

look more closely.  They may also be viewed as a mechanism to identify those hazardous waste sites that 
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APPENDIX A 

are not expected to cause adverse health effects.  Most MRLs contain a degree of uncertainty because of 

the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, 

elderly, nutritionally or immunologically compromised) to the effects of hazardous substances.  ATSDR 

uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health 

principle of prevention.  Although human data are preferred, MRLs often must be based on animal studies 

because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes 

that humans are more sensitive to the effects of hazardous substance than animals and that certain persons 

may be particularly sensitive.  Thus, the resulting MRL may be as much as 100-fold below levels that 

have been shown to be nontoxic in laboratory animals. 

Proposed MRLs undergo a rigorous review process:  Health Effects/MRL Workgroup reviews within the 

Division of Toxicology and Human Health Sciences, expert panel peer reviews, and agency-wide MRL 

Workgroup reviews, with participation from other federal agencies and comments from the public.  They 

are subject to change as new information becomes available concomitant with updating the toxicological 

profiles.  Thus, MRLs in the most recent toxicological profiles supersede previously published levels. 

For additional information regarding MRLs, please contact the Division of Toxicology and Human 

Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road NE, Mailstop 

F-57, Atlanta, Georgia 30329-4027. 
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APPENDIX A 

MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Toluene diisocyanate 
CAS Number: 26471-62-5 
Date: June 2018 
Profile Status: Final 
Route: [X] Inhalation   [ ] Oral 
Duration: [X] Acute [ ] Intermediate   [ ] Chronic 
Graph Key: 1 
Species: Humans 

Minimal Risk Level:  1x10-5 [ ] mg/kg/day  [X] ppm 

Reference: Vandenplas O, Delwiche J-P, Staquet P, et al.  1999.  Pulmonary effects of short-term 
exposure to low levels of toluene diisocyanate in asymptomatic subjects.  Eur Respir J 13:1144-1150.  

Experimental design: In this single-blind crossover design study, 17 volunteers (8 male, 9 females) were 
exposed to ambient air or 0.005 ppm TDI for 6 hours followed by a 20-minute exposure to 0.020 ppm 
TDI.  Pulmonary function testing was conducted prior to exposure and every hour during the 6-hour 
exposure and at the end of the 20-minute exposure to 0.020 ppm or air.  Bronchial lavage (BL) and 
bronchoalveolar lavage (BAL) were performed 1 hour after the end of the exposure. 

Effect noted in study and corresponding doses:  None of the subjects reported respiratory symptoms in 
response to the exposure.  TDI exposure was associated with a slight, but significant, decrease in specific 
airway conductance (sGaw) and maximal expiratory flow at 25% of forced vital capacity (MEF25%).  No 
significant alterations in the volume of fluid recovered or total and differential cell counts were observed 
in the BL and BAL after TDI exposure, as compared to air exposure.  Exposure to TDI was associated 
with a decrease in the proportion of CD19 cells in the BL and BAL, although there was no difference in 
the absolute number of cells.  A slight but statistically significant increase in BAL albumin levels and BL 
α-2-macroglobulin levels were observed. 

Dose and end point used for MRL derivation:  LOAEL of 0.005 ppm for decreased lung function 

[ ] NOAEL   [X ] LOAEL 

Uncertainty Factors used in MRL derivation: 

[X]  10 for use of a LOAEL 
[ ]  10 for extrapolation from animals to humans 
[X]  10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Was a conversion used from intermittent to continuous exposure?  Yes. The LOAEL of 0.005 ppm was 
adjusted for intermittent exposure: 

0.005 ppm x 6 hours/24 hours = 0.00125 ppm 
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APPENDIX A 

Other additional studies or pertinent information that lend support to this MRL: In another acute-duration 
human study, no alterations in specific air way resistance were observed in healthy or asthmatic subjects 
exposed to 0.02 ppm TDI for 20 minutes (Chester et al. 1979). Acute-duration animal inhalation studies 
have reported rhinitis, lung damage, and airway hyperresponsiveness. The severity of rhinitis was 
concentration-related; moderate rhinitis was observed in mice exposed to 0.07 ppm 6 hours/day for 4 days 
(Zissu 1995), moderate-to-severe rhinitis was observed in mice exposed to 0.4 ppm 6 hours/day for 
5 days (Buckley et al. 1984), and severe nasal lesions were observed in mice exposed to 1 ppm 
6 hours/day for 3 days (Arts et al. 2008).  Interstitial inflammation, pleural thickening, and goblet cell 
hyperplasia were observed in the lungs of guinea pigs exposed to 1.4 ppm TDI 3 hours/day for 3 days 
(Wong et al. 1985).  Airway hyperresponsiveness to methacholine or acetylcholine was also observed in 
guinea pigs and mice exposed to ≥0.01 ppm (Gagnaire et al. 1996; Gordon et al. 1985; Marek et al. 1999); 
a NOAEL of 0.005 ppm for airway hyperresponsiveness was identified in guinea pigs exposed to TDI 
6 hours/day for 5 days (Marek et al. 1999).  An increase in the incidence of litters with poorly ossified 
cervical centrum was observed in the offspring of rats exposed to 0.5 ppm commercial-grade TDI 
6 hours/day on GDs 6–15 (Tyl et al. 1999a); this concentration was also associated with maternal toxicity 
including a marked decrease in body weight gain and signs of nasal irritation and audible respiration. 

Support for basing the MRL on a single exposure study comes from chronic occupational exposure 
studies. The lowest LOAEL values identified in longitudinal studies of workers exposed to TDI were 
0.0012 and 0.0019 ppm (Clark et al. 1998; Diem et al. 1982); the effects observed at these concentrations 
included decreases in lung function (FEV1 and/or FVC).  These LOAELs are roughly 2–4 times lower 
than the LOAEL from the Vandenplas et al. (1999) study.  However, since there is uncertainty that the 
MRL would be protective for continuous exposure for 14 days, it is suggested that measured air 
concentrations should not exceed the MRL of 1x10-5 ppm during a 24-hour period.  

Agency Contact (Chemical Manager): Malcolm Williams 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Toluene diisocyanate 
CAS Number: 26471-62-5 
Date: June 2018 
Profile Status: Final 
Route: [X] Inhalation   [ ] Oral 
Duration: [ ] Acute   [ ] Intermediate  [X] Chronic 
Graph Key: 26 
Species: Humans 

Minimal Risk Level: 3x10-6 [ ] mg/kg/day  [X] ppm 

Reference: Clark RL, Bugler J, McDermott M, et al.  1998.  An epidemiology study of lung function 
changes of toluene diisocyanate foam workers in the United Kingdom.  Int Arch Occup Environ Health 
71:169-179. 

Experimental design: A group of 780 (649 males, 131 females) workers employed at 12 flexible foam-
producing factories in the United Kingdom were examined over a 5-year period; all subjects had taken at 
least three pulmonary function tests over a period of at least 1 year.  Workers were divided into three 
groups:  (1) the exposed group (472 males and 49 females), which consisted of workers employed in the 
manufacture of polyurethane foam or were handling freshly manufactured products still emitting 
measurable quantities of TDI; (2) the handling group (80 males and 43 females), consisting of workers 
handling cold polyurethane products from which TDI emissions could not usually be detected; and (3) the 
low-exposure group (97 males and 39 females), consisting of shop floor and office workers (control 
group). The average time in the study was 4.3 years. Workers completed respiratory questionnaires at 
the start of the study and at the end (or when they left the study); pulmonary function testing was 
conducted annually at the same time of day, same day of the week, and same month of the year. The 
mean daily exposure to TDI was 0.0096-hours ppm (0.0012 ppm 8-hour TWA).  The investigators noted 
that although 4.7% of the measurements exceeded the 8-hour TWA concentration limit of 0.0058 ppm, 
most of the subjects were exposed to <0.00125 ppm.  Additionally, 19% of the samples in the exposed 
group exceeded the 15-minute short-term limit of 0.02 ppm. 

Effect noted in study and corresponding doses: Significant increases in the prevalence of wheezing were 
observed in the handling and exposed groups; however, there were only small differences between the 
two groups.  Longitudinal analysis did not find a significant exposure-related effect on lung function.  
Twenty-four cases of respiratory sensitization were identified; the FEV1 decline was greater in these 
subjects than those not sensitized.  A study of 157 naïve subjects (workers who entered the study after the 
first longitudinal measurements were made) showed no difference in FEV1 decline as compared to 
exposed non-naïves.  However, longitudinal regression showed the mean daily exposure to be significant 
for annual changes in FEV1 and FVC.  These declines were more rapid in the early years of employment, 
frequently during the first few months of employment. Clark et al. (1998) suggested that the decline in 
lung function may have been due to respiratory irritation. 

Dose and end point used for MRL derivation: The MRL was based on the mean daily exposure level for 
the exposed group of 0.0012 ppm that was associated with a significant decrease in lung function; this 
concentration was treated as an adverse effect level for the purposes of deriving the MRL. 

[ ] NOAEL   [X] Adverse Effect Level (AEL) 
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Uncertainty Factors used in MRL derivation: 

[X] 10 for use of a AEL 
[ ]  10 for extrapolation from animals to humans 
[X]  10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Not 
applicable. 

Was a conversion used from intermittent to continuous exposure? Yes. The AEL of 0.0012 ppm was 
adjusted for intermittent exposure: 

0.0012 ppm x 8 hours/24 hours x 5 days/7 days = 0.00029 ppm 

Other additional studies or pertinent information that lend support to this MRL: The toxicity of TDI has 
been examined in a large number of occupational exposure studies that identify the respiratory tract as the 
primary target of toxicity; they are supported by a number of animal studies.  In humans, the primary 
respiratory effects are occupational asthma, asthma-like symptoms (e.g., wheezing, dyspnea, chest 
tightness), and decreases in lung function.  The occupational asthma and possibly the asthma-like 
symptoms are observed in individuals sensitized to TDI.  Although the prevalence of sensitization is not 
known, it is likely <10% based on older literature when the occupational exposures were higher and may 
now be as low as <1% since the occupational exposure limit was lowered to 0.005 ppm (Ott et al. 2003).  
Exposure to very low concentrations of TDI can elicit an asthma response in sensitized individuals; in 
non-sensitized individuals, this concentration would be non-irritating.  Although there is some indication 
of an improvement in asthma symptoms after discontinuing TDI exposure, a fair percentage of sensitized 
workers still report symptoms >10 years after exposure termination (Mapp et al. 1988; Moller et al. 1986; 
Moscato et al. 1991; Padoan et al. 2003; Paggiaro et al. 1984). 

The primary effect observed in non-sensitized workers is a decline in lung function (Adams 1975; Bodner 
et al. 2001; Butcher et al. 1977; Clark et al. 1998, 2003; Diem et al. 1982; Jones et al. 1992; Omae et al. 
1992; Ott et al. 2000; Peters et al. 1970; Wegman et al. 1977, 1982).  Based on the results of the Clark et 
al. (1998) study and a prospective longitudinal study by Diem et al. (1982), it appears that the greatest 
declines in lung function occur during the first couple of years of exposure to TDI; thereafter, continued 
exposure to lower TDI levels does not result in further annual declines in lung function. 

Chronic exposure to TDI resulted in chronic or necrotic rhinitis with epithelial atrophy and mucous and 
squamous metaplasia in mice exposed to 0.05 ppm TDI 6 hours/day, 5 days/week for 2 years (Loeser 
1983).  In the lungs, interstitial pneumonitis and catarrhal bronchitis were observed. 

Agency Contact (Chemical Manager): Malcolm Williams 
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MINIMAL RISK LEVEL (MRL) WORKSHEET 

Chemical Name: Polymeric methylenediphenyl diisocyanate 
CAS Number: 9016-87-9 
Date: June 2018 
Profile Status: Final 
Route: [X] Inhalation [ ] Oral 
Duration: [ ] Acute   [ ] Intermediate   [X] Chronic 
Graph Key: 8 
Species: Rat 

Minimal Risk Level: 0.001 [ ] mg/kg/day  [X] mg/m3 

Reference: Reuzel PGJ, Arts JHE, Lomax LG, et al.  1994.  Chronic inhalation toxicity and 
carcinogenicity study of respirable polymeric methylene diphenyl diisocyanate (polymeric MDI) aerosol 
in rats.  Fundam Appl Toxicol 22:195-210. 

Experimental design: Groups of 70 male and 70 female Wistar rats were exposed to 0, 0.2, 1.0, or 
6.0 mg/m3 polymeric MDI for 6 hours/day, 5 days/week for 2 years; after 1 year of exposure, 
10 rats/sex/group were sacrificed for interim evaluation.  The test substance contained 44.8–50.2% 
monomeric MDI.  The mass median aerodynamic diameter (MMAD) particle sizes (and geometric 
standard deviation [GSD]) were 0.68 (2.93), 0.70 (2.46), and 0.74 (2.31) µm, respectively. The following 
parameters were used to evaluate toxicity in the rats exposed for 1 year:  clinical signs, body weight 
(weekly for the first 13 weeks and monthly thereafter), hematology (red and white blood cell counts, 
hemoglobin, packed cell volume, differential white blood cell count, prothrombin time), urinary 
parameters (volume, density, pH, protein, occult blood, glucose, ketones), clinical chemistry (albumin, 
alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea nitrogen, total protein, 
creatinine, electrolytes, inorganic phosphate, cholesterol, triglycerides and glucose), and histopathological 
examination of major tissues and organs.  Histopathological examination of major tissues and organs was 
also conducted in the control and 6.0 mg/m3 after 2 years of exposure and the nose, lungs, and mediastinal 
lymph nodes were examined in the 0.2 and 1.0 mg/m3 group after 2 years of exposure. 

Effect noted in study and corresponding doses:  Sniffing (no additional information provided) was 
observed in the 6.0 mg/m3 group after removal from the exposure chamber during months 5 and 6.  No 
treatment-related increases in mortality were observed, and there were no alterations in body weight gain.  
No alterations in hematological, clinical chemistry, or urinalysis parameters were observed.  Significant 
increases in absolute and relative lung weights were observed in the 6.0 mg/m3 group after 1 and 2 years 
of exposure.  In the rats sacrificed after 1 year of exposure, histological alterations were observed in the 
nasal cavity, lungs, and mediastinal lymph nodes.  In the lungs, the lesions consisted of pneumonitis in 
the 1.0 and 6.0 mg/m3 males, alveolar duct epithelialization in males at 6.0 mg/m3 and females at 1.0 and 
6.0 mg/m3, and minimal to moderate localized fibrosis and accumulation of macrophages with yellow 
pigment in the 6.0 mg/m3 males and females.  An accumulation of macrophages with yellow pigment was 
also observed in the lymph nodes of male and female rats exposed to 1.0 or 6.0 mg/m3. In the nasal 
cavity, minimal to moderate olfactory epithelial disarrangement was observed in males at 6.0 mg/m3. 
Alterations were also observed in the lungs, mediastinal lymph nodes, and nasal cavity after 2 years of 
exposure.  Lung effects included adenoma in males exposed to 6.0 mg/m3, accumulation of macrophages 
with yellow pigment in males and females at 1.0 and 6.0 mg/m3, localized fibrosis in males at 1.0 and 
6.0 mg/m3 and females at 6.0 mg/m3, alveolar duct epithelialization in males and females at 1.0 and 
6.0 mg/3, and localized alveolar bronchiolization in males and females at 6.0 mg/m3. An accumulation of 
macrophages with yellow pigment was observed in the mediastinal lymph nodes in males at 1.0 and 
6.0 mg/m3 and females at 6.0 mg/m3.  Nasal effects included basal cell hyperplasia and Bowman’s gland 
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hyperplasia in males at 1.0 and 6.0 mg/m3, basal cell hyperplasia in females at 6.0 mg/m3, and minimal to 
severe olfactory epithelial degeneration in males and females at 6.0 mg/m3.  No significant increases in 
tumors were observed. 

Dose and end point used for MRL derivation: BMCL10 of 0.48 mg/m3for basal cell hyperplasia 

[ ] NOAEL   [ ] LOAEL [X] BMCL 

The incidence data (Table A-1) for basal cell hyperplasia in the nasal cavity, Bowman’s duct hyperplasia 
in the nasal cavity, and lung fibrosis were fit to all available dichotomous models in EPA’s Benchmark 
Dose Software (BMDS, version 2.4.0) using the extra risk option.  Adequate model fit was judged by 
three criteria:  goodness-of-fit statistics (p-value >0.1), visual inspection of the dose-response curve, and 
scaled residual at the data point (except the control) closest to the predefined benchmark dose response 
(BMR).  Among all of the models providing adequate fit to the data, the lowest BMCL (95% lower 
confidence limit on the benchmark concentration) was selected as the point of departure when the 
difference between the BMCLs estimated from these models were more 3-fold; otherwise, the BMCL 
from the model with the lowest Akaike’s Information Criterion (AIC) was chosen.  For all three lesion 
types, a BMR of 10% was used. The model predictions for basal cell hyperplasia are presented in 
Table A-2.  The incidence data for Bowman’s gland hyperplasia did not fit any of the available 
dichotomous models.  The model predictions for the incidence of lung fibrosis are presented in Table A-3. 

Table A-1.  Incidence of Nasal and Pulmonary Lesions in Male Rats Exposed to 
Polymeric Methylenediphenyl Diisocyanate 

Exposure concentration (mg/m3) 
0 0.2 1.0 6.0 

Basal cell hyperplasia 14/60 13/60 26/60 32/60 
Bowman’s gland hyperplasia 0/60 2/60 9/60 17/60 
Lung fibrosis 1/60 0/60 9/60 44/60 

Source:  Reuzel et al. 1994 
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Table A-2.  Model Predictions for Incidence of Basal Cell Hyperplasia in Male Rats 
Exposed to Polymeric Methylenediphenyl Diisocyanate (mg/m3) 

χ2 Scaled residualsb 

Goodness Dose Dose 

Model DF χ2 
of fit 

p-valuea 
below 
BMC 

above 
BMC 

Overall 
largest AIC 

BMC10 

(mg/m3) 
BMCL10 

(mg/m3) 
Gammac 2 4.8 0.09 1.87 -0.45 1.87 301.60 ND ND 
Logistic 
LogLogisticd.f 

2 
2 

5.76 
3.96 

0.06 
0.14 

2.01 
1.67 

-0.28 
-0.62 

2.01 
1.67 

302.55 
300.81 

ND 
0.87 

ND 
0.48 

LogProbitd 2 7.56 0.02 2.30 -0.28 2.30 304.25 ND ND 
Multistage (1 degree)e 2 4.8 0.09 1.87 -0.45 1.87 301.60 ND ND 
Multistage (2 degree)e 2 4.8 0.09 1.87 -0.45 1.87 301.60 ND ND 
Multistage (3-degree)e 2 4.8 0.09 1.87 -0.45 1.87 301.60 ND ND 
Probit 2 5.7 0.06 2.00 -0.29 2.00 302.49 ND ND 
Weibullc 2 4.8 0.09 1.87 -0.45 1.87 301.60 ND ND 
Quantal-Linear 2 4.8 0.09 1.87 -0.45 1.87 301.60 ND ND 

AIC = Akaike Information Criterion; BMC = maximum likelihood estimate of the exposure concentration associated 
with the selected benchmark response; BMCL = 95% lower confidence limit on the BMC (subscripts denote 
benchmark response: i.e., 10 = exposure concentration associated with 10% extra risk); DF = degrees of freedom; 
ND = not determined, model does not provide adequate fit to the data 

aValues <0.1 fail to meet conventional goodness-of-fit criteria.
bScaled residuals at doses immediately below and above the BMD; also the largest residual at any dose. 
cPower restricted to ≥1. 
dSlope restricted to ≥1. 
eBetas restricted to ≥0. 
fSelected model. The only model that was fit to the data was the LogLogistic model (all other models had a p-value 
<0.1). 
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Table A-3.  Model Predictions for Incidence of Lung Fibrosis in Male Rats 
Exposed to Methylenediphenyl Diisocyanate (mg/m3) 

χ2 Scaled residualsb 

Goodness Dose Dose 

Model DF χ2 
of fit 

p-valuea 
below 
BMC 

above 
BMC 

Overall 
largest AIC 

BMC10 

(mg/m3) 
BMCL10 

(mg/m3) 
Gammac 1 2.04 0.15 0.63 -0.16 -1.12 139.67 0.90 0.57 
Logistic 
LogLogisticd,f 

LogProbitd 

2 
1 
2 

8.46 
1.73 
1.3 

0.01 
0.19 
0.52 

2.23 
0.43 
0.35 

-0.20 
-0.15 
-0.20 

2.23 
-1.06 
-0.84 

144.69 
139.22 
136.40 

ND 
0.87 
0.87 

ND 
0.57 
0.70 

Multistage (1-degree)e 2 4.42 0.11 -0.65 0.73 -1.69 141.53 0.54 0.43 
Multistage (2-degree)e 1 2.64 0.10 0.67 -0.07 -1.36 140.83 0.89 0.51 
Multistage (3-degree)e 1 2.64 0.10 0.67 -0.07 -1.36 140.83 0.89 0.51 
Probit 2 7.46 0.02 2.11 -0.23 2.11 143.53 ND ND 
Weibullc 1 2.2 0.14 0.64 -0.12 -1.19 139.99 0.90 0.55 
Quantal-Linear 2 4.42 0.11 -0.65 0.73 -1.69 141.53 0.54 0.43 

AIC = Akaike Information Criterion; BMC = maximum likelihood estimate of the exposure concentration associated 
with the selected benchmark response; BMCL = 95% lower confidence limit on the BMC (subscripts denote 
benchmark response: i.e., 10 = exposure concentration associated with 10% extra risk); DF = degrees of freedom; ND 
= not determined, model does not provide adequate fit to the data 

aValues <0.1 fail to meet conventional goodness-of-fit criteria.
bScaled residuals at doses immediately below and above the BMD; also the largest residual at any dose. 
cPower restricted to ≥1. 
dSlope restricted to ≥1. 
eBetas restricted to ≥0. 
fSelected model.  All models, except for the Logistic and the Probit (p<0.1) were fit to the data. BMDLs for models 
providing adequate fit were sufficiently close (differed by <2–3-fold), so the model with the lowest AIC was selected 
(LogLogistic Model). 

The BMCL10 values predicted from the selected models for basal cell hyperplasia and lung fibrosis were 
0.48 and 0.70 mg/m3; the LogLogistic and LogProbit models for these effects are presented in 
Figures A-1 and A-2.  The BMCL10 of 0.48 mg/m3 was selected as the point of departure for the MRL. 
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Figure A-1.  Fit of LogLogistic Model to Data on Incidence of Basal Cell 
Hyperplasia in Male Rats Exposed to Polymeric Methylenediphenyl 

Diisocyanate (mg/m3)
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Figure A-2.  Fit of LogLogistic Model to Data on for Incidence of Lung Fibrosis in 
Male Rats Exposed to Polymeric Methylenediphenyl Diisocyanate (mg/m3) 
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Uncertainty Factors used in MRL derivation: 

[ ]  10 for use of a LOAEL 
[X]  3 for extrapolation from animals to humans with dosimetric adjustment 
[X]  10 for human variability 

Was a conversion factor used from ppm in food or water to a mg/body weight dose? Not applicable. 

If an inhalation study in animals, list conversion factors used in determining human equivalent dose: Yes. 

The BMCLADJ of 0.086 mg/m3 was converted to a human equivalent concentration (BMCLHEC) of 
0.039 mg/m3 using the RDDR program (EPA 1990) as follows: 

BMCLHEC = BMCLADJ x RDDR 
BMCLHEC = 0.086 mg /m3 x 0.453 
BMCLHEC = 0.039 mg/m3
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where: 
RDDR is a multiplicative factor used to adjust an observed inhalation particulate exposure 
concentration of an animal to the predicted inhalation particulate exposure concentration for a 
human.  The RDDR multiplier of 0.453 for the extrathoracic region tract was determined using 
the default chronic body weight of 462 g for male Wistar rats (EPA 1988) and a particle size 
MMAD±GSD of 0.68±2.93 µm reported in the Reuzel et al. (1994) study.  

Was a conversion used from intermittent to continuous exposure? Yes. 

A BMCLADJ was calculated by adjusting the BMCL10 of 0.48 mg/m3 for intermittent exposure: 

0.048 mg/m3 x 6 hours/24 hours x 5 days/7 days = 0.086 mg/m3 

Other additional studies or pertinent information that lend support to this MRL: The respiratory tract is 
the primary target of MDI toxicity in humans and animals.  Occupational asthma, asthma-like symptoms, 
and decreases in lung function have been reported in occupational exposure studies (Hur et al. 2008; Liss 
et al. 1988; Musk et al. 1982; Sulotto et al. 1990; Wang and Petsonk 2004; Woellner et al. 1997; Zamit-
Tabona et al. 1983).  The occupational asthma and asthma-like symptoms result from sensitization to 
MDI following a brief exposure to very high concentrations or prolonged exposure to lower 
concentrations; the prevalence of MDI-sensitization is believed to be low.  Liss et al. (1988) reported 
significant declines in FEV1 levels when pre-shift levels were compared to post-shift levels; however, the 
study did not provide monitoring data.  Sulotto et al. (1990) and Musk et al. (1982) did not find declines 
in lung function in workers.  Sulotto et al. (1990) reported MDI levels ranging from 0.005 to 0.001 ppm; 
the monitoring data provided by Musk et al. (1982) was not considered reliable. 

Agency Contacts (Chemical Managers): Malcolm Williams 

http:0.68�2.93
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APPENDIX B.  USER'S GUIDE 

Chapter 1 

Public Health Statement 

This chapter of the profile is a health effects summary written in non-technical language. Its intended 
audience is the general public, especially people living in the vicinity of a hazardous waste site or 
chemical release.  If the Public Health Statement were removed from the rest of the document, it would 
still communicate to the lay public essential information about the chemical. 

The major headings in the Public Health Statement are useful to find specific topics of concern. The 
topics are written in a question and answer format.  The answer to each question includes a sentence that 
will direct the reader to chapters in the profile that will provide more information on the given topic. 

Chapter 2 

Relevance to Public Health 

This chapter provides a health effects summary based on evaluations of existing toxicologic, 
epidemiologic, and toxicokinetic information.  This summary is designed to present interpretive, weight-
of-evidence discussions for human health end points by addressing the following questions: 

1. What effects are known to occur in humans? 

2. What effects observed in animals are likely to be of concern to humans? 

3. What exposure conditions are likely to be of concern to humans, especially around hazardous 
waste sites? 

The chapter covers end points in the same order that they appear within the Discussion of Health Effects 
by Route of Exposure section, by route (inhalation, oral, and dermal) and within route by effect.  Human 
data are presented first, then animal data.  Both are organized by duration (acute, intermediate, chronic).  
In vitro data and data from parenteral routes (intramuscular, intravenous, subcutaneous, etc.) are also 
considered in this chapter. 

The carcinogenic potential of the profiled substance is qualitatively evaluated, when appropriate, using 
existing toxicokinetic, genotoxic, and carcinogenic data.  ATSDR does not currently assess cancer 
potency or perform cancer risk assessments. Minimal Risk Levels (MRLs) for noncancer end points (if 
derived) and the end points from which they were derived are indicated and discussed. 

Limitations to existing scientific literature that prevent a satisfactory evaluation of the relevance to public 
health are identified in the Chapter 3 Data Needs section. 

Interpretation of Minimal Risk Levels 

Where sufficient toxicologic information is available, ATSDR has derived MRLs for inhalation and oral 
routes of entry at each duration of exposure (acute, intermediate, and chronic). These MRLs are not 
meant to support regulatory action, but to acquaint health professionals with exposure levels at which 
adverse health effects are not expected to occur in humans. 
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MRLs should help physicians and public health officials determine the safety of a community living near 
a hazardous substance emission, given the concentration of a contaminant in air or the estimated daily 
dose in water. MRLs are based largely on toxicological studies in animals and on reports of human 
occupational exposure. 

MRL users should be familiar with the toxicologic information on which the number is based.  Chapter 2, 
"Relevance to Public Health," contains basic information known about the substance.  Other sections such 
as Chapter 3 Section 3.9, "Interactions with Other Substances,” and Section 3.10, "Populations that are 
Unusually Susceptible" provide important supplemental information. 

MRL users should also understand the MRL derivation methodology.  MRLs are derived using a 
modified version of the risk assessment methodology that the Environmental Protection Agency (EPA) 
provides (Barnes and Dourson 1988) to determine reference doses (RfDs) for lifetime exposure.  

To derive an MRL, ATSDR generally selects the most sensitive end point which, in its best judgement, 
represents the most sensitive human health effect for a given exposure route and duration.  ATSDR 
cannot make this judgement or derive an MRL unless information (quantitative or qualitative) is available 
for all potential systemic, neurological, and developmental effects.  If this information and reliable 
quantitative data on the chosen end point are available, ATSDR derives an MRL using the most sensitive 
species (when information from multiple species is available) with the highest no-observed-adverse-effect 
level (NOAEL) that does not exceed any adverse effect levels.  When a NOAEL is not available, a 
lowest-observed-adverse-effect level (LOAEL) can be used to derive an MRL, and an uncertainty factor 
(UF) of 10 must be employed.  Additional uncertainty factors of 10 must be used both for human 
variability to protect sensitive subpopulations (people who are most susceptible to the health effects 
caused by the substance) and for interspecies variability (extrapolation from animals to humans).  In 
deriving an MRL, these individual uncertainty factors are multiplied together.  The product is then 
divided into the inhalation concentration or oral dosage selected from the study. Uncertainty factors used 
in developing a substance-specific MRL are provided in the footnotes of the levels of significant exposure 
(LSE) tables. 

Chapter 3 

Health Effects 

Tables and Figures for Levels of Significant Exposure (LSE) 

Tables and figures are used to summarize health effects and illustrate graphically levels of exposure 
associated with those effects. These levels cover health effects observed at increasing dose 
concentrations and durations, differences in response by species, MRLs to humans for noncancer end 
points, and EPA's estimated range associated with an upper- bound individual lifetime cancer risk of 1 in 
10,000 to 1 in 10,000,000.  Use the LSE tables and figures for a quick review of the health effects and to 
locate data for a specific exposure scenario. The LSE tables and figures should always be used in 
conjunction with the text. All entries in these tables and figures represent studies that provide reliable, 
quantitative estimates of NOAELs, LOAELs, or Cancer Effect Levels (CELs). 

The legends presented below demonstrate the application of these tables and figures.  Representative 
examples of LSE Table 3-1 and Figure 3-1 are shown.  The numbers in the left column of the legends 
correspond to the numbers in the example table and figure. 
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LEGEND 
See Sample LSE Table 3-1 (page B-6) 

(1) Route of Exposure.  One of the first considerations when reviewing the toxicity of a substance 
using these tables and figures should be the relevant and appropriate route of exposure. Typically 
when sufficient data exist, three LSE tables and two LSE figures are presented in the document.  
The three LSE tables present data on the three principal routes of exposure, i.e., inhalation, oral, 
and dermal (LSE Tables 3-1, 3-2, and 3-3, respectively).  LSE figures are limited to the inhalation 
(LSE Figure 3-1) and oral (LSE Figure 3-2) routes.  Not all substances will have data on each 
route of exposure and will not, therefore, have all five of the tables and figures. 

(2) Exposure Period. Three exposure periods—acute (less than 15 days), intermediate (15– 
364 days), and chronic (365 days or more)—are presented within each relevant route of exposure. 
In this example, an inhalation study of intermediate exposure duration is reported.  For quick 
reference to health effects occurring from a known length of exposure, locate the applicable 
exposure period within the LSE table and figure. 

(3) Health Effect. The major categories of health effects included in LSE tables and figures include 
death, systemic, immunological, neurological, developmental, reproductive, and cancer.  
NOAELs and LOAELs can be reported in the tables and figures for all effects but cancer. 
Systemic effects are further defined in the "System" column of the LSE table (see key number 
18). 

(4) Key to Figure. Each key number in the LSE table links study information to one or more data 
points using the same key number in the corresponding LSE figure.  In this example, the study 
represented by key number 18 has been used to derive a NOAEL and a Less Serious LOAEL 
(also see the two "18r" data points in sample Figure 3-1). 

(5) Species. The test species, whether animal or human, are identified in this column.  Chapter 2, 
"Relevance to Public Health," covers the relevance of animal data to human toxicity and 
Section 3.4, "Toxicokinetics," contains any available information on comparative toxicokinetics.  
Although NOAELs and LOAELs are species specific, the levels are extrapolated to equivalent 
human doses to derive an MRL. 

(6) Exposure Frequency/Duration. The duration of the study and the weekly and daily exposure 
regimens are provided in this column.  This permits comparison of NOAELs and LOAELs from 
different studies.  In this case (key number 18), rats were exposed to “Chemical x” via inhalation 
for 6 hours/day, 5 days/week, for 13 weeks.  For a more complete review of the dosing regimen, 
refer to the appropriate sections of the text or the original reference paper (i.e., Nitschke et al. 
1981). 

(7) System.  This column further defines the systemic effects. These systems include respiratory, 
cardiovascular, gastrointestinal, hematological, musculoskeletal, hepatic, renal, and 
dermal/ocular.  "Other" refers to any systemic effect (e.g., a decrease in body weight) not covered 
in these systems.  In the example of key number 18, one systemic effect (respiratory) was 
investigated. 

(8) NOAEL.  A NOAEL is the highest exposure level at which no adverse effects were seen in the 
organ system studied.  Key number 18 reports a NOAEL of 3 ppm for the respiratory system, 
which was used to derive an intermediate exposure, inhalation MRL of 0.005 ppm (see 
footnote "b"). 
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(9) LOAEL. A LOAEL is the lowest dose used in the study that caused an adverse health effect. 
LOAELs have been classified into "Less Serious" and "Serious" effects. These distinctions help 
readers identify the levels of exposure at which adverse health effects first appear and the 
gradation of effects with increasing dose.  A brief description of the specific end point used to 
quantify the adverse effect accompanies the LOAEL. The respiratory effect reported in key 
number 18 (hyperplasia) is a Less Serious LOAEL of 10 ppm.  MRLs are not derived from 
Serious LOAELs. 

(10) Reference. The complete reference citation is given in Chapter 9 of the profile. 

(11) CEL.  A CEL is the lowest exposure level associated with the onset of carcinogenesis in 
experimental or epidemiologic studies.  CELs are always considered serious effects. The LSE 
tables and figures do not contain NOAELs for cancer, but the text may report doses not causing 
measurable cancer increases. 

(12) Footnotes.  Explanations of abbreviations or reference notes for data in the LSE tables are found 
in the footnotes.  Footnote "b" indicates that the NOAEL of 3 ppm in key number 18 was used to 
derive an MRL of 0.005 ppm. 

LEGEND 
See Sample Figure 3-1 (page B-7) 

LSE figures graphically illustrate the data presented in the corresponding LSE tables.  Figures help the 
reader quickly compare health effects according to exposure concentrations for particular exposure 
periods. 

(13) Exposure Period. The same exposure periods appear as in the LSE table.  In this example, health 
effects observed within the acute and intermediate exposure periods are illustrated. 

(14) Health Effect. These are the categories of health effects for which reliable quantitative data 
exists. The same health effects appear in the LSE table. 

(15) Levels of Exposure. Concentrations or doses for each health effect in the LSE tables are 
graphically displayed in the LSE figures.  Exposure concentration or dose is measured on the log 
scale "y" axis.  Inhalation exposure is reported in mg/m3 or ppm and oral exposure is reported in 
mg/kg/day. 

(16) NOAEL. In this example, the open circle designated 18r identifies a NOAEL critical end point in 
the rat upon which an intermediate inhalation exposure MRL is based.  The key number 18 
corresponds to the entry in the LSE table.  The dashed descending arrow indicates the 
extrapolation from the exposure level of 3 ppm (see entry 18 in the table) to the MRL of 
0.005 ppm (see footnote "b" in the LSE table). 

(17) CEL. Key number 38m is one of three studies for which CELs were derived.  The diamond 
symbol refers to a CEL for the test species-mouse.  The number 38 corresponds to the entry in the 
LSE table. 
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(18) Estimated Upper-Bound Human Cancer Risk Levels. This is the range associated with the upper-
bound for lifetime cancer risk of 1 in 10,000 to 1 in 10,000,000.  These risk levels are derived 
from the EPA's Human Health Assessment Group's upper-bound estimates of the slope of the 
cancer dose response curve at low dose levels (q1*). 

(19) Key to LSE Figure. The Key explains the abbreviations and symbols used in the figure. 
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1 → Table 3-1.  Levels of Significant Exposure to [Chemical x] – Inhalation 

LOAEL (effect) Exposure 
Key to frequency/ NOAEL Less serious Serious (ppm) 
figurea Species duration System (ppm) (ppm) Reference 

2 

3 

4 

→ INTERMEDIATE EXPOSURE 

5 

→ Systemic ↓ 

18 Rat 
→ 

CHRONIC EXPOSURE 

Cancer 

38 Rat 

39 Rat 

40 Mouse 

6 

↓ 

13 wk 
5 d/wk 
6 hr/d 

18 mo 
5 d/wk 
7 hr/d 

89–104 wk 
5 d/wk 
6 hr/d 

79–103 wk 
5 d/wk 
6 hr/d 

7 8 9 10 

↓ ↓ ↓ ↓ 

Resp 3b 10 (hyperplasia) 
Nitschke et al. 1981 

11 

↓ 

20 (CEL, multiple 
organs) 

Wong et al. 1982 

10 (CEL, lung tumors, 
nasal tumors) 

NTP 1982 

10 (CEL, lung tumors, 
hemangiosarcomas) 

NTP 1982 

12 → a The number corresponds to entries in Figure 3-1. 
b Used to derive an intermediate inhalation Minimal Risk Level (MRL) of 5x10-3 ppm; dose adjusted for intermittent exposure and divided 
by an uncertainty factor of 100 (10 for extrapolation from animal to humans, 10 for human variability). 
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APPENDIX C. ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACGIH American Conference of Governmental Industrial Hygienists 
ACOEM American College of Occupational and Environmental Medicine 
ADI acceptable daily intake 
ADME absorption, distribution, metabolism, and excretion 
AED atomic emission detection 
AFID alkali flame ionization detector 
AFOSH Air Force Office of Safety and Health 
ALT alanine aminotransferase 
AML acute myeloid leukemia 
AOAC Association of Official Analytical Chemists 
AOEC Association of Occupational and Environmental Clinics 
AP alkaline phosphatase 
APHA American Public Health Association 
AST aspartate aminotransferase 
atm atmosphere 
ATSDR Agency for Toxic Substances and Disease Registry 
AWQC Ambient Water Quality Criteria 
BAT best available technology 
BCF bioconcentration factor 
BEI Biological Exposure Index 
BMD/C benchmark dose or benchmark concentration 
BMDX dose that produces a X% change in response rate of an adverse effect 
BMDLX 95% lower confidence limit on the BMDX 

BMDS Benchmark Dose Software 
BMR benchmark response 
BSC Board of Scientific Counselors 
C centigrade 
CAA Clean Air Act 
CAG Cancer Assessment Group of the U.S. Environmental Protection Agency 
CAS Chemical Abstract Services 
CDC Centers for Disease Control and Prevention 
CEL cancer effect level 
CELDS Computer-Environmental Legislative Data System 
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act 
CFR Code of Federal Regulations 
Ci curie 
CI confidence interval 
CLP Contract Laboratory Program 
cm centimeter 
CML chronic myeloid leukemia 
CPSC Consumer Products Safety Commission 
CWA Clean Water Act 
DHEW Department of Health, Education, and Welfare 
DHHS Department of Health and Human Services 
DNA deoxyribonucleic acid 
DOD Department of Defense 
DOE Department of Energy 
DOL Department of Labor 
DOT Department of Transportation 
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DOT/UN/ Department of Transportation/United Nations/ 
NA/IMDG North America/Intergovernmental Maritime Dangerous Goods Code 

DWEL drinking water exposure level 
ECD electron capture detection 
ECG/EKG electrocardiogram 
EEG electroencephalogram 
EEGL Emergency Exposure Guidance Level 
EPA Environmental Protection Agency 
F Fahrenheit 
F1 first-filial generation 
FAO Food and Agricultural Organization of the United Nations 
FDA Food and Drug Administration 
FEMA Federal Emergency Management Agency 
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act 
FPD flame photometric detection 
fpm feet per minute 
FR Federal Register 
FSH follicle stimulating hormone 
g gram 
GC gas chromatography 
gd gestational day 
GLC gas liquid chromatography 
GPC gel permeation chromatography 
HPLC high-performance liquid chromatography 
HRGC high resolution gas chromatography 
HSDB Hazardous Substance Data Bank 
IARC International Agency for Research on Cancer 
IDLH immediately dangerous to life and health 
ILO International Labor Organization 
IRIS Integrated Risk Information System 
Kd adsorption ratio 
kg kilogram 
kkg kilokilogram; 1 kilokilogram is equivalent to 1,000 kilograms and 1 metric ton 
Koc organic carbon partition coefficient 
Kow octanol-water partition coefficient 
L liter 
LC liquid chromatography 
LC50 lethal concentration, 50% kill 
LCLo lethal concentration, low 
LD50 lethal dose, 50% kill 
LDLo lethal dose, low 
LDH lactic dehydrogenase 
LH luteinizing hormone 
LOAEL lowest-observed-adverse-effect level 
LSE Levels of Significant Exposure 
LT50 lethal time, 50% kill 
m meter 
MA trans,trans-muconic acid 
MAL maximum allowable level 
mCi millicurie 
MCL maximum contaminant level 



    
 

  
 
 

 
 
 
 
 

   
  

  
  
  
  

  
  
   

  
  

  
  

  
   

   
  

   
  

  
  

  
  

   
   

  
   

  
  

  
  
  

  
  

  
  

  
  

  
  

   
   
  

  
  

  
    

  
  

   
   

C-3 TOLUENE DIISOCYANATE AND METHYLENEDIPHENYL DIISOCYANATE 

APPENDIX C 

MCLG maximum contaminant level goal 
MF modifying factor 
MFO mixed function oxidase 
mg milligram 
mL milliliter 
mm millimeter 
mmHg millimeters of mercury 
mmol millimole 
mppcf millions of particles per cubic foot 
MRL Minimal Risk Level 
MS mass spectrometry 
mt metric ton 
NAAQS National Ambient Air Quality Standard 
NAS National Academy of Science 
NATICH National Air Toxics Information Clearinghouse 
NATO North Atlantic Treaty Organization 
NCE normochromatic erythrocytes 
NCEH National Center for Environmental Health 
NCI National Cancer Institute 
ND not detected 
NFPA National Fire Protection Association 
ng nanogram 
NHANES National Health and Nutrition Examination Survey 
NIEHS National Institute of Environmental Health Sciences 
NIOSH National Institute for Occupational Safety and Health 
NIOSHTIC NIOSH's Computerized Information Retrieval System 
NLM National Library of Medicine 
nm nanometer 
nmol nanomole 
NOAEL no-observed-adverse-effect level 
NOES National Occupational Exposure Survey 
NOHS National Occupational Hazard Survey 
NPD nitrogen phosphorus detection 
NPDES National Pollutant Discharge Elimination System 
NPL National Priorities List 
NR not reported 
NRC National Research Council 
NS not specified 
NSPS New Source Performance Standards 
NTIS National Technical Information Service 
NTP National Toxicology Program 
ODW Office of Drinking Water, EPA 
OERR Office of Emergency and Remedial Response, EPA 
OHM/TADS Oil and Hazardous Materials/Technical Assistance Data System 
OPP Office of Pesticide Programs, EPA 
OPPT Office of Pollution Prevention and Toxics, EPA 
OPPTS Office of Prevention, Pesticides and Toxic Substances, EPA 
OR odds ratio 
OSHA Occupational Safety and Health Administration 
OSW Office of Solid Waste, EPA 
OTS Office of Toxic Substances 
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OW Office of Water 
OWRS Office of Water Regulations and Standards, EPA 
PAH polycyclic aromatic hydrocarbon 
PBPD physiologically based pharmacodynamic 
PBPK physiologically based pharmacokinetic 
PCE polychromatic erythrocytes 
PEL permissible exposure limit 
PEL-C permissible exposure limit-ceiling value 
pg picogram 
PHS Public Health Service 
PID photo ionization detector 
pmol picomole 
PMR proportionate mortality ratio 
ppb parts per billion 
ppm parts per million 
ppt parts per trillion 
PSNS pretreatment standards for new sources 
RBC red blood cell 
REL recommended exposure level/limit 
REL-C recommended exposure level-ceiling value 
RfC reference concentration (inhalation) 
RfD reference dose (oral) 
RNA ribonucleic acid 
RQ reportable quantity 
RTECS Registry of Toxic Effects of Chemical Substances 
SARA Superfund Amendments and Reauthorization Act 
SCE sister chromatid exchange 
SGOT serum glutamic oxaloacetic transaminase (same as aspartate aminotransferase or AST) 
SGPT serum glutamic pyruvic transaminase (same as alanine aminotransferase or ALT) 
SIC standard industrial classification 
SIM selected ion monitoring 
SMCL secondary maximum contaminant level 
SMR standardized mortality ratio 
SNARL suggested no adverse response level 
SPEGL Short-Term Public Emergency Guidance Level 
STEL short term exposure limit 
STORET Storage and Retrieval 
TD50 toxic dose, 50% specific toxic effect 
TLV threshold limit value 
TLV-C threshold limit value-ceiling value 
TOC total organic carbon 
TPQ threshold planning quantity 
TRI Toxics Release Inventory 
TSCA Toxic Substances Control Act 
TWA time-weighted average 
UF uncertainty factor 
U.S. United States 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
VOC volatile organic compound 
WBC white blood cell 
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WHO World Health Organization 

> greater than 
≥ greater than or equal to 
= equal to 
< less than 
≤ less than or equal to 
% percent 
α alpha 
β beta 
γ gamma 
δ delta 
μm micrometer 
μg microgram 
q1

* cancer slope factor 
– negative 
+ positive 
(+) weakly positive result 
(–) weakly negative result 
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