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Summary

Adequate sleep timed appropriately during the circadian night is important for numerous 

biological processes and systems. New evidence suggests that both sleep timing and duration may 

be important for optimal bone health as well. This review examines the diurnal variation of bone 

turnover markers (BTMs) and the importance of circadian clock genes in regulating bone mass. In 

addition, this review explores the evidence for a link between shift work (and its associated 

disturbances in sleep duration/quality and circadian alignment) and alterations in bone metabolism 

and bone health. Finally, we review how commonly used medications and over-the-counter 

substances (e.g. caffeine, melatonin) complicate the relationship between sleep and circadian 

disorders and bone health.
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1.0 Introduction

Adequate amounts of appropriately timed sleep are necessary for optimal health and safety 

[1] while alterations in the timing and duration of sleep are associated with numerous 

metabolic, cardiovascular, endocrine, and neurological disorders [2–5]. Consistent with 

reports of increased fracture risk with shift work [6], sleep and circadian disruption can 

increase sleepiness and reduce vigilance to environmental hazards [7–9], and possibly 

adversely affect balance [10, 11] which all can lead to an increased risk of falls and bone 

fracture [12, 13]. Furthermore, the daily rhythm in bone turnover markers (BTMs) [14, 15], 

the existence of clock genes in bone cells, the identification of altered skeletal phenotypes in 

clock gene knockout (KO) models [16–20], and the discovery that repeated sleep restriction 

arrests bone remodeling in laboratory rats [21], all indicate that disruptions in the physiology 

of sleep and circadian rhythmicity may also affect bone health.

Bone remodeling occurs throughout life as a tightly regulated process that balances bone 

resorption (performed by osteoclasts) and bone formation (performed by osteoblasts) 

(Figure 1). Bone turnover, directed in part by the osteocyte, serves to regulate calcium 

balance, repair microscopic cracks sustained during normal activity, and heal fractures. An 

imbalance between bone resorption and formation, as occurs with aging, sex hormone 

deficiency, or use of medications that alter bone metabolism (e.g., glucocorticoids), results in 

fragile bones (osteoporosis), and an increased risk of fracture. Biochemical markers of bone 

resorption and to a lesser degree, bone formation peak overnight [14, 22]. Conversely, some 

factors used for bone cell communication (e.g., nuclear factor kappa B (NF-kB) ligand 

[RANKL], osteoprotegerin [OPG], sclerostin) have not demonstrated consistent rhythmicity 

[22–25]. The increase in BTMs overnight suggests bone remodeling may be affected in the 

millions of individuals who experience sleep and circadian disturbances.

The timing and duration of sleep are influenced by environmental (light/dark cycles, work 

schedules, duration of prior wakefulness) and circadian (internal biological timing) factors. 

Circadian rhythmicity is maintained through a well-described molecular clock involving the 
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transcription of circadian-related genes such as Period (PER1, PER2, PER3) and 

Cryptochrome (CRY1, CRY2) which are activated by the dimerization of brain and muscle 

aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) and circadian 

locomotor output cycles kaput (CLOCK). PER and CRY proteins then inhibit the BMAL1-

CLOCK complex, until they are degraded, a cycle that takes approximately 24 hours (h), at 

which time the cycle starts again [18, 19]. Such clock genes have been identified in the 

central clock located in the hypothalamic suprachiasmatic nucleus (SCN), and in peripheral 

cells [26], including osteoclasts [16, 27], osteoblasts [19, 28], and osteocytes [19]. The 

central clock communicates with peripheral clocks through a variety of mechanisms 

including direct neural connections, hormonal signals (e.g. melatonin, cortisol), the 

sympathetic nervous system (SNS), and body temperature regulation to ensure 

synchronization across the organism [29]. In human osteoblast cell cultures, 2 hours of 

exposure to dexamethasone or isoprenaline (a β–adrenergic agonist) induced expression of 

clock genes but variable expression of osteoblast markers (e.g. osteocalcin) [28]. Data from 

the same group suggests dexamethasone may also stimulate clock gene expression in murine 

osteoclast cultures [27]. These studies suggest that the SNS and glucocorticoids may play a 

role in synchronizing the SCN with peripheral bone clock genes. During entrainment to the 

light-dark cycle, the central clock and peripheral clocks located in cells outside of the SCN 

are synchronized. However, circadian disruption as can occur acutely with jet lag, or 

chronically with night shift work and “social jet lag” [30], can cause external/internal 

desynchrony resulting in numerous health consequences [2, 31]. A 24h rhythm can be driven 

by this endogenous circadian system that coordinates cellular processes in anticipation of 

expected daily behaviors. Physiological variability across the day and night can also occur 

acutely in response to (rather than in anticipation of) daily behavioral patterns (e.g. wake-

sleep, fasting-feeding, light-dark). The anticipatory (endogenous) vs. reactive (behavioral) 

control of the daily patterns in biological processes has important implications for both how 

rhythms are affected by circadian disruption and for designing appropriate therapies. 

Disturbances in the timing and duration of sleep or in the biological processes normally 

served by sleep could potentially disrupt the rhythmicity of BTMs, the balance between 

bone resorption and formation, and consequently bone mass/quality and fracture risk.

Night shift work inherently alters sleep timing and duration and has been associated with 

low bone mineral density (BMD) [32] and an increased risk of fracture [6]. Night-shift work 

is unavoidable in today’s society, and almost one in five of the American work-force 

performs some kind of shift work [33]. Therefore, it is important to understand how sleep 

and circadian disruption affect different biological systems, such as bone metabolism. That 

information may help identify and implement appropriate therapy to mitigate the risks 

associated with shift work. Here we review the physiology underlying the relationships 

between bone metabolism/health, the circadian system and sleep; examine the relationship 

between night-shift work (and its associated sleep/circadian disruptions) and bone health; 

and consider how medications and over-the-counter substances (e.g. caffeine, melatonin) 

commonly used to treat various sleep/circadian disturbances may influence the risk of 

osteoporosis and fracture.
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2.0 Methods

PubMed was searched for the following terms: bone AND sleep; sleep AND fracture; 

(osteoblast OR osteoclast OR osteocyte) AND (circadian OR rhythm OR sleep); (shift work 

OR circadian misalignment OR sleep duration) AND (low BMD OR fracture OR 

osteoporosis); (sleep medication OR benzodiazepine OR Ambien OR Z-drugs) AND (bone 

OR fracture OR osteoporosis); (caffeine OR melatonin use) AND bone; and Suvorexant 

AND (falls OR fracture OR bone OR osteoporosis). Search results were reviewed for 

relevance based on title and abstract. Relevant articles were also identified from the authors’ 

catalogs, if not already found in the above searches. Relevant articles in English were 

reviewed.

3.0 The physiologic link between the endogenous circadian system and 

bone metabolism

Daily variations in normal bone physiology suggest there is a time-dependent component of 

bone turnover that is important for optimal bone health and that sleep or circadian 

disruptions could negatively affect the skeleton. Disturbances in circadian clock genes alter 

skeletal phenotype [16–20]. In addition, data suggest that circadian timing may play a role in 

fracture healing [34] and the optimal response to osteoporosis pharmacotherapy [35, 36].

BTMs Display a 24h Rhythm

BTMs display a diurnal rhythm in humans [14, 15]. In vitro studies demonstrate clock gene 

expression in bone and suggest this peripheral tissue has endogenous circadian rhythmicity 

[37, 38]. BTM levels increase overnight, with a peak in the early morning hours, and 

decrease across the day with a nadir in the late afternoon [14]. This rhythm is more robust in 

markers of bone resorption (such as C-terminal cross-linked telopeptide of type I collagen - 

CTX), than in markers of bone formation (such as N-terminal propeptide of type I 

procollagen - P1NP).

Bone resorption markers, including serum and urinary CTX [14], serum and urinary N-

terminal cross-linked telopeptide of type I collagen (NTX) [39], and urinary pyridinium 

crosslinks [40], have a clear sinusoidal rhythm across the 24h day (Figure 1). The amplitude 

of the rhythms is diminished with fasting [14, 41, 42] and with anti-resorptive therapy [39], 

however, the general 24h sinusoidal curve persists. The 24h profile of bone resorption 

markers is unrelated to sex [14, 43], age [14], menopausal status [14], posture/bedrest [14], 

or parathyroid hormone (PTH) [44]. Two human studies have shown that the 24h profile of 

bone resorption markers are not associated with serum cortisol [45, 46]. These data conflict 

with two earlier reports [43, 47]. There are challenges in studying the relationship between 

cortisol and the rhythmicity of bone resorption markers, including the inability to 

pharmacologically mimic the physiologic concentrations and pulsatility of cortisol. 

Although murine cell culture data suggest glucocorticoids may be important in central-

peripheral osteoclast clock synchronization, human data (including the large, rigorous study 

designs employed by Heshmati et al [46] and Schlemmer et al [45]) suggest cortisol does not 

have a dominant role in bone resorption marker rhythmicity. The persistence of CTX 
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rhythmicity in blind individuals suggests independence from the light/dark cycle [14]. Oral 

intake of food and calcium can decrease levels of bone resorption markers, depending on the 

time of intake [48], with postprandial decreases likely mediated by glucagon-like-peptide-2 

(GLP-2) [42, 49]. Although circadian protocols in humans that are capable of separating 

endogenous (circadian) rhythms from exogenous (behavioral/environmental) diurnal profiles 

are lacking, the daily variation of bone resorption markers likely reflects an endogenous 

circadian rhythm that is important for normal bone metabolism but that can be influenced by 

exogenous effects (e.g. behavior or environmental changes).

The general shape and timing of bone formation marker rhythmicity is similar to that of 

bone resorption markers, however, the amplitudes and regulatory pathways differ. 

Osteocalcin, a protein produced by the osteoblast primarily during mineralization, is used to 

reflect osteoblast activity [50, 51]. Osteocalcin displays a consistent rhythmicity, similar to 

that of bone resorption markers, peaking overnight in the early morning hours [14]. Its 24h 

pattern is not related to that of growth hormone (GH) [50], but is related to serum cortisol 

[46]. Conversely, P1NP, the N-terminal portion of procollagen that is cleaved to form 

collagen for the bone matrix, has a smaller amplitude rhythm appreciated only in large 

studies (Figure 1) [15, 22, 35]. It is possible that the rhythm robustness of bone cells is 

reflective of their respective functions or cell lineage – osteoclasts are derived from 

hematopoietic stem cells and osteoblasts are derived from mesenchymal stem cells. The 

clinical implications of the relatively larger overnight increase in bone resorption compared 

to bone formation markers are not yet understood. This balance may be important for normal 

bone metabolism and perturbations in circadian rhythmicity and timing of food intake (e.g., 

night-shift work) could alter bone metabolism and health.

The osteocyte is a terminally differentiated osteoblast that is imbedded in the bone matrix, 

represents over 95% of bone cells in the adult skeleton [52], and is responsible for sensing 

mechanical loading and transmitting that signal to regulate the activity of other bone cells 

[52]. Bmal1 was identified in osteocytes [19] and some markers of osteocyte function 

display a similar 24h profile to other BTMs. Fibroblast growth factor-23 (FGF-23) is a 

protein secreted by the osteocyte to regulate phosphate metabolism. FGF-23 levels also 

display a diurnal rhythm, peaking in the morning (Figure 1) [22, 53, 54]. FGF-23 

rhythmicity displays more inter-individual variability compared to the robust CTX rhythm 

[22]. This could be related to differences in sympathetic tone as FGF-23 rhythmicity appears 

to be regulated, at least in part, by β–adrenergic tone via Bmal1 [54]. Sclerostin is an 

osteocyte-derived protein that suppresses bone formation and stimulates bone resorption 

during mechanical unloading. There have been conflicting reports regarding 24h variation in 

levels of serum sclerostin [22, 55]. It is possible that sclerostin levels are more heavily 

regulated by environmental/postural changes rather than inherent circadian rhythmicity. 

More research in this area is needed because it may impact the efficacy and recommended 

administration time of investigational pharmacological agents directed against sclerostin.

Clock Genes Alter Bone Health and Phenotype

In vitro data support the existence of endogenous circadian rhythmicity in BTMs [37, 38]. 

Clock gene KO models demonstrate how alterations in clock gene and circadian physiology 
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have the potential to alter bone turnover and skeletal phenotype [16–20]. Global and 

osteoblast-specific Bmal1 KO mice have a low BMD phenotype due to higher levels of bone 

resorption (and formation) and decreased osteoblast differentiation [19, 20]. Conversely, 

osteoclast-specific Bmal1 KO mice have a high BMD phenotype due to decreased bone 

resorption [18]. Peripheral (not central) clock genes, specifically osteoblast Bmal1, are the 

proposed regulators of bone resorption by inhibition of osteoclastogenesis [18]. In the 

absence of Bmal1 (globally or in the osteoblast), osteoclastogenesis is upregulated, in part, 

through osteoblastic RANKL expression [19]. Similarly, female mice lacking Cry/Per genes 

have a high bone volume phenotype [16, 17]. Cry2-deficient female mice achieve high bone 

volume through reduced osteoclast activity and bone resorption. Conversely, the high bone 

volume phenotype in Per2-deficient female mice results from an increased bone formation 

rate in the absence of leptin [16, 17]. These animal studies highlight the importance and 

complexity of the regulation of bone mass by peripheral clock genes in bone cells.

Circadian Medicine in Bone Health: Chronotherapy and the Role of the 24h Clock in 
Fracture Healing

Chronotherapy utilizes time of medication administration to affect its pharmacokinetics, 

efficacy, and safety profile [56, 57]. Classic examples of successful chronotherapy include 

treatment of hypertension and cancer. For example, evening administration of anti-

hypertensive medications leads to better blood pressure control and a significantly decreased 

risk of cardiovascular events (RR 0.39, 95% CI 0.29, 0.51) compared to morning 

administration [58]. Similarly, the timing of chemotherapy drug administration affects the 

efficacy and patient tolerability of these agents [59]. There is likely a similar role for 

chronotherapy in osteoporosis.

Kunimoto et al identified an endogenous 24h interval of Per2 expression at femur fracture 

healing sites using bioluminescence in mice [34]. The addition of PTH resets this 

rhythmicity and shortens the time to the next peak. These findings highlight the role of 

clocks in fracture repair and may have additional relevance for the optimal administration 

time of PTH-related medications (e.g. teriparatide, abaloparatide) used to treat osteoporosis. 

Luchavova et al found that mean [CTX] was higher in women who received evening 

compared to morning teriparatide [35]. Furthermore, after 12 months of teriparatide 

treatment, lumbar spine BMD increased more in women who received morning teriparatide 

injections (9.1%) compared to evening injections (4.8%) [36]. Administration time is likely 

less important for bisphosphonates or denosumab, which have longer half-lives. However, 

timing of administration may augment the therapeutic effect for shorter-acting agents, 

particularly PTH and PTH-rp analogs.

4.0 Associations among shift work, the associated sleep/circadian 

disturbances, and the risk of osteoporosis, falls, and fractures

Circadian rhythmicity of BTMs are likely important for maintaining optimal bone health 

across the lifetime. Sleep and circadian disturbances, as occur in night-shift work, could 

potentially disrupt bone physiology and impair bone health. Night-shift work inherently 

alters the sleep/wake cycle and often results in less restful and shortened sleep duration, 
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thereby disrupting circadian rhythmicity and/or functions served by sleep [60–62]. Human 

and other animal studies suggest that shift work and its associated sleep and circadian 

disruptions may be detrimental to bone health and increase fall risk.

Night-Shift Work is Associated with Low BMD and Increased Fracture Risk

Quevedo et al identified lower BMD at the lumbar spine and femoral neck in Chilean 

postmenopausal female nurses who reported working a rotating shift (N = 39) compared to 

those who worked daytime shifts (N = 31) [32]. However, this study did not adjust for the 

higher prevalence of smoking and coffee intake in the women working rotating shifts [32]. A 

subsequent larger (N = 3,005) study of young (average age 36.4 years) Korean men and 

women also found lower BMD at the lumbar spine and total hip in people who worked shifts 

outside daytime hours, particularly in those who worked the night shift [63]. Conversely, 

there was no difference in BMD in middle-aged male and female shift workers (N = 225) in 

the NHANES cohort compared to regular workers (N = 738) [64].

Two studies observed an increased fracture risk in shift workers. The Nurses Health Study 

identified a higher risk of hip and wrist fractures after 8 years of follow-up in women who 

reported 20+ years of night-shift work compared to women who had never worked night 

shifts [6]. In addition, Kim et al reported a nearly 2-fold increase in the percentage of 

individuals who experienced self-reported fractures (femur, wrist, or spine) in non-daytime 

workers compared to daytime workers in the Korea National Health and Nutrition 

Examination Survey (2.1% vs. 1.2%) [63]. Although this difference was not statistically 

significant at the traditional statistical cutoff (p = 0.06), the magnitude of the difference may 

be clinically significant [63].

These investigators speculated that increases in cortisol and/or inflammation or differences 

in light exposure, vitamin D status, and/or physical activity could explain the increased risk 

of low BMD and fracture in night-shift workers. However, cross-sectional and 

epidemiological designs preclude identification of cause and effect relationships and 

mechanisms. An interventional study that exposed 10 healthy men to a forced desynchrony 

protocol (cumulative sleep restriction with concurrent circadian misalignment), akin to the 

stresses endured during rotating shift work, identified significantly lower levels of a bone 

formation marker (P1NP) with no change in a bone resorption marker (CTX) [65]. These 

changes were more pronounced in the younger men who had higher BTM concentrations at 

baseline [65]. It is unclear if sleep restriction or the history of circadian misalignment caused 

the changes in bone formation, however, these findings are consistent with those from a 

prior chronic sleep restriction study in rats [21]. Taken together, these studies indicate that 

night-shift work is likely detrimental to bone health, potentially by altering the balance 

between bone resorption and formation.

Animal data support the link among sleep and circadian disturbances and altered bone 

health. In a study by Everson et al [21], repeated 10-day periods of sleep restriction during 

10–15% of the expected rat lifespan resulted in decreased osteoblast number and activity 

and an increased marker of osteoclast activity (TRACP 5b). These cellular changes were 

thought to be the result of the sleep restriction itself rather than an independent effect of 

alterations in circadian rhythm, and were reflected in BMDs averaging nearly three standard 
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deviations below control values. Similar findings were subsequently found by Xu et al, using 

different methodologies [66]. Furthermore, mice exposed to continuous light exposure for 24 

weeks had decreased trabecular bone volume compared to mice that experienced normal 

light-dark cycles associated with decreased behavioral and SCN rhythmicity, and an increase 

in inflammatory markers (TNF-α) [67]. No changes were appreciated in cortical bone but 

trabeculae in the mice exposed to continuous light were fewer in number, thinner, and had 

more porosity compared with control mice. These changes reversed rapidly after restoration 

of normal light-dark cycles [67]. These animal data are consistent with negative molecular 

and structural skeletal effects of sleep and circadian disruption that could predispose 

individuals to lower bone strength and increased fracture risk.

Long and Short Sleep Duration Have Been Associated with Low BMD

Disrupted and insufficient sleep are major complaints of shift workers. Both long [13, 68–

75] and short [70, 71, 74–80] self-reported sleep duration have been associated with low 

BMD/osteoporosis or fracture in previous, mostly cross-sectional, studies (Table 1). In 

addition, one study found that long (≥8 h) compared to short (<6 h) sleep duration was 

associated with an increased risk of osteoporosis [81] and two studies reported no 

association between sleep duration and BMD [82, 83]. A recent meta-analysis [84] 

determined that long sleep duration (defined as ≥8 h/day) was associated with a 22% higher 

risk of osteoporosis in middle-aged and elderly women (OR 1.22, 95% CI 1.06–1.38), while 

no association was identified for women with short sleep duration (defined as ≤7 h/day). 

Although this analysis highlighted the significant heterogeneity in past studies, it did not 

include two studies that found a significant association between short sleep duration and 

BMD, including one that was published after the meta-analysis was performed [76, 77].

Studies investigating the association between sleep duration and BMD differed significantly 

from each other in the following ways: (i) study population including age, race, gender, sex-

hormone status, and the presence/absence of sleep comorbidities; (ii) the method/anatomical 

site used for BMD assessment thereby diminishing the ability to consistently detect a 

difference in effect on cortical vs. trabecular bone; (iii) the cutoffs used to define short/

normal/long sleep durations; and (iv) whether or not naps were included (Table 1). In 

addition, the small sample sizes for the osteoporosis/very low BMD groups [83] and 

analyses using categorical designations for sleep duration and BMD (e.g. “6–7 hours” or 

“osteoporosis” instead of continuous BMD variables) may limit the ability to accurately 

detect the relationship between sleep duration and BMD. Arguably the most important 

limitation of these studies is utilization of subjectively measured sleep duration, often 

assessed at one time point and without regard to the amount of sleep needed by an individual 

to feel rested. Future research should determine whether subjective or objective sleep 

parameters are more strongly and consistently correlated with skeletal outcomes. 

Furthermore, prospective studies with sleep duration monitored periodically over months or 

years may give more insight into the stability of sleep duration over time and how that 

correlates with bone parameters (BTMs, BMD), which change slowly over time.

The mechanisms by which sleep duration affects bone metabolism and bone density are 

unknown. Possible mechanisms include alterations in the normal rhythmicity of bone cells, 
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hormone levels (e.g. sex steroids, cortisol), increases in sympathetic tone [29, 77], 

inflammation [85, 86], metabolic derangements, or fatigue/physical inactivity (Figure 2). 

The role of the central nervous system in regulating bone metabolism may be particularly 

important in the skeletal effects of disrupted sleep because of the SNS activation associated 

with sleep and circadian disruption. The SNS can influence bone cell clock genes and 

negatively impact bone metabolism through a complex network involving leptin, serotonin, 

neuropeptide Y, balance with the parasympathetic nervous system, and direct stimulation of 

bone cells via β–adrenergic receptors on osteoblasts (readers are referred to Figure 1 in a 

recent review by Dimitri et al [87]. Although the relationship between sleep stages and bone 

metabolism has not been evaluated, rapid eye movement (REM) sleep, which is associated 

with higher levels of sympathetic tone [88], predominates in the latter half of the night when 

BTMs peak [14], whereas non-REM (NREM) sleep predominates in the early part of the 

night. The individual effects of sleep duration and circadian alignment on bone health need 

further investigation to determine if these disturbances produce similar, additive, or 

synergistic impairments in bone health [71, 83].

Obstructive Sleep Apnea (OSA) and Bone Health

Data are mixed regarding the association between OSA and bone density [29], however, it is 

likely that OSA with its associated co-morbidities and underlying physiologic/metabolic 

derangements (increased sympathetic drive, inflammation, insulin resistance, nocturnal 

hypoxia etc.) are associated with increased bone resorption [89] and subsequently lower 

BMD [90].

Sleep and Circadian Disturbances Increase Fall Risk

Sleep and circadian disturbances cause sleepiness and decreased vigilance to environmental 

hazards [7–9], which may result in an increased risk of falls and fractures. In addition, the 

acute impairment in performance sometimes seen upon wakening (“sleep inertia”) and 

prolonged wakefulness both decrease postural stability and balance, increasing the risk for 

falls [10, 11, 91]. Moreover, insomnia has been associated with an increased risk of falls 

[12] and the greater the burden of insomnia symptoms predicts 2-year fall risk in older 

adults [92]. Circadian regulation of the cardiovascular response to postural stress in humans 

increases the risk of pre-syncope during the biological night, potentially increasing the risk 

for syncope and falls in night-shift workers [93].

5.0 The risk of falls/fractures with caffeine and medications used for sleep/

circadian disruption

Medications taken for sleep and circadian disturbances can alter sleep architecture [94], 

sleep inertia [95, 96], and fall risk. Individuals with sleep/circadian disorders, including 

night-shift workers, frequently use over-the-counter (OTC) substances (e.g. caffeine) to 

compensate for daytime fatigue due, in part, to inadequate sleep duration [97, 98]. They also 

use OTC and prescription medications (e.g., melatonin, benzodiazepines, zolpidem) to 

induce, prolong, and re-entrain their sleep [97–100]. Of rehabilitation patients who sustained 

a femoral neck fracture after a fall, 51% reported using a hypnotic or other tranquilizing 

medication for sleep [101]. These OTC and prescription agents likely influence the sleep-
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bone relationship either by mechanistically altering bone metabolism and/or calcium balance 

(caffeine), or by increasing the risk of falls and fracture through impairments in muscle tone, 

balance, and cognition.

Benzodiazepines and Z-drugs Are Associated with an Increased Risk of Falls and 
Fractures

Untreated insomnia and other sleep disturbances are associated with falls [12, 102–104], but 

physician-prescribed sleep medications increase fall risk further [92]. Epidemiological 

studies have consistently shown an increased risk of falls and fractures with use of hypnotics 

such as benzodiazepines [105, 106]. More recent systematic reviews and meta-analyses have 

confirmed these findings with a reported Relative Risk (RR) of hip fracture of 1.52 (95% CI 

1.37–1.68 p < 0.001) [103] with the highest risk seen at time of initiation (RR 2.40, 95% CI 

1.88–3.05 p < 0.001 with short term use vs. RR 1.20, 95% CI 1.08–1.34 p < 0.001 with long 

term use) [103]. The risk of fracture increases with the duration of action of the specific 

benzodiazepine. The highest risk is seen with diazepam (long half-life), followed by 

lorazepam [107]. Like benzodiazepines, newer agents such as zolpidem and zaleplon (often 

called “Z-drugs”) induce central nervous system sedation by binding to the GABA-

benzodiazepine receptor complex to enhance the effects of GABA [103]. Although Z-drugs 

were initially thought to be safer than traditional benzodiazepines because of their shorter 

half-life and lower risk of subsequent daytime sedation and dependency [103, 106], 

zolpidem appears to have a similarly increased risk of hip fracture (RR 1.90, 95% CI 1.68–

2.13 p < 0.001) [103]. A recent meta-analysis found that zolpidem was associated with a 

92% higher risk of fracture (RR 1.92, 95% CI 1.65–2.24; I2 = 50.9%) and that this risk was 

highest for hip fractures compared to any other site [108]. The limited evidence on Z-drugs 

suggests that the risk of falls and fractures are greatest with higher doses [108] and in the 

initial weeks of use [103, 108]. Tom et al confirmed the increased risk of hip fracture with 

zolpidem, however, no relationship was identified for a different Z-drug, eszopiclone [109]. 

Therefore, the association between zolpidem and increased fracture risk may not indicate a 

drug class effect for Z-drugs. It is presumed that these medications increase fracture risk 

through sedation, subsequent impairments in balance, cognition, and reaction times, and an 

increased risk of falls [10, 103, 110].

Studies investigating the association between benzodiazepines and Z-drugs with falls and 

fractures have limitations that potentially underestimate fracture risk. Prescription records 

were often used to ascertain exposure status rather than an actual account of medication 

administration. In addition, many of the studies of Z-drugs used prescription databases to 

ascertain medication exposure after identifying cases that had a fracture requiring 

hospitalization. These surveys ignore fractures that do not require hospitalization/surgery, 

making it difficult to ascertain how drug dose and timing truly affect the medication risks 

[111]. Therefore, both the indication (e.g., insomnia, short sleep duration) and medication 

increase the risk of falls and fractures [104].

Caffeine and Bone Health

There are several mechanisms by which caffeine is potentially deleterious to bone. Caffeine 

has been shown to negatively alter calcium homeostasis through hypercalciuria [112] and 
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decreased gastrointestinal calcium absorption [112]. Caffeine could induce bone loss 

through direct effects on bone cells that favor osteoclast differentiation and osteoblast 

apoptosis, as indicated by rat models [113, 114]. It is possible that consumption of caffeine-

containing drinks limit intake of other calcium-rich (e.g. milk) or more bone-neutral (e.g. 

water) beverages or because it contains other substances that might impact bone health (e.g. 

phosphorous, polyphenols, acid, sugar) [115, 116]. There have been some epidemiological 

studies of the role caffeine has in bone health, with mixed results [105, 116–118]. The 

conflicting data may be due, in part, to differences in study population (age, sex, menopausal 

status) [117], follow-up time [112, 119], fracture definition/ascertainment [116], availability 

of information on confounders (such as calcium intake) [112] and subsequent appropriate 

statistical adjustments, and/or several aspects of caffeine intake that are difficult to capture 

accurately [112]. These include the source of caffeine (coffee, soda, tea), geographic 

variation in coffee strength and preparation that can affect caffeine levels, and assumptions 

regarding average serving size [112, 116]. For example, differing results for caffeine-

associated fracture risk were found in the Swedish Mammography Cohort study in 2006 

compared with 2013 [112, 119], possibly reflecting longer follow-up time and refinements 

in questionnaires. In addition, two recent meta-analyses that used slightly different 

inclusion/exclusion criteria concluded that coffee intake was associated with an increased 

fracture risk in women but not men [116, 117]. The increased fracture risk in women was 

seen with as little as 2 cups of coffee per day (RR 1.02, 95% CI: 1.01–1.04) and increased 

with greater intake (RR of 8 cups/day 1.54, 95% CI: 1.19–1.99) [116]. Since the protective 

effect in men was of greater magnitude (RR 0.76, 95% CI 0.62–0.94) for all but the highest 

levels of female coffee consumption, the overall effect of caffeine is unclear. A long-term, 

prospective intervention trial is needed to clarify if these associations translate into a 

clinically significant cause-and-effect relationship at typical levels of coffee/caffeine 

consumption.

Melatonin and Bone Health

Melatonin is low in night-shift workers [120] and is commonly used as an OTC supplement 

for jet lag and insomnia and therefore bears special mention. Melatonin is thought to be 

beneficial to bone by promoting osteoblast formation and decreasing bone resorption 

through decreased synthesis of RANKL and increased OPG synthesis [121, 122]. In 

addition, animals lacking melatonin have lower BMD compared to controls [121, 123, 124]. 

A small, randomized controlled trial in humans identified an increase in femoral neck BMD 

(an anatomical site with a larger precision error than other anatomical sites) with daily 

melatonin (1 mg/day or 3 mg/day) for a year and an increase in lumbar spine volumetric 

BMD (vBMD) by QCT with high dose melatonin only (3 mg/day) [125]. However, no 

significant change was identified in BTMs or in areal BMD at other skeletal sites [125], or in 

other studies [126]. Larger human studies of longer duration are needed to determine the 

pharmacological role (and dose) for melatonin in the treatment of postmenopausal 

osteoporosis.
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6.0 Summary & Future Directions

The diurnal variation in BTMs and animal clock gene KO models suggest that circadian 

rhythmicity is important for bone health [14, 15, 17, 20]. Some epidemiological studies 

support this inference as night-shift work, which causes both sleep disruption and circadian 

misalignment, has been associated with lower BMD and increased fracture risk [6, 32]. 

Experimental studies of rats and healthy men reveal that sleep and circadian disruption 

impair bone formation [21, 65]. Use of OTC and prescription medications for sleep/

circadian disorders further increase the risk of falls and fractures [103, 116, 117]. Moreover, 

it seems plausible that these factors interact, such that sleep deficiency and/or circadian 

disruption may increase the risk of falls due to reduced vigilance/balance, and may make a 

fracture more likely to occur due to suboptimal bone health. Further investigations are 

needed to clarify:

i. If and how communication among bone cells is affected by disturbances in sleep 

and circadian rhythms.

ii. Cause and effect relationships between sleep duration and sleep stages with bone 

health using objective sleep measures over time with standardized bone mass and 

quality assessments.

iii. If BTM rhythmicity uses the anticipated rest/activity cycle (via endogenous 

circadian control) to regulate bone metabolism or if this rhythm is a response to 

behavioral changes.

iv. The specific effects of sleep disorders and circadian disruption on bone 

modeling, and remodeling and if these disturbances differentially affect 

trabecular and cortical bone.

v. The mechanisms by which sleep and circadian disorders affect BMD and fall/

fracture risk.

vi. The effects of age, sex, and body composition on the sleep/circadian-bone 

relationship.
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BTMs Bone turnover markers

CTX C-terminal cross-linked telopeptide of type I collagen

P1NP N-terminal propeptide of type I procollagen

FGF-23 Fibroblast growth factor-23

PTH Parathyroid hormone

BMD Bone mineral density

vBMD Volumetric bone mineral density

PER Period

CRY Cryptochrome

BMAL1 Brain and muscle aryl hydrocarbon receptor nuclear translocator-like 

protein-1

CLOCK circadian locomotor output cycles kaput

OTC Over-the-counter

KO knockout

NF-kB nuclear factor kappa B

RANKL ligand

OPG osteoprotegerin

Swanson et al. Page 13

Metabolism. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



h hour

SNS sympathetic nervous system

RR Relative Risk

OR Odds Ratio
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Figure 1. Bone matrix and cells with representative 24h profiles of bone cell markers
Osteoclasts (bone resorption) attach to the bone surface and secrete factors that degrade 

bone collagen, releasing CTX (and other breakdown products). Osteoblasts form bone 

matrix to fill in the resorption cavity. An important element in bone formation involves 

procollagen synthesis and its cleavage to form collagen, the main scaffolding for the bone 

matrix. When procollagen is cleaved, its terminal ends are released (P1NP, P1CP). 

Osteoclast and osteoblast activity are coupled, and regulated, in part, by the osteocyte. The 

osteocyte is a terminally differentiated osteoblast imbedded in the bone matrix that secretes 

proteins (such as FGF-23). Osteocytes use dendritic processes to sense mechanical loading 

and transmit signals to regulate the activity of other bone cells. Markers of bone turnover, 

such as CTX and P1NP, and the osteocyte-derived protein FGF-23 display a 24h diurnal 

variation (representative curves generated using data from Swanson et al [22]).
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Figure 2. Conceptual framework of how circadian rhythm and sleep disturbances alter bone 
health
Sleep and circadian disturbances, in the form of night-shift work and/or altered sleep 

duration, impair bone formation, microarchitecture and strength and are associated with 

lower BMD through several potential mediators (ovals). Together, these changes in bone 

density and quality lead to an increased fracture risk. Circadian rhythm and sleep 

disturbances can also increase fracture risk by increasing the risk for falls, with or without 

sleep medications used to treat these disorders (e.g. benzodiazepines, Z-drugs like 

zolpidem). Age and/or sex differences may influence the circadian rhythm and sleep 

disturbances, mediators, and fracture risk.
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