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Description of the simulation study

This document shows the results of a simulation study carried out to illustrate the perfor-

mance of some of the proposed models in the paper. Specifically, we pursued to assess two

particular issues of these models: First, how DIC performs as model selection criterion to

compare models within the proposed framework and, second, to assess the ability of the

models to estimate the variance-covariance matrix between the log-risks of the different

geographical patterns modelled.

All our simulated datasets involved 4 different observed counts for each municipality,

supposedly corresponding to the observed deaths for two different diseases and both sexes.

Regarding to the log-risks simulated, we compared 3 different settings: The first one

assumes full independence between counts in each municipality; the second one assumes

a separable dependence structure between diseases and sexes and finally the last one

assumes a non-separable relationship between these two factors. More in detail, let us

assume that the log-risks to be modelled RR corresponded, in this order to (disease 1-sex

1, disease 1-sex 2, disease 2-sex 1, disease 2-sex2) then the independent setting would

assume:

vec(log(RR)) ∼ N4J(04J , 0.5
2I4 ⊗ (D− 0.95W))

for J = 540, the number of municipalities in the Valencian Region, W the adjacency

matrix of that region and D a diagonal matrix of elements W1J . Therefore, this setting

reproduces four independent patterns with proper CAR spatial dependence of correla-

tion parameter equal to 0.95, since only values of this parameter close to 1 reproduce

substantial spatial dependence. Similarly, the separable setting assumes:

vec(log(RR)) ∼ N4J
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This setting assumes that, given the log-risks for a disease and sex, the corresponding

log-risks for the alternative disease or sex has correlation 0.5 with the original pattern.

Moreover, the effect of changing both disease and sex on the corresponding correlation

between log-risks is multiplicative, i.e. changing both factors reduces the corresponding

correlation to 0.25 = 0.5 · 0.5, what reproduces the separable correlation structure that
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we pursued. Finally, the non-separable setting assumes:

vec(log(RR)) ∼ N4J
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In this case, the correlation between patterns when changing either the disease or sex is

once again 0.5, but changing both factors produces a correlation of 0.75 what makes the

correlation structure non-separable. Note that the variance-covariance matrix chosen for

this model is both symmetric and positive definite.

We generated 10 different data sets for each one of the settings above. The expected

counts for each data set were generated as the product of the expected cases from the lung

cancer/diabetes example in Section 5 of the paper and the corresponding simulated rela-

tive risks. The final data sets were generated as Poisson draws from these expected counts.

For each one of these 30 datasets we run three different models: a model assuming inde-

pendence between geographical patterns, a second one assuming a separable multivariate

dependence structure and finally a model assuming a non-separable factorial relationship

between disease and sex. For all these three settings proper CAR distributions were also

assumed for modelling the spatial dependence of the data sets.

Results

Table 1 shows for each one of the settings considered (rows in the table) the number of

times that every model (columns in the table) has achieved the lowest DIC when compared

with the other alternative models run. As can be appreciated, the DICs determine the

correct setting in a 76.7% of the data sets. It is also interesting to check how the DIC never

points out towards a model which is less complex than the true one. Therefore, DIC is

quite good detecting the complexity of data when it really exists (is quite sensitive in this

sense) although it is no so specific when it points out to a complex model. Nevertheless,

we find convenient to mention that the models considered are nested, i.e. independent

settings can be reproduced within separable and non-separable models and separable

settings can be reproduced within non-separable models. Therefore it is not so wrong

that a more complex alternative model is determined as the best option in our study since

that data set can be also reproduced with the complex alternative models. Nevertheless,

we acknowledge that a higher penalization of complexity in DIC would seem convenient

according to the results shown.
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Table 1: Number of times that every model is selected as the best option according to

DIC. Rows in the table stand for the simulated setting and columns for the model run.

Independent Separable Non-separable

Independent 5 2 3

Separable 0 8 2

Non-separable 0 0 10

Figure 1: Comparison of DICs for the 10 models run in each setting.

Figure 1 shows the DIC obtained for each data set and model run. As can be appreci-

ated differences in DIC are in general minor when we compare the true model generating

the data with a more complex alternative. On the contrary, when the true model is com-

pared with a simpler alternative differences in their DICs are much more evident in favour

of the true model. So, when DIC points out towards a wrong model its difference with

the true model is usually very mild.

We are now going to explore the ability of the models run to estimate the original

variance-covariance matrix between geographical patterns. Figure 2 shows for the first of

the non-separable simulated data sets the results retrieved for all three models. At this

figure the red points correspond to the cells of the true variance-covariance matrix, the

first 4 points corresponding to the first row of that matrix, the 4 next to the second row

and so on. The vertical gray bars with the same x-coordinate than these points correspond
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Figure 2: Variance-covariance estimates for the first non-separable data set and the dif-

ferent models run.

to the estimate of the corresponding cell in the variance-covariance matrix. Specifically,

that bar correspond to the 80% central posterior credible interval of that covariance and

the central horizontal bars denote the posterior median for each one of them. Obviously,

the independent and separable models unsurprisingly are not able to reproduce the non-

separable covariance pattern, meanwhile the non-separable model reproduces it quite well.

The annex archives MatVarCovInd.pdf, MatVarCovSep.pdf and MatVarCovNonSep.pdf

shows these same figures for all 30 simulated data sets.

Table 2 shows the number of times that the 80% posterior credible intervals of the

estimated variances and covariances contain the corresponding true values. The non-

separable model shows excellent and similar coverage rates for all three settings. In

contrast, the independent and separable models only attain a reasonable coverage for
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those settings that they are supposed to fit well. Nevertheless, for these settings, the

empirical coverage attained is higher than the corresponding hypothetical value of 80%.

However, it should be born in mind that some of the covariances are necessarily well

estimated by these models. For example, the independent model always estimates a

covariance of 0 between geographical patterns. So, this model estimates properly all the

covariances in the independent setting. If we limit ourselves in this case to the variance

estimates, leaving aside the covariances, the 80% posterior CIs contain the true value in

33 out of 40 times, i.e. 82.5% of the total. So, the behaviour of this model also seems

correct in this setting. Something similar happens with the separable and non-separable

data sets for this model. Leaving aside the covariance estimates which are always wrong

for this model we have that the coverage rates for these settings are, respectively, 80%

and 87.5%. So once again the performance of the independent model seems reasonable

even though the setting under study is different to that corresponding to that model.

Table 2: Number of times that the 80% CIs contain the true values for each setting and

model. Rows in the table stand for the simulated setting and columns for the model run.

Independent Separable Non-separable

Independent 0.96 0.84 0.76

Separable 0.20 0.89 0.80

Non-separable 0.22 0.52 0.79
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