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S1. Eligible Sets. We provide formal definitions of the eligible sets.
Recall from Section 4.1 that, for any location s, A(s, V,m) is the set of m-
nearest neighbors of s in V . So s ∈ V implies that s ∈ A(s, V,m) for all
m ≥ 1. For each (si, tj) in R, we define the eligible set
(S1)

E(si, tj) =
m⋃
k=1

{(s, tj−k) | s ∈ A(si, S, [m/k])}
⋃
{(s, tj) | s ∈ A(si, Si,m)}

where for any positive number x, [x] denotes the greatest integer not ex-
ceeding x. So the eligible set for a space-time point consists of m-nearest
neighbors from the time levels j and j − 1, [m/2] nearest neighbors from
time level j − 2 and so on upto [m/m] = 1 nearest neighbor from time level
j−m. This is also illustrated in Figure 3(c). So the size of E(si, tj) does not
exceed m+

∑m
k=1[m/k]. As m is typically chosen to be around 20, this sum

is approximately 4m.
For any point t outside T , let t[k] denote the kth nearest time point of t

in T . Then, we define the eligible set for any (s, t) outside R as

(S2) E(s, t) =
m⋃
k=1

{(s, t[k]) | s ∈ A(s, S, [m/k])}

The eligible sets do not depend on the covariance parameters θ. We now show
that for any point (s, t) in L, the eligible set E(s, t) defined by Equations S1
and S2 contains m-nearest neighbors of (s, t) for all values of θ as long as
the underlying covariance function C(h, u |θ) possess natural monotonicity.

Proposition S1. If C(h, u |θ) satisfies natural monotonicity defined in
Section 4.1 for every value of θ, then, for every (s, t), the eligible set E(s, t)
defined in Equations S1 and S2 contains Nθ(s, t) for all θ
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Proof. We only prove for (s, t) = (si, tj) ∈ R. The proof for (s, t) /∈ R is
similar. We assume that (su, tj−k) ∈ Nθ(si, tj) for some θ, u ≤ N and k ≥ 1.
Also let si[l] denote the lth nearest neighbor of si among {s1, s2, . . . , sN}.
So, su = si[l] for some l ≥ 1. Therefore, by natural monotonicity of C, we
have C((si, tj), (si[a], tj−k) |θ) ≥ C((si, tj), (si[l], tj−k) |θ) for all 1 ≤ a ≤ l.
One more application of natural monotonicity implies that C((si, tj), (si[a],
tj−b) |θ) > C((si, tj), (si[a], tj−k) |θ) for all 1 ≤ b ≤ k. As (su, tj−k) ∈ Nθ(si,
tj), then so does (si[a], tj−b) for all a ≤ l and b ≤ k. Therefore, lk ≤ m i.e.
l ≤ [m/k].

S2. Comparisons with Local Approximation GP. Gramacy and
Apley (2015) proposed a Local Approximation Gaussian Process (LAGP)
to predict a function y(s0) at a location s0 given the observations {y(s1),
y(s2), . . . , y(sn)} for n locations. For predicting at each new location s0, a
small neighbor set of size m is selected from {s1, s2, . . . , sn}. However, unlike
Nearest Neighbor Gaussian Processes (Datta et al., 2016), the neighbor sets
doesn’t merely consist of m nearest neighbors of s0. Instead, locations are
augmented to an initial set of m0 < m nearest neighbors based on mini-
mization of the predictive Mean Square Error for y(s0). Simulation studies
detailed in Gramacy and Apley (2015) suggests that LAGP produces im-
proved prediction over the fully nearest neighbor based approach while the
computational costs for the two methods are comparable.

Although promising in terms of predictive performance and computa-
tional scalability, LAGP is not a proper Gaussian Process. It essentially
provides a non-stationary local approximation to a Gaussian Process at ev-
ery predictive location. LAGP thereby can only be used for predicting the
response and lacks the versatility of a full GP based approach.

For the European PM10 data, we used a semiparametric regression model
with the raw CTM output as a covariate and a spatio-temporally varying
random intercept (Equation 5.3) which was modeled using a DNNGP prior.
LAGP, in its current form, cannot be used for hierarchical models like spa-
tially varying intercept or spatially varying coefficient models where a GP
is used to model latent random effects instead of the response.

Moreover, LAGP uses an isotropic squared exponential covariance func-
tion for specifying the GP. In a spatio-temporal setup, this amounts to the
assumption that the variation along the spatial and temporal directions are
on the same scale. These assumptions are violated when we are modeling
an anisotropic or non-separable space-time function. LAGP, unlike Dynamic
NNGP, cannot accommodate such space-time non-separable functions, and
as seen in simulation experiments detailed in Table S1, performs poorly when
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Table S1
Average RMSPE numbers for LAGP and Dynamic NNGP

LAGP Simple DNNGP Adaptive DNNGP
Case 1 0.94 0.92 0.90
Case 2 0.61 0.55 0.56
Case 3 0.89 0.83 0.83

the space and time variations differ significantly.
Finally, one of our main objectives for the spatio-temporal analysis of

European PM10 dataset was to understand the underlying spatial and tem-
poral dependence of PM10. Indeed, the covariance parameter estimates in
Table 2 reveals that the effective spatial range is around 45 to 60 km and the
temporal range is around 30 to 33 days (Figure 5). Understanding the spatio-
temporal structure after adjusting for the CTM output may help identify
the physical processes missing in the CTM and subsequently improve the
CTM itself. LAGP is not a proper Gaussian Process and does not have any
global space and time decay parameters and is hence unsuitable for such
spatio-temporal analysis.

Nevertheless, as recommended by the reviewers, we compared the predic-
tive performance of Dynamic NNGP and LAGP via simulation experiments.
We generated data from the model

(S1) y(s, t) = w(s, t) + ε(s, t)

where ε
iid∼ N(0, τ2) and w(s, t) are the realizations of a GP with a non-

separable covariance structure specified in (6.1). We used the same three sets
of parameters as detailed in Section 6 which corresponds to 1) short spatial
range and long temporal range, 2) long spatial and temporal range, and;
3) long spatial range and short temporal range. For each case we generated
the data on a 15 × 15 × 15 space-time grid and computed the RMSPE
based on 500 holdout locations. The process was repeated 50 times for each
of the three scenarios and the average RMSPE numbers are reported in
Table S1. We observe that for Case 3 where the temporal range dominates,
we see LAGP tends to perform worse. This is expected as LAGP assumes
an isotropic covariance function ignoring the disparity in space and time
variation scales. Overall, Dynamic NNGP performs better for all the three
scenarios.

S3. Non-stationary covariances. The Gneiting covariance function
(6.1) used to construct the Dynamic NNGP is a stationary covariance func-
tion. However, we can also use Dynamic NNGP to approximate certain
class of non-stationary covariance functions. Gelfand et al. (2004) proposed
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a Spatially Varying Linear Model of Coregionalization (SVLMC) model to
create non-stationary spatial processes as spatially weighted sum of station-
ary processes. For univariate responses, this reduces to w(s, t) = σ2(s, t)v(s,
t) where v(s, t) ∼ GP with mean 0 and covariance function defined in (6.1)
with σ2 = 1. Subsequently, there are several ways of modeling σ2(s, t) If a
covariate x(s, t) is observed, σ2(s, t) is often modeled as x(s, t)φσ2 for some
unknown φ ≥ 0. This introduces covariate dependent non-stationarity. In
such case, due to non-stationarity, physical nearest neighbors of a location
may not correspond to locations with highest correlations for the process
w(s, t). Hence, the simple or the adaptive neighbor selection methods de-
scribed in Section 4 which relies on the above mentioned principle, may
lead to conditioning sets with very few points with high correlation with a
given point. Hence, we suggest modeling the stationary process v(s, t) as a
DNNGP instead of w(s, t). Letting v the vector formed by stacking up v(s, t)
over the set of observed locations, the joint likelihood will be specified as∏

(s,t)

N(y(s, t) |x(s, t)β + σx(s, t)φ/2v(s, t), τ2)×N(v |0, C̃(θ))

× p(θ)× p(σ)× p(φ)× IG(τ2 | aτ , bτ )×N(β |µβ,Vβ) ,(S1)

where C̃(θ) is the DNNGP covariance matrix created from the original non-
separable covariance matrix for the process v(s, t). The Gibbs’ sampler steps
are similar to those detailed in Sections 5.1 and 5.2. The spatio-temporal
random effects v(s, t) are updated sequentially and have conjugate normal
distributions similar to those defined in (5.4). The covariance parameters θ
are updated using the random walk Metropolis step (5.5). The additional
parameters σ and φ are also easily updated using the Metropolis random
walk step.

Alternatively, the non-stationary variance σ2(s, t) can be modeled as a
smooth spatial process for e.g. log σ2(s, t) ∼ GP . In such a case, we can
use DNNGPs to approximate the stationary covariances of both v(s, t) and
u(s, t) = log σ2(s, t). However, unlike v(s, t) the full conditional for u(s, t) is
not Gaussian. Instead, p(u(s, t) | ·) is proportional to

N(y(s, t) |x(s, t)β + exp(u(s, t)/2) v(s, t), τ2)×N(u |0, C̃u(θu)) ,

where C̃u(θu) is the DNNGP covariance matrix for u – the vector of random
effects u(s, t), and θu are the associated covariance parameters. Evaluating
this conditional likelihood for all (s, t) for Metropolis updates will still re-
quire O(n) flops and scalability will be retained.
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Although, theoretically DNNGP can be easily extended to model some
non-stationary covariances in a scalable manner, extensive simulation stud-
ies needs to be conducted to actually determine the accuracy of parame-
ter estimation and kriging in a non-stationary setup. MCMC convergence
behavior for the spatio-temporal random effects in absence of conjugate
Gibbs’ updates also needs to be investigated. Furthermore, more general
non-stationary structures as specified in Paciorek and Schervish (2006) also
needs to be considered. These explorations, however, do not fall within the
scope of the current paper and we identify them as areas of future research.
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