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These are the supplemental materials for “Changes in the Geographic Pattern of Heart
Disease Mortality in the United States, 1973–2010”. Appendix A contains the details of our
Bayesian model and MCMC algorithm. Appendix B presents additional details regarding
the various statistics used in the manuscript. Finally, a separate .wmv file presents maps of
our expected mortality rates for each time interval.

A Hierarchical Modeling Details

A.1 Hierarchical model

Letting Yit be the observed mortality rate in county i during two-year time interval, t, we
will assume

Yit ∼ N
(
x′itβ + Zit, τ

2
it

)
(1)

where τ 2it = τ 2/nit. Similarly,

Yi ∼ N (Xiβ + Zi,Σi) and Y ∼ N (Xβ + Z,Σ) ,

where Σi is a diagonal matrix with τ 2it on the diagonal and Σ is a block diagonal matrix of
the Σi. This model is similar to that of Quick et al. [1], where the authors analyzed monthly
asthma hospitalization rates in California counties.

Our random effects, Z, will be modeled as arising from a multivariate CAR [conditional
autoregressive; e.g., see 2, 3] model. That is, we assume

π(Zi |Z(i), ρ, σ
2) ∝ exp

[
−1

2

∑
j∼i

(Zi − Zj)
′R(ρ)−1(Zi − Zj)

σ2

]

=⇒ Zi |Z(i), ρ, σ
2 ∼ N

(
1

mi

∑
j∼i

Zj,
σ2

mi

R(ρ)

)
, (2)

where R(ρ) is our temporal correlation matrix, σ2 is our spatiotemporal variance parameter,
j ∼ i denotes that counties i and j are neighbors, and mi is the number of neighbors for the
ith county. We specify R(ρ) as a autoregressive (AR(1)) model with correlation parameter



ρ; i.e., Cor (Zit, Zit′) = ρ|t
′−t| and thus

R(ρ) =


1 ρ ρ2 . . . ρNt−1

ρ 1 ρ . . . ρNt−2

ρ2 ρ 1 . . . ρNt−3

...
...

...
. . .

...
ρNt−1 ρNt−2 ρNt−3 . . . 1

 . (3)

Our remaining parameters will be assigned the following prior distributions:

π(β) ∝ 1

π(τ) ∝ 1

σ2 ∼ IG (aσ, bσ)

ρ ∼ Beta (aρ, bρ)

i.e., we assume flat priors for β and τ (not τ 2), an inverse gamma prior for σ2, and a beta
prior for ρ. Putting these pieces together, our full hierarchical model is as follows:

π
(
β,Z, σ2, ρ, τ 2 |Y

)
∝N (Y |Xβ + Z,ΣY )×MCAR (Z | ρ)

× IG(σ2 | 2, 1)×Beta(ρ | 9, 1)× π
(
τ 2
)
, (4)

where ΣY is a diagonal matrix with elements τ 2it, X is the (NsNt × p) matrix of covariates,
Z =

(
Z′1, . . . ,Z

′
Ns

)′
, MCAR (Z | ρ) denotes the joint distribution induced by (2), and π (τ 2)

is the density for τ 2 which corresponds to a flat prior for τ (equivalent to an improper
IG(−1/2, 0)).

A.2 MCMC Algorithm

To fit the model in (4), we follow Section 3.4 of the text by Carlin and Louis [4] to construct
our MCMC algorithm. During the `-th iteration of our algorithm, we wish to sample from
the full conditional distribution of each of our model parameters. That is, we proceed as
follows:

1. Initialize all model parameters (iteration ` = 0): β(0),Z(0), (σ2)
(0)
, ρ(0), (τ 2)

(0)

2. Let ` = `+ 1

3. During iteration `:

(a) Draw β(`) from π
(
β |Y,Z(`−1), (σ2)

(`−1)
, ρ(`−1), (τ 2)

(`−1)
)

(b) Draw Z(`) from π
(
Z |Y,β(`), (σ2)

(`−1)
, ρ(`−1), (τ 2)

(`−1)
)

(c) Draw (σ2)
(`)

from π
(
σ2 |Y,β(`),Z(`), ρ(`−1), (τ 2)

(`−1)
)

(d) Draw ρ(`) from π
(
ρ |Y,β(`),Z(`), (σ2)

(`)
, (τ 2)

(`−1)
)
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(e) Draw (τ 2)
(`)

from π
(
τ 2 |Y,β(`),Z(`), (σ2)

(`)
, ρ(`)

)
4. Repeat steps 2 and 3 until convergence is achieved and until a sufficient number of

post-convergence samples have been obtained.

This algorithm has been coded in the R programming language [5], and the full conditional
distributions for each of our model parameters are described in the subsequent subsections.
For the sake of brevity, full conditional distributions will be written as π (θ | ·) for each
parameter, θ.

A.2.1 Full conditional for β

π (β | ·) ∝
∏
i

∏
t

N
(
Yit |x′itβ + Zit, σ

2
it

)
∝
∏
i

∏
t

exp

[
−1

2

(Yit − x′itβ − Zit)2

σ2
it

]

∝ exp

[
−1

2

∑
i

∑
t

(Yit − x′itβ − Zit)2

σ2
it

]
∝ . . .

∝ exp

[
−1

2

{
β′

(∑
i

∑
t

x′itxit/τ
2
it

)
β − 2β′

(∑
i

∑
t

x′it [Yit − Zit] /τ 2it

)}]
,

yielding

β | · ∼ N

[∑
i

∑
t

x′itxit/τ
2
it

]−1 [∑
i

∑
t

x′it [Yit − Zit] /τ 2it

]
,

[∑
i

∑
t

x′itxit/τ
2
it

]−1 . (5)

This can be simplied; e.g., we can write∑∑
x′itxit/τ

2
it =

(∑∑
nitx

′
itxit

)
/τ 2,

where (
∑∑

nitx
′
itxit) is constant, and thus only needs to be computed once.

A.2.2 Full conditional for Zi

π (Zi | ·) ∝N (Yi |Xiβ + Zi,Σi)×N (Zi |µi, Ki)

∝ exp

[
−1

2

{
(Yi −Xiβ − Zi)

′Σ−1i (Yi −Xiβ − Zi) + (Zi − µi)
′K−1i (Zi − µi)

}]
∝ . . .

∝ exp

[
−1

2

{
Z′i
(
Σ−1i +K−1i

)
Zi − 2Z′i

(
Σ−1i [Yi −Xiβ] +K−1i µi

)}]
,
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where µi and Ki are the conditional mean and variance given in (2). This yields

Zi | · ∼ N
(
µZi | ·,ΣZi | ·

)
, (6)

where

µZi | · =
[
Σ−1i +K−1i

]−1 [
Σ−1i [Yi −Xiβ] +K−1i µi

]
=
[
Σ−1i +

mi

σ2
R(ρ)−1

]−1 [
Σ−1i [Yi −Xiβ] +

1

σ2
R(ρ)−1

∑
j∼i

Zj

]

ΣZi | · =
[
Σ−1i +K−1i

]−1
=
[
Σ−1i +

mi

σ2
R(ρ)−1

]−1
.

While this requires looping through i = 1, . . . , Ns, where Ns is large, we are only required to
invert an Nt×Nt matrix, where Nt is relatively small. Finally, due to the impropriety of the
CAR model used, we impose a sum-to-zero constraint,

∑
i

∑
t Zit = 0, which is implemented

each iteration.

A.2.3 Full conditional for σ2

First, note that if we wish to write out the prior for Z (as opposed to the conditional prior
for Zi in (2)), it would take the form

π
(
Z | ρ, σ2

)
∝
(
σ2
)−(Ns−1)Nt/2

exp

[
− 1

2σ2
Z′
{

(D −W )⊗R(ρ)−1
}
Z

]
, (7)

where D is a diagonal matrix with elements mi, W is an adjacency matrix with elements

wij =

{
1 if i ∼ j

0 if i 6∼ j
,

and⊗ denotes the Kronecker product. While we will use this for deriving π (σ2 | ·), we haven’t
used this expression previously because (D −W ) is an Ns ×Ns matrix (i.e., it’s really big),
and thus can be burdensome to manipulate (or even store in a computer’s RAM). As such,
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we will need to do some additional algebra here to avoid storing this. For instance,

Z′
{

(D −W )⊗R(ρ)−1
}
Z =Z′

{
D ⊗R(ρ)−1

}
Z− Z′

{
W ⊗R(ρ)−1

}
Z

=
(
Z′1 . . . Z′Ns

) [
miR(ρ)−1

]
ii

 Z1
...

ZNs


−
(
Z′1 . . . Z′Ns

) [
wijR(ρ)−1

]
ij

 Z1
...

ZNs


=
∑
i

miZ
′
iR(ρ)−1Zi −

∑
i

Z′i
∑
j∼i

R(ρ)−1Zj

=
∑
i

Z′iR(ρ)−1

[
miZi −

∑
j∼i

Zj

]
. (8)

Using this, we can now find the full conditional distribution for σ2:

π
(
σ2 | ·

)
∝IG

(
σ2 | aσ, bσ

)
× π

(
Z | ρ, σ2

)
∝
(
σ2
)−aσ−1

exp

[
− b

σ2

] (
σ2
)−(Ns−1)Nt/2

exp

[
− 1

2σ2
Z′
{

(D −W )⊗R(ρ)−1
}
Z

]

∝
(
σ2
)−([Ns−1]Nt/2+aσ)−1

exp

− 1

σ2

bσ +

∑
i Z
′
iR(ρ)−1

[
miZi −

∑
j∼i Zj

]
2

 ,
(9)

which yields

σ2 | · ∼ IG

(Ns − 1)Nt/2 + aσ,

bσ +

∑
i Z
′
iR(ρ)−1

[
miZi −

∑
j∼i Zj

]
2


 . (10)

A.2.4 Full conditional for τ 2

π
(
τ 2 | ·

)
∝N (Y |Xβ + Z,Σ)× π

(
τ 2
)

∝
(
τ 2
)−NsNt/2

exp

[
−1

2
(Y −Xβ − Z)′Σ−1 (Y −Xβ − Z)

] (
τ 2
)−1/2

∝
(
τ 2
)−(NsNt−1)/2−1

exp

[
− 1

τ 2

∑
i

∑
t

(Yit − xitβ − Zit)2 nit
2

]
, (11)

which is the form of an IG
(

[NsNt − 1] /2,
∑

i

∑
t
(Yit−xitβ−Zit)2nit

2

)
. Note, a uniform prior

on τ implies π (τ 2) ∝ (τ 2)
−1/2

.
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A.2.5 Metropolis update for ρ

As there is not a conjugate prior for ρ, updates for this parameter require a little more work.
First, we will let φ = logit(ρ) = log(ρ/(1 − ρ)), and define expit(·) such that ρ = expit(φ);
this transformation allows us to work with a parameter with domain (−∞,∞), rather than
(0, 1). Later, we will require the Jacobian of this transformation,

Jφ (φ) =
d expit(φ)

dφ
=

1

1 + exp(φ)

exp(φ)

1 + exp(φ)
= ρ(1− ρ) = Jρ (ρ) . (12)

For our Metropolis updates, we will use a candidate density of the form

Qφ

(
φ(∗) |φ(t−1)) = N

(
φ(t−1), γ2

)
, (13)

where φ(∗) (and similarly ρ(∗) = expit
(
φ(∗))) is a candidate value, φ(t−1) (ρ(t−1)) is the value

of φ from the (t − 1)-th iteration of our sampler, and γ2 is the variance of our proposal
density, which we can tune this in order to achieve a desired acceptance rate.

In order to decide whether we want to accept a candidate value ρ(∗), we need to compute
the acceptance ratio, r, which can be expressed as:

r =
π
(
Z | ρ(∗), σ2

)
× π

(
ρ(∗)
)
× J

(
ρ(∗)
)

π (Z | ρ(t−1), σ2)× π (ρ(t−1))× J (ρ(t−1))

=


(
|R
(
ρ(∗)
)
|

|R (ρ(t−1)) |

)− (Ns−1)
2

×
{(

ρ(∗)

ρ(t−1)

)aρ (
1− ρ(∗)

1− ρ(t−1)

)bρ}

×
{

exp

[
− 1

2σ2

(
Z′
{

(D −W )⊗
[
R
(
ρ(∗)
)−1 −R (ρ(t−1))−1]}Z

)]}
=r1 × r2 × r3. (14)

In order to evaluate r1 and r3, we should first note two properties for R (ρ). First and
foremost,

R(ρ)−1 =



1
1−ρ2 − ρ

1−ρ2 0 . . . . . . 0

− ρ
1−ρ2

1+ρ2

1−ρ2 − ρ
1−ρ2

. . . . . . 0

0 − ρ
1−ρ2

1+ρ2

1−ρ2
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . 1+ρ2

1−ρ2 − ρ
1−ρ2

0 . . . . . . 0 − ρ
1−ρ2

1
1−ρ2


, (15)

a tridiagonal matrix. Using the properties of tridiagonal matrices, it can be shown that

|R(ρ)−1| = 1/
(
1− ρ2

)Nt−1
=⇒ |R(ρ)| =

(
1− ρ2

)Nt−1
,

thus avoiding the computational burdensome task of finding the determinant of a matrix.
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Using this, we find

r1 =

(
|R
(
ρ(∗)
)
|

|R (ρ(t−1)) |

)− (Ns−1)
2

=

(
1−

(
ρ(∗)
)2

1− (ρ(t−1))
2

)− (Ns−1)(Nt−1)
2

. (16)

We can then efficiently construct R(ρ)−1 and use the algebra in (8) to compute

r3 =

{
exp

[
− 1

2σ2

(
Z′
{

(D −W )⊗
[
R
(
ρ(∗)
)−1 −R (ρ(t−1))−1]}Z

)]}
= exp

[
− 1

2σ2

∑
i

Z′i

{
R
(
ρ(∗)
)−1 −R (ρ(t−1))−1}(miZi −

∑
j∼i

Zj

)]
. (17)

Putting these pieces together, we can compute our acceptance ratio

r =

(
1−

(
ρ(∗)
)2

1− (ρ(t−1))
2

)− (Ns−1)(Nt−1)
2

×
(
ρ(∗)

ρ(t−1)

)aρ (
1− ρ(∗)

1− ρ(t−1)

)bρ
× exp

[
− 1

2σ2

∑
i

Z′i

{
R
(
ρ(∗)
)−1 −R (ρ(t−1))−1}(miZi −

∑
j∼i

Zj

)]
.

We then accept a move to ρ(∗) with probability min (r, 1).

B Summary Statistics

All analyses presented in the manuscript were conducted using the posterior distribution of
the modeled mortality rate, Ŷit = βt+Zit, which offers further stability by borrowing strength
across both space and time. Note that while we obtain samples Ŷit, denoted as Ŷ

(`)
it , the `

superscript is omitted from this and subsequent expressions for the sake of notation.
For ease of visualizing spatial patterns, we present maps of both the expected mortality

rates and the local indicators of spatial association (LISA) statistics [6] for the beginning
and end of the study period. The LISA statistic is a local version correlate of the Moran’s
I identifying the degree to which counties with higher (or lower) than expected death rates
tend to cluster with neighboring counties which also have higher (lower) than expected death
rates. Thus the LISA statistics highlight patterns of local and regional spatial clustering in
the heart disease death rates. The LISA statistic is computed as:

Iit =
(Ŷit − Ȳt)

∑
j∼i(Ŷjt − Ȳt)/mi∑

i(Ŷit − Ȳt)2/Ns

,

where Ȳt =
∑Ns

i=1 Ŷit/Ns.
In addition to estimating the percent decline for each county, we also estimate the poste-

rior distribution for the coefficient of variation (CV ) for each time interval. The coefficient
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of variation in time interval t can be expressed as

CVt =

∑
i(Ŷit − Ȳt)2/(Ns − 1)

Ȳt
.

Changes in the coefficient of variation measure the changing magnitude of geographic dis-
parity among the counties [7].
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