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Abstract

Purpose—To investigate the ability of the propensity score to reduce confounding bias in the 

presence of nondifferential misclassification of treatment, using simulations.

Methods—Using an example from the pregnancy medication safety literature, we carried out 

simulations to quantify the effect of nondifferential misclassification of treatment under varying 

scenarios of sensitivity and specificity, exposure prevalence (10%, 50%), outcome type 

(continuous and binary), true outcome (null and increased risk), confounding direction, and 

different propensity score applications (matching, stratification, weighting, regression), and 

obtained measures of bias and 95% confidence interval coverage.

Results—All methods were subject to substantial bias towards the null due to nondifferential 

exposure misclassification (range: 0% to 47% for 50% exposure prevalence and 0% to 80% for 

10% exposure prevalence), particularly if specificity was low (<97%). Propensity score 

stratification produced the least biased effect estimates. We observed that the impact of sensitivity 

and specificity on the bias and coverage for each adjustment method is strongly related to 

prevalence of exposure: as exposure prevalence decreases and/or outcomes are continuous rather 

than categorical, the effect of misclassification is magnified, producing larger biases and loss of 

coverage of 95% confidence intervals. Propensity score matching resulted in unpredictably biased 

effect estimates.
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Conclusion—The results of this study underline the importance of assessing exposure 

misclassification in observational studies in the context of propensity score methods. While 

propensity score methods reduce confounding bias, bias owing to nondifferential misclassification 

is of potentially greater concern.
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Propensity score methods are used to estimate causal effects in observational studies when 

there are systematic imbalances in confounders across treatment groups under study, under 

assumptions of consistency, exchangeability, positivity, and correct model specification.1,2, 

This technique has gained in popularity in the medical literature,3 and much of the recent 

methodologic literature has focused on what covariates should be included in the propensity 

score,4 as well as the performance of different propensity score methods under different 

outcome types.5,6 However, the role of treatment misclassification as a threat to the ability of 

the propensity scores to reduce bias in the estimation of treatment effects has, to the best of 

our knowledge, not been explored, although one previous study suggested that this potential 

for bias should be explored and quantified.7 Misclassification of exposure is known to cause 

bias, which may be towards or away from the null, depending on the type of 

misclassification,8–10 and so appreciating the potential impact of misclassification of the 

propensity score is vital to understanding its operating characteristics.

To ground this methodologic exploration in the real world, we will use an example from the 

pregnancy medication safety literature. Research on the safety and efficacy of medication 

use during pregnancy poses particular exposure misclassification problems. Birth cohort 

studies, such as the Norwegian Mother and Child Cohort Study,11 collect medication use 

data directly from mothers via prospective self-report. Several studies on the accuracy of 

prospective maternal recall of medication use during pregnancy suggest that while 

specificity is often high (values of 0.99 to 1.00), sensitivity may be low (0.17 to 0.41), 

particularly for medications taken intermittently, such as analgesics.12,13 Comparing 

prescription redemptions in administrative databases14 to self-report data often shows 

substantial disagreement between these information sources,12,13 and because pregnancy is a 

major predictor of medication discontinuation,15 women may incorrectly be classified as 

exposed when they have reduced or discontinued medication use. Many medications that 

women take during pregnancy may be acquired over-the-counter (OTC), or from other 

sources, and will not be captured in databases relying on prescription fills. In all of these 

scenarios, misclassification of a binary exposure is likely to be nondifferential with respect 

to outcome, and so has an expectation of bias towards the null over many studies, although 

individual studies may be biased towards or away from the null.9,10,16

To our knowledge, no study has examined the impact of nondifferential exposure 

misclassification on the performance of the most common propensity score methods 

employed in the pharmacoepidemiology literature. Using a simulation study constructed 

with realistic parameters from the pregnancy medication safety literature, we compared the 

validity of estimates of the exposure effect derived from the application of propensity score 
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methods under varying degrees of nondifferential exposure misclassification. Secondarily, 

we have compared the bias and coverage resulting from misclassified propensity scores 

across a variety of common applications of the propensity score. Our aim was to determine 

the extent to which the ability of propensity score methods to reduce bias was affected by 

nondifferential exposure misclassification, and additionally, whether some applications of 

propensity score methods perform better or worse under certain misclassification scenarios.

METHODS

No ethics review was required because this is a simulation study.

For this simulation study, we consider the case of NSAID use during pregnancy and a 

continuous outcome, birth weight. NSAIDs are analgesic medications available through both 

prescription and OTC avenues. Prior research on the safety of NSAID use during pregnancy 

has produced inconsistent results, with some studies suggesting an increased risk of 

malformations17,18 or low birth weight,19 while others find no effect.20 Despite 

recommendations that women discontinue NSAID use during the first and third trimester in 

pregnancy, as many as 19% of women use NSAIDs during pregnancy21,22 with wide 

variation in prevalence (7% to 19%). This variation is due to whether drug utilization studies 

considered only prescription, or prescription plus OTC drug use as well as differences in 

prescribing practices between countries. Further, among persons with certain pain 

indications such as migraine or arthritis, prevalence of NSAID use is even higher. For 

studies using drug registries or administrative records, women who acquired NSAIDs OTC 

will not be counted as exposed, meaning that studies will consider some women unexposed 

when they were truly exposed (i.e. decreased sensitivity). Conversely, registry and 

administrative data reflect only medications prescribed or dispensed, not medications 

actually consumed, which means that some women classified as exposed are truly 

unexposed (i.e. decreased specificity).

Data generation

The data were generated to closely follow realistic scenarios for NSAID exposure, 

pregnancy outcome, and confounders. Details on the parameters used for the simulation are 

outlined in Table 1. We simulated datasets that included exposure (A), confounders (X1 

throughX5,), and an outcome Y; the proposed causal model is shown in Figure 1. The five 

confounders were simulated with properties similar to those found in the birthing 

population: X1 (analogous to indication for NSAID use, e.g. severe pain, with prevalence 

0.50)23, X2 (analogous to folate supplementation, with prevalence 0.60)24, X3 (analogous to 

smoking during pregnancy, with prevalence 0.15)25, X4 (analogous to concomitant opioid 

use, with prevalence 0.05)26, X5 (analogous to maternal age, with a mean of 30 and a 

standard deviation of 5). Exposure A, with a prevalence of 50% or 10%, was simulated 

conditional on these confounders. The nodes A* and UA represent the misclassified 

exposure and all sources of error leading to misclassification of the exposure, respectively. 

Exposure was simulated as in Equation 1.

Equation 1

Model used to simulate probability of treatment, A, conditional on confounders.
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p (A X1, …, X5) = [exp(α0 + X1α1 + X2α2 + X3α3 + X4α4 + X5α5)]/[1 + exp(α0 + X1α1 + X2α2 + X3α3
+ X4α4 + X5α5)]

We considered two possible outcome specifications: a continuous variable with a mean of 

3500 grams and a standard deviation (SD) of 500 grams, analogous to the mean and SD of 

birth weight (grams) among term births (Equation 2), and a binary outcome with a 

prevalence of 5%, analogous to low birthweight (< 2500 grams) among live births (Equation 

3).27 The outcome variables were generated conditional on the exposure A and the 

confounders X1 through X5, from the models described in Equations 2 and 3.

Equation 2

Model used to simulate continuous outcome, Y, conditional on treatment A and confounders.

E (Y | A, X1, …, X5) = β0 + AβA + X1β1 + X2β2 + X3β3 + X4β4 + X5β5

Equation 3

Model used to simulate binary outcome, Y, conditional on treatment A and confounders.

p (Y |A, X1, …, X5)
= [exp(β0 + AβA + X1β1 + X2β2 + X3β3 + X4β4 + X5β5)]
/[1 + exp(β0 + AβA + X1β1 + X2β2 + X3β3 + X4β4 + X5β5)]

For the continuous outcome, the true mean difference in birth weight was set to 200 grams, a 

difference that would be of clinical concern.28 Similarly, the true effect size for the binary 

outcome was set to an odds ratio of 2.0 (log odds of 0.7). We also considered continuous and 

binary outcome scenarios in which the true effect of treatment was zero. We simulated joint 

confounding by the confounders X1 through X5 to produce effect estimates that (1) 

overestimated the true effect size by about 15% or (2) underestimated the true effect size by 

about 15%. Overall, the data generation process was planned in order to show realistic, 

clinically-meaningful true effect sizes, which were moderately biased due to confounding.

To assess the impact of varying degrees of exposure misclassification, we created 

misclassified exposure variables A* from our original (correctly classified) exposure 

variable A. Values for sensitivity and specificity included: 1.0, 0.99, 0.97, 0.95, 0.90, 0.80, 

and 0.70; these values represent measured (if somewhat optimistic) values for sensitivity and 

specificity found in the pregnancy medication literature.12,13 We investigated all 49 possible 

combinations, assuming nondifferential misclassification; because results from the 70% 

scenarios were uniformly poor, we have included these data only in the supplemental 

material.

Analytic approaches

We first fit a propensity score model using logistic regression with the correctly classified 

exposure, A, as the dependent variable and the confounders X1 throughX5 as independent 
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variables; we derived the predicted probability of prenatal exposure to NSAIDs from this 

model. We then fit propensity score models for all combinations of sensitivity and 

specificity, resulting in 49 predicted probabilities of exposure. We used the propensity scores 

to calculate inverse probability of treatment weights (IPTW), in which exposed units 

received weights of [1/PS] and unexposed received weights of [1/(1-PS)]. We also calculated 

standardized morbidity/mortality rate weights (SMRW), where exposed individuals received 

weights of 1 and unexposed received weights of [PS/(1-PS)]. After deriving the propensity 

score and weights, we fit outcome models in six ways: (1) Fitting an unadjusted model, (2) 

Adjusting for the propensity score as a covariate in the multivariable model, (3) Matching on 

propensity score, using a nearest neighbor 1:1 matching algorithm and a caliper equal to 0.2 

of the standard deviation of the logit of the propensity score, (4) Calculating five strata of the 

propensity score based on the distribution of the propensity score in the exposed, stratifying 

the outcome model to estimate the effect of exposure on outcome within each stratum, and 

calculating a pooled effect estimate across strata, (5) Fitting an IPT-weighted model, and (6) 

Fitting an SMR-weighted model. Matching and stratification were performed using the R 

package matchit.29 Weighted models were fit with robust standard errors using the R 

package sandwich.30 We performed steps 1–6 on the perfectly classified exposure, A, and 

then repeated them using each combination of misclassified exposure, A*, resulting in 294 

estimates (6 methods × 49 misclassification scenarios), and then repeated this process for 

scenarios with varying exposure prevalence (50%, 10%), outcome type (continuous, 

categorical), confounding structure (overestimate vs. underestimate of the true effect) and 

effect size (mean difference of −200 for continuous outcomes, log-odds of 0.7 for 

categorical outcomes, effect size of 0 for both continuous and categorical outcomes). Results 

are reported as the mean difference between exposed and unexposed individuals (β), mean 

percent bias (difference between truth and observed, divided by truth; only reported for 

scenarios where the true effect was not zero), and coverage of 95% confidence intervals (CI) 

(percent of estimates in which the 95% confidence interval contained the true value). For 

each scenario, we simulated 1,000 cohorts with sample size N=10,000. All simulations were 

carried out using RStudio.

RESULTS

The results of the simulation are presented by outcome type (continuous or categorical), 

direction of confounding (underestimate vs overestimate), exposure prevalence (50% vs 

10%), and true effect size (increased risk vs. no effect). Performance of PS methods varied 

according to the scenarios considered, with some overall trends emerging. Results for 

continuous and categorical outcome models, in which exposure prevalence was 10%, are 

presented in figures 2 and 3, and selected results are shown in Table 2. Additional, expanded 

results from these and other analyses can be found in the online supplemental material. 

Continuous outcome models were more biased and had lower coverage than categorical 

outcome models across scenarios where exposure was misclassified; PS stratification 

generally outperformed other methods, and this advantage increased as specificity (and to a 

lesser extent, sensitivity) worsened: for example, at 97% sensitivity and specificity, PS 

stratified estimates were biased by about 15% versus biases equal to or in excess of 20% for 

other methods, and for 97% sensitivity and 90% specificity, stratified estimates 
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underestimated the true effect by almost 40%, while other estimates underestimated by 45% 

or more (Table 2). PS adjusted and SMR weighted models produced similar estimates 

regardless of the degree of misclassification, with IPT weighted models performing 

marginally less well. Scenarios where exposure prevalence was 50% were less biased due to 

misclassification (figures S2 and S3), and as misclassification increased, PS stratified 

models exhibited less bias and better coverage than weighted or adjusted results. Models 

with 50% exposure prevalence were also more susceptible to losses in sensitivity, compared 

to models with 10% exposure prevalence.

In Figures 2 and 3, Panels A and B show scenarios where confounding resulted in an 

overestimate of the true effect. PS stratified models generally had a slight advantage over 

other methods for scenarios where exposure prevalence was 10%; however, increasing 

exposure prevalence to 50% resulted in PS matched estimates with improved coverage.

PS matched estimates initially appeared to outperform other methods as specificity 

decreased, particularly in cases where confounding was negative. However, this observation 

is limited to better coverage, as percent bias for matched estimates tended to be comparable 

to IPTW, SMRW, and PS adjusted results. Examination of the sample sizes included in the 

PS matched samples suggests that coverage is improved due to smaller sample size and 

correspondingly wider confidence intervals (Supplemental Figure 7); this was a particular 

problem for rarer (10%) exposures but was also present for the more common exposure. 

Additionally, when confounding was negative and exposure prevalence was 50%, PS 

matching methods produced estimates that were biased in the opposite direction as the 

confounded estimates; e.g., control for confounding using matching resulted in an 

overestimate of the true effect, even when no misclassification was present (supplemental 

figures s3 and s4, panels C and D) and when the true effect of exposure was null 

(supplemental figures s6 and s6, panels C and D). Overall, PS matching estimates were less 

predictably biased than other methods, and showed substantial sensitivity to 

misclassification, exposure prevalence, and confounding structure.

We observed one other phenomenon that deserves attention. Examining the graph of 

coverage shown in Figure 2B shows a “crossing of the curves”, in which PS methods are 

close to 95% and then decline, whereas unadjusted estimates begin close to 40% higher than 

the true effect, decrease until at specificity values of 99 and 97% their bias is close to zero, 

and then decline. This pattern, although obviously limited to a specific scenario in which 

confounding results in an overestimation, illustrates the balance between two sources of 

systematic error: bias due to misclassification, and bias due to confounding.

DISCUSSION

We compared the performance of five common implementations of propensity score 

methods, including adjustment, two methods of weighting, matching, and stratification, for 

varying exposure prevalence, and for both continuous and categorical outcome models. We 

found that all methods were vulnerable to bias due to misclassification of exposure, and that 

losses of specificity had a greater impact on effect estimates than losses of sensitivity. PS 

matching more often produced estimates with worse coverage and greater bias, although in 
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the presence of even moderate misclassification, all methods showed substantial loss of 

coverage and increase in bias.

The effects of misclassification were more extreme for an exposure with 10% prevalence 

compared to 50% prevalence. A recent simulation study on applying PS methods to rare 

exposures found that an exposure prevalence of 10% produced estimates with low bias and 

acceptable variability in comparison to very rare exposure;31 however, this study did not 

consider systematic error due to misclassification. In reality, studies with exposure 

prevalence of 10% may be more biased than expected if exposure data are misclassified.32 

Additionally, we found that estimates from categorical outcome models less biased than 

estimates from continuous outcome models where exposure prevalence and misclassification 

were similar.

It is unsurprising that PS stratification is less vulnerable to misclassification than PS 

matching. In PS matching, an exposed individual is matched to unexposed individuals, 

conditional on the propensity score. In the case of moderate to low specificity and low 

sensitivity, few truly exposed individuals are included in the outcome analysis, which will 

clearly result in bias towards the null. Prior research on the performance of matching 

estimators compared to other PS methods is conflicting, with one study showing that 

matching on the PS is preferable to stratification for purposes of reducing bias due to 

confounding;33 however, these studies assumed perfect classification of exposure. Other 

recent work suggests that PS matching can substantially increase bias compared to other 

estimators.34 Our results are more in line with the latter study, and suggest that other sources 

of bias, such as misclassification, should be considered when selecting an adjustment 

method.

It is less clear why PS stratification should outperform PS adjustment or weighting. PS 

stratification methods estimate the treatment effect within each stratum, and so fitting the 

parametric model within each stratum relies only on local, rather than global assumptions; 

this increases the robustness of the estimate,29 and could explain why PS stratification 

methods appear less vulnerable to bias due to misclassification of the exposure.

A possible, and alluring, conclusion to be drawn from these results, given that the unadjusted 

estimates are often less biased, with better coverage than the adjusted estimates, particularly 

for poor sensitivity and specificity, is that researchers are better off not adjusting for 

confounders. While this is true in the case of this simulation, when the magnitude of bias 

due to confounding is known and fixed, this conclusion should not be generalized to 

observational research, where the magnitude of this bias is unknown. Rather, this finding 

illustrates a long-understood phenomenon when working with real data: that effect estimates 

are subject to multiple sources of bias.

Propensity score stratification, adjustment, and inverse probability of treatment weighting 

estimate the average treatment effect in the population (ATE), or the effect we would expect 

to see if all exposed individuals were unexposed. Matching and standardized morbidity/

mortality rate weighting, by contrast, estimate the average treatment effect in the treated 

(ATT). One recent study examining the performance of different PS methods for a rare 
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exposure found that ATT estimators were more reliable than ATE estimators,31 which is not 

consistent with our findings, although this may be explained by the fact that we simulated 

our outcome model in a full cohort (ATE). Further research should seek to clarify whether 

ATE or ATT measures are more susceptible to exposure misclassification.

This study has several limitations that should be kept in mind when considering the 
results

As with all simulation studies, this study is likely an oversimplification of reality. We 

simulated independent, rather than correlated confounders, and examined scenarios where 

only the exposure, not the confounders, was misclassified. One prior study on the impact of 

misclassification of confounders included in the propensity score found that even small 

levels of covariate measurement error reduced the ability of the propensity score to control 

confounding; further, higher correlation among covariates led to increased bias.35 This 

suggests that we might expect to see more extreme levels of bias, if we had used a more 

complex confounding structure. We elected to limit our study to misclassification of the 

exposure, rather than exposure and confounders, but future studies should examine the 

impact of joint misclassification of exposure, as well as differential exposure 

misclassification with respect to outcome, on effect estimation within the propensity score 

context.

This is not the first study to have observed and described a problem of exposure 

misclassification in the pregnancy medication literature,12,13 and others have noted that 

misclassification of exposure in epidemiologic studies is an endemic and serious problem in 

the field.16 Indeed, the idea that misclassification of exposure will result in bias of effect 

estimates, likely towards the null, is not new in observational research,8,9,36 and various 

methods, including regression calibration and multiple imputation as well as probabilistic 

bias analysis, have emerged to address this problem,37–41 although the application of these 

techniques has not yet been tested in propensity score methods. Further, studies of 

medication safety during pregnancy have recognized,42 and in some cases taken steps to 

correct for,43 exposure misclassification. Our study adds to the current literature by 

underlining the importance of considering multiple sources of systematic bias, not just 

confounding, when using propensity score methods, particularly propensity score matching.

It is important to note that values of sensitivity and specificity that we refer to as “low” are 

in fact common in studies of medication use during pregnancy,12,13 and that for some 

medications such as OTC analgesics, both maternal recall and capture in automated 

electronic may be far worse than the “worst case” 80% scenario we used in this study. 

Nondifferential misclassification tends to results in bias towards the null,16 so this kind of 

systematic error will generally not result in false positive studies. However, because studies 

of safety and efficacy of drugs used in pregnancy are almost exclusively performed using 

observational studies, the fact that we are certainly failing to detect meaningful risks should 

be of major concern.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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IPTW inverse probability of treatment weight
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SE sensitivity

SP specificity

NSAIDs non-steroidal anti-inflammatory drugs

OTC over-the-counter
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Bullet summary

• Different propensity score methods show varying levels of bias due to 

nondifferential exposure misclassification.

• Bias due to misclassification was greater than bias due to choice of propensity 

score method.

• Difference between methods was more pronounced for lower prevalence 

exposures.

• Losses in specificity resulted in more bias than losses in sensitivity.

• Propensity score matching most often performed worst compared to other 

methods.
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Figure 1. 
Causal diagram showing measurement error, UA, leading to nondifferential misclassification 

of the exposure, A, into A*. X1 through X5 are confounders of the A-Y association. In this 

simulation study, A is NSAID use in pregnancy, Y is birth weight, X1 is indication for 

NSAID use, X2 is folate supplementation, X3 is smoking during pregnancy, X4 is 

concomitant opioid use, and X5 is maternal age.
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Figure 2. 
Results from continuous outcome models showing (A) Percent bias and (B) coverage for 

positive confounding. Results are for propensity score matching, regression adjustment, 

stratification, weighted, and unadjusted models, under varying values of sensitivity and 

specificity, with a true mean difference of −200 and exposure prevalence set to 10%. Percent 

bias is calculated as [(observed – truth)/truth]*100%. Coverage is defined as the percent of 

simulations in which the confidence interval of the effect estimate contained the true effect.

Wood et al. Page 14

Med Care. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Results from categorical outcome models showing (A) Percent bias and (B) coverage for 

positive confounding. Results are for propensity score matching, regression adjustment, 

stratification, weighted, and unadjusted models, under varying values of sensitivity and 

specificity, with the true log-odds of Y set to 0.7 and exposure prevalence set to 10%. 

Percent bias is calculated as [(observed – truth)/truth]*100%. Coverage is defined as the 

percent of simulations in which the confidence interval of the effect estimate contained the 

true effect.
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