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Abstract

Background and Aims—To assess the burden of excessive alcohol use, researchers estimate 

alcohol-attributable fractions (AAFs) routinely. However, under-reporting in survey data can bias 

these estimates. We present an approach that adjusts for under-reporting in the estimation of 

AAFs, particularly within subgroups. This framework is a refinement of a previous method 

conducted by Rehm et al.

Methods—We use a measurement error model to derive the ‘true’ alcohol distribution from a 

‘reported’ alcohol distribution. The ‘true’ distribution leverages per-capita sales data to identify the 

distribution average and then identifies the shape of the distribution with self-reported survey data. 

Data are from the National Alcohol Survey (NAS), the National Household Survey on Drug Abuse 

(NHSDA) and the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). 

We compared our approach with previous approaches by estimating the AAF of female breast 

cancer cases.

Results—Compared with Rehm et al.’s approach, our refinement performs similarly under a 

gamma assumption. For example, among females aged 18–25 years, the two approaches produce 

estimates from NHSDA that are within a percentage point. However, relaxing the gamma 

assumption generally produces more conservative evidence. For example, among females aged 

18–25 years, estimates from NHSDA based on the best-fitting distribution are only 19.33% of 

breast cancer cases, which is a much smaller proportion than the gamma-based estimates of 

approximately 28%.
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Conclusions—A refinement of Rehm et al.’s approach to adjusting for underreporting in the 

estimation of alcohol-attributable fractions provides more flexibility. This flexibility can avoid 

biases associated with failing to account for the underlying differences in alcohol consumption 

patterns across different study populations. Comparisons of our refinement with Rehm et al.’s 

approach show that results are similar when a gamma distribution is assumed. However, results are 

appreciably lower when the best-fitting distribution is chosen versus gamma-based results.
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INTRODUCTION

Several health conditions have been associated with alcohol use, including many cancers [1–

5]. Some conditions, such as female breast cancer, may be affected by even moderate 

consumption levels [4,6,7]. Alcohol-attributable fractions (AAFs) represent the number of 

cases that could have been avoided if no one had consumed alcohol as a proportion of all 

cases holding all other risk factors constant [8]. Accordingly, AAFs can be used to assess the 

public health impact of alcohol use and subsequent social costs [9]. AAFs are calculated by 

combining relative risk (RR) estimates with an estimated probability distribution over 

consumption levels. RR estimates can be obtained from meta-analyses or systematic reviews 

on alcohol consumption and disease risk, while the probability distribution over 

consumption levels is estimated typically with survey data. However, survey respondents 

may under-report consumption, because alcohol use is perceived to be a socially undesirable 

behavior [10] or because of recall error. Additionally, some underestimation may occur 

because of inaccurate assessments of the ethanol content of alcoholic beverages [11]. If the 

probability distribution is underestimated (i.e. more weight is placed on zero consumption 

and less weight is placed on higher levels of consumption), then AAFs will be 

underestimated. The quantity of alcohol reported in nationally representative surveys 

frequently falls short of the quantity of alcohol reported in records of per-capita sales [10–

13]. Among the three nationally representative surveys we use in this paper, coverage rates 

range between 34 and 56%. Some of this discrepancy may reflect factors beyond under-

reporting, such as undersampling dependent drinkers [11].

Recently, approaches have been developed that may mitigate the effect of under-reporting 

[10,11,13–18]. These approaches use per-capita sales data to adjust the distribution of 

alcohol consumption. For example, Rey et al. [18] shifted all observations by a common 

multiplier. Rehm et al. [10] proposed a more refined approach that involves adjusting the 

mean and standard deviation (SD) of alcohol consumption and then deriving the parameters 

of a standard gamma distribution. Although the approach proposed by Rehm et al. [10] is 

sophisticated, it has at least three limitations. First, Rehm et al. [10] assume that alcohol use 

follows a gamma distribution. Secondly, their approach to adjusting the standard deviation 

has little statistical or theoretical basis. Thirdly, they assume that a constant multiplier 

applies unilaterally to all demographic subpopulations, which can introduce bias if 

demographic characteristics are related to the extent of under-reporting.
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We refine Rehm et al.’s [10] approach by relaxing the gamma assumption and eliminating 

the standard deviation adjustment. We show that when one adjusts the scale parameter of a 

gamma distribution, the resultant probability distribution is nearly identical to the 

distribution obtained using Rehm et al.’s [10] approach. However, one can easily adjust the 

scale parameter of a variety of statistical distributions. Therefore, our approach can be 

extended to many different probability distributions. Although previous research supported 

the use of the gamma distribution to model alcohol consumption [19], we have found that 

the gamma distribution frequently provides a poor fit. We have also found that AAF results 

are sensitive to the choice of statistical distribution. Accordingly, the additional flexibility of 

our approach is not trivial. Although the methodology described in this paper could be 

applied to other diseases or estimation objectives, we illustrate our method by calculating the 

AAF of breast cancer cases.

DESCRIPTION OF THE REHM APPROACH AND NEW METHOD

AAFs can be calculated as follows [20]:

(1)

where RR(x) denotes an RR mapping that indicates the risk of disease associated with 

consuming x grams of alcohol per day and normalized such that RR(0) = 1. The probability 

density function (PDF) of alcohol consumption is denoted by f(x). Typically, RR(x) is 

estimated by combining evidence meta-analytically on the relationship between alcohol 

consumption and disease risk. The PDF of alcohol consumption is estimated typically using 

nationally representative survey data, such as the Behavioral Risk Factor Surveillance 

System. Supporting information, Appendix S1 provides additional details regarding the 

estimation of AAFs, including details regarding integral approximation and confidence 

interval estimation.

The generalized gamma, standard gamma, Weibull and log-normal distributions all reflect 

many of the characteristics typically observed in alcohol consumption data (e.g. non-

negative, right-skewed, large probability mass at zero). The generalized gamma distribution 

is particularly useful, as it nests the gamma, Weibull and log-normal distributions as special 

cases [21–23]. Accordingly, the generalized gamma distribution can be used to test whether 

any of the nested distributions are appropriate. Furthermore, if all other distributions are 

rejected, the generalized gamma is minimally restrictive and less susceptible to 

misspecification bias.

Rehm et al. [10] developed a method to shift an alcohol consumption distribution that 

accounts for under-reporting. Their approach proceeds as follows. First, they calculate a 

multiplier that relates per-capita sales to the average amount of alcohol reported:
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(2)

where P denotes the amount of alcohol sold per capita and C denotes the average amount of 

alcohol reported by all survey respondents (including drinkers and non-drinkers). Secondly, 

for each subpopulation of interest, the subpopulation-specific mean is shifted as follows:

(3)

where μj, shifted denotes the shifted mean for the jth subpopulation, and Cj denotes the sample 

average for the jth subpopulation. Thirdly, they shift subpopulation-specific standard 

deviations. For men, the shifted standard deviation is obtained by applying the following 

equation:

(4)

An analogous equation is used for women:

(5)

Rehm et al. [10] obtained the coefficients in equations 4 and 5 by regressing the standard 

deviation of alcohol consumption from several different surveys onto each survey’s mean 

alcohol consumption and adjusting for gender. Finally, Rehm et al. [10] transformed the 

shifted mean and SD into shape and scale parameters of a standard gamma. This approach 

has been used by other researchers. For example, Jones et al. [24] used this approach to 

update England-specific estimates of AAFs for a variety of diseases.

Rehm et al.’s [10] approach has at least two drawbacks. First, one must assume that alcohol 

consumption follows a standard gamma distribution. Secondly, equations 4 and 5 represent 

ad-hoc adjustments with little statistical or theoretical basis and may lead to meaningful and 

indeterminate biases in AAFs. The gamma is not, a priori, an inappropriate distribution. In 

previous work the unique mapping from mean and standard deviation to gamma distribution-

specific parameters was probably perceived as a convenient feature to be exploited. 

Furthermore, Rehm et al. did compare the gamma with alternative distributions, and showed 

that the gamma provided a relatively good fit. However, it rarely provided the best fit. Our 

approach allows researchers to discover and use the best-fitting distribution. This 

generalizability is particularly important, as researchers continue to model consumption 

from a variety of surveys on distinct populations and moving into future generations.

Our approach is based on a measurement error model that relates the actual volume of 

alcohol consumed to the observed volume of alcohol consumed. We then derive an adjusted 

probability distribution from basic statistical principles. Thus, our approach can be extended 
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to several statistical distributions. Let X denote actual alcohol consumption, and let X* 

denote self-reported alcohol consumption. Our measurement error model is

(6)

Equation 6 assumes that all respondents under-report their alcohol consumption by a fixed 

proportion (i.e. m). Although restrictive, this assumption was also made in Rehm et al. [10] 

and elsewhere [13–18].

If one combines equation 6 with an assumed probability distribution for X*, then one can 

derive the probability distribution of X. For example, assume that X* is gamma-distributed 

with scale denoted by θ and shape denoted by α. Then X is also gamma-distributed with 

scale equal to m · θ and shape equal to α [25]. Thus, the probability distribution over actual 

alcohol consumption can be estimated in two steps:

1. Estimate gamma scale and shape parameters using the observed survey data, 

which gives the distribution of X*.

2. Shift the estimated gamma scale with the multiplier defined in equation 2 to 

obtain the distribution of X.

With minor modifications, this approach can be generalized to other distributions by 

substituting the distribution used in step 1 and the scale parameter that is shifted in step 2. 

We provide additional detail on the use of this approach with the gamma and other statistical 

distributions in Supporting information, Appendix S2.

The intuition underlying our approach (and Rehm et al.’s [10]) is that per-capita sales data 

provide an accurate measure of average alcohol consumption, but do not inform how alcohol 

consumption is distributed around that average. Thus, survey data are used to estimate the 

shape of alcohol consumption distributions. Accordingly, the statistical distribution used 

should capture the ‘shape’ of the alcohol consumption distribution well. Standard goodness-

of-fit tests, such as Kolmogorov–Smirnov testing, could be used to evaluate this. 

Additionally, the generalized gamma can be used to test whether one can reject gamma, 

Weibull or log-normal distributions [23].

Considerable heterogeneity in alcohol consumption is observed frequently throughout 

demographic populations. For example, in the National Survey on Drug Use and Health, the 

percentage of respondents aged 21 years or older who reported past-month heavy alcohol 

use was substantially different when comparing across gender, age and race/ethnicity 

categories [26]. Thus, it is unlikely that a single probability distribution will provide the best 

fit for all demographic subpopulations (e.g. females aged 21–25, females aged 26–34). Our 

methodology allows researchers to use demographic-specific distributions. Essentially, one 

can construct a probability distribution over alcohol consumption at the population level that 

is a mixture of subpopulation-specific distributions. Although we apply a common multiplier 

to each subpopulation-specific distribution, this allows the adjusted mixture distribution to 

reflect the degree to which alcohol consumption distributions are heterogeneous in the 
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unadjusted data. To ensure that the resultant mixture distribution is centered on per-capita 

sales, we calculate the overall survey average (i.e. C in equation [2]) by taking the weighted 

sum of each subpopulation- and distribution-specific average.

METHODS

To illustrate our approach, we estimated the AAF of female breast cancer cases using three 

distinct survey sources. Specifically, we used data on adults aged 18 or older from (i) the 

1999–2002 National Household Survey on Drug Abuse (NHSDA) (n = 140 417) [27], (ii) 

the 1999–2000 National Alcohol Survey (NAS) (n = 7562) [28] and (iii) the 2001–2002 

National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) (n = 42 802) 

[29]. We chose these three data sources because they collect alcohol consumption data for 

the US population during a comparable period, but with different survey instruments. This 

allows us to assess the extent to which our method and Rehm et al.’s [10] method produce 

similar findings across disparate surveys.

NHSDA records the number of days in the past 30 in which alcohol was consumed, the 

typical number of drinks consumed per drinking day and the number of days in the past 30 

in which five or more drinks were consumed. We derived a measure of average alcohol 

consumption per day in standard drinking units as described in Stahre et al. [30]. We 

converted standard drinking units into g/day by assuming that a standard drink contains 14 g 

of ethanol. The NAS instrument uses a graduated frequency approach to record alcohol 

consumption. The graduated frequency approach asks respondents to report the frequency of 

occasions when they consume increasing quantities of alcohol. We used beverage-specific 

responses to derive the number of drinks per day, and we assumed 14 g of ethanol per drink 

to calculate the average grams per day of ethanol. The NESARC instrument asks about 

beverage-specific past-year alcohol consumption, and differentiates within beverage types 

higher versus lower ethanol content beverages. For example, respondents are asked to 

differentiate between 80- and 100-proof liquor. The public use NESARC file contains a pre-

calculated measure of ounces of ethanol per day based on applying beverage-specific 

ethanol conversion factors, which we converted into grams.

Table 1 presents descriptive statistics from each data source. The demographic 

characteristics of each of the survey samples are broadly similar. However, reported alcohol 

consumption varies extensively across survey sources. For example, 34% of respondents in 

the NAS reported any alcohol use, while 65% of respondents in the NESARC reported any 

alcohol use. Despite this high variation in drinker proportions, average daily consumption 

levels vary only between 6.15 and 9.04 g/day.

To calculate the multiplier defined in equation 2, we used figures reported by the National 

Institute on Alcohol Abuse and Alcoholism [31]. These estimates were derived from alcohol 

beverage sales records collected by the Alcohol Epidemiologic Data System and from 

industry sources. We calculated average annual per capita sales throughout 1999–2002. 

After dividing by 365, average per capita sales for 1999–2002 were 17.95 g/day.
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To estimate the RR of breast cancer associated with consuming alcohol, we replicated an 

analysis conducted by Bagnardi et al. [6]. Specifically, we used a generalized least-squares 

meta-regression model to estimate the dose–response relationship. Our results indicate the 

following dose–response relationship:

(7)

RESULTS

Table 2 demonstrates the calculation of survey-specific multipliers. First, for each survey 

and substratum, we tested the fit of a generalized gamma, gamma, Weibull and log-normal 

distribution. We used three tests to determine the best-parametric model: (1) Kolmogorov–

Smirnov testing, (2) χ2 testing and (3) generalized gamma-based testing. All testing results 

are reported in Supporting information, Appendix S3. Ultimately, we determined the best-

fitting distribution based on Kolmogorov–Smirnov testing, which generally agreed with 

other testing criteria. Secondly, we predicted mean average daily alcohol consumption 

(ADC) using parameter estimates associated with each substrata-specific parametric model. 

For example, if the best-fitting model is the log-normal distribution, then we used the log-

normal mean function: E[X] = exp(μ + 0.5 · σ2) to predict mean ADC. Thirdly, we 

calculated an overall mean ADC by taking the weighted sum of each substratum-specific 

mean, where weights represent the proportion of the sample within each substratum. 

Fourthly, we calculated the multiplier in equation 2 by dividing per-capita sales by the 

overall survey average.

Table 2 indicates that there is substantial heterogeneity throughout survey sources with 

respect to survey coverage. Specifically, survey coverage rates range from 34% (NAS) to 

56% (NESARC). Calculated multipliers reflect this heterogeneity by assigning larger 

multipliers to surveys with lower coverage rates. There are some minor differences in 

predicted mean ADC levels and simple sample means, which are probably driven by the fact 

that best-fitting models capture more effectively the tails of alcohol consumption 

distributions.

Figures 1–3 present estimated PDFs for each substratum and survey source used. 

Specifically, we present the (i) unadjusted best-fitting density, (ii) unadjusted gamma 

density, (iii) adjusted best-fitting density using our method and (iv) adjusted gamma density 

using Rehm et al.’s [10] method. In many cases, gamma densities assign nearly uniform 

probabilities to a substantial portion of the right tail of the alcohol consumption distribution. 

In contrast, best-fitting densities frequently assign higher probabilities to lower consumption 

levels and diminishing probabilities throughout the right tail of the distribution. Capturing 

these features of the underlying data is not possible with Rehm et al.’s [10] approach and is 

likely to have important implications in resulting estimates of AAFs. Specifically, if disease 

risks increase rapidly as consumption levels increase, then the relatively lower emphasis that 

best-fitting densities place on higher levels of alcohol consumption could result in lower 

estimated AAFs. In some cases, best-fitting densities are more similar in shape to the gamma 
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density, and in these cases we might expect there to be less discrepancy between the two 

adjustment methodologies.

Table 3 presents estimates of the AAF of breast cancer cases among females using non-

adjusted alcohol exposure distributions as well as both adjustment methodologies. We make 

three observations. First, the AAF estimates based on adjusted alcohol exposure distributions 

are larger than estimates based on non-adjusted alcohol exposure distributions. Secondly, the 

estimates obtained using the approach detailed in Rehm et al. [10] are similar to those 

obtained using our new approach when the gamma assumption is imposed, suggesting that 

the main contribution of our approach is in providing flexibility over the choice of 

distribution. Thirdly, choosing the parametric distribution with which to model alcohol 

exposures flexibly makes a difference in the AAF estimates. In fact, AAF estimates using 

our method and choosing the parametric distribution flexibly tend to be more conservative 

than estimates using a gamma-based approach.

DISCUSSION

We have presented a refinement of Rehm et al.’s [10] adjustment approach. This refinement 

allows flexibility when choosing an alcohol distribution model and eliminates the need to 

adjust the standard deviation. We achieve this by defining a measurement error model for 

alcohol consumption, which assumes that the measurement error is generated by a constant 

proportionality factor. Future research should focus on allowing the error to vary across 

subpopulations, or even across individuals. This is important, as recent studies have shown 

that under-reporting can vary across the level of alcohol consumed [32,33].

We also presented a comparison of our approach across three nationally representative 

surveys. Regardless of the shifting approach taken, we found that AAFs are substantively 

higher when shifting the underlying alcohol consumption distribution. However, we caution 

that these AAF results may have limited current relevance, as the alcohol consumption data 

are more than a decade old. Despite this limitation, our analyses served their primary 

purpose well. Specifically, they allowed us to illustrate the use of our new method and 

compare methods across disparate survey sources. In theory, adjusting for under-reporting 

could remove some of the disparities in AAF findings across survey sources. However, we 

did not find strong evidence that this is the case with our approach or Rehm et al.’s [10] 

approach.

Even though our new approach improves existing methods used to estimate AAFs, there are 

some limitations with our and previous methods. First, the estimation of RRs also relies 

upon self-reported consumption data. Accordingly, RR estimates may also be inaccurate, 

and this may impact separately the accuracy of AAFs. Thus, AAF estimates may remain 

biased even after adjusting the PDF for under-reporting. However, in the absence of more 

knowledge concerning the direction and magnitude of the bias in RR estimates, it is not clear 

how much bias may remain. Secondly, the impact of alcohol on disease risks probably 

depends upon the average level of alcohol consumed and patterns of consumption, such as 

frequency of bingeing and life-time trends in alcohol use. In this paper, we focused upon 

adjusting the alcohol distribution of average daily consumption, which ignores some of these 
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nuances. Nonetheless, the general principles used to adjust our basic consumption 

distributions could be refined and applied to probability distributions that capture some of 

these elements (e.g. probability of being a life-time versus current abstainer). Thirdly, to 

illustrate our approach, we assumed implicitly that all discrepancies between survey data 

and per capita sales data can be explained by under-reporting. However, we know that some 

discrepancy may be attributed to factors such as spillage/wastage, or because some high use 

consumers are not captured in national surveys [11]. This suggests that adjusting 

consumption distributions to line up with per capita sales may result in an overcorrection. 

Researchers may want to consider simple adjustments to our approach, such as calibrating 

survey data to only account for 80% of per capita sales, as did as World Health Organization 

researchers [34].

Attributable fractions are an important methodological tool. However, researchers should be 

aware of two important considerations when estimating and reporting attributable fractions. 

First, to aggregate attributable fractions across a population, researchers must be careful how 

they sum over strata-specific attributable fractions [35,36]. In this paper, we presented only 

strata-specific attributable fractions. Secondly, attributable fractions should be interpreted 

with caution when comparing attributable fractions across multiple risk factors. The AAF 

for diseases such as breast cancer represent the proportion of cases that could be avoided if 

alcohol consumption were eliminated completely holding all other risk factors constant. In 

studies such as the World Health Organization’s Comparative Quantification of Health Risks 

[34], attributable fractions are used to assess the public health burden of each risk factor 

individually. However, if a researcher wants to aggregate across risk factors to assess the 

impact of simultaneously eliminating all or multiple risk factors, then one must proceed in a 

way that avoids double-counting [37]. Trogdon et al. [38] present two approaches to 

aggregate condition-specific attributable fractions that avoid double-counting.

The method presented in this paper assumes that per-capita sales records provide an 

unbiased measure of the average amount of alcohol consumed. We then use survey data to fit 

a distribution around that overall average. Our approach provides an improvement over 

Rehm et al.’s [10] method because we allow more flexibility over the choice of statistical 

distribution one uses. Therefore, researchers can choose distributions that fit most closely 

the underlying data present in survey data sources. This is important, as we show that AAF 

results are sensitive to the choice of statistical distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Age- and gender-specific probability density functions for National Household Survey on 

Drug Abuse respondents before and after adjustment for under-reporting
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Figure 2. 
Age- and gender-specific probability density functions for National Alcohol Survey 

respondents before and after adjustment for under-reporting
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Figure 3. 
Age- and gender-specific probability density functions for National Epidemiological Survey 

of Alcohol and Related Conditions respondents before and after adjustment for under-

reporting
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Table 1

Descriptive characteristics of the national survey data used to estimate the alcohol exposure distributions 

among various subpopulations.

Characteristic NHSDA (1999–2002) NAS(1999–2000) NESARC (2001–2002)

Female (%) 52.54 52.32 52.19

Age 18–25 (%) 14.34 14.47 14.80

Age 26–34 (%) 16.56 16.78 16.70

Age 35–49 (%) 31.82 31.84 31.17

Age 50+ (%) 37.28 36.90 37.33

Drinker (%) 49.73 34.35 65.20

ADC 7.92 6.15 9.04

Observations 140 417 7562 42 802

ADC = average daily alcohol consumption in grams per day; NAS = National Alcohol Survey; NESARC = National Epidemiologic Survey on 
Alcohol and Related Conditions; NHSDA = National Household Survey on Drug Abuse. Drinkers represent those who reported any alcohol 
consumption; non-drinkers reported total abstention from alcohol. All estimates are weighted to make them nationally representative.
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