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Abstract

Background and Aims—To assess the burden of excessive alcohol use, researchers estimate
alcohol-attributable fractions (AAFs) routinely. However, under-reporting in survey data can bias
these estimates. We present an approach that adjusts for under-reporting in the estimation of
AAFs, particularly within subgroups. This framework is a refinement of a previous method
conducted by Rehm et al.

Methods—We use a measurement error model to derive the ‘true’ alcohol distribution from a
‘reported’ alcohol distribution. The ‘true’ distribution leverages per-capita sales data to identify the
distribution average and then identifies the shape of the distribution with self-reported survey data.
Data are from the National Alcohol Survey (NAS), the National Household Survey on Drug Abuse
(NHSDA) and the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC).
We compared our approach with previous approaches by estimating the AAF of female breast
cancer cases.

Results—Compared with Rehm ef al.’s approach, our refinement performs similarly under a
gamma assumption. For example, among females aged 18-25 years, the two approaches produce
estimates from NHSDA that are within a percentage point. However, relaxing the gamma
assumption generally produces more conservative evidence. For example, among females aged
18-25 years, estimates from NHSDA based on the best-fitting distribution are only 19.33% of
breast cancer cases, which is a much smaller proportion than the gamma-based estimates of
approximately 28%.
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Conclusions—A refinement of Rehm et a/.’s approach to adjusting for underreporting in the
estimation of alcohol-attributable fractions provides more flexibility. This flexibility can avoid
biases associated with failing to account for the underlying differences in alcohol consumption
patterns across different study populations. Comparisons of our refinement with Rehm et al.’s
approach show that results are similar when a gamma distribution is assumed. However, results are
appreciably lower when the best-fitting distribution is chosen versus gamma-based results.
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INTRODUCTION

Several health conditions have been associated with alcohol use, including many cancers [1-
5]. Some conditions, such as female breast cancer, may be affected by even moderate
consumption levels [4,6,7]. Alcohol-attributable fractions (AAFs) represent the number of
cases that could have been avoided if no one had consumed alcohol as a proportion of all
cases holding all other risk factors constant [8]. Accordingly, AAFs can be used to assess the
public health impact of alcohol use and subsequent social costs [9]. AAFs are calculated by
combining relative risk (RR) estimates with an estimated probability distribution over
consumption levels. RR estimates can be obtained from meta-analyses or systematic reviews
on alcohol consumption and disease risk, while the probability distribution over
consumption levels is estimated typically with survey data. However, survey respondents
may under-report consumption, because alcohol use is perceived to be a socially undesirable
behavior [10] or because of recall error. Additionally, some underestimation may occur
because of inaccurate assessments of the ethanol content of alcoholic beverages [11]. If the
probability distribution is underestimated (i.e. more weight is placed on zero consumption
and less weight is placed on higher levels of consumption), then AAFs will be
underestimated. The quantity of alcohol reported in nationally representative surveys
frequently falls short of the quantity of alcohol reported in records of per-capita sales [10-
13]. Among the three nationally representative surveys we use in this paper, coverage rates
range between 34 and 56%. Some of this discrepancy may reflect factors beyond under-
reporting, such as undersampling dependent drinkers [11].

Recently, approaches have been developed that may mitigate the effect of under-reporting
[10,11,13-18]. These approaches use per-capita sales data to adjust the distribution of
alcohol consumption. For example, Rey ef al. [18] shifted all observations by a common
multiplier. Rehm et a/. [10] proposed a more refined approach that involves adjusting the
mean and standard deviation (SD) of alcohol consumption and then deriving the parameters
of a standard gamma distribution. Although the approach proposed by Rehm et a/. [10] is
sophisticated, it has at least three limitations. First, Rehm et a/. [10] assume that alcohol use
follows a gamma distribution. Secondly, their approach to adjusting the standard deviation
has little statistical or theoretical basis. Thirdly, they assume that a constant multiplier
applies unilaterally to all demographic subpopulations, which can introduce bias if
demographic characteristics are related to the extent of under-reporting.
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We refine Rehm et al.’s [10] approach by relaxing the gamma assumption and eliminating
the standard deviation adjustment. We show that when one adjusts the scale parameter of a
gamma distribution, the resultant probability distribution is nearly identical to the
distribution obtained using Rehm et a/.’s [10] approach. However, one can easily adjust the
scale parameter of a variety of statistical distributions. Therefore, our approach can be
extended to many different probability distributions. Although previous research supported
the use of the gamma distribution to model alcohol consumption [19], we have found that
the gamma distribution frequently provides a poor fit. We have also found that AAF results
are sensitive to the choice of statistical distribution. Accordingly, the additional flexibility of
our approach is not trivial. Although the methodology described in this paper could be
applied to other diseases or estimation objectives, we illustrate our method by calculating the
AAF of breast cancer cases.

DESCRIPTION OF THE REHM APPROACH AND NEW METHOD

AAFs can be calculated as follows [20]:

AAF=

Jo RR(z) f(z) dz—1
Jo&RR(x) f(x) dx o)

where RR(x) denotes an RR mapping that indicates the risk of disease associated with
consuming x grams of alcohol per day and normalized such that RR(0) = 1. The probability
density function (PDF) of alcohol consumption is denoted by fx). Typically, RR(X) is
estimated by combining evidence meta-analytically on the relationship between alcohol
consumption and disease risk. The PDF of alcohol consumption is estimated typically using
nationally representative survey data, such as the Behavioral Risk Factor Surveillance
System. Supporting information, Appendix S1 provides additional details regarding the
estimation of AAFs, including details regarding integral approximation and confidence
interval estimation.

The generalized gamma, standard gamma, Weibull and log-normal distributions all reflect
many of the characteristics typically observed in alcohol consumption data (e.g. non-
negative, right-skewed, large probability mass at zero). The generalized gamma distribution
is particularly useful, as it nests the gamma, Weibull and log-normal distributions as special
cases [21-23]. Accordingly, the generalized gamma distribution can be used to test whether
any of the nested distributions are appropriate. Furthermore, if all other distributions are
rejected, the generalized gamma is minimally restrictive and less susceptible to
misspecification bias.

Rehm et al. [10] developed a method to shift an alcohol consumption distribution that
accounts for under-reporting. Their approach proceeds as follows. First, they calculate a
multiplier that relates per-capita sales to the average amount of alcohol reported:
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m=

Qlw

()

where P denotes the amount of alcohol sold per capita and C denotes the average amount of
alcohol reported by all survey respondents (including drinkers and non-drinkers). Secondly,
for each subpopulation of interest, the subpopulation-specific mean is shifted as follows:

Wi shifted=Cj - M, (3)

where £ spifreq denotes the shifted mean for the /M subpopulation, and Cjdenotes the sample
average for the ' subpopulation. Thirdly, they shift subpopulation-specific standard
deviations. For men, the shifted standard deviation is obtained by applying the following
equation:

aj,shiﬂed:1-174 * Mg, shifted- (4)

An analogous equation is used for women:

0j,shifted=1.258 - [1j shifted-  (5)

Rehm et a/. [10] obtained the coefficients in equations 4 and 5 by regressing the standard
deviation of alcohol consumption from several different surveys onto each survey’s mean
alcohol consumption and adjusting for gender. Finally, Rehm et a/. [10] transformed the
shifted mean and SD into shape and scale parameters of a standard gamma. This approach
has been used by other researchers. For example, Jones et a/. [24] used this approach to
update England-specific estimates of AAFs for a variety of diseases.

Rehm et al’s [10] approach has at least two drawbacks. First, one must assume that alcohol
consumption follows a standard gamma distribution. Secondly, equations 4 and 5 represent
ad-hoc adjustments with little statistical or theoretical basis and may lead to meaningful and
indeterminate biases in AAFs. The gamma is not, a priori, an inappropriate distribution. In
previous work the unique mapping from mean and standard deviation to gamma distribution-
specific parameters was probably perceived as a convenient feature to be exploited.
Furthermore, Rehm et a/. did compare the gamma with alternative distributions, and showed
that the gamma provided a relatively good fit. However, it rarely provided the best fit. Our
approach allows researchers to discover and use the best-fitting distribution. This
generalizability is particularly important, as researchers continue to model consumption
from a variety of surveys on distinct populations and moving into future generations.

Our approach is based on a measurement error model that relates the actual volume of
alcohol consumed to the observed volume of alcohol consumed. We then derive an adjusted
probability distribution from basic statistical principles. Thus, our approach can be extended
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to several statistical distributions. Let X denote actual alcohol consumption, and let X"
denote self-reported alcohol consumption. Our measurement error model is

X=m-X*. (6)

Equation 6 assumes that all respondents under-report their alcohol consumption by a fixed
proportion (i.e. m). Although restrictive, this assumption was also made in Rehm et a/. [10]
and elsewhere [13-18].

If one combines equation 6 with an assumed probability distribution for X", then one can
derive the probability distribution of X, For example, assume that X" is gamma-distributed
with scale denoted by 6 and shape denoted by a. Then Xis also gamma-distributed with
scale equal to m - © and shape equal to a [25]. Thus, the probability distribution over actual
alcohol consumption can be estimated in two steps:

1. Estimate gamma scale and shape parameters using the observed survey data,
which gives the distribution of X".

2. Shift the estimated gamma scale with the multiplier defined in equation 2 to
obtain the distribution of X.

With minor modifications, this approach can be generalized to other distributions by
substituting the distribution used in step 1 and the scale parameter that is shifted in step 2.
We provide additional detail on the use of this approach with the gamma and other statistical
distributions in Supporting information, Appendix S2.

The intuition underlying our approach (and Rehm et a/’s [10]) is that per-capita sales data
provide an accurate measure of average alcohol consumption, but do not inform how alcohol
consumption is distributed around that average. Thus, survey data are used to estimate the
shape of alcohol consumption distributions. Accordingly, the statistical distribution used
should capture the ‘shape’ of the alcohol consumption distribution well. Standard goodness-
of-fit tests, such as Kolmogorov—Smirnov testing, could be used to evaluate this.
Additionally, the generalized gamma can be used to test whether one can reject gamma,
Weibull or log-normal distributions [23].

Considerable heterogeneity in alcohol consumption is observed frequently throughout
demographic populations. For example, in the National Survey on Drug Use and Health, the
percentage of respondents aged 21 years or older who reported past-month heavy alcohol
use was substantially different when comparing across gender, age and race/ethnicity
categories [26]. Thus, it is unlikely that a single probability distribution will provide the best
fit for all demographic subpopulations (e.g. females aged 21-25, females aged 26-34). Our
methodology allows researchers to use demographic-specific distributions. Essentially, one
can construct a probability distribution over alcohol consumption at the population level that
is a mixture of subpopulation-specific distributions. Although we apply a common multiplier
to each subpopulation-specific distribution, this allows the adjusted mixture distribution to
reflect the degree to which alcohol consumption distributions are heterogeneous in the
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unadjusted data. To ensure that the resultant mixture distribution is centered on per-capita
sales, we calculate the overall survey average (i.e. Cin equation [2]) by taking the weighted
sum of each subpopulation- and distribution-specific average.

To illustrate our approach, we estimated the AAF of female breast cancer cases using three
distinct survey sources. Specifically, we used data on adults aged 18 or older from (i) the
1999-2002 National Household Survey on Drug Abuse (NHSDA) (=140 417) [27], (ii)
the 1999-2000 National Alcohol Survey (NAS) (7= 7562) [28] and (iii) the 2001-2002
National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) (7= 42 802)
[29]. We chose these three data sources because they collect alcohol consumption data for
the US population during a comparable period, but with different survey instruments. This
allows us to assess the extent to which our method and Rehm et a/.’s [10] method produce
similar findings across disparate surveys.

NHSDA records the number of days in the past 30 in which alcohol was consumed, the
typical number of drinks consumed per drinking day and the number of days in the past 30
in which five or more drinks were consumed. We derived a measure of average alcohol
consumption per day in standard drinking units as described in Stahre et a/. [30]. We
converted standard drinking units into g/day by assuming that a standard drink contains 14 g
of ethanol. The NAS instrument uses a graduated frequency approach to record alcohol
consumption. The graduated frequency approach asks respondents to report the frequency of
occasions when they consume increasing quantities of alcohol. We used beverage-specific
responses to derive the number of drinks per day, and we assumed 14 g of ethanol per drink
to calculate the average grams per day of ethanol. The NESARC instrument asks about
beverage-specific past-year alcohol consumption, and differentiates within beverage types
higher versus lower ethanol content beverages. For example, respondents are asked to
differentiate between 80- and 100-proof liquor. The public use NESARC file contains a pre-
calculated measure of ounces of ethanol per day based on applying beverage-specific
ethanol conversion factors, which we converted into grams.

Table 1 presents descriptive statistics from each data source. The demographic
characteristics of each of the survey samples are broadly similar. However, reported alcohol
consumption varies extensively across survey sources. For example, 34% of respondents in
the NAS reported any alcohol use, while 65% of respondents in the NESARC reported any
alcohol use. Despite this high variation in drinker proportions, average daily consumption
levels vary only between 6.15 and 9.04 g/day.

To calculate the multiplier defined in equation 2, we used figures reported by the National
Institute on Alcohol Abuse and Alcoholism [31]. These estimates were derived from alcohol
beverage sales records collected by the Alcohol Epidemiologic Data System and from
industry sources. We calculated average annual per capita sales throughout 1999-2002.
After dividing by 365, average per capita sales for 1999-2002 were 17.95 g/day.
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To estimate the RR of breast cancer associated with consuming alcohol, we replicated an
analysis conducted by Bagnardi et al. [6]. Specifically, we used a generalized least-squares
meta-regression model to estimate the dose—response relationship. Our results indicate the
following dose—response relationship:

InRR (2)=0.009774z(standard error:0.00427)  (7)

RESULTS

Table 2 demonstrates the calculation of survey-specific multipliers. First, for each survey
and substratum, we tested the fit of a generalized gamma, gamma, Weibull and log-normal
distribution. We used three tests to determine the best-parametric model: (1) Kolmogorov—
Smirnov testing, (2) XZ testing and (3) generalized gamma-based testing. All testing results
are reported in Supporting information, Appendix S3. Ultimately, we determined the best-
fitting distribution based on Kolmogorov—Smirnov testing, which generally agreed with
other testing criteria. Secondly, we predicted mean average daily alcohol consumption
(ADC) using parameter estimates associated with each substrata-specific parametric model.
For example, if the best-fitting model is the log-normal distribution, then we used the log-
normal mean function: £[.X] = exp(u + 0.5 - 2) to predict mean ADC. Thirdly, we
calculated an overall mean ADC by taking the weighted sum of each substratum-specific
mean, where weights represent the proportion of the sample within each substratum.
Fourthly, we calculated the multiplier in equation 2 by dividing per-capita sales by the
overall survey average.

Table 2 indicates that there is substantial heterogeneity throughout survey sources with
respect to survey coverage. Specifically, survey coverage rates range from 34% (NAS) to
56% (NESARC). Calculated multipliers reflect this heterogeneity by assigning larger
multipliers to surveys with lower coverage rates. There are some minor differences in
predicted mean ADC levels and simple sample means, which are probably driven by the fact
that best-fitting models capture more effectively the tails of alcohol consumption
distributions.

Figures 1-3 present estimated PDFs for each substratum and survey source used.
Specifically, we present the (i) unadjusted best-fitting density, (ii) unadjusted gamma
density, (iii) adjusted best-fitting density using our method and (iv) adjusted gamma density
using Rehm ef a/’s [10] method. In many cases, gamma densities assign nearly uniform
probabilities to a substantial portion of the right tail of the alcohol consumption distribution.
In contrast, best-fitting densities frequently assign higher probabilities to lower consumption
levels and diminishing probabilities throughout the right tail of the distribution. Capturing
these features of the underlying data is not possible with Rehm ef a/.’s [10] approach and is
likely to have important implications in resulting estimates of AAFs. Specifically, if disease
risks increase rapidly as consumption levels increase, then the relatively lower emphasis that
best-fitting densities place on higher levels of alcohol consumption could result in lower
estimated AAFs. In some cases, best-fitting densities are more similar in shape to the gamma
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density, and in these cases we might expect there to be less discrepancy between the two
adjustment methodologies.

Table 3 presents estimates of the AAF of breast cancer cases among females using non-
adjusted alcohol exposure distributions as well as both adjustment methodologies. We make
three observations. First, the AAF estimates based on adjusted alcohol exposure distributions
are larger than estimates based on non-adjusted alcohol exposure distributions. Secondly, the
estimates obtained using the approach detailed in Rehm et a/. [10] are similar to those
obtained using our new approach when the gamma assumption is imposed, suggesting that
the main contribution of our approach is in providing flexibility over the choice of
distribution. Thirdly, choosing the parametric distribution with which to model alcohol
exposures flexibly makes a difference in the AAF estimates. In fact, AAF estimates using
our method and choosing the parametric distribution flexibly tend to be more conservative
than estimates using a gamma-based approach.

DISCUSSION

We have presented a refinement of Rehm et a/’s [10] adjustment approach. This refinement
allows flexibility when choosing an alcohol distribution model and eliminates the need to
adjust the standard deviation. We achieve this by defining a measurement error model for
alcohol consumption, which assumes that the measurement error is generated by a constant
proportionality factor. Future research should focus on allowing the error to vary across
subpopulations, or even across individuals. This is important, as recent studies have shown
that under-reporting can vary across the level of alcohol consumed [32,33].

We also presented a comparison of our approach across three nationally representative
surveys. Regardless of the shifting approach taken, we found that AAFs are substantively
higher when shifting the underlying alcohol consumption distribution. However, we caution
that these AAF results may have limited current relevance, as the alcohol consumption data
are more than a decade old. Despite this limitation, our analyses served their primary
purpose well. Specifically, they allowed us to illustrate the use of our new method and
compare methods across disparate survey sources. In theory, adjusting for under-reporting
could remove some of the disparities in AAF findings across survey sources. However, we
did not find strong evidence that this is the case with our approach or Rehm et al.’s [10]
approach.

Even though our new approach improves existing methods used to estimate AAFs, there are
some limitations with our and previous methods. First, the estimation of RRs also relies
upon self-reported consumption data. Accordingly, RR estimates may also be inaccurate,
and this may impact separately the accuracy of AAFs. Thus, AAF estimates may remain
biased even after adjusting the PDF for under-reporting. However, in the absence of more
knowledge concerning the direction and magnitude of the bias in RR estimates, it is not clear
how much bias may remain. Secondly, the impact of alcohol on disease risks probably
depends upon the average level of alcohol consumed and patterns of consumption, such as
frequency of bingeing and life-time trends in alcohol use. In this paper, we focused upon
adjusting the alcohol distribution of average daily consumption, which ignores some of these
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nuances. Nonetheless, the general principles used to adjust our basic consumption
distributions could be refined and applied to probability distributions that capture some of
these elements (e.g. probability of being a life-time versus current abstainer). Thirdly, to
illustrate our approach, we assumed implicitly that all discrepancies between survey data
and per capita sales data can be explained by under-reporting. However, we know that some
discrepancy may be attributed to factors such as spillage/wastage, or because some high use
consumers are not captured in national surveys [11]. This suggests that adjusting
consumption distributions to line up with per capita sales may result in an overcorrection.
Researchers may want to consider simple adjustments to our approach, such as calibrating
survey data to only account for 80% of per capita sales, as did as World Health Organization
researchers [34].

Attributable fractions are an important methodological tool. However, researchers should be
aware of two important considerations when estimating and reporting attributable fractions.
First, to aggregate attributable fractions across a population, researchers must be careful how
they sum over strata-specific attributable fractions [35,36]. In this paper, we presented only
strata-specific attributable fractions. Secondly, attributable fractions should be interpreted
with caution when comparing attributable fractions across multiple risk factors. The AAF
for diseases such as breast cancer represent the proportion of cases that could be avoided if
alcohol consumption were eliminated completely holding all other risk factors constant. In
studies such as the World Health Organization’s Comparative Quantification of Health Risks
[34], attributable fractions are used to assess the public health burden of each risk factor
individually. However, if a researcher wants to aggregate across risk factors to assess the
impact of simultaneously eliminating all or multiple risk factors, then one must proceed in a
way that avoids double-counting [37]. Trogdon et a/. [38] present two approaches to
aggregate condition-specific attributable fractions that avoid double-counting.

The method presented in this paper assumes that per-capita sales records provide an
unbiased measure of the average amount of alcohol consumed. We then use survey data to fit
a distribution around that overall average. Our approach provides an improvement over
Rehm et al’s [10] method because we allow more flexibility over the choice of statistical
distribution one uses. Therefore, researchers can choose distributions that fit most closely
the underlying data present in survey data sources. This is important, as we show that AAF
results are sensitive to the choice of statistical distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by contract number 200-2008-27 958 Task Order 38 from the National Center for
Chronic Disease Prevention and Health Promotion. The findings and conclusions in this paper are those of the
authors and do not necessarily represent the official position of the National Center for Chronic Disease Prevention
and Health Promotion.

Ad(diction. Author manuscript; available in PMC 2018 March 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Parish et al.

References
1

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Page 10

. World Health Organization. Global status report on alcohol and health. Geneva, Switzerland: World

Health Organization; 2014.

. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic

Risks to Humans: vol. 96. Alcohol Consumption and Ethyl Carbonate. Lyon, France: International
Agency for Research on Cancer; 2010.

. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic

Risks to Humans: vol. 100E: Personal Habits and Indoor Combustions. Lyon, France: International
Agency for Research on Cancer; 2012.

. Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006; 7:149-56. [PubMed: 16455479]
. Praud D, Rota M, Rehm J, Shield K, Zatonski W, Hashibe M, et al. Cancer incidence and mortality

attributable to alcohol consumption. Int J Cancer. 2016; 138:1380—7. [PubMed: 26455822]

. Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko, et al. Alcohol consumption and site-

specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015; 112:580-93.
[PubMed: 25422909]

. Shield K, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin

Exp Res. 2016; 40:1166-81. [PubMed: 27130687]

. Hanley JA. A heuristic approach to the formulas for population attributable fraction. J Epidemiol

Community Health. 2001; 55:508-14. [PubMed: 11413183]

. Bouchery EE, Harwood HJ, Sacks JJ, Simon CJ, Brewer RD. Economic costs of excessive alcohol

consumption in the U.S. 2006. Am J Prev Med. 2011; 41:516-24. [PubMed: 22011424]

. Rehm J, Kehoe T, Gmel G, Stinson F, Grant B, Gmel G. Statistical modeling of volume of alcohol
exposure for epidemiological studies of population health: the US example. Popul Health Metrics.
2010; 8:3.

Meier P, Meng Y, Holmes J, Baumberg B, Purshouse R, Hill-McManus D, et al. Adjusting for
unrecorded consumption in survey and per capita sales data: quantification of impact on gender-
and age-specific alcohol-attributable fractions for oral and pharyngeal. Alcohol Alcohol. 2013;
48:241-9. [PubMed: 23345391]

Nelson DE, Naimi TS, Brewer RD, Roeber J. US state alcohol sales compared to survey data,
1993-2006. Addiction. 2010; 105:1589-96. [PubMed: 20626370]

Rehm J, Klotsche J, Patra J. Comparative quantification of alcohol exposure as risk factor for
global burden of disease. Int J Methods Psychiatr Res. 2007; 16:66—76. [PubMed: 17623386]

Chikritzhs T, Stockwell T, Jonas H, Stevenson C, Cooper-Stanbury M, Donath S, et al. Towards a
standardised methodology for estimating alcohol-caused death, injury and illness in Australia.
Aust NZ J Public Health. 2002; 26:443-50.

International Agency for Research on Cancer. Attributable Causes of Cancer in France in the Year
2000. Lyon, France: International Agency for Research on Cancer; 2007.

Rehm J, Patra J, Popova S. Alcohol-attributable mortality and potential years of life lost in Canada
2001: implications for prevention and policy. Addiction. 2006; 101:373-84. [PubMed: 16499510]
Rehm J, Rehn N, Room R, Monteiro M, Gmel G, Jernigan D, et al. The global distribution of
average volume of alcohol consumption and patterns of drinking. Eur Addict Res. 2003; 9:147-56.
[PubMed: 12970583]

Rey G, Boniol M, Jougla E. Estimating the number of alcohol-attributable deaths: methodological
issues and illustration with French data for 2006. Addiction. 2010; 105:1018-29. [PubMed:
20331552]

Kehoe T, Gmel GJ, Shield K, Gmel GS, Rehm J. Determining the best population-level alcohol
consumption model and its impact on estimates of alcohol-attributable harms. Popul Health
Metrics. 2012; 10:6.

Vander Hoorn, S., Ezzati, M., Rodgers, A., Lopez, AD., Murray, CJL. Estimating attributable
burden of disease from exposure and hazard data. In: Ezzati, M.Lopez, AD.Rodgers, A., Murray,
CJL., editors. Comparative Quantification of Health Risks: Global and Regional Burden of
Disease Attributable to Selected Major Risk Factors. Geneva, Switzerland: World Health
Organization; 2004. p. 2129-40.

Ad(diction. Author manuscript; available in PMC 2018 March 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Parish et al.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Page 11

Stacy EW. A generalization of gamma distribution. Ann Math Stat. 1962; 33:1187-92.

Stacy EW, Mihram GA. Parameter estimation for a generalized gamma distribution. Dent Tech.
1965; 7:349-58.

Manning WG, Basu A, Mullahy J. Generalized modeling approaches to risk adjustment of skewed
outcomes data. J Health Econ. 2005; 24:465-88. [PubMed: 15811539]

Jones, L., Bellis, MA. Updating England-Specific Alcohol-Attributable Fractions. Liverpool, UK:

Liverpool John Moores University; 2013.

Mittlehammer, RC. Mathematical Statistics for Economics and Business. New York, NY: Springer-
Verlag; 1996.

Substance Abuse and Mental Health Services Administration. Behavioral Health Barometer:
United States, 2015. Rockville, MD: Substance Abuse and Mental Health Services Administration;
2015. Report no.: HHS Publication No. SMA-16-Baro-2015

U.S. Department of Health and Human Services, Substance Abuse and Mental Health Services
Administration, Center for Behavioral Health Statistics and Quality. National Household Survey
on Drug Abuse, 2012 (ICPSR 34933). Rockville, MD: Inter-University Consortium for Political
and Social Research; 1999-2002.

Alcohol Research Group and National Institute on Alcohol Abuse and Alcoholism, United States
Department of Health and Human Services. The National Alcohol Survey, 10. Washington, DC:
United States Department of Health and Human Services; 2000.

National Institute on Alcohol Abuse and Alcoholism (NIAAA). The National Epidemiologic
Survey on Alcohol and Related Conditions. Rockville, MD: NIAAA; 2001-2002.

Stahre M, Naimi T, Brewer R, Holt J. Measuring average alcohol consumption: the impact of
including binge drinks in quantity-frequency calculations. Addiction. 2006; 101:1711-8.
[PubMed: 17156170]

LaVallee, RA., Kim, T., Yi, H-Y. Apparent Per Capita Alcohol Consumption: National, State, and
Regional Trends, 1977-2012. Rockville, MD: NIAAA, Division of Epidemiology and Prevention
Research, Alcohol Epidemiologic Data System; 2014. Report no.: Surveillance Report #98

Stockwell T, Zhao J, Macdonald S. Who under-reports their alcohol consumption in telephone
surveys and by how much? An application of the ‘yesterday method’ in a national Canadian
substance use survey. Addiction. 2014; 109:1657—-66. [PubMed: 24825591]

Stockwell T, Zhao J, Greenfield T, Li J, Livingston M, Meng Y. Estimating under- and over-
reporting of drinking in national surveys of alcohol consumption: identification of consistent
biases across four English-speaking countries. Addiction. 2016; 111:1203-13. [PubMed:
26948693]

Rehm, J., Room, R., Monteiro, M., Gmel, G., Graham, K., Rehn, N., Sempos, CT., Frick, U.,
Jernigan, D. Alcohol use. In: Ezzati, M.Lopez, AD.Rodgers, A., Murray, CJL., editors.
Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable
to Selected Major Risk Factors. Geneva, Switzerland: World Health Organization; 2004. p.
959-1108.

Rockhill B, Newman B, Weinberg C. Use and misuse of population attributable fractions. Am J
Public Health. 1998; 88:15-9. [PubMed: 9584027]

Darrow LA, Steenland NK. Confounding and bias in the attributable fraction. Epidemiology. 2011;
22:53-8. [PubMed: 20975564]

Rothman KJ, Greenland S. Causation and causal inference in epidemiology. Am J Public Health.
2005; 95:5144-SS50. [PubMed: 16030331]

Trogdon JG, Finkelstein EA, Hoerger TJ. Use of econometric models to estimate expenditure
shares. Health Serv Res. 2008; 43:1442-52. [PubMed: 18248403]

Ad(diction. Author manuscript; available in PMC 2018 March 15.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Parish et al.

Females, 18-25

Probability density

Probability density

Page 12

Females, 26-34

Probability density

0 E) 100 150
ADC in grams ADC in grams
Unadjusted (best-fitting)  Unadjusted (gamma) Unadjusted (best-fitting) Unadjusted (gamma)
= Adjusted (best-fitting) + Adjusted (Rehm et al) =+ Adjusted (best-fitting) Adjusted (Rehm et al.)
Females, 35-49 Females, 50+
150

ADC in grams

——— Unadjusted (best-fitting)
= Adjusted (best-fitting)

 Unadjusted (gamma)

=+ Adjusted (Rehm et al.)

Males, 18-25

2
2
5
3
>

ADC in grams

Unadjusted (gamma)
Adjusted (Rehm et al.)

Unadjusted (best-fitting)
=+ Adjusted (best-fitting)

Males, 26-34

ADC in grams

100 150

Unadjusted (best-fitting)
=== Adjusted (best-fitting)

+ Unadjusted (gamma)
«+ Adjusted (Rehm et al.)

Males, 35-49

Probability density

ADC in grams

Unadjusted (best-fitting)
= Adjusted (best-fitting)

 Unadjusted (gamma)
'+ Adjusted (Rehm et al.)

Males, 50+

ADC in grams

Unadjusted (best-fitting)
= Adjusted (best-fitting)

 Unadjusted (gamma)
++ Adjusted (Rehm et al.)

Figure 1.

ADC in grams

Unadjusted (best-fitting)
= Adjusted (best-fitting)

Unadjusted (gamma)
Adjusted (Rehm et al.)

Age- and gender-specific probability density functions for National Household Survey on
Drug Abuse respondents before and after adjustment for under-reporting

Addiction. Author manuscript; available in PMC 2018 March 15.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Parish et al.

Page 13

Females, 18-25 Females, 26-34
-
z z o]
]
£ £
= =
& £
.
o
] 50 100 150 0 50 100 150
ADC in grams ADC in grams
Unadjusted (best-fitting) + Unadjusted (gamma) Unadjusted (best-fitting) Unadjusted (gamma)
= ===+ Adjusted (best-fitting) '+ Adjusted (Rehm et al.) == === Adjusted (best-fitring) Adjusted (Rehm et al.)
Females, 35-49 Females, 50+
54
z z
] ]
£ £
= =
& &
0 50 160 150
ADC in grams ADC in grams
Unadjusted (best-fitting) + Unadjusted (gamma) Unadjusted (best-fitting) Unadjusted (gamma)
= ===+ Adjusted (best-fitting) v Adjusted (Rehm et al.) == === Adjusted (best-fitting) Adjusted (Rehm et al.)
Males, 18-25 Males, 26-34
] o
z z
2 2
] ]
z z
z 3
8 |
& &
] 50 100 150 0 50 160 150
ADC in grams ADC in grams
Unadjusted (best-fitting) + Unadjusted (gamma) Unadjusted (best-fitting) === == Adjusted (best-fiting)
----- Adjusted (best-fitting) + Adjusted (Rehim et al.) v Adjusted (Rehm et al.)
Males, 35-49 Males, 50+
o
z z
] ]
g ]
z z
H ]
| 2
& &
] 50 100 150 0 50 100 150
ADC in grams ADC in grams
Unadjusted (best-fitting) . Unadjusted (gamma) Unadjusted (best-fiting) Unadjusted (gamma)
----- Adjusted (best-fitting) + Adjusted (Rehm et al.) = ===+ Adjusted (best-fitring) Adjusted (Rehm et al.)

Figure 2.
Age- and gender-specific probability density functions for National Alcohol Survey

respondents before and after adjustment for under-reporting

Addiction. Author manuscript; available in PMC 2018 March 15.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Parish et al.

Page 14

Females, 18-25 Females, 26-34
o
z 2 24
§ g
3 3
z 2
2 2
£ £
£ &
“
54
=1 T T T
0 50 100 150
ADC in grams ADC in grams
Unadjusted (best-fitting)  Unadjusted (gamma) Unadjusted (best-fitting) “+ Unadjusted (gamma)
====x Adjusted (best-fitting) + Adjusted (Rehm et al.) ====x Adjusted (best-fitting)  *===++ Adjusted (Rehm et al)
Females, 35-49 Females, 50+
o :
«d
z z
& ]
3 3
z z
= H
2 2
£ £
& &
o R
0 50 100 150
ADC in grams ADC in grams
Unadjusted (best-fitting) + Unadjusted (gamma) Unadjusted (best-fitting)  Unadjusted (gamma)
===== Adjusted (best-fitting) + Adjusted (Rehm et al.) ===== Adjusted (best-fitting) ~ *'===++ Adjusted (Rehm ct al.)
Males, 18-25 Males, 26-34
24 LR
£ -] g7
g 8
3 3
z 2 =
2, | 2
g = g
54
© 4 -
0 0 100 150 0 50 100 150
ADC in grams ADC in grams
Unadjusted (best-fitting)  Unadjusted (gamma) Unadjusted (best-fitting) "+ Unadjusted (gamma)
== === Adjusted (best-fitting) + Adjusted (Rehm et al.) == === Adjusted (best-fitting) ~ *=== =+ Adjusted (Rehm et al.)
Males, 35-49 Males, 50+
ad
Lo |
z 2"
Z z
5 5
z z2 =
E 2
£ ]
&y
E-g
o
0 50 100 150 0 50 100 150
ADC in grams ADC in grams
Unadjusted (best-fitting)  Unadjusted (gamma) Unadjusted (best-fitting) “+ Unadjusted (gamma)
----- Adjusted (best-fitting) + Adjusted (Rehm et al.) == === Adjusted (best-fitting) «+ Adjusted (Rehm et al.)

Figure 3.
Age- and gender-specific probability density functions for National Epidemiological Survey
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reporting
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Table 1

Descriptive characteristics of the national survey data used to estimate the alcohol exposure distributions
among various subpopulations.

Characteristic  NHSDA (1999-2002)  NAS(1999-2000)

NESARC (2001-2002)

Female (%) 52.54
Age 18-25 (%) 14.34
Age 26-34 (%)  16.56
Age 35-49 (%) 31.82
Age 50+ (%)  37.28
Drinker (%) 49.73
ADC 7.92
Observations 140 417

52.32
14.47
16.78
31.84
36.90
34.35
6.15

7562

52.19
14.80
16.70
31.17
37.33
65.20
9.04
42 802

ADC = average daily alcohol consumption in grams per day; NAS = National Alcohol Survey; NESARC = National Epidemiologic Survey on
Alcohol and Related Conditions; NHSDA = National Household Survey on Drug Abuse. Drinkers represent those who reported any alcohol
consumption; non-drinkers reported total abstention from alcohol. All estimates are weighted to make them nationally representative.
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