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Abstract

Group A rotaviruses (RVAs) are the leading cause of severe gastroenteritis and eventually death 

among infants and young children worldwide, and disease prevention and management through 

vaccination is a public health priority. In August 2009, Rotarix™ was introduced in the South 

African Expanded Programme on Immunisation. As a result, substantial reductions in RVA disease 

burden have been reported among children younger than 5 years old. Rotavirus strain surveillance 

post-vaccination is crucial to, inter alia, monitor and study the evolution of vaccine escape strains. 

Here, full-genome sequence data for the 11 gene segments from 11 South African G1P[8] 

rotavirus strains were generated, including 5 strains collected from non-vaccinated children during 

the 2004–2009 rotavirus seasons and 6 strains collected from vaccinated children during the 2010 

rotavirus season. These data were analyzed to gain insights into the overall genetic makeup and 

evolution of South African G1P[8] rotavirus strains and to compare their genetic backbones with 

those of common human Wa-like RVAs from other countries, as well as with the Rotarix™ and 

RotaTeq™ G1P[8] vaccine components. All 11 South African G1P[8] strains revealed a complete 

Wa-like genotype constellation of G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. On the basis of 

sequence similarities, the South African G1P[8] strains (with the exception of strain RVA/Human-

wt/ZAF/1262/2004/G1P[8]) were closely related to each other (96–100% identity in all gene 
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segments). Comparison to the Rotarix™ and RotaTeq™ G1P[8] vaccine components revealed a 

moderate nucleotide identity of 89–96% and 93–95%, respectively. The results indicated that none 

of the gene segments of these 11 South African G1P[8] strains were vaccine-derived. This study 

illustrates that large-scale next generation sequencing will provide crucial information on the 

influence of the vaccination program on evolution of rotavirus strains. This is the first report to 

describe full genomic analyses of G1P[8] RVA strains collected from both non-vaccinated and 

vaccinated children in South Africa.
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INTRODUCTION

Group A rotavirus (RVA) infection is a global public health concern and an important cause 

of pediatric hospitalization due to severe diarrhea [Parashar et al., 2009]. RVA is the main 

etiologic agent of acute gastroenteritis in infants and young children under the age of 5 years 

worldwide [Estes and Kapikian, 2007] and an estimated 453,000 children aged <5 years die 

from rotavirus diarrhea each year, with >85% of these deaths occurring in low-income 

countries of Africa and Asia [Parashar et al., 2009; Tate et al., 2012]. In sub-Saharan Africa 

alone, rotavirus-associated gastroenteritis is responsible for an estimated 308,579 deaths 

annually [Sanchez-Padilla et al., 2009]. In South Africa, 1 in 62 children are hospitalized 

during their first 2 years of life, and 323 die annually due to rotavirus diarrhea [Sanchez-

Padilla et al., 2009; Seheri et al., 2010].

Rotaviruses belong to the family Reoviridae and possess a segmented double-stranded RNA 

(dsRNA) genome composed of 11 segments encoding six nonstructural proteins (NSP1–

NSP6) and six structural proteins (VP1–4, VP6, and VP7). The two outer capsid proteins, 

VP7 and VP4, elicit strain-specific neutralizing antibody responses and are used to classify 

RVA strains into G (glycoprotein) and P (protease-sensitive) genotypes, respectively [Estes 

and Kapikian, 2007]. An extended classification system for RVA strains based on all 11 gene 

segments was developed by the international Rotavirus Classification Working Group. This 

system defines the following genotypes: Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx, based on 

nucleotide identity cut-off values for the genome segments encoding for VP7, VP4, VP6, 

VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5, respectively. Presently, 27 G, 37 P, 

17 I, 9 R, 9 C, 8 M, 18 A, 10 N, 12 T, 15 E, and 11 H genotypes have been described 

[Matthijnssens et al., 2011; Guo et al., 2012; Papp et al., 2012; Trojnar et al., 2013; Jere et 

al., 2014]. Globally, the majority of human RVA strains possess either the Wa-like genotype 

constellation (I1-R1-C1-M1-A1-N1-T1-E1-H1) or the DS-1-like genotype constellation (I2-

R2-C2-M2-A2-N2-T2-E2-H2) [Matthijnssens et al., 2008a; Matthijnssens and Van Ranst, 

2012].

In humans, at least 5 common rotavirus strains (G1P[8], G2P[4], G3P[8], G4P[8], and 

G9P[8]) circulate worldwide, with G1P[8] strains constituting the majority of human RVA 

infections [Gentsch et al., 2005; Banyai et al., 2012]. The VP7 and VP4 proteins, which are 
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the primary target for vaccine development, contain multiple antigenic epitopes that can 

induce the production of neutralizing antibodies. Antigenic changes in these proteins may 

impact the efficacy of RVA vaccines [Bucardo et al., 2007; Maranhao et al., 2012; Zeller et 

al., 2012]. The VP7 gene encodes 326 amino acids and carries 9 variable regions (VR-1 to 

VR-9), with four of them comprising the antigenic epitopes A, B, C, and F corresponding to 

VR-5, VR-7, VR-8, and VR-9, respectively [Dyall-Smith et al., 1986; Green et al., 1989; 

Kirkwood et al., 1993]. Activation of the VP4 protein (776 amino acids) requires the 

proteolytic cleavage into VP8* and VP5*, which contain four (8–1 to 8–4) and five (5–1 to 

5–5) antigenic epitopes, respectively [Estes and Kapikian, 2007].

Rotavirus is able to evolve rapidly via genetic drift, genomic rearrangement, duplications, 

and deletions of gene sequences, as well as through the zoonotic transmission of strains. The 

segmented genome also facilitates genetic shift (reassortment) between two different virus 

strains co-infecting the same cell [Kirkwood, 2010]. Complete genomic analyses of common 

human RVA strains from different countries are needed to obtain conclusive data on their 

overall genetic makeup and evolutionary patterns [Matthijnssens et al., 2008b].

Although G1P[8] is a predominant genotype globally [Gentsch et al., 2005; Santos and 

Hoshino, 2005; Banyai et al., 2012], only few full genomes of recent human G1P[8] RVA 

strains from China [Shintani et al., 2012], Bangladesh [Rahman et al., 2010], India [Arora 

and Chitambar, 2011; Ghosh et al., 2011], and the USA [Banyai et al., 2011] have been 

analyzed so far. Based on limited whole-genome-based studies of common human RVAs, it 

has been hypothesized that a stable Wa-like genetic backbone might be circulating in the 

majority of the recent Wa-like common human RVAs, such as G1P[8], facilitating the 

proliferation of these strains worldwide [Rahman et al., 2010; Ghosh et al., 2011]. However, 

complete genomic analyses of common human Wa-like RVAs from different countries 

across the globe are required to substantiate this hypothesis. Also, countries like South 

Africa that are conducting post-vaccine introduction rotavirus surveillance must be aware 

that vaccine strains can be associated with acute gastroenteritis and that these vaccine-

derived strains may be present in surveillance samples. Methods for detecting RotaTeq™ 

[Donato et al., 2012] and Rotarix™ [Rose et al., 2010] vaccine strains have been described. 

Furthermore, it is important to recognize that Rotarix™ detection will potentially be more 

difficult than RotaTeq™ detection since Rotarix™ is derived from a human rotavirus strain 

and exhibits high sequence similarities to the wild-type G1P[8] rotavirus strains. However, 

advanced sequencing methods, such as next-generation sequencing, may be used to 

differentiate Rotarix™ from wild-type rotaviruses.

Currently, two live oral vaccines; Rotarix™ developed by GlaxoSmithKline Biologicals 

(Rixensart, Belgium) and RotaTeq™ by Merck (Blue Bell, PA, USA) have been licensed in 

more than 100 countries and are being introduced into routine immunization programs in the 

United States and other countries in Latin America, Europe, Africa and Asia. As a result of 

RVA vaccine implementation, substantial reductions in RVA disease burden have been 

reported [Glass et al., 2006; Patel et al., 2009; Curns et al., 2010; Tate et al., 2012]. 

RotaTeq™ possesses genes encoding the human rotavirus serotypes G1–G4 and P1A[8] in a 

bovine rotavirus background. The reassortants are expected to stimulate both homotypic 

responses and serotype-specific protection to these common rotavirus serotypes [Glass et al., 
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2006; Vesikari et al., 2007; Matthijnssens et al., 2010]. Rotarix™ is a monovalent vaccine 

derived from a G1P1A[8] human strain [Ward and Bernstein, 2009] aimed at inducing both 

homotypic and heterotypic immune responses after two doses and cross protecting against 

different serotypes. It has been shown to be effective in the prevention of severe rotavirus 

gastroenteritis caused by G1P[8], G3P[8], G4P[8], and G9P[8] [Ruiz-Palacios et al., 2006]. 

The nucleotide sequences of VP7 and VP4 of Rotarix™ and RotaTeq™ have been published 

[Glass et al., 2006; Vesikari et al., 2007; Matthijnssens et al., 2010; Zeller et al., 2012]. 

Although the efficacy of both vaccines is high in developed countries, it is aberrantly lower 

in developing countries [Sanchez-Padilla et al., 2009; Madhi et al., 2012; Seheri et al., 2012; 

Steele et al., 2012; Tate et al., 2012]. As a result of the high mortality associated with 

rotavirus infection, disease prevention and management in Africa through vaccination is a 

public health priority [Neuzil et al., 2010]. To date, up to nine countries in Africa namely; 

South Africa, Zambia, Ghana, Rwanda, Botswana, Malawi, Sudan, Morocco, and Tanzania, 

have recently introduced RVA vaccination into their immunization programs [Armah et al., 

2010; Benhafid et al., 2012; Cunliffe et al., 2012; Seheri et al., 2012].

In South Africa, the monovalent G1P[8] Rotarix™ was introduced in the Expanded Program 

on Immunization in August 2009, and vaccine coverage was estimated at 67% in 2010. Also, 

a significant reduction in morbidity rates among children younger than 5 years old and a 

dramatic delay in the rotavirus season by 8 weeks was observed when comparing pre- and 

post-vaccination data [Seheri et al., 2012]. Rotavirus strain G1P[8] has been identified as 

one of the major causes of childhood diarrhea among South African children [Sanchez-

Padilla et al., 2009]. However, to date, there are no reports on the full genomic analyses of 

G1P[8] RVA strains from South Africa. Thus, the complete genomes of 11 human G1P[8] 

RVA strains collected from both non-vaccinated and vaccinated children were analyzed here 

to gain insights into the overall genetic makeup and evolution of the recent South African 

G1P[8] strains detected from non-vaccinated and vaccinated children and to compare their 

genetic backbones with those of common human Wa-like RVAs from other countries, as well 

as with Rotarix™ and RotaTeq™ G1P[8] vaccine components.

MATERIALS AND METHODS

Ethical Approval

The Ethical approval to conduct this study was obtained from the Medunsa Research 

Committee with the research number: MR58/2003, MP46/2005, and MREC/P/17/2012:PG. 

Informed consent was obtained from the parent or guardian before a stool sample was taken.

Study Site and Samples

The samples were collected at the Dr George Mukhari Academic Hospital and Brits Oukasie 

Clinic between 2004 and 2010 from 11 South African black children less than 3 years of age 

presenting and/or hospitalized for dehydrating diarrhea as part of a rotavirus burden of 

disease surveillance studies conducted at the University of Limpopo’s Medunsa campus 

(MR58/2003, MP46/2005, and MREC/P/17/2012:PG). The history of illness, treatment 

provided, and vaccination status were determined. Stool samples were collected from each 

child; these included five samples from non-vaccinated children collected during the 2004–
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2009 rotavirus seasons and six samples from vaccinated children collected during the 2010 

rotavirus season. The mean age of the five non-vaccinated children was 14.6 months (range: 

5–34 months; three males and two females), while the mean age of the six vaccinated 

children was 12.7 months (range: 3–23 months; four males and two females).

Two doses of Rotarix™ were given at 6 and 14 weeks of age along with oral polio vaccine 

(OPV) (given only at 6 weeks), diphtheria, tetanus, acellular pertussis, inactivated polio 

vaccine and Haemophilus influenza type b combined (DTaP-IPV/Hib), hepatitis B vaccine 

and pneumococcal conjugated vaccine, as part of the South African Expanded Program on 

Immunization. The exception was a 3 months old baby (DPRU 2061) who received only one 

dose of the rotavirus vaccine at 6 weeks.

The stool samples were screened for RVA using the ProSpecT Rotavirus Microplate kit 

(Thermo Fisher Scientific, Basingstone, England) according to the manufacturers’ 

intructions and stored at +4°C for molecular characterization studies.

Nucleic Acid Extraction

The dsRNA genome was extracted from stool samples following previously described 

methods [Potgieter et al., 2009; Nyaga et al., 2013]. Briefly, TRI-REAGENT-LS (Molecular 

Research Center, Cincinnati, OH) was mixed with a 10% stool suspension at a ratio of 3:1 

and incubated for 5 min at room temperature. Chloroform was added to the suspension, 

followed by centrifugation at 4°C for 15 min at 16,000g. The supernatant was added to a 

tube containing isopropanol to precipitate the RNA. The RNA was collected by 

centrifugation at room temperature for 30 min at 16,000g. The dsRNA pellet was then re-

suspended in 95 μl elution buffer (Qiagen, Hilden, Germany). The excess ssRNA in the 

extract was removed by adding lithium chloride (Sigma, St. Louis, MO) at a concentration 

of 2 M and incubating at 4°C for 16 hr, followed by centrifugation at 16,000g for 30 min 

before further purification. The integrity of the dsRNA was analyzed on a 1% agarose tris-

borate-ethylenediaminetetraacetic acid (TBE) gel stained with ethidium bromide.

Sequencing

Rotavirus RNA was diluted 1:30 or 1:10 based on an initial quality control RT-PCR. A 0.9 μl 

volume of diluted RNA was used in each of 11 Qiagen One-Step RT-PCR reactions to 

amplify full-length rotavirus segments using segment-specific primers (Supplementary Data

—Appendix). Reverse transcription was performed for 30 min at 45°C, followed by 50 

cycles of PCR (denaturation: 10 sec, 94°C; annealing: 1 min, 55°C; extension: 3 min, 68°C). 

RT-PCR products were verified on 1% agarose gels and excess primers and dNTPs were 

removed by treatment with Exonuclease I and shrimp alkaline phosphatase (37°C for 60 

min, followed by incubation at 72°C for 15 min, respectively). Amplicons were quantitated 

using SYBR Green assay, and all 11 amplicons per genome were pooled in equimolar 

amounts.

Pooled rotavirus amplicons were sheared for 15 min and Ion Torrent compatible barcoded 

adapters were ligated to the sheared DNA using the Ion Xpress Plus Fragment Library Kit 

(Life Technologies, Carlsbad, CA) to create 200-base pair (bp) libraries. Barcoded libraries 

were pooled in equal volumes and cleaned with the Ampure XP Reagent (Agencourt 
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Bioscience, Beverly, MA). Quantitative PCR was performed on the pooled barcoded 

libraries to assess their quality and to determine the template dilution factor for emulsion 

PCR. The pool was diluted appropriately and amplified on Ion Sphere Particles (ISPs) on the 

Ion One Touch instrument (Life Technologies). The amplified pool was cleaned and 

enriched for template-positive ISPs on the Ion One Touch ES instrument (Life 

Technologies). Sequencing was performed on the Ion Torrent PGM using an Ion 316 chip. In 

addition, the sequence-independent single-primer amplification (SISPA) method [Djikeng et 

al., 2008; Djikeng and Spiro, 2009] was used for each sample on pooled amplicons, and the 

products were sequenced on the Illumina MiSeq v2 instrument.

The sequence reads from the Ion Torrent PGM were sorted by barcode, trimmed, and de 

novo assembled using CLC Bio’s clc_novo_assemble program, and the resulting contigs 

were searched against custom full-length rotavirus A segment nucleotide databases to find 

the closest reference sequence for each segment. All sequence reads were then mapped to 

the selected reference rotavirus A segments using CLC Bio’s clc_ref_assemble_long 
program. At loci where both Ion Torrent and Illumina sequence data agreed on a variation 

(as compared to the reference sequence), the reference sequence was updated to reflect the 

difference. A final mapping of all next-generation sequences to the updated reference 

sequences was performed with CLC Bio’s clc_ref_assemble_long program.

Phylogenetic Analysis

Sequences were aligned using the MUSCLE program within MEGA version 5 software 

[Tamura et al., 2011]. Once aligned, the DNA Model Test program implemented in MEGA 

[Tamura et al., 2011] was used to identify the optimal evolutionary models that best fit the 

sequence datasets. Using corrected Akaike Information Criterion (AICc), the following 

models were found to best fit the sequence data for the indicated genes: TN93 + G + I (VP1, 

VP2, VP3, VP6, NSP1, NSP2, and NSP4), GTR + G + I (NSP5, VP4, and VP7), and TN93 

+ G (NSP3). Using these models, maximum likelihood trees were constructed using MEGA 

version 5 with 500 bootstrap replicates to estimate branch support. Nucleotide and amino 

acid distance matrixes were prepared using the p-distance algorithm in MEGA version 5 

[Tamura et al., 2011].

RESULTS

The Genotype Constellation of South African G1P[8] Strains From Non-Vaccinated and 
Vaccinated Children

The names and characteristics of the South African G1P[8] strains analyzed in this study are 

presented in Table I. The accession numbers for each gene of the South African G1P[8] 

study strains (in bold), as well as those from the GenBank used for comparison in these 

analyses are in the Appendix. The nucleotide sequence analyses for all genes from the South 

African G1P[8] strains analyzed revealed a consensus genotype constellation of G1-P[8]-I1-

R1-C1-M1-A1-N1-T1-E1-H1, respectively, according to the proposed classification system 

[Matthijnssens et al., 2008b]. Phylogenetic analyses of the 11 genes established the genetic 

relationships of the South African strains when compared with a global collection of 

rotavirus genotypes.
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Sequence Analyses of VP7

As shown in Figure 1A, the G1 human and animal rotavirus strains used in this analyses 

segregated into seven lineages (I–VII) [Arista et al., 2006; Le et al., 2010] and the South 

African G1 strains from non-vaccinated and vaccinated children clustered into two such 

genetic lineages, I and II. The VP7 lineage I included 10 (4 from non-vaccinated and 6 from 

vaccinated children) South African G1 strains within sub-lineage Ic which includes strains 

that circulated from 1996 to 2010. Only one South African strain from this study was 

detected in the VP7 lineage II; this strain was collected in 2004 from a non-vaccinated child 

and groups together with the Rotarix™ vaccine strain and other strains that circulated 

globally from 1994 to 2003. Sequence similarities among South African non-vaccinated and 

vaccinated strains ranged between 94–100% and 100%, respectively. Comparison of the 

VP7 nucleotide and deduced amino acid sequences from the South African G1 strains from 

non-vaccinated and vaccinated children to a global collection of G1 sequences from the 

GenBank database, showed a close relationship to previously identified G1 strains from 

humans (nucleotide, 85–98% and amino acid, 91–98%) in lineages I–VI. However, when 

compared to animal G1 strains in lineage VII, there was a moderate relationship of 

nucleotide and amino acid identities in the range of 84–86% and 92–93%, respectively. In 

addition, comparison with the Rotarix™ VP7 gene (RVA/Vaccine/USA/Rotarix™-

RIX4414/1988/G1P1A[8]) showed they share moderately high identities (nt, 93–94% and 

aa, 95–96%), while the RotaTeq™ G1 strain (RVA/Vaccine/USA/RotaTeq™-WI79-9/1992/

G1P75) shares slightly lower similarities (nt, 91–93% and aa, 93–95%). The strain RVA/

Human-wt/ZAF/1262/2004/G1P[8] detected from a non-vaccinated child in 2004 is more 

distantly related to the rest of the South African G1 strains (nt, 93–94% and aa, 94%), but is 

closely related to the G1 strains in lineage II (including the Rotarix™ vaccine G1 strain) 

sharing nt and aa identities in the range of 97–98%. In contrast, the South African G1 strains 

share a lower nt (73%) and aa (74%) relationship to non-G1 strains, such as the G2 strain 

(DS-1 used as an outgroup in this analyses).

The amino acid sequences for all the South African G1 strains in this study contained the 

conserved proline and cysteine residues that were described in 2002 [Ciarlet et al., 2002]. 

The glutamine residue (trypsin cleavage site) at position 51 was also conserved [Stirzaker et 

al., 1987; Jere et al., 2011]. Furthermore, only one potential N-linked glycosylation site at 

position 69 was present among the South African strains, Rotarix™ vaccine, RotaTeq™ G1 

component and the global collection of human and animal G1 strains representing the seven 

previously described lineages [Arista et al., 2006; Le et al., 2010] (Fig. 2).

The VP7 gene sequence contains the major neutralizing sites targeted by the cytotoxic T-

lymphocytes leading to the production of neutralizing antibodies by B cells [Dyall-Smith et 

al., 1986]. At least nine VP7 variable regions, VR-1 to VR-9 have been described [Green et 

al., 1989]. Six antigenic regions have been described before and are defined as A (aa 87–

101), B (aa 141–150), C (aa 208–224), D (aa 291), E (aa 189), and F (aa 235–245). 

Antigenic regions A, B, C, and F correspond to VR-5, VR-7, VR-8, and VR-9, respectively 

[Dyall-Smith et al., 1986; Green et al., 1989; Kirkwood et al., 1993]. Comparison of the 

amino acid sequence from the Rotarix™ G1 component with sequences from the South 

African G1 strains revealed moderately high sequence similarities with numerous 
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substitutions in variable regions namely: VR-3 (S37F in strains from non-vaccinated and 

S37I in strains from vaccinate children; Y41F and R49K in all South African G1 strains), 

VR-4 (A68S in strains from both non-vaccinated and vaccinated children; Q72R, G74E, and 

I75V in only 5 strains from vaccinated children), VR-5/antigenic site A (N94S in 10 of the 

South African G1 strains), VR-6 (S123N in 10 of the South African strains), and VR-8/

antigenic site C (M217T in 10 of the South African G1 strains) [Dyall-Smith et al., 1986; 

Green et al., 1989; Kirkwood et al., 1993]. Also, comparison of the amino acid sequence 

from the VP7 G1 component of the RotaTeq™ vaccine with the South African G1 sequences 

revealed several important substitutions at VR-3 (F37I only in strains from vaccinated 

children; T41F in all South African G1 strains), VR-4 (T68S in strains from both non-

vaccinated and vaccinated children; Q72R, E74G, and V75I only in strains from non-

vaccinated children), VR-5/antigenic site A (N94S in both non-vaccinated and vaccinated 

children), VR-6 (S123N in both non-vaccinated and vaccinated children), and VR-8/

antigenic site C (M217T in 10 of the South African G1 strains) [Dyall-Smith et al., 1986; 

Green et al., 1989; Kirkwood et al., 1993]. The VR-1, VR-2, VR-7/antigenic site B and 

VR-9/antigenic site F were highly conserved among the South African strains, Rotarix™ and 

RotaTeq™ (Fig. 2).

Sequence Analyses of VP4

The VP4 gene sequences of 11 South African G1P[8] strains collected from both non-

vaccinated and vaccinated children were compared with representative human rotaviruses 

from the four established VP4 P[8] genotype lineages (P[8]-I to P[8]-IV) [Arista et al., 2006; 

Le et al., 2010]. Analyses of the South African P[8] strains from both non-vaccinated and 

vaccinated children revealed that they were closely identical with each other (97–100%). 

However, strains from the vaccinated children were identical in both nt and aa sequences 

(100%). The South African strains clustered into two distinct sub-lineages within the P[8]-

III lineage of the P[8] genotype (Fig. 1B), showing 96–99% nt and 96–100% aa identities. 

Within this lineage are strains detected from 1995 to 2010. In addition, the South African 

P[8] strains were compared with non-P[8]-III lineage strains and they showed moderate 

relationship in nt and aa similarities in the range of 86–94% and 86–96%, respectively. 

Further, comparison with the Rotarix™ vaccine P[8] and RotaTeq™ vaccine P[8] genotype 

revealed a moderate relationship (nt, 90–91% and aa, 91–92%) and (nt, 92–93% and aa, 

94%), respectively. The lowest identities were seen with non-P[8] genotype such as P[4] (nt, 

86% and aa, 88–89%) which was used as an outgroup in this analyses. The VP4 spike 

protein is comprised of two structurally distinct regions (VP8* and VP5*) generated 

following trypsin activation of the virion particle [Estes and Kapikian, 2007]. The VP8* 

region contains four surface-exposed antigenic epitopes (8–1 to 8–4), while VP5* contains 

five surface exposed antigenic epitopes (5–1 to 5–5) [Zeller et al., 2012]. Sequence analyses 

showed that all the South African G1 strains in this study contained a conserved trypsin 

cleavage sites (arginine) at positions 230, 240, and 581 [Ciarlet et al., 2002; Estes and 

Kapikian, 2007]. A second conserved trypsin cleavage site described [Crawford et al., 2001] 

at residues 257 and 466 (data not shown) was observed. Also, analyses of the South African 

P[8] strains showed that they contained up to eight and five differences with Rotarix™ and 

RotaTeq™, respectively. For Rotarix™ six of the substitutions were located in VP8* epitopes 

8–1 (positions E150D, N195G) and 8–3 (positions N113D, S125N, S131R, N135D) and two 
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in VP5* epitope 5–1 (positions S383N, Y385D). The amino acid changes at positions 

N113D and S383N only occur between strains from South African vaccinated children and 

Rotarix™. On the other hand, in RotaTeq™ three of the substitutions were found in VP8* 

epitopes 8–1 (positions E150D and D195G) and 8–3 (position N113D) and two were in 

VP5* epitope 5–1 (positions R383S in non-vaccinated and R383N in vaccinated children 

and H385D) (Table II).

Sequence Analyses of VP1–VP3 and VP6

Phylogenetic analyses based on VP1–VP3 and VP6 nucleotide sequences demonstrated that 

each gene from the South African study samples grouped into two to three separate clades 

with strains isolated worldwide (Fig. 1C–F) usually by year and vaccination status (i.e., 

2004–2009 non-vaccinated children and 2010 vaccinated children). The collection exhibited 

a close genetic relationship with gene sequences of previously reported strains from 

GenBank belonging to the R1, C1, M1, and I1 genotypes that were isolated globally [Wyatt 

et al., 1983; Rahman et al., 2007; Matthijnssens et al., 2008a; Jere et al., 2011; Bucardo et 

al., 2012]. Nucleotide (amino acid) identities among South African strains collected from 

non-vaccinated children ranged from 94–100% (98–100%), 96–100% (99–100%), 90–100% 

(95–100%), and 97–100% (99–100%) for VP1, VP2, VP3, and VP6, respectively, while 

those from vaccinated children shared an absolute identity with each other. Among strains 

from non-vaccinated children, a complete nucleotide and amino acid similarities were shared 

between strains RVA/Human-wt/ZAF/1289/2007/G1P[8], RVA/Human-wt/ZAF/2325/2009/

G1P[8] and RVA/Human-wt/ZAF/2330/2009/G1P[8], likewise between strains RVA/

Human-wt/ZAF/2325/2009/G1P[8], RVA/Human-wt/ZAF/2306/2009/G1P[8] and RVA/

Human-wt/ZAF/2330/2009/G1P[8] in their VP1–VP3 and VP6 genes. However, when the 

nucleotide (amino acid) homologies, of the VP1–VP3 and VP6 gene sequences of these 

South African strains, were compared with similar gene sequences of strains belonging to 

previously identified VP1–VP3 and VP6 genotypes, all were more closely related to strains 

in the R1, 85–99% (93–100%), C1, 88–100% (92–100%), M1, 86–99% (88–99%), and I1, 

88–99% (97–100%) genotypes, respectively. These same sequences when compared to 

cognate gene sequences of the Rotarix™ vaccine currently being used in South Africa 

[Seheri et al., 2012], revealed they shared nucleotide (amino acid) homologies in the range 

of 95–97% (99%), 93–94% (98%), 92% (95–97%), and 89–90% (97–98%), respectively. 

The lowest nucleotide and amino acid similarities in the range of 75–82% and 80–93% were 

with strains belonging to the DS-1-like (R2, C2, M2, and I2) and AU-1-like (R3, C3, M3, 

and I3) genogroups.

Sequences Analyses of NSP1–NSP5

Phylogenetic analyses of NSP1–NSP5 nucleotide sequences revealed that for each gene, the 

South African strains from both non-vaccinated and vaccinated children grouped in small 

separate sub-clusters of genotypes A1, N1, T1, E1, and H1, respectively, together with other 

strains from around the world (Fig. 1H–K). Nucleotide (amino acid) identity values among 

South African strains from non-vaccinated children ranged from 96–100% (95–100%), 90–

100% (95–100%), 95–100% (96–100%), 92–100% (94–100%), and 99–100% (99–100%) 

for NSP1, NSP2, NSP3, NSP4, and NSP5, respectively. On the other hand, strains from 

vaccinated children shared an almost complete identity (≥99%) with each other. Absolute 
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nucleotide and amino acid identities were shared among strains RVA/Human-wt/ZAF/

1289/2007/G1P[8], RVA/Human-wt/ZAF/2325/2009/G1P[8], and RVA/Human-wt/ZAF/

2330/2009/G1P[8] and also between strains RVA/Human-wt/ZAF/2325/2009/G1P[8], RVA/

Human-wt/ZAF/2306/2009/G1P[8], and RVA/Human-wt/ZAF/2330/2009/G1P[8] (NSP1 

and NSP2 genes); RVA/Human-wt/ZAF/2325/2009/G1P[8] and RVA/Human-wt/ZAF/

2306/2009/G1P[8] (NSP3 gene), and RVA/Human-wt/ZAF/2325/2009/G1P[8], RVA/

Human-wt/ZAF/2306/2009/G1P[8], and RVA/Human-wt/ZAF/2330/2009/G1P[8] (NSP4 

and NSP5 genes). However, when the nucleotide and amino acid similarities of the NSP1–

NSP5 gene sequences, of the South African strains, were compared with similar gene 

sequences of strains belonging to already identified NSP1–NSP5 genotypes, all of them 

were more closely related to strains in the A1, N1, T1, E1, and H1 genotypes, in that order. 

Within each of these genotypes, the South African strains from both non-vaccinated and 

vaccinated children shared maximum nucleotide (amino acid) identity of 80–99% (80–99%), 

80–99% (88–100%), 82–98% (85–100%), 81–98% (92–99%), and 90–99% (90–100%), 

respectively. In addition, comparison with the cognate gene sequences of Rotarix™ vaccine 

strain indicated 84% (83%) for NSP1, 89–91% (96–97%) for NSP2, 96% (97–98%) for 

NSP3, 92–97% (94–97%) for NSP4, and 93% (94%) for NSP5 genes. Repeatedly, the 

lowest nucleotide and amino acid similarities in the range of 63–88% and 59–91% were with 

strains belonging in DS-1-like (A2, N2, T2, and H2) and AU-1-like (A3, N3, T3, and H3) 

genogroups.

DISCUSSION

Globally, there are five common RVA genotypes namely: G1P[8], G2P[4], G3P[8], G4P[8], 

and G9P[8] that are responsible for approximately 88% of all rotavirus infections in children 

less than 5 years of age. Genotype G1P[8] is the most common circulating strain accounting 

for 50–65% of all strains in developed and in some developing countries [Banyai et al., 

2012]. In Africa, G1P[8] accounts for approximately 21% of all circulating RVA strains 

[Steele and Ivanoff, 2003; Todd et al., 2010; Banyai et al., 2012]. In 2009, the monovalent 

(G1P[8]) Rotarix™ vaccine was introduced in the South African Expanded Program on 

Immunization and in less than 2 years, a significant reduction in rotavirus-associated 

hospitalization midst children younger than 5 years old was observed [Seheri et al., 2012], 

with G1P[8] being the most common strain in circulation among South African children 

[Sanchez-Padilla et al., 2009]. A few previous reports from South Africa showed G1 

genotype associated with either VP4 P[6] or P[8] genotypes as the predominant strain in 

circulation [Steele et al., 2003; Potgieter et al., 2010]. In this study, we described the full 

genome analyses of eleven G1P[8] strains collected from both non-vaccinated and 

vaccinated South African children ≤5 years of age.

Using nucleotide sequence identities and phylogenetic analyses of the complete coding 

sequences of the VP7–VP4–VP6–VP1–VP2–VP3–NSP1–NSP2–NSP3–NSP4–NSP5 genes 

of the five South African RVA strains reported here from non-vaccinated children and six 

strains from vaccinated children were assigned to the G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-

H1 genotypes, respectively (Fig. 1A–K). Therefore, these 11 South African G1P[8] RVA 

strains exhibited a typical Wa-like genotype constellation.
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The emergence of new lineages or sub-lineages of G1 strains is a possible explanation for 

the continuous circulation of G1 rotavirus in a given geographic area as shown in previous 

studies in Hungary and Italy [Arista et al., 2006; Banyai et al., 2009]. Sequencing of the VP7 

gene from the G1 genotype reveals temporal variation and antigenic change among strains 

[Diwakarla and Palombo, 1999]. VP7 gene analyses of G1 strains has conveyed significant 

genetic diversity and produced at least seven global lineages among the G1 strains collected 

from different geographic locations [Arista et al., 2006; Banyai et al., 2009; Le et al., 2010; 

Bucardo et al., 2012]. In this present study, phylogenetic analyses revealed close similarities 

(99–100%) between the South African strains from both non-vaccinated and vaccinated 

children. With the exception of strain RVA/Human-wt/ZAF/1262/2004/G1P[8] which 

clustered in G1 lineage II with the G1 of the Rotarix™ vaccine and other G1 strains collected 

between 1994 and 2003, the remaining ten South African G1 strains collected between 2007 

and 2010 clustered in G1 lineage I. It suggests that this is a G1 strain that circulated earlier 

and has been replaced with recent G1 strains in lineage I. Within this lineage I, the strains 

from non-vaccinated and vaccinated children clustered separately. In another study from 

Finland, the circulation of two G1 sub-lineages (G1-I and G1-II) were reported for a period 

of 20 years before and after the introduction of both the Rotarix™ and the RotaTeq™ 

vaccines, which suggests that there was little or no variations in the deduced VP7 amino acid 

sequences of these strains even after the introduction of the vaccines [Hemming and 

Vesikari, 2013]. However, the South African G1 strains shared amino acid identities in the 

range of 95–96% and 93–95% to Rotarix™ and G1 component of RotaTeq™, respectively, 

indicating that these strains were not vaccine derived. The formation of two lineages, in a 

small number of collections of South African G1 strains provides evidence of genetic 

variation over the years. In addition, different VP7 genetic lineages were also observed 

between South African G1 strains from non-vaccinated and vaccinated children and the 

prototype G1P[8] strain (Wa-like) detected in 1974 in the USA and classified to VP7 lineage 

III [Jin et al., 1996; Arista et al., 2006; Le et al., 2010; Bucardo et al., 2012].

By multiple alignment, the deduced amino acid sequences of the VP7 of the South African 

G1P[8] strains from non-vaccinated and vaccinated children exhibited 13, 7–14, and 21 and 

13, 16, and 21 mismatches in both antigenic and non-antigenic regions with those of the 

prototype G1P[8] strain Wa-like, VP7 of Rotarix™ and G1 component of RotaTeq™, 

respectively. However, when amino acid analyses of only VP7 antigenic/variable regions 

were considered, it showed that the South African G1P[8] strains were highly conserved in 

VR-1, VR-2, VR-7/antigenic site B and VR-9/antigenic site F, while multiple amino acids 

changes were observed in five of the other nine variable regions [Dyall-Smith et al., 1986; 

Green et al., 1989; Kirkwood et al., 1993]. Amino acid substitutions in antigenic regions A/

VR-5 (aa 87–101), B/VR-7 (aa 141–150), and C/VR-8 (aa 208–224), especially at positions 

94, 96, 147, 148, 190, 208, 211, 213, and 217, with or without glycosylation changes, are 

known to alter the antigenicity of viruses and enhance host immunity [Ahmed et al., 2007; 

Trinh et al., 2007]. Therefore, the substitutions detected at positions 94 and 217 may be 

important in antigenic drift in the South African rotavirus G1 strains, thereby escaping host 

immunity [Maranhao et al., 2012]. Also, the fact that these substitutions were observed 

among the G1 strains from vaccinated children could suggest the possibility of a positive 

selection over time and might be related to some kind of advantages regarding viral fitness, 
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although this could not be conclusively determined in this study as selection pressure on 

these substitutions was not investigated.

Although VP7 is the surface protein represented in most current vaccines, VP4 which is also 

a surface protein is also very important in inducing protective immunity [Offit et al., 1986; 

Ward et al., 1993]. Previous phylogenetic data of the VP4 gene provides evidence of 

diversity within P[8] genotypes; four distinct lineages have been described [Arista et al., 

2006; Le et al., 2010; Cho et al., 2013]. The South African G1P[8] strains though separated 

in three groups were all clustered in P[8]-III lineage together with strains collected globally.

Deduced amino acid residues defining the RVA VP4 epitopes have been identified by 

neutralization escape mutants and identifying surface exposed amino acid residues that show 

intergenotypic variability among prevalent human P-genotypes [Dormitzer et al., 2004; 

McDonald et al., 2009]. With the exception of a single residue at position N113D in the 

VP8* portion of all vaccinated strains, these amino acid residues were conserved among the 

South African G1P[8] strains (Table II). Alignment of the amino acid residues, defining the 

VP4 neutralization domains, revealed eight and five mismatches in the VP8* (antigenic 

epitopes 8–1 and 8–3) and VP5* (antigenic epitope 5–1) antigenic epitopes between the VP4 

component of the South African G1P[8] strains and that of Rotarix™ and RotaTeq™ 

(RotaTeq™ data not shown) (Table II). With the exception of conservation at residue 190, the 

mutation pattern in the VP8* antigenic epitopes were similar to those reported previously 

[Zeller et al., 2012; Mouna et al., 2013]. Among the other genes, the VP1-3, VP6, and 

NSP1-NSP5 genes of all South African strains were closely related to those of several Wa-

like common human RVA strains, such as G1, G3, G9, and/or G12, detected in the late 

1990s and 2000s from different countries.

Overall, full genomic analyses of South African G1P[8] strains collected from both non-

vaccinated and vaccinated children revealed a stable Wa-like genetic backbone that might be 

circulating in most of the current Wa-like common human RVAs, such as the G1P[8], 

G3P[8], G4P[8], and G9P[8] strains, worldwide. It has been hypothesized that RVAs with 

this genetic backbone have the ability to propagate extremely well in the human host, as 

evidenced by the detection of large numbers of Wa-like human RVA strains across the globe 

[Matthijnssens et al., 2008a; Rahman et al., 2010; Ghosh and Kobayashi, 2011]. Comparison 

of the full genomes of the South African G1P[8] strains from these two groups revealed a 

close genetic relationship among these RVAs, suggesting that identical G1P[8] strains with 

limited sequence variability might be circulating among children in South Africa. In 2002, 

the predominance of G1-I P[8]-I combination was reported, however in the current study the 

combination detected was G1-1 P[8]-III with the exception of the G1P[8] strain from 2004 

which had a G1-IP[8]-II combination [Maunula and Von Bonsdorff, 2002]. Although the 

present study provided important insights into the origin and overall genetic makeup of the 

circulating human G1P[8] RVA strains in South Africa, it was limited to five strains from 

non-vaccinated and six from vaccinated children collected from one location. Full genomic 

analyses of additional RVA strains from different and varying geographical regions in South 

Africa will provide a better understanding of the evolutionary dynamics of the RVA strains 

in South Africa post-vaccine introduction.
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The currently licensed RVA vaccines, Rotarix™ and RotaTeq™, have been found to be 

effective against the commonly detected human RVA strains, including G8 and G12 strains 

[Steele et al., 2012] resulting in substantial declines in rotavirus and/or diarrhea related 

hospitalization in many countries [Lopman et al., 2012]. Comparisons of the amino acid 

residues for the VP7 and VP4 antigenic domains showed several mismatches between the 

South African G1P[8] strains and the G1 and P[8] strains contained in Rotarix™ (which is 

currently being used in South Africa); however, a sharp reduction of severe gastroenteritis 

and hospitalization amongst South African children ≤5 years of age has been described 

[Seheri et al., 2012]. Therefore, to monitor the implications of these changes on the efficacy 

of these vaccines, molecular epidemiologic surveillance programs post-vaccine introduction 

must be encouraged. There is evidence that gene products other than VP7 and VP4 influence 

the immune response in the host following RVA vaccination [Matthijnssens et al., 2009]. 

Vaccine-induced immunological pressure may cause changes in these genes that are 

disadvantageous to the efficacy of the present RVA vaccines [Matthijnssens et al., 2009]. 

Consequently, large-scale complete genome-based studies on common human RVA strains 

from various countries are essential to identify these vaccine-induced changes in the RVA 

genome. This report therefore describes the first full genomic analyses of G1P[8] RVA 

strains collected from both non-vaccinated and vaccinated children in South Africa.
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Fig. 1. 
A–K: Maximum likelihood phylogenetic trees built in MEGA version 5 with bootstrap 

statistics as support show the genetic relationships of nucleotide sequences of VP7 (A), VP4 

(B), VP1 (C), VP2 (D), VP3 (E), VP6 (F), NSP1 (G), NSP2 (H), NSP3 (I), NSP4 (J), and 

NSP5 (K) of human G1P[8] rotaviruses from non-vaccinated and vaccinated South Africa 

children with known human and animal rotavirus strains from GenBank database. The trees 

were drawn to scale. Only bootstrap values of 70% and greater are shown. The strains 
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labeled with filled squares indicate G1P[8] from vaccinated and filled circles are from non-

vaccinated children. The scale bar at the bottom of the trees indicates genetic distance.
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Fig. 2. 
Comparison of the deduced amino acid sequence of gene segment 9 of strain South African 

G1P[8] from both non-vaccinated and vaccinated children to Rotarix™, G1 component of 

RotaTeq™ and a selection of older and contemporary G1 sequences from the GenBank. 
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Only amino acids which differ are shown. Variable regions designated VR-1 to VR-9 are 

shown.
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