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The rapidly evolving evidence on genetic associations 
is crucial to integrating human genomics into 
the practice of medicine and public health [1,2]. 

Genetic factors are likely to affect the occurrence of 
numerous common diseases, and therefore identifying and 
characterizing the associated risk (or protection) will be 
important in improving the understanding of etiology and 
potentially for developing interventions based on genetic 
information. The number of publications on the associations 
between genes and diseases has increased tremendously; with 
more than 34 000 published articles, the annual number has 
more than doubled between 2001 and 2008 [3,4]. Articles 
on genetic associations have been published in about 1500 
journals and in several languages. 

Despite the many similarities between genetic association 
studies and “classical” observational epidemiologic studies 
(that is, cross-sectional, case-control, and cohort) of lifestyle 
and environmental factors, genetic association studies present 
several specific challenges including an unprecedented 
volume of new data [5,6] and the likelihood of very small 
individual effects. Genes may operate in complex pathways 
with gene-environment and gene-gene interactions [7]. 
Moreover, the current evidence base on gene-disease 
associations is fraught with methodological problems [8–10]. 
Inadequate reporting of results, even from well-conducted 
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studies, hampers assessment of a study’s strengths and 
weaknesses, and hence the integration of evidence [11]. 

Although several commentaries on the conduct, appraisal 
and/or reporting of genetic association studies have so far 
been published [12–39], their recommendations differ. For 
example, some papers suggest that replication of findings 
should be part of the publication [12,13,16,17,23,26,34–36] 
whereas others consider this suggestion unnecessary or even 
unreasonable [21,40–44]. In many publications, the guidance 
has focused on genetic association studies of specific diseases 
[14,15,17,19,22,23,25,26,31–38] or the design and conduct 
of genetic association studies [13–15,17,19,20,22,23,25,30–
32,35,36] rather than on the quality of the reporting. 

Despite increasing recognition of these problems, the 
quality of reporting genetic association studies needs to be 
improved [45–49]. For example, an assessment of a random 
sample of 315 genetic association studies published from 2001 
to 2003 found that most studies provided some qualitative 
descriptions of the study participants (for example, origin and 
enrolment criteria), but reporting of quantitative descriptors, 
such as age and sex, was variable [49]. In addition, 
completeness of reporting of methods that allow readers to 
assess potential biases (for example, number of exclusions 
or number of samples that could not be genotyped) varied 
[49]. Only some studies described methods to validate 
genotyping or mentioned whether research staff were blinded 
to outcome. The same problems persisted in a smaller sample 
of studies published in 2006 [49]. Lack of transparency and 
incomplete reporting have raised concerns in a range of 
health research fields [11,50–53] and poor reporting has 
been associated with biased estimates of effects in clinical 
intervention studies [54]. 

The main goal of this article is to propose and justify a 
set of guiding principles for reporting results of genetic 
association studies. The epidemiology community has 
recently developed the Strengthening the Reporting of 
Observational studies in Epidemiology (STROBE) Statement 

for cross-sectional, case-control, and cohort studies [55,56]. 
Given the relevance of general epidemiologic principles for 
genetic association studies, we propose recommendations 
in an extension of the STROBE Statement called the 
STrengthening the REporting of Genetic Association studies 
(STREGA) Statement. The recommendations of the STROBE 
Statement have a strong foundation because they are based 
on empirical evidence on the reporting of observational 
studies, and they involved extensive consultations in the 
epidemiologic research community [56]. We have sought 
to identify gaps and areas of controversy in the evidence 
regarding potential biases in genetic association studies. With 
the recommendations, we have indicated available empirical 
or theoretical work that has demonstrated or suggested that a 
methodological feature of a study can influence the direction 
or magnitude of the association observed. We acknowledge 
that for many items, no such evidence exists. The intended 
audience for the reporting guideline is broad and includes 
epidemiologists, geneticists, statisticians, clinician scientists, 
and laboratory-based investigators who undertake genetic 
association studies. In addition, it includes “users” of such 
studies who wish to understand the basic premise, design, and 
limitations of genetic association studies in order to interpret 
the results. The field of genetic associations is evolving 
very rapidly with the advent of genome-wide association 
investigations, high-throughput platforms assessing genetic 
variability beyond common single nucleotide polymorphisms 
(SNPs) (for example, copy number variants, rare variants), 
and eventually routine full sequencing of samples from large 
populations. Our recommendations are not intended to 
support or oppose the choice of any particular study design 
or method. Instead, they are intended to maximize the 
transparency, quality and completeness of reporting of what 
was done and found in a particular study. 

Methods

A multidisciplinary group developed the STREGA Statement 
by using literature review, workshop presentations and 
discussion, and iterative electronic correspondence after 
the workshop. Thirty-three of 74 invitees participated in the 
STREGA workshop in Ottawa, Ontario, Canada, in June, 
2006. Participants included epidemiologists, geneticists, 
statisticians, journal editors and graduate students. 

Before the workshop, an electronic search was performed 
to identify existing reporting guidance for genetic association 
studies. Workshop participants were also asked to identify 
any additional guidance. They prepared brief presentations 
on existing reporting guidelines, empirical evidence on 
reporting of genetic association studies, the development of 
the STROBE Statement, and several key areas for discussion 
that were identified on the basis of consultations before the 
workshop. These areas included the selection and participation 
of study participants, rationale for choice of genes and 
variants investigated, genotyping errors, methods for inferring 
haplotypes, population stratification, assessment of Hardy-
Weinberg equilibrium (HWE), multiple testing, reporting of 
quantitative (continuous) outcomes, selectively reporting study 
results, joint effects and inference of causation in single studies. 
Additional resources to inform workshop participants were 
the HuGENet handbook [57,58], examples of data extraction 
forms from systematic reviews or meta-analyses, articles on 
guideline development [59,60] and the checklists developed 

Summary
Making sense of rapidly evolving evidence on genetic 

associations is crucial to making genuine advances in human 
genomics and the eventual integration of this information 
in the practice of medicine and public health. Assessment of 
the strengths and weaknesses of this evidence, and hence 
the ability to synthesize it, has been limited by inadequate 
reporting of results. The STrengthening the REporting of 
Genetic Association studies (STREGA) initiative builds on the 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) Statement and provides additions 
to 12 of the 22 items on the STROBE checklist. The additions 
concern population stratification, genotyping errors, modelling 
haplotype variation, Hardy-Weinberg equilibrium, replication, 
selection of participants, rationale for choice of genes and 
variants, treatment effects in studying quantitative traits, 
statistical methods, relatedness, reporting of descriptive 
and outcome data, and the volume of data issues that are 
important to consider in genetic association studies. The STREGA 
recommendations do not prescribe or dictate how a genetic 
association study should be designed but seek to enhance the 
transparency of its reporting, regardless of choices made during 
design, conduct, or analysis. 
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for STROBE. To harmonize our recommendations for genetic 
association studies with those for observational epidemiologic 
studies, we communicated with the STROBE group during 
the development process and sought their comments on the 
STREGA draft documents. We also provided comments on the 
developing STROBE Statement and its associated explanation 
and elaboration document [56]. 

Results

In Table 1, we present the STREGA recommendations, 
an extension to the STROBE checklist [55] for genetic 
association studies (an editable version of Table 1 is provided 
as Table S1 under Supporting Information). The resulting 
STREGA checklist provides additions to 12 of the 22 items 
on the STROBE checklist. During the workshop and 
subsequent consultations, we identified five main areas of 
special interest that are specific to, or especially relevant in, 
genetic association studies: genotyping errors, population 
stratification, modelling haplotype variation, HWE and 
replication. We elaborate on each of these areas, starting each 
section with the corresponding STREGA recommendation, 
followed by a brief outline of the issue and an explanation 
for the recommendations. Complementary information 
on these areas and the rationale for additional STREGA 
recommendations relating to selection of participants, choice 
of genes and variants selected, treatment effects in studying 
quantitative traits, statistical methods, relatedness, reporting 
of descriptive and outcome data, and issues of data volume, 
are presented in Table 2.

Genotyping Errors
Recommendation for reporting of methods (Table 1, item 8(b)): 

Describe laboratory methods, including source and storage of DNA, 
genotyping methods and platforms (including the allele calling 
algorithm used, and its version), error rates and call rates. State the 
laboratory/centre where genotyping was done. Describe comparability 
of laboratory methods if there is more than one group. Specify 
whether genotypes were assigned using all of the data from the study 
simultaneously or in smaller batches. 

Recommendation for reporting of results (Table 1, item 13(a)): 
Report numbers of individuals in whom genotyping was attempted 
and numbers of individuals in whom genotyping was successful.

Genotyping errors can occur as a result of effects of 
the DNA sequence flanking the marker of interest, poor 
quality or quantity of the DNA extracted from biological 
samples, biochemical artefacts, poor equipment precision 
or equipment failure, or human error in sample handling, 
conduct of the array or handling the data obtained from the 
array [61]. A commentary published in 2005 on the possible 
causes and consequences of genotyping errors observed 
that an increasing number of researchers were aware of 
the problem, but that the effects of such errors had largely 
been neglected [61]. The magnitude of genotyping errors 
has been reported to vary between 0.5% and 30% [61–64]. 
In high-throughput centres, an error rate of 0.5% per 
genotype has been observed for blind duplicates that were 
run on the same gel [64]. This lower error rate reflects an 
explicit choice of markers for which genotyping rates have 
been found to be highly repeatable and whose individual 
polymerase chain reactions (PCR) have been optimized. 
Non-differential genotyping errors, that is, those that do 
not differ systematically according to outcome status, will 

usually bias associations towards the null [65,66], just as for 
other non-differential errors. The most marked bias occurs 
when genotyping sensitivity is poor and genotype prevalence 
is high (>85%) or, as the corollary, when genotyping 
specificity is poor and genotype prevalence is low (<15%) 
[65]. When measurement of the environmental exposure has 
substantial error, genotyping errors of the order of 3% can 
lead to substantial under-estimation of the magnitude of an 
interaction effect [67]. When there are systematic differences 
in genotyping according to outcome status (differential 
error), bias in any direction may occur. Unblinded assessment 
may lead to differential misclassification. For genome-wide 
association studies of SNPs, differential misclassification 
between comparison groups (for example, cases and 
controls) can occur because of differences in DNA storage, 
collection or processing protocols, even when the genotyping 
itself meets the highest possible standards [68]. In this 
situation, using samples blinded to comparison group to 
determine the parameters for allele calling could still lead to 
differential misclassification. To minimize such differential 
misclassification, it would be necessary to calibrate the 
software separately for each group. This is one of the reasons 
for our recommendation to specify whether genotypes were 
assigned using all of the data from the study simultaneously 
or in smaller batches. 

Population Stratification
Recommendation for reporting of methods (Table 1, item 

12(h)): Describe any methods used to assess or address population 
stratification.

Population stratification is the presence within a 
population of subgroups among which allele (or genotype; 
or haplotype) frequencies and disease risks differ. When the 
groups compared in the study differ in their proportions 
of the population subgroups, an association between the 
genotype and the disease being investigated may reflect 
the genotype being an indicator identifying a population 
subgroup rather than a causal variant. In this situation, 
population subgroup is a confounder because it is associated 
with both genotype frequency and disease risk. The potential 
implications of population stratification for the validity of 
genetic association studies have been debated [69–83]. 
Modelling the possible effect of population stratification 
(when no effort has been made to address it) suggests that 
the effect is likely to be small in most situations [75,76,78–80]. 
Meta-analyses of 43 gene-disease associations comprising 
697 individual studies showed consistent associations across 
groups of different ethnic origin [80], and thus provide 
evidence against a large effect of population stratification, 
hidden or otherwise. However, as studies of association and 
interaction typically address moderate or small effects and 
hence require large sample sizes, a small bias arising from 
population stratification may be important [81]. Study design 
(case-family control studies) and statistical methods [84] have 
been proposed to address population stratification, but so far 
few studies have used these suggestions [49]. Most of the early 
genome-wide association studies used family-based designs or 
such methods as genomic control and principal components 
analysis [85,86] to control for stratification. These approaches 
are particularly appropriate for addressing bias when the 
identified genetic effects are very small (odds ratio <1.20), 
as has been the situation in many recent genome-wide 
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Table 1. STREGA Reporting Recommendations, Extended from STROBE Statement 

Item Item
Number

STROBE Guideline Extension for Genetic Association 
Studies (STREGA)

Title and Abstract 1 (a) Indicate the study’s design with a commonly used term in the title or the abstract.

(b) Provide in the abstract an informative and balanced summary of what was done 

and what was found.

Introduction

Background rationale 2 Explain the scientific background and rationale for the investigation being reported.

Objectives 3 State specific objectives, including any pre-specified hypotheses. State if the study is the first report of a 

genetic association, a replication effort, 

or both. 

Methods

Study design 4 Present key elements of study design early in the paper.

Setting 5 Describe the setting, locations and relevant dates, including periods of recruitment, 

exposure, follow-up, and data collection.

Participants 6 (a)  Cohort study – Give the eligibility criteria, and the sources and methods of 

selection of participants. Describe methods of follow-up.

Case-control study – Give the eligibility criteria, and the sources and methods 

of case ascertainment and control selection. Give the rationale for the choice of 

cases and controls.

Cross-sectional study – Give the eligibility criteria, and the sources and methods 

of selection of participants.

Give information on the criteria and 

methods for selection of subsets of 

participants from a larger study, when 

relevant.

(b) Cohort study – For matched studies, give matching criteria and number of 

exposed and unexposed.

Case-control study – For matched studies, give matching criteria and the number 

of controls per case.

Variables 7 (a) Clearly define all outcomes, exposures, predictors, potential confounders, and 

effect modifiers. Give diagnostic criteria, if applicable.

(b) Clearly define genetic exposures 

(genetic variants) using a widely-used 

nomenclature system. Identify variables 

likely to be associated with population 

stratification (confounding by ethnic 

origin).

Data sources/measurement 8* (a) For each variable of interest, give sources of data and details of methods of 

assessment (measurement). Describe comparability of assessment methods if there is 

more than one group.

(b) Describe laboratory methods, 

including source and storage of DNA, 

genotyping methods and platforms 

(including the allele calling algorithm 

used, and its version), error rates and 

call rates. State the laboratory/centre 

where genotyping was done. Describe 

comparability of laboratory methods if 

there is more than one group. Specify 

whether genotypes were assigned 

using all of the data from the study 

simultaneously or in smaller batches. 

Bias 9 (a) Describe any efforts to address potential sources of bias. (b) For quantitative outcome variables, 

specify if any investigation of potential 

bias resulting from pharmacotherapy 

was undertaken. If relevant, describe the 

nature and magnitude of the potential 

bias, and explain what approach was 

used to deal with this.

Study size 10 Explain how the study size was arrived at. 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, 

describe which groupings were chosen, and why.

If applicable, describe how effects of 

treatment were dealt with.

Statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding. State software version used and options 

(or settings) chosen.

(b) Describe any methods used to examine subgroups and interactions.

(c) Explain how missing data were addressed. 

(d) Cohort study – If applicable, explain how loss to follow-up was addressed.

Case-control study – If applicable, explain how matching of cases and controls 

was addressed.

Cross-sectional study – If applicable, describe analytical methods taking 

account of sampling strategy.

(e) Describe any sensitivity analyses.
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Table 1. Continued

(f) State whether Hardy-Weinberg 

equilibrium was considered and, if so, 

how.

(g) Describe any methods used for 

inferring genotypes or haplotypes. 

(h) Describe any methods used to assess 

or address population stratification. 

(i) Describe any methods used to address 

multiple comparisons or to control risk of 

false positive findings. 

(j) Describe any methods used to address 

and correct for relatedness among 

subjects

Results

Participants 13* (a) Report the numbers of individuals at each stage of the study – e.g., numbers 

potentially eligible, examined for eligibility, confirmed eligible, included in the 

study, completing follow-up, and analysed.

Report numbers of individuals in whom 

genotyping was attempted and numbers 

of individuals in whom genotyping was 

successful.

(b) Give reasons for non-participation at each stage.

(c) Consider use of a flow diagram.

Descriptive data 14* (a) Give characteristics of study participants (e.g., demographic, clinical, social) and 

information on exposures and potential confounders.

Consider giving information by genotype. 

(b) Indicate the number of participants with missing data for each variable of interest.

(c) Cohort study – Summarize follow-up time (e.g., average and total amount).

Outcome data 15* Cohort study – Report numbers of outcome events or summary measures over time. Report outcomes (phenotypes) for each 

genotype category over time

Case-control study – Report numbers in each exposure category, or summary 

measures of exposure.

Report numbers in each genotype 

category

Cross-sectional study – Report numbers of outcome events or summary measures. Report outcomes (phenotypes) for each 

genotype category

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and 

their precision (e.g., 95% confidence intervals). Make clear which confounders were 

adjusted for and why they were included.

(b) Report category boundaries when continuous variables were categorized.

(c) If relevant, consider translating estimates of relative risk into absolute risk for a 

meaningful time period.

(d) Report results of any adjustments for 

multiple comparisons. 

Other analyses 17 (a) Report other analyses done – e.g., analyses of subgroups and interactions, and 

sensitivity analyses.

(b) If numerous genetic exposures (genetic 

variants) were examined, summarize 

results from all analyses undertaken.

(c) If detailed results are available 

elsewhere, state how they can be 

accessed.

Discussion

Key results 18 Summarize key results with reference to study objectives.

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or 

imprecision. Discuss both direction and magnitude of any potential bias.

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 

multiplicity of analyses, results from similar studies, and other relevant evidence.

Generalizability 21 Discuss the generalizability (external validity) of the study results.

Other Information

Funding 22 Give the source of funding and the role of the funders for the present study and, if 

applicable, for the original study on which the present article is based.

STREGA = STrengthening the REporting of Genetic Association studies; STROBE = Strengthening the Reporting of Observational Studies in Epidemiology.
* Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.
doi:10.1371/journal.pmed.1000022.t001



PLoS Medicine  |  www.plosmedicine.org 0156 February 2009  |  Volume 6  |  Issue 2  |  e1000022

Table 2. Rationale for Inclusion of Topics in the STREGA Recommendations 
Specific Issue 
in Genetic 
Association
Studies

Rationale for Inclusion in 
STREGA

Item(s) in STREGA Specific Suggestions for Reporting

Main areas of special interest (See also main text).
Genotyping errors 

(misclassification of 

exposure)

Non-differential genotyping errors 

will usually bias associations 

towards the null [65,66]. When 

there are systematic differences in 

genotyping according to outcome 

status (differential error), bias in any 

direction may occur. 

8(b): Describe laboratory methods, 

including source and storage of DNA, 

genotyping methods and platforms 

(including the allele calling algorithm 

used, and its version), error rates and 

call rates. State the laboratory/centre 

where genotyping was done. Describe 

comparability of laboratory methods if 

there is more than one group. Specify 

whether genotypes were assigned 

using all of the data from the study 

simultaneously or in smaller batches.

13(a): Report numbers of individuals 

in whom genotyping was attempted 

and numbers of individuals in whom 

genotyping was successful.

Factors affecting the potential extent of misclassification (information 

bias) of genotype include the types and quality of samples, timing of 

collection, and the method used for genotyping [18,61,136]. 

When high throughput platforms are used, it is important to report 

not only the platform used but also the allele calling algorithm and 

its version. Different calling algorithms have different strengths 

and weaknesses ([130] and supplementary information in [85]). For 

example, some of the currently used algorithms are notably less 

accurate in assigning genotypes to single nucleotide polymorphisms 

with low minor allele frequencies (<0.10) than to single nucleotide 

polymorphisms with higher minor allele frequencies [129]. 

Algorithms are continually being improved. Reporting the allele 

calling algorithm and its version will help readers to interpret 

reported results, and it is critical for reproducing the results of the 

study given the same intermediate output files summarizing intensity 

of hybridization.

For some high throughput platforms, the user may choose to assign 

genotypes using all of the data from the study simultaneously, or 

in smaller batches, such as by plate ([68,137] and supplementary 

information in [85]). This choice can affect both the overall call rate 

and the robustness of the calls. 

For case-control studies, whether genotyping was done blind to 

case-control status should be reported, along with the reason for this 

decision.

Population

stratification

(confounding by 

ethnic origin)

When study sub-populations 

differ both in allele (or genotype) 

frequencies and disease risks, then 

confounding will occur if these 

sub-populations are unevenly 

distributed across exposure groups 

(or between cases and controls). 

12(h): Describe any methods used 

to assess or address population 

stratification.

In view of the debate about the potential implications of population 

stratification for the validity of genetic association studies, 

transparent reporting of the methods used, or stating that none was 

used, to address this potential problem is important for allowing the 

empirical evidence to accrue. 

Ethnicity information should be presented (for example, Winker 

[138]), as should genetic markers or other variables likely to be 

associated with population stratification. Details of case-family 

control designs should be provided if they are used.

As several methods of adjusting for population stratification have 

been proposed [84], explicit documentation of the methods is 

needed.

Modelling haplotype 

variation

In designs considered in this article, 

haplotypes have to be inferred 

because of lack of available family 

information. There are diverse 

methods for inferring haplotypes. 

12(g): Describe any methods used for 

inferring genotypes or haplotypes.

When discrete “windows” are used to summarize haplotypes, 

variation in the definition of these may complicate comparisons 

across studies, as results may be sensitive to choice of windows. 

Related “imputation” strategies are also in use [85,91,139]. 

It is important to give details on haplotype inference and, when 

possible, uncertainty. Additional considerations for reporting include 

the strategy for dealing with rare haplotypes, window size and 

construction (if used), and choice of software. 

Hardy-Weinberg

equilibrium (HWE)

Departure from Hardy-Weinberg 

equilibrium may indicate errors 

or peculiarities in the data [128]. 

Empirical assessments have 

found that 20% to 69% of genetic 

associations were reported with 

some indication about conformity 

with Hardy-Weinberg equilibrium, 

and that among some of these, 

there were limitations or errors in its 

assessment [128]. 

12(f): State whether Hardy-Weinberg 

equilibrium was considered and, if 

so, how.

Any statistical tests or measures should be described, as should any 

procedure to allow for deviations from Hardy-Weinberg equilibrium 

in evaluating genetic associations [131].
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Table 2. Continued
Replication Publications that present and 

synthesize data from several studies 

in a single report are becoming 

more common.

3: State if the study is the first report 

of a genetic association, a replication 

effort, or both.

The selected criteria for claiming successful replication should also be 

explicitly documented.

Additional issues

Selection of 

participants

Selection bias may occur if 

(i) genetic associations are 

investigated in one or more subsets 

of participants (sub-samples) from a 

particular study; or 

(ii) there is differential non-

participation in groups being 

compared; or

(iii) there are differential genotyping 

call rates in groups being compared. 

6(a): Give information on the criteria 

and methods for selection of subsets of 

participants from a larger study, when 

relevant.

13(a): Report numbers of individuals 

in whom genotyping was attempted 

and numbers of individuals in whom 

genotyping was successful.

Inclusion and exclusion criteria, sources and methods of selection of 

sub-samples should be specified, stating whether these were based 

on a priori or post hoc considerations.

Rationale for choice 

of genes and variants 

investigated

Without an explicit rationale, it is 

difficult to judge the potential for 

selective reporting of study results. 

There is strong empirical evidence 

from randomised controlled trials 

that reporting of trial outcomes 

is frequently incomplete and 

biased in favour of statistically 

significant findings [140–142]. 

Some evidence is also available in 

pharmacogenetics [143]. 

7(b): Clearly define genetic exposures 

(genetic variants) using a widely-

used nomenclature system. Identify 

variables likely to be associated with 

population stratification (confounding 

by ethnic origin).

The scientific background and rationale for investigating the genes 

and variants should be reported.

For genome-wide association studies, it is important to specify 

what initial testing platforms were used and how gene variants are 

selected for further testing in subsequent stages. This may involve 

statistical considerations (for example, selection of P value threshold), 

functional or other biological considerations, fine mapping choices, 

or other approaches that need to be specified. 

Guidelines for human gene nomenclature have been published by 

the Human Gene Nomenclature Committee [144,145]. Standard 

reference numbers for nucleotide sequence variations, largely 

but not only SNPs are provided in dbSNP, the National Center for 

Biotechnology Information’s database of genetic variation [146]. 

For variations not listed in dbSNP that can be described relative to a 

specified version, guidelines have been proposed [147,148].

Treatment effects in 

studies of quantitative 

traits

A study of a quantitative variable 

may be compromised when the 

trait is subjected to the effects of a 

treatment (for example, the study of 

a lipid-related trait for which several 

individuals are taking lipid-lowering 

medication). Without appropriate 

correction, this can lead to bias in 

estimating the effect and loss of 

power.

9(b): For quantitative outcome 

variables, specify if any investigation 

of potential bias resulting from 

pharmacotherapy was undertaken. 

If relevant, describe the nature and 

magnitude of the potential bias, and 

explain what approach was used to 

deal with this.

11: If applicable, describe how effects 

of treatment were dealt with.

Several methods of adjusting for treatment effects have been 

proposed [149]. As the approach to deal with treatment effects may 

have an important impact on both the power of the study and the 

interpretation of the results, explicit documentation of the selected 

strategy is needed.

Statistical methods Analysis methods should be 

transparent and replicable, and 

genetic association studies are 

often performed using specialized 

software.

12(a): State software version used and 

options (or settings) chosen.

Relatedness The methods of analysis used in 

family-based studies are different 

from those used in studies that 

are based on unrelated cases 

and controls. Moreover, even 

in the studies that are based on 

apparently unrelated cases and 

controls, some individuals may 

have some connection and may 

be (distant) relatives, and this is 

particularly common in small, 

isolated populations, for example, 

Iceland. This may need to be 

probed with appropriate methods 

and adjusted for in the analysis of 

the data.

12(j): Describe any methods used to 

address and correct for relatedness 

among subjects

For the great majority of studies in which samples are drawn from 

large, non-isolated populations, relatedness is typically negligible and 

results would not be altered depending on whether relatedness is 

taken into account. This may not be the case in isolated populations 

or those with considerable inbreeding. If investigators have assessed 

for relatedness, they should state the method used [150–152] and 

how the results are corrected for identified relatedness.
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association studies [85,87–105]. In view of the debate about 
the potential implications of population stratification for 
the validity of genetic association studies, we recommend 
transparent reporting of the methods used, or stating that 
none was used, to address this potential problem. This 
reporting will enable empirical evidence to accrue about the 
effects of population stratification and methods to address it.

Modelling Haplotype Variation
Recommendation for reporting of methods (Table 1, item 12(g)): 

Describe any methods used for inferring genotypes or haplotypes. 
A haplotype is a combination of specific alleles at 

neighbouring genes that tends to be inherited together. 
There has been considerable interest in modelling haplotype 
variation within candidate genes. Typically, the number of 
haplotypes observed within a gene is much smaller than the 
theoretical number of all possible haplotypes [106,107]. 
Motivation for utilizing haplotypes comes, in large part, from 
the fact that multiple SNPs may “tag” an untyped variant 
more effectively than a single typed variant. The subset of 
SNPs used in such an approach is called “haplotype tagging” 
SNPs. Implicitly, an aim of haplotype tagging is to reduce the 
number of SNPs that have to be genotyped, while maintaining 
statistical power to detect an association with the phenotype. 

Maps of human genetic variation are becoming more 
complete, and large scale genotypic analysis is becoming 
increasingly feasible. In consequence, it is possible that 
modelling haplotype variation will become more focussed on 
rare causal variants, because these may not be included in the 
genotyping platforms. 

In most current, large-scale genetic association studies, 
data are collected as unphased multilocus genotypes (that 
is, which alleles are aligned together on particular segments 
of chromosome is unknown). It is common in such studies 
to use statistical methods to estimate haplotypes [108–111], 
and their accuracy and efficiency have been discussed 
[112–116]. Some methods attempt to make use of a concept 
called haplotype “blocks” [117,118], but the results of these 
methods are sensitive to the specific definitions of the 
“blocks” [119,120]. Reporting of the methods used to infer 
individual haplotypes and population haplotype frequencies, 
along with their associated uncertainties should enhance our 
understanding of the possible effects of different methods 
of modelling haplotype variation on study results as well as 
enabling comparison and syntheses of results from different 
studies.

Information on common patterns of genetic variation 
revealed by the International Haplotype Map (HapMap) 

Table 2. Continued
Reporting of 

descriptive and 

outcome data

The synthesis of findings across 

studies depends on the availability 

of sufficiently detailed data.

14(a): Consider giving information by 

genotype.

15: Cohort study – Report outcomes 

(phenotypes) for each genotype 

category over time

Case-control study – Report numbers 

in each genotype category

Cross-sectional study – Report

outcomes (phenotypes) for each 

genotype category

Volume of data The key problem is of possible 

false-positive results and selective 

reporting of these. Type I errors are 

particularly relevant to the conduct 

of genome-wide association studies. 

A large search among hundreds of 

thousands of genetic variants can 

be expected by chance alone to find 

thousands of false positive results 

(odds ratios significantly different 

from 1.0).

12(i): Describe any methods used to 

address multiple comparisons or to 

control risk of false positive findings.

16(d): Report results of any 

adjustments for multiple comparisons. 

17(b): If numerous genetic exposures 

(genetic variants) were examined, 

summarize results from all analyses 

undertaken.

17(c): If detailed results are available 

elsewhere, state how they can be 

accessed.

Genome-wide association studies collect information on a very 

large number of genetic variants concomitantly. Initiatives to make 

the entire database transparent and available online may supply a 

definitive solution to the problem of selective reporting [7]. 

Availability of raw data may help interested investigators reproduce 

the published analyses and also pursue additional analyses. A 

potential drawback of public data availability is that investigators 

using the data second-hand may not be aware of limitations or other 

problems that were originally encountered, unless these are also 

transparently reported. In this regard, collaboration of the data users 

with the original investigators may be beneficial. Issues of consent 

and confidentiality [153,154] may also complicate what data can be 

shared, and how. It would be useful for published reports to specify 

not only what data can be accessed and where, but also briefly 

mention the procedure. For articles that have used publicly available 

data, it would be useful to clarify whether the original investigators 

were also involved and if so, how.

The volume of data analyzed should also be considered in the 

interpretation of findings.

Examples of methods of summarizing results include giving 

distribution of P values (frequentist statistics), distribution of effect 

sizes, and specifying false discovery rates.

doi:10.1371/journal.pmed.1000022.t002
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Project [107] can be applied in the analysis of genome-wide 
association studies to infer genotypic variation at markers 
not typed directly in these studies [121,122]. Essentially, 
these methods perform haplotype-based tests but make use 
of information on variation in a set of reference samples (for 
example, HapMap) to guide the specific tests of association, 
collapsing a potentially large number of haplotypes into two 
classes (the allelic variation) at each marker. It is expected 
that these techniques will increase power in individual 
studies, and will aid in combining data across studies, and 
even across differing genotyping platforms. If imputation 
procedures have been used, it is useful to know the method, 
accuracy thresholds for acceptable imputation, how imputed 
genotypes were handled or weighted in the analysis, and 
whether any associations based on imputed genotypes were 
also verified on the basis of direct genotyping at a subsequent 
stage.

Hardy-Weinberg Equilibrium
Recommendation for reporting of methods (Table 1, item 12(f)): 

State whether Hardy-Weinberg equilibrium was considered and, if so, 
how.

Hardy-Weinberg equilibrium has become widely accepted 
as an underlying model in population genetics after Hardy 
[123] and Weinberg [124] proposed the concept that 
genotype frequencies at a genetic locus are stable within 
one generation of random mating; the assumption of HWE 
is equivalent to the independence of two alleles at a locus. 
Views differ on whether testing for departure from HWE is 
a useful method to detect errors or peculiarities in the data 
set, and also the method of testing [125]. In particular, it 
has been suggested that deviation from HWE may be a sign 
of genotyping errors [126–128]. Testing for departure from 
HWE has a role in detecting gross errors of genotyping in 
large-scale genotyping projects such as identifying SNPs 
for which the clustering algorithms used to call genotypes 
have broken down [85,129]. However, the statistical power 
to detect less important errors of genotyping by testing 
for departure from HWE is low [130] and, in hypothetical 
data, the presence of HWE was generally not altered by the 
introduction of genotyping errors [131]. Furthermore, the 
assumptions underlying HWE, including random mating, 
lack of selection according to genotype, and absence of 
mutation or gene flow, are rarely met in human populations 
[132,133]. In five of 42 gene-disease associations assessed in 
meta-analyses of almost 600 studies, the results of studies that 
violated HWE significantly differed from results of studies 
that conformed to the model [134]. Moreover, the study 
suggested that exclusion of HWE-violating studies may result 
in loss of the statistical significance of some postulated gene-
disease associations and that adjustment for the magnitude 
of deviation from the model may also have the same 
consequence for some other gene-disease associations. Given 
the differing views about the value of testing for departure 
from HWE and about the test methods, transparent reporting 
of whether such testing was done and, if so, the method used, 
is important for allowing the empirical evidence to accrue.

For massive-testing platforms, such as genome-wide 
association studies, it might be expected that many false-
positive violations of HWE would occur if a lenient P value 
threshold were set. There is no consensus on the appropriate 
P value threshold for HWE-related quality control in 

this setting. So, we recommend that investigators state 
which threshold they have used, if any, to exclude specific 
polymorphisms from further consideration. For SNPs with 
low minor allele frequencies, substantially more significant 
results than expected by chance have been observed, and the 
distribution of alleles at these loci has often been found to 
show departure from HWE.

For genome-wide association studies, another approach 
that has been used to detect errors or peculiarities in the data 
set (due to population stratification, genotyping error, HWE 
deviations or other reasons) has been to construct quantile-
quantile (Q/Q) plots whereby observed association statistics 
or calculated P values for each SNP are ranked in order 
from smallest to largest and plotted against the expected 
null distribution [129,130]. The shape of the curve can lend 
insight into whether or not systematic biases are present.

Replication
Recommendation: State if the study is the first report of a genetic 

association, a replication effort, or both. (Table 1, item 3) 
Articles that present and synthesize data from several 

studies in a single report are becoming more common. In 
particular, many genome-wide association analyses describe 
several different study populations, sometimes with different 
study designs and genotyping platforms, and in various stages 
of discovery and replication [129,130]. When data from 
several studies are presented in a single original report, each 
of the constituent studies and the composite results should 
be fully described. For example, a discussion of sample size 
and the reason for arriving at that size would include clear 
differentiation between the initial group (those that were 
typed with the full set of SNPs) and those that were included 
in the replication phase only (typed with a reduced set of 
SNPs) [129,130]. Describing the methods and results in 
sufficient detail would require substantial space in print, but 
options for publishing additional information on the study 
online make this possible. 

Discussion

The choices made for study design, conduct and data analysis 
potentially influence the magnitude and direction of results 
of genetic association studies. However, the empirical 
evidence on these effects is insufficient. Transparency of 
reporting is thus essential for developing a better evidence 
base (Table 2). Transparent reporting helps address gaps in 
empirical evidence [45], such as the effects of incomplete 
participation and genotyping errors. It will also help assess 
the impact of currently controversial issues such as population 
stratification, methods of inferring haplotypes, departure 
from HWE and multiple testing on effect estimates under 
different study conditions. 

The STREGA Statement proposes a minimum checklist of 
items for reporting genetic association studies. The statement 
has several strengths. First, it is based on existing guidance 
on reporting observational studies (STROBE). Second, it was 
developed from discussions of an interdisciplinary group that 
included epidemiologists, geneticists, statisticians, journal 
editors, and graduate students, thus reflecting a broad 
collaborative approach in terminology accessible to scientists 
from diverse disciplines. Finally, it explicitly describes the 
rationale for the decisions (Table 2) and has a clear plan for 
dissemination and evaluation. 



PLoS Medicine  |  www.plosmedicine.org 0160 February 2009  |  Volume 6  |  Issue 2  |  e1000022

The STREGA recommendations are available at http://
www.strega-statement.org/. We welcome comments, which will 
be used to refine future versions of the recommendations. We 
note that little is known about the most effective ways to apply 
reporting guidelines in practice, and that therefore it has been 
suggested that editors and authors collect, analyze, and report 
their experiences in using such guidelines [135]. We consider 
that the STREGA recommendations can be used by authors, 
peer reviewers and editors to improve the reporting of genetic 
association studies. We invite journals to endorse STREGA, for 
example by including STREGA and its Web address in their 
Instructions for Authors and by advising authors and peer 
reviewers to use the checklist as a guide. It has been suggested 
that reporting guidelines are most helpful if authors keep 
the general content of the guideline items in mind as they 
write their initial drafts, then refer to the details of individual 
items as they critically appraise what they have written during 
the revision process [135]. We emphasize that the STREGA 
reporting guidelines should not be used for screening submitted 
manuscripts to determine the quality or validity of the study 
being reported. Adherence to the recommendations may make 
some manuscripts longer, and this may be seen as a drawback in 
an era of limited space in a print journal. However, the ability to 
post information on the Web should alleviate this concern. The 
place in which supplementary information is presented can be 
decided by authors and editors of the individual journal.

We hope that the recommendations stimulate transparent 
and improved reporting of genetic association studies. In 
turn, better reporting of original studies would facilitate 
the synthesis of available research results and the further 
development of study methods in genetic epidemiology with 
the ultimate goal of improving the understanding of the role 
of genetic factors in the cause of diseases. �

Supporting Information
Table S1. STREGA Reporting Recommendations, Extended from 
STROBE Statement 

Editable version of Table 1.

Found at doi:10.1371/journal.pmed.1000022.st001 (97 KB DOC).
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