Evaluating targeted interventions via meta-population models with multi-level mixing
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

CDC STACKS serves as an archival repository of CDC-published products including scientific findings, journal articles, guidelines, recommendations, or other public health information authored or co-authored by CDC or funded partners. As a repository, CDC STACKS retains documents in their original published format to ensure public access to scientific information.
i

Evaluating targeted interventions via meta-population models with multi-level mixing

Filetype[PDF-1.87 MB]


English

Details:

  • Alternative Title:
    Math Biosci
  • Personal Author:
  • Description:
    Among the several means by which heterogeneity can be modeled, Levins' (1969) meta-population approach preserves the most analytical tractability, a virtue to the extent that generality is desirable. When model populations are stratified, contacts among their respective sub-populations must be described. Using a simple meta-population model, Feng et al. (2015) showed that mixing among sub-populations, as well as heterogeneity in characteristics affecting sub-population reproduction numbers, must be considered when evaluating public health interventions to prevent or control infectious disease outbreaks. They employed the convex combination of preferential within- and proportional among-group contacts first described by Nold (1980) and subsequently generalized by Jacquez et al. (1988). As the utility of meta-population modeling depends on more realistic mixing functions, the authors added preferential contacts between parents and children and among co-workers (Glasser et al., 2012). Here they further generalize this function by including preferential contacts between grandparents and grandchildren, but omit workplace contacts. They also describe a general multi-level mixing scheme, provide three two-level examples, and apply two of them. In their first application, the authors describe age- and gender-specific patterns in face-to-face conversations (Mossong et al., 2008), proxies for contacts by which respiratory pathogens might be transmitted, that are consistent with everyday experience. This suggests that meta-population models with inter-generational mixing could be employed to evaluate prolonged school-closures, a proposed pandemic mitigation measure that could expose grandparents, and other elderly surrogate caregivers for working parents, to infectious children. In their second application, the authors use a meta-population SEIR model stratified by 7 age groups and 50 states plus the District of Columbia, to compare actual with optimal vaccination during the 2009-2010 influenza pandemic in the United States. They also show that vaccination efforts could have been adjusted month-to-month during the fall of 2009 to ensure maximum impact. Such applications inspire confidence in the reliability of meta-population modeling in support of public health policymaking.
  • Subjects:
  • Source:
  • Pubmed ID:
    27671169
  • Pubmed Central ID:
    PMC5723927
  • Document Type:
  • Funding:
  • Volume:
    287
  • Collection(s):
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at stacks.cdc.gov