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Abstract

Background—Early-life exposure to traffic-related air pollution exacerbates childhood asthma, 

but it is unclear what role it plays in asthma development.

Methods—The association between exposure to primary mobile source pollutants during 

pregnancy and during infancy and asthma incidence by ages 2 through 6 was examined in the 

Kaiser Air Pollution and Pediatric Asthma Study, a racially diverse birth cohort of 24,608 children 

born between 2000 and 2010 and insured by Kaiser Permanente Georgia. We estimated 

concentrations of mobile source fine particulate matter (PM2.5, μg/m3), nitrogen oxides (NOX, 

ppb), and carbon monoxide (CO, ppm) at the maternal and child residence using a Research 

LINE-source dispersion model for near-surface releases. Asthma was defined using diagnoses and 

medication dispensings from medical records. We used binomial generalized linear regression to 

model the impact of exposure continuously and by quintiles on asthma risk.

Results—Controlling for covariates and modeling log-transformed exposure, a 2.7-fold increase 

in first year of life PM2.5 was associated with an absolute 4.1% (95% CI 1.6%, 6.6%) increase in 

risk of asthma by age 5. Quintile analysis showed an increase in risk from the first to second 
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quintile, but similar risk across quintiles 2–5. Risk differences increased with follow-up age. 

Results were similar for NOX and CO and for exposure during pregnancy and the first year of life 

due to high correlation.

Conclusions—Results provide limited evidence for an association of early-life mobile source air 

pollution with childhood asthma incidence with a steeper concentration–response relationship 

observed at lower levels of exposure.
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INTRODUCTION

It is well established that exposure to ambient air pollution exacerbates childhood asthma, 

and some evidence suggests it may also play a role in asthma development.1,2 Exposure to 

air pollution during pregnancy and early life is associated with changes in immune 

programming and response as well as respiratory system development.3–5 One active area of 

research focuses on whether exposure to air pollution specifically from traffic causes 

childhood asthma.6–10 Results from recent epidemiologic studies suggest that there may be 

an association, with effect estimates for individual pollutants and exposure in different 

developmental windows ranging in magnitude and strength.11–18

We conducted a large retrospective birth cohort study, the Kaiser Air Pollution and Pediatric 

Asthma (KAPPA) Study, to assess whether exposure to air pollution from mobile sources 

during pregnancy or the first year of life is associated with risk of childhood asthma. 

Examining this question in the well-defined KAPPA cohort provided several advantages. 

The high proportion of African American children allowed us to examine a population 

subgroup disproportionately affected by asthma19 and underrepresented in studies of this 

kind. Objective measures of asthma diagnosis and medication dispensings obtained through 

medical records avoided reliance on parental-reported asthma. We estimated exposure to 

mobile source pollution (fine particulate matter [PM2.5], nitrogen oxides [NOX] and carbon 

monoxide [CO]) using prospectively collected residential locations of mothers and their 

children and spatially resolved estimates of pollutant concentrations derived from traffic 

emissions, meteorology, and measurements from air quality monitoring stations.

METHODS

Study Population

The KAPPA Study is a birth cohort of children born between 2000 and 2010 enrolled in 

Kaiser Permanente Georgia (KPGA) Health Maintenance Organization (HMO) for at least 

the first year of life (allowing up to 90 day gaps in enrollment). This study was approved by 

the Emory University and KPGA Institutional Review Boards. KAPPA members resided in 

metropolitan Atlanta, Georgia, an area that includes approximately 22,000 square 

kilometers, and were followed from birth until September 2013 or until their enrollment in 

KPGA ended if that occurred first. Information on demographic characteristics, geocoded 

residential history, diagnoses, and medication dispensings is available for all children from 
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KPGA medical records. Additional information is available for 89% of children from linked 

maternal KPGA records, and for 76% of children from birth certificates.

Among the 24,608 children in the KAPPA cohort, 23,100 had estimates of air pollution 

exposure during the first year of life and of those 19,951 had estimates of prenatal air 

pollution exposure (eFigure 1 details exclusions). Date of conception was estimated using 

gestational age at birth (in weeks) from the birth certificate. For the 6,025 children for whom 

gestational age was unavailable, we assumed a full term gestational age of 40 weeks. 

Consistent with obstetric convention, we assumed conception to occur at gestational day 14 

for both calculations.

Air Pollution Exposure Estimates

Annual average estimates of mobile source contributed PM2.5, NOX, and CO were modeled 

for years 2002–2011 at 250 meter resolution using a Research LINE-source dispersion 

model for near-surface releases (RLINE).20 The air quality model is described in more detail 

elsewhere.21 Briefly, RLINE modeling was completed using 2010 emissions inputs created 

by Atlanta Regional Commission’s Atlanta Roadside Emissions Exposure Study (AREES)22 

and 2002–2011 meteorologic inputs from the meteorologic processors of AERMOD.23 

Emission inputs for 2010 for 43,712 road links in the study area were based on factors such 

as road type, and traffic volume and composition and were scaled for years 2002–2011 by 

average emissions because the road network remained stable over the study period. The 

RLINE estimates were calibrated using stationary monitoring data to account for 

overestimation of spatial gradients. CO and NOX were calibrated directly to measured 

concentrations whereas PM2.5 was calibrated to source impacts estimated from speciated 

PM2.5 measurements using a CMB-GC approach24 since mobile source PM2.5 constitutes a 

small proportion of total PM2.5. Estimated pollutant concentrations for 2010 are shown in 

Figure 1 and eFigure 2. The spatial gradient was similar for the entire study period, but 

concentrations decreased over time.

The calibrated annual average RLINE estimates for each 250 m grid and mother and child 

residential histories were used to estimate exposure to mobile source PM2.5, NOX, and CO 

during pregnancy and during the first year of life. Time-weighting was used to account for 

changes in residential locations and calendar years during the exposure window (i.e., 

assigned exposures were time-weighted averages of year- and grid-specific pollutant 

concentrations). Because only annual pollutant averages from RLINE were used to assign 

exposure, there was no seasonal variation captured by the exposure assignments; the use of 

year-specific annual averages did incorporate broad long-term time trends. Exposure 

windows in our cohort spanned from 1999 to 2011, but pollution estimates were only 

available for 2002 to 2011. Due to the similarity of the spatial patterns over this period, 2002 

estimates were applied to years 1999 to 2001. We conducted sensitivity analyses excluding 

children with exposure periods before 2002.

Asthma Classification

We defined asthma as at least one asthma diagnosis (ICD-9 493.XX) and one asthma-related 

medication dispensing (including steroid and non-steroid asthma controllers and relievers) 
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after the first year of life. We assessed cumulative asthma incidence by ages 2 through 6, so 

once a child was classified as having asthma, they were classified as asthmatic at every 

subsequent age. Due to the variability in case definitions for early-life incident asthma 

among studies using medical records to define disease,25–28 we completed a sensitivity 

analysis using 13 alternative asthma case definitions.29 Asthma in early life is often 

transient30 so we also completed an analysis to assess whether air pollution is associated 

with lasting asthma phenotypes. For this analysis, we examined the outcome of persistent 

asthma, classified as a child with incident asthma who also had evidence of asthma in the 

past year (at least 1 asthma diagnosis or 1 asthma-related medication dispensing) at each 

follow-up age. Children with incident asthma, but without evidence of asthma morbidity in 

the past year were excluded from this analysis. While we examined asthma by several ages, 

we had an a priori interest in asthma by age 5. Asthma diagnoses become more reliable as 

children approach age 531 making it an important age threshold in the field of asthma 

research, so we conducted sensitivity analyses on the subset followed until age 5 (n=8,592).

Covariate Information

We considered the following covariates: sex, race, ethnicity, maternal asthma (defined as at 

least one asthma diagnosis (ICD-9 493.XX) during a mother’s enrollment in KPGA), 

maternal age, parental education, maternal marital status, neighborhood socioeconomic 

status (SES), birth year and city region. We anticipated SES would be an important 

confounder in analyses due to the spatial assignment of pollution exposure, strong spatial 

pattern of SES, and the association between lower SES and asthma. To control for SES, we 

obtained demographic clusters created by Georgia Department of Public Health from data on 

25 variables from the 2010 U.S. Census.32 These clusters categorize census block groups 

into 18 categories that broadly range from low to high SES (eFigure 3) and were used to 

characterize neighborhood SES at child residence at birth.

City region was not an a priori variable of interest, but was strongly related to air pollutant 

concentrations and was included in models due to concerns about residual confounding by 

SES. Although the demographic clusters characterize block group level SES, we noted that 

the same cluster could include inner city areas as well as areas outside the urban core 

(eFigure 3), and that there may be important differences between individuals classified as the 

same demographic cluster but who resided in more and less urban areas of Atlanta. In an 

effort to improve exchangeability we controlled for three city regions: inside the I-285 

highway encircling the city of Atlanta, ≤16 kilometers (km) outside I-285, and >16 km 

outside I-285 (eFigure 4).

Statistical Analysis

We assessed the impact of prenatal and first year of life air pollution exposure on cumulative 

asthma incidence in subsequently longer follow-up periods using binomial generalized linear 

regression with robust variance estimation: 1–2 year risk, 1–3 year risk, 1–4 year risk, 1–5 

year risk, and 1–6 year risk. Each analysis assessed asthma incidence by the age of interest 

among children enrolled in KPGA until at least that age. Because 33% of children in 

KAPPA have siblings in the cohort, we implemented models using generalized estimating 

equations with an exchangeable correlation structure to account for correlation among 
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siblings. Adjusted models included birth year to control for potential confounding by 

temporal trends, but its inclusion resulted in some model convergence issues due to the 

sensitivity of binomial models to predicted probabilities approaching the boundary values of 

p. Results from models that alternatively controlled for time using cubic splines on birthdate 

with one knot per year were virtually identical and are presented when models including 

birth year did not converge. Convergence issues were attributable to fewer than five children 

with extreme predicted probabilities; exclusion of these children also yielded similar results. 

For presentation, we opted to change the time control slightly in order to preserve the sample 

size across analyses. Due to high correlation, prenatal and first year of life exposures were 

modeled separately. We assessed potential effect measure modification by race, sex, and 

maternal asthma on the additive scale by adding product terms to models and by stratified 

analyses.

All exposure distributions were highly skewed so we explored modeling exposure in three 

ways: by quintile, as a continuous linear variable, and as a natural log-transformed 

continuous variable. To further explore the concentration response, we used generalized 

additive models with loess smoothers for the pollution exposure. Because some children had 

gaps in residence data we completed a sensitivity analysis excluding children missing at 

least 90 days of residence data during exposure windows.

In a secondary analysis, we used Cox proportional hazards regression assessing asthma 

incidence by age 5 defining failure time in days. This approach was selected to examine 

multiplicative effects (estimated in previous studies) and to use censoring to allow children 

who were not followed to age 5 to contribute available follow-up time to the analysis. 

Analyses and figures were completed in SAS 9.3 (SAS Institute Inc., Cary, NC), R 3.1,33 

and ArcMap 10.1 by ESRI (®).

RESULTS

The study population was racially diverse (35% African American) with relatively high SES 

(Table 1). The number of children followed to each age decreased with follow-up age (Table 

1). This was due to HMO attrition and the fact that children born in later years were too 

young to be included in certain age-specific analyses due to follow-up ending in 2013 (i.e., 

administrative censoring). The distribution of first year of life exposure to mobile source 

PM2.5 is shown in Figure 2. Distribution shapes were similar for NOX and CO and also for 

prenatal exposures. Pollution from traffic represents a small proportion of total PM2.5 and 

the vast majority of NOX and CO; hence PM2.5 levels shown in Figure 2 are lower than 

would be expected in studies of total PM2.5. There were high correlations between exposure 

to mobile source PM2.5, NOX, and CO within each exposure window (rs>0.97) and also 

between prenatal and first year of life exposure (rs>0.90). Exposure distributions were 

virtually identical between children who remained insured by KPGA and children whose 

HMO enrollment ended. Children without asthma were slightly more likely than children 

with asthma to be lost to follow-up (e.g. 18% vs. 16% between ages 3 and 4).

Proximity to the city center was the strongest determinant of residential exposure to mobile 

source pollution in this cohort (Table 1). Due to the concentration of highways inside the 
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city core (Figure 1), exposure decreased with increasing distance from the city center. 

Exposure distributions were similar between white and black children in our cohort. There 

was a high burden of asthma diagnoses and medication dispensings in the KAPPA cohort, 

with 32% of children receiving both a diagnosis and medication by age 6 (Table 1). 

Spatially, asthma risk increased with increasing distance from city center (28% in metro 

Atlanta vs. 33% >16 km outside metro Atlanta) and was highest among children born in 

rural neighborhoods (35%) and lowest among children born in urban/suburban 

neighborhoods (28%).

Due to the high correlation between pollutants, associations between mobile source PM2.5, 

NOx, and CO and asthma incidence were very similar for first year of life and prenatal 

exposures. Thus, we focus on results for first year of life mobile source PM2.5 with results 

for other exposures provided in the online supplement. Ethnicity, maternal age, parental 

education, and maternal marital status did not impact results and were dropped from 

adjusted models. When modeling first year of life exposure by quintile, using the lowest 

quintile as the reference group, there was evidence of an increase in asthma risk with every 

exposure quintile. However, risk increased most strongly from the first to second quintile 

and leveled off thereafter (Figure 3 for follow-up through age 5). We observed a similar 

pattern of the largest changes in risk occurring at the lowest exposure levels, as shown in 

smooth concentration response curves (eFigure 5). This log-linear shape of the exposure-

response, the skewed exposure distributions, and QIC (quasilikelihood under the 

independence model criterion) goodness of fit statistics suggested that modeling log-

transformed exposure was a better fit for these data than modeling a linear continuous 

exposure. Consequently, we modeled exposure as a natural log-transformed continuous 

variable in our main analyses (rather than as a continuous linear variable).

Unadjusted models suggested a decrease in asthma risk with an increase in mobile source 

PM2.5 (Table 2). Models adjusted for sex, race, maternal asthma, birth year, neighborhood 

SES, and city region demonstrated a positive association between mobile source PM2.5 and 

asthma risk, with risk differences increasing with follow-up age (Table 2). Control for 

neighborhood SES, followed by city region, had the largest impact on estimated risk 

differences; other covariates had little impact on results. Point estimates of the risk 

differences were highest for follow-up ages 5 and 6. When first year of life PM2.5 increased 

by a factor of 2.7 (a natural log increase), risk of asthma by age 2 increased by an absolute 

1.2% (95% CI=0.0%, 2.3%) while risk of asthma by age 5 increased by an absolute 4.1% 

(95% CI=1.6%, 6.6%). Results were similar when excluding children with exposure 

windows missing 90 days or more of residence data or in years without air quality estimates 

(excluding <7% and <30% respectively). When we modeled pollutant concentrations 

linearly (without log transformation) adjusted risk differences were also positive but more 

compatible with the null than the log-transformed exposure results (eTable 2).

The strongest predictors of childhood asthma were maternal asthma, male sex, and black 

race. When controlling for all other covariates, the risk of asthma by age 5 was an absolute 

13.8% (95% CI=10.7%, 16.8%) higher among children whose mothers have asthma 

compared to children whose mothers do not have asthma or for whom asthma status was 
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unknown, 8.7% (95% CI=6.9%, 10.6%) higher in males than females, and 5.7% (95% 

CI=3.2%, 8.2%) higher in black children than white children.

We observed no consistent evidence of additive interaction between the exposures and race, 

sex, or maternal asthma when assessed by adding product terms to models, although power 

for this assessment was limited. When stratifying by race, there was a 5.3% (1.7%, 8.9%) 

increase in asthma risk by age 5 among white children and a 4.8% (0.5%, 9.1%) increase 

among black children per natural log increase in PM2.5. In analyses restricted to children of 

mothers without asthma, there was a 4.1% (95% CI=1.2%, 6.9%) increase in risk of asthma 

by age 5 (n=6,606) per natural log increase in exposure. Models restricted to children whose 

mothers have asthma were less precise (n=1,140; RD (95% CI) 2.7% (−5.2%, 10.7%)). In 

models stratified by sex, estimates for females tended to be slightly higher than estimates for 

males, however confidence intervals largely overlapped. For example, by age 5 a natural log 

increase in PM2.5 was associated with a 4.7% (95% CI=1.4%, 8.0%) increase in risk among 

girls and a 2.7% (95% CI=−1.1%, 6.6%) increase in risk among boys.

There was some variation in estimates, but conclusions were consistent when different 

asthma case definitions were applied (Figure 4). When modeling a natural log increase in 

mobile source PM2.5, the smallest risk difference was a 3.1% (95% CI=0.9%, 5.2%) increase 

in asthma risk by age 5 when asthma was defined as three asthma diagnoses. The largest risk 

difference resulted from defining asthma as one asthma diagnosis or two medication 

dispensings, one of which must be a steroid and demonstrated a 5.1% (95% CI=2.6%, 7.7%) 

increase in risk by age 5. When examining the outcome of persistent asthma by age 5 

(excluding those with apparent transient asthma), there was a tendency for risk differences to 

be slightly larger than for incident asthma, but results were similar (eTable 4, eFigure 6).

Cox proportional hazards regression was completed using the 22,987 children in the KAPPA 

cohort with information on first year of life exposure data who were enrolled in KPGA until 

at least their first birthday. At age 5, adjusted model results indicated an elevated asthma 

hazard ratio associated with a natural log increase in mobile source PM2.5 (HR (95% CI) 

1.16 (1.07, 1.26)).

DISCUSSION

In this large retrospective cohort study of children enrolled in the Kaiser Permanente 

Georgia HMO, we observed some positive associations between mobile source air pollution 

at the child’s early life residence and asthma incidence. Our results were sensitive to 

modeling decisions and control for covariates with results of some models providing no 

evidence of an association.

A 2010 study by Clark and colleagues in British Columbia is arguably the most similar 

study to ours, based its use of administrative data to define the cohort, asthma classification 

from medical records, and focus on prenatal and first year of life exposure.13 When exposure 

was defined using a land-use regression model based on pollutant sampling data, they 

observed associations between NO2, NO, CO, and black carbon and asthma onset between 

ages 3 and 4, but little evidence of associations with total PM2.5. Their black carbon results, 
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indicative of traffic PM2.5, and our mobile source PM2.5 results, based on traffic data 

emissions, are consistent in that they provide some support for an association between early 

life traffic exposure and asthma incidence. Comparison of effect estimates across studies is 

challenging due to variation in population characteristics, pollution levels, focus on primary 

or total PM concentrations, and age at which asthma was examined. Additionally, our study 

is the first to assess absolute, rather than relative, changes in asthma risk. The risk difference 

was chosen for this study based on our interest in absolute changes in risk as well as a desire 

to assess additive interaction due to its relevance to public health.34 We note that when we 

estimated multiplicative changes using hazard ratios, which benefited from additional power 

due to the use of censoring, the results also indicated a positive association between traffic 

pollution and asthma incidence.

We estimated pollution exposure in the KAPPA study using longitudinal residence data and 

fine-scale pollutant estimates that account for traffic patterns, particle composition, and 

meteorology and that utilize data from stationary air pollution monitors for calibration. 

These estimates incorporate changes in residence; 36% of children in our analyses changed 

residences at least once during the period between conception and the first birthday.35 This 

is a refinement over previous studies that have used residence at birth as a proxy for 

residence throughout early life.12,14 Because mobile source PM2.5, NOX, and CO were 

highly correlated, exposure estimates should be considered indicators of traffic exposure 

more generally. Estimated risk differences may be indicating the impact of other 

unmeasured traffic pollutants. We anticipate some exposure measurement error due to the 

use of modeled exposure. Our research question focused on ambient pollution from traffic, 

but if ambient traffic pollution causes asthma it would be through the pathway of personal 

exposure which is additionally impacted by housing air exchange rates and time-activity 

patterns. There is some evidence in the literature suggesting that not accounting for time-

activity patterns may be less of a concern for estimating personal exposures to pregnant 

women than other populations.36,37

We investigated study hypotheses in the KPGA population, a primarily urban population in 

the southeastern U.S. with high asthma rates, a large African American population, and 

access to healthcare. Although results may not generalize well to distinctly different 

populations, our association estimates are of similar magnitude to those previously reported 

in the literature, suggesting that the pediatric asthma associations that have been observed 

with traffic are not highly specific to a particular population. One limitation of the KAPPA 

study is the lack of detailed data on individual-level SES, early life environment, and clinical 

testing to differentiate atopic and non-atopic asthma phenotypes. The KAPPA study has high 

loss to follow-up (e.g., 22% of children are lost by age two years) which impacted power 

and contributed to model convergence issues. Children without prior diagnosis of asthma 

were slightly more likely to be lost to follow-up, but loss to follow-up was not associated 

with air pollution exposure, lessening our concerns about the impact of selection bias. 

Similar to the difficulties in a previous study,13 the high correlation between prenatal and 

first year of life exposure estimates prevented us from determining the relative importance of 

exposure during each of these periods.
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Although we used comprehensive medical record data for outcome classification, outcome 

measurement error stemming from inherent difficulties in early-life asthma diagnosis is a 

limitation of our study. We made the decision to define asthma incidence as at least one 

asthma diagnosis and one asthma-related medication dispensing after investigating different 

ways to define asthma in this cohort.29 This definition ensures that a child classified as 

asthmatic has had a doctor diagnose their condition as asthma and also has some evidence of 

respiratory symptoms requiring medication. Sensitivity analyses using alternative asthma 

case definitions and the outcome of persistent asthma demonstrated that our results were 

robust to changes in disease classification. Because asthma symptoms in early life are often 

transient,30 the outcome of persistent asthma is perhaps more directly relevant to the public 

health burden of disease.

Confounding by SES-related factors acted in the opposite direction from what we expected. 

We anticipated unadjusted models would be biased in the positive direction since children 

from the lowest SES groups often have the most asthma and also frequently live in the most 

polluted areas.19,38 Surprisingly, our unadjusted results showed negative associations 

between mobile source air pollution and asthma. Descriptive analyses revealed a strong 

spatial pattern in our data; increasing distance from the city center was associated with 

increasing asthma rates and decreasing pollution. It seems likely to us that our crude results 

were confounded by SES and also by factors other than air pollution that change with 

distance from the city center (e.g., health care utilization). While we believe adjustment for 

neighborhood SES and city region increased the validity of our results, the sensitivity of 

results to control for these contextual variables warrants caution in interpretation.

We present results for natural log-transformed pollutant concentrations, and while it is 

common to log transform skewed exposures, this is usually not performed in air pollution 

epidemiology studies which rarely have such skewed exposure distributions. The highly 

skewed exposure distributions in this study are due to high concentrations among the 

children living closest to the highways. The results of the quintile analyses were generally 

consistent with a log-linear exposure-response shape, showing the greatest changes in risk at 

the low end of the exposure distribution (Figure 3); the difference in risk between the first 

and fifth quintiles was not much larger than the difference in risk between the first and 

second, third or fourth quintiles. This is perhaps less convincing than would be an observed 

monotonic dose response, but there is evidence from other areas of air pollution 

epidemiology that for some health outcomes the concentration response has a supralinear 

shape.39–43

The results of this study suggest that in the KAPPA cohort, the risk of asthma increased an 

absolute 1.2% to 4.1% (depending on follow-up age) per natural log increase in mobile 

source PM2.5, with similar effect estimates for NOX and CO. Our results were sensitive to 

certain modeling decisions, specifically how exposure was modeled and what contextual 

variables were controlled. Taken as a whole, our results provide limited evidence for an 

association between early-life mobile source air pollution exposure and childhood asthma 

incidence.
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Figure 1. 
2010 PM2.5 (μg/m3) concentrations contributed by primary mobile sources

Pennington et al. Page 13

Epidemiology. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Distribution of first year of life mobile source PM2.5 (n=23,100) (range from 0.06 μg/m3 to 

13.8 μg/m3)
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Figure 3. 
Adjusted risk differences and 95% confidence intervals for incident asthma by age 5 and 

prenatal (n=7,520) and first year of life (n=8,591) mobile source PM2.5, NOX, and CO: per 

natural log increase and by quintile (Q1–Q5). Numeric results corresponding to this figure 

are listed in Table 2, eTable 1, and eTable 3.
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Figure 4. 
First year of life mobile source PM2.5 and incident asthma by age 5 among children enrolled 

through age 5 (n=8,591), comparing different outcome definitions (per natural log increase 

in μg/m3). Numeric results corresponding to this figure are listed in eTable 5.
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Table 2

Risk differences and 95% confidence intervals for prenatal and first year of life mobile source PM2.5 and 

asthma incidence

Prenatal exposure, RD per natural log increasea

Cohort Unadjusted RD (95% CI) Adjusted RD (95% CI)

Age 2 −0.007 (−0.017, 0.002) 0.015 (0.003, 0.027)

Age 3 −0.008 (−0.021, 0.005) 0.018 (0.002, 0.035)

Age 4 −0.008 (−0.025, 0.009) 0.023 (0.001, 0.044)

Age 5 0.001 (−0.019, 0.021) 0.032 (0.007, 0.058)

Age 6 0.005 (−0.019, 0.029) 0.035 (0.006, 0.065)

First year of life exposure, RD per natural log increasea

Cohort Unadjusted RD (95% CI) Adjusted RD (95% CI)

Age 2 −0.008 (−0.016, 0.001) 0.012 (0.000, 0.023)

Age 3 −0.009 (−0.021, 0.004) 0.019 (0.003, 0.034)b

Age 4 −0.008 (−0.024, 0.007) 0.025 (0.004, 0.046)

Age 5 0.005 (−0.014, 0.024) 0.041 (0.016, 0.066)

Age 6 0.002 (−0.021, 0.024) 0.035 (0.005, 0.064)

RD indicates risk difference, CI confidence interval. Adjusted models control for child sex, child race, maternal asthma, birth year, neighborhood 
socioeconomic status, and city region.

a
This represents the absolute change in risk per 2.7-fold increase in mobile source PM2.5 concentration (μg/m3)

b
birth year replaced by cubic splines on date of birth with 1 knot per year.

Adjusted model age 5 results are graphically presented in Figure 3. Corresponding results for NOX and CO are listed in eTable 1.
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