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Abstract

Background—Large amounts of various chemical contaminants, including perfluoroalkyl 

substances (PFASs), were released at the time of the World Trade Center (WTC) disaster. 
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Thousands of children who lived and/or attended school near the disaster site were exposed to 

these substances but few studies have examined the possible consequences related to these 

exposures.

Objectives—To examine the relationship of PFASs serum levels with cardiometabolic profile in 

children and adolescents enrolled in the World Trade Center Health Registry (WTCHR) and a 

matched comparison group.

Methods—We evaluated WTCHR enrollees who resided in New York City and were born 

between September 11, 1993 and September 10, 2001, and a matched comparison group 

consisting of individuals who were ineligible for WTCHR participation upon distance of their 

home, school or work from the WTC and lack of participation in rescue and recovery activities. 

Matching was based on date of birth, sex, race, ethnicity, and income. We assessed exposure to 

PFASs, as measured by serum levels and association with cardiometabolic profile as measured by 

arterial wall stiffness, body mass index, insulin resistance, fasting total cholesterol, HDL, LDL and 

triglycerides.

Results—A total of 402 participants completed the study and serum samples were analyzed from 

308 participants, 123 in the WTCHR group and 185 in the comparison group. In multivariable 

regression analysis, after adjusting for relevant confounders, we observed a significant, positive 

association of perfluorooctanoic acid (PFOA) with triglycerides (beta coefficient = 0.14, 95% CI: 

0.02, 0.27, 15.1 percent change), total cholesterol (beta coefficient = 0.09, 95% CI: 0.04, 0.14, 9.2 

percent change), and LDL cholesterol (beta coefficient = 0.11, 95% CI: 0.03, 0.19, 11.5 percent 

change). Perfluorohexanesulfonic acid levels were associated with decreased insulin resistance 

(beta coefficient = −0.09, 95% CI: −0.18, −0.003, −8.6 percent change); PFOA and 

perfluorononanoic acid were associated with increased brachial artery distensibility.

Conclusions—This research adds to our knowledge of the physical health impacts in a large 

group of children exposed to the WTC disaster. Abnormal lipid levels in young adults might be an 

early marker of atherosclerosis and cardiovascular diseases and our findings highlight the 

importance of conducting longitudinal studies in this population.

Keywords

perfluoroalkyl substances; adolescents; World Trade Center disaster; cardiometabolic 
consequences

1. Introductiona

During the terrorist attack on the World Trade Center (WTC) on September 11, 2001, and in 

the months that followed, children in lower Manhattan were exposed to large amounts of 

contaminants such as particulate matter, heavy metals and persistent organic pollutants 

aBody Mass Index (BMI); HDL (High-density lipoprotein); Limits of Detection (LODs); N-methylperfluoro-1-
octanesulfonamidoacetic acid (N-MeFOSAA); N-methyl perfluorooctanesulfonamido acetic acid (N-meFOSAA); New York State 
Department of Health (NYSDOH); NYC Department of Health & Mental Hygiene (NYC DOHMH); Perfluoroalkyl substances 
(PFASs); Perfluorodecane sulfonate (PFDS); Perfluorodecanoic acid (PFDA); Perfluorododecanoic acid (PFDoDA); 
Perfluoroheptanoic acid (PFHpA); Perfluorohexanesulfonic acid (PFHxS); Perfluorononanoic acid (PFNA); Perfluorooctane 
sulfonamide (PFOSA); Perfluorooctanesulfonic acid (PFOS); Perfluorooctanoic acid (PFOA); Perfluoroundecanoic acid (PFUnDA); 
World Trade Center (WTC); WTC Health Registry (WTCHR)
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(POP).1 Elevated concentrations of perfluoroalkyl substances (PFASs), a group of chemicals 

widely used in various building and construction material,2 upholstery, carpet, and nonstick 

cookware,3,4 have been found in window films and in samples of dust, water, sediment, and 

sewage collected in and around the WTC site.5–7 The US Environmental Protection Agency 

(EPA) has recently established drinking water health advisories of 0.07 micrograms per liter 

for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), two of the 

most environmentally persistent PFASs. 8,9

We recently documented that the children enrolled in the World Trade Center Health 

Registry (WTCHR) had higher levels of serum PFASs than matched comparisons years after 

the WTC disaster.10 This observation is in agreement with data showing that PFASs persist 

in the environment and in humans, with half-lives ranging from 3–5 years to 8 years and 

longer.11,12 It is also consistent with studies of responders that documented increases in 

PFASs in relationship to WTC-exposure.13

The consequences of WTC-related PFASs exposure are less clear. Current evidence suggests 

that PFASs interfere with important biological processes, specifically activation of alpha- 

and gamma-peroxisome proliferator activated receptors,14 which play key roles in lipid and 

carbohydrate metabolism and are also involved in lipid transport, cholesterol synthesis, cell 

communication, inflammation and oxidative stress.15,16 Human studies have shown a 

positive association between levels of PFASs and total and non-high-density cholesterol in 

the NHANES, despite the relatively low level of exposure.17 In addition, among PFASs, 

concentrations of perfluorooctanesulfonic acid (PFOS) and perfluorononanoic acid (PFNA) 

have been associated with lower levels of IGF-1 in boys and girls 6–9 years of age.18 In turn, 

decreased levels of IGF-1 have been associated with metabolic syndrome 19 and increased 

risk of cardiovascular events in later life.20

The aim of the current study was therefore to examine the relationship of serum PFASs 

levels with cardiometabolic profile, as measured by blood lipids, insulin resistance, arterial 

stiffness, and body mass index (BMI) in children and adolescents enrolled in the WTCHR 

and a matched comparison group, while controlling for an array of possible confounding 

factors. Cardiovascular risk factors such as insulin resistance and hypertension do not 

typically emerge until adolescence, and identifying the adolescents who are at risk and 

intervening to modify diet, treat with medications and/or increase physical activity may help 

reduce the burden of subsequent adult chronic disease in this vulnerable group.

For the purpose of this analysis we combined the two study populations (WTCHR and 

comparison group), which allowed us to increase the range of exposures studied, but no 

comparisons were made between these two populations with regard to the outcomes of 

interest.

2. Methods

2.1 Study Population

WTCHR population—This group consisted of WTCHR enrollees who resided in New 

York City and were born between September 11, 1993 and September 10, 2001. Participants 
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were enrolled with the assistance of the New York City Department of Health 

(NYCDOHMH) using mail, email, phone, and in-person communication methods. Details of 

recruitment process are described elsewhere.10

Comparison group—This group consisted of individuals who were not eligible for 

WTCHR participation due to their specific location on the morning of 9/11.21 We aimed to 

recruit a matched comparison group and utilized the WTCHR’s 2011–12 survey cycle as a 

matching tool. We created a table of desired frequency distribution of the matching variables 

for comparisons using age (0–2, 3–5 or 6–8 years-old on 9/11/2001, with age 8 years being 

the upper bound for age restriction), sex, race (White, African-American, Asian, other), 

ethnicity (Hispanic, non-Hispanic) and income (<$25,000, ≥$25,000). Multiple recruitment 

strategies were used,10 and a screening questionnaire was used to determine individuals’ 

eligibility based on the frequency-matching table. Individuals were excluded as matched 

comparisons if they otherwise could qualify for enrollment in the WTCHR due to location 

on 9/11.

Exclusion criteria—Participants were not considered eligible for either the WTCHR or 

the control group if any of the following was present: i) inability to follow study procedures 

for measurement of arterial stiffness; ii) serious lung or heart condition; iii) heart or lung 

surgery; iv) pregnancy.

Institutional Review Board Approval—The study was reviewed and approved by the 

NYU School of Medicine Institutional Review Board, as well as research committees at 

Bellevue and Gouverneur Hospital Centers. Adolescents under 18 years of age provided 

informed assent forms along with parental informed consent forms before undergoing study 

procedures. A Certificate of Confidentiality was obtained to protect participant privacy. The 

study was approved by New York State Department of Health (NYSDOH) for the analysis 

of serum samples.

2.2 Study visits

Visits took place on evenings, weekends and during school holidays to maximize 

convenience, either in 1 or 2 visits at the study site. Participants were instructed to fast for 

six hours before study visits, and to avoid food, caffeine-containing products, and sugary 

drinks. After providing informed consent, the following were performed: a fasting blood 

draw (≥6 hours); anthropometric measurements; and brachial artery distensibility/pulse wave 

velocity measurements.

Measurement of PFASs—Eleven PFASs were measured in serum using a solid phase 

extraction (SPE) procedure and high-performance liquid chromatograph interfaced with an 

electrospray tandem mass spectrometer, using the methods similar to those described 

elsewhere,22,23 and documented in our previous manuscript.10 For further details related to 

the methodology, please see Supplemental Material. The following PFASs were measured: 

Perfluorohexanesulfonic acid (PFHxS); n-methyl perfluorooctanesulfonamido acetic acid 

(N-meFOSAA); perfluorooctane sulfonamide (PFOSA); perfluorooctanesulfonate (PFOS); 

perfluorodecanesulfonate (PFDS); perfluoroheptanoic acid (PFHpA); perfluorooctanoic acid 
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(PFOA); perfluorononanoic acid (PFNA); perfluorodecanoic acid (PFDA); 

perfluoroundecanoic (PFUnDA); and perfluorododecanoic acid (PFDoDA).

2.3 Assessment of Cardiometabolic profile

Anthropometric measures—Weight and height were measured using calibrated 

stadiometers (Shorr Productions, Olney, MD) and scales (Seca model 881; Seca Corp., 

Hanover, MD). Body Mass Index Z-scores were derived from 2000 Centers for Disease 

Control and Prevention (CDC) norms, incorporating height, weight and sex; overweight and 

obese were categorized as BMI Z-score ≥1.036 and ≥1.64, 24 which correspond to the 85th 

and 95th age- and sex-adjusted percentiles.

Dietary data and physical activity—To obtain dietary data, participants completed a 

web-based version of the Diet History Questionnaire II (DHQ II), a publicly available food 

frequency questionnaire (FFQ) developed by the National Cancer Institute, which has been 

previously validated. 25 Participants also completed a three-day physical activity diary, based 

on the International Physical Activity Questionnaire-Short Last Seven Days, which is well 

validated.26 Physical activity data from the diary were converted into energy expenditure 

estimates as MET using published values.27

Blood Pressure (BP) and Brachial Artery Distensibility (BrachD)—Brachial 

artery distensibility (BrachD) measurement is a rapid method of accurately assessing the 

relative stiffness of a peripheral artery. A lower value indicates a stiffer vessel. The 

DynaPulse Pathway instrument derives BrachD and BP using the technique of pulse 

waveform analysis of arterial pressure signals obtained from a standard cuff 

sphygmomanometer.28 Following a 5 minute rest period, a BP cuff appropriate for the 

subject’s upper arm size was applied, and three automatic recordings of systolic, diastolic, 

mean arterial BP and heart rate were obtained. Off-line analyses of brachial artery pressure 

curve data were then performed by Pulse Metric, Inc. using an automated system to derive 

parameters from the pulse curves to calculate BrachD.29 Because BP varies widely by age, 

sex and height, we calculated systolic/diastolic BP Z-scores from mixed-effects linear 

regression models derived using data from 1999–2000 National Health and Nutrition 

Examination Survey.30

Arterial Wall Stiffness Assessment—Pulse wave velocity (PWV) reflects the speed for 

the pressure wave generated by cardiac ejection to reach the periphery. A higher value 

indicates a stiffer vessel. PWV was measured by obtaining the arterial pulse waveform at the 

common carotid and femoral arteries using the SphygmoCor CPV System (AtCor Medical, 

Sydney, Australia).31 Arterial waveforms gated to the R-wave on the ECG tracing are 

recorded from the carotid then distal artery of interest, and PWV is then calculated as the 

difference in the carotid-to-distal path length divided by the difference in R-wave-to-

waveform foot times. The SphygmoCor CPV System was also used to measure central aortic 

pressure and the Augmentation Index (AIx), a vascular parameter incorporating both central 

stiffness and wave reflections (a higher value indicates arterial dysfunction).32
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Blood lipid profile, glucose and insulin—We measured fasting total cholesterol, 

triglycerides, HDL, LDL, insulin, and glucose. We examined continuous as well as 

categorical abnormal values for lipid levels, applying cut-off points for HDL of <40 mg/dL 

and ≥100 mg/dL for triglycerides, as recently done to assess components of the metabolic 

syndrome in analyses of adolescents in 2001–2006 NHANES.33 For insulin resistance we 

used the validated homeostatic model assessment of insulin resistance (HOMA-IR), 

calculated by dividing the product of insulin (μU/mL) and glucose (mMol/L) by 22.5. 34–36

2.4 Covariates

Information on other covariates including race/ethnicity (White, African American, Asian, 

Other and Hispanic) and sex (male or female) was obtained through questionnaire. Exposure 

to tobacco smoke was evaluated by saliva cotinine concentration and questionnaire. Salivary 

cotinine was analyzed using a highly reliable (r=.99 compared with serum) and sensitive 

(limit of detection 0.05 ng/mL) test from Salimetrics, Inc. (State College, PA). Cotinine was 

measured as a continuous variable, and categorized into low (<0.15 ng/mL), medium (≥0.15 

to < 2.32 ng/mL) and high (≥2.32 ng/mL) categories, using established conventions.37,38 For 

subjects without saliva cotinine concentration, we categorized using questionnaires (low: no 

smoker and no secondhand smoke exposure; medium: no smoker but secondhand smoke 

exposure; high: smoker).

2.5 Statistical Analysis

We conducted descriptive, univariate, and multivariate analyses with R Statistical Software 

(version 3.3.1). Chi-square test or Fisher exact test was used to compare the 

sociodemographic variables of two study populations. Wilcoxon Rank Sum test was used to 

compare caloric intake, physical activity levels, cardiometabolic markers, and serum PFASs 

between the two groups. PFAS concentrations were log-transformed to account for skewed 

distribution; following published practices, levels less than the LOD were imputed to be 

, and we limited our statistical analyses to PFASs detected in ≥50% of the 

samples.39 Simple linear and logistic regression was used to compare cardiometabolic 

profiles (blood lipids, BMI, PWV, AIx, and insulin resistance) by serum PFASs. Multiple 

linear regression or multiple logistic regression was used for continuous or discrete 

outcomes, controlling for sex, race, caloric intake, physical activity, smoke exposure, BMI 

category (but not for BMI related outcomes). All statistical tests were two-sided, and p 

values were considered significant if < 0.05.

3. Results

Figure 1 provides an overview of the enrollment process for the WTCHR study population 

and matched comparison group.

WTCHR individuals enrolled in this study were more likely to be older and to be from low 

income families (P<0.001) than those excluded. There were no differences in sex, race or 

ethnicity between WTCHR individuals who participated in this study and nonparticipants 

(Table S1, Supplemental Material). In total, 180 children from the WTCHR and 222 

sociodemographically matched controls were included in the analysis; among them, 
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information on PFAS was available in 185 and 123 individuals, respectively (participants 

with consent to venous blood sampling). Characteristics of the two study populations are 

presented in Table 1.

Compared to the WTCHR cohort, participants in the comparison group were more likely to 

be female (59.9% vs. 46.1%). Caloric intake was higher in the WTCHR population (1621 

calories) than the comparison group (1535 calories) but overweight and obesity status were 

more likely in the comparison than the WTCHR group (P=0.045). Table 2 shows the 

characteristics of the participants who agreed to venous sampling.

Several significant associations were detected between single chemicals and cardiometabolic 

outcomes in univariable analysis (Table S2, Supplemental Material), and most remained 

significant after adjusting for confounders in the multivariable model (Table 3).

Adjusted analyses showed consistent associations between higher serum PFASs and higher 

lipid levels. PFOS was associated with higher total and LDL cholesterol (beta coefficient for 

total cholesterol in natural log scale=0.082, 95% CI: 0.047, 0.117, corresponding to 8.5 

percent change; beta coefficient for LDL=0.102, 95% CI: 0.046, 0.159, 10.7 percent change, 

respectively) as well as higher HDL cholesterol (beta coefficient=0.064, 95% CI: 0.003, 

0.125, 6.6 percent change). PFOA was associated with higher triglycerides (beta coefficient 

= 0.141, 95% CI: 0.017, 0.265, 15.1 percent change), total cholesterol (beta coefficient = 

0.088, 95% CI: 0.039, 0.137, 9.2 percent change), and LDL cholesterol (beta coefficient = 

0.109, 95% CI: 0.031, 0.187, 11.5 percent change). Similar associations were observed with 

PFNA, PFDA, and PFUnDA. Higher levels of PFHxS were significantly associated with 

decreased insulin resistance (beta coefficient = −0.090, 95% CI: −0.176, −0.003, −8.6 

percent change), and higher LDL cholesterol (beta coefficient = 0.049, 95% CI: 0.007, 

0.091, 5.0 percent change). We also detected an association between higher levels of PFOA 

and PFNA and increased brachial artery distensibility (beta coefficient for % change/

mmHg=0.453, 95% CI 0.038, 0.868; beta coefficient= 0.343, 95% CI: 0.016, 0.670, 

respectively). No association was detected between serum levels of PFASs and PWV and 

AIx. PFUnDA was associated with lower odds of being overweight (odds ratio per unit 

increase in natural log PFUnDA= 0.951, 95% CI: 0.911, 0.993), but other PFASs examined 

in this study were not associated with BMI status. Table 4 shows the results of multivariate 

analyses presented as percent change in the outcome of interest for each log unit increase of 

the chemicals examined.

4. Discussion

This research study examined the cardiometabolic profiles of adolescents participating in the 

WTCHR compared to a sociodemographically-matched control group of NYC residents, to 

examine the potentially contributing role of PFASs exposures to cardiometabolic risks in 

exposed children. We have previously documented that children with subchronic dust 

exposure and dust cloud exposure related to the WTC disaster have higher levels of PFASs, 

and here we report that higher serum levels of PFASs are associated with increased blood 

lipid levels (triglycerides and cholesterol).10 Since abnormal lipid levels in young adults 

might be an early marker of atherosclerosis and cardiovascular diseases,40 this population 
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may benefit from continuous monitoring and early interventions to prevent adverse 

cardiometabolic outcomes as a result of PFASs exposure.

Previous reports from cross-sectional data support the association between concentrations of 

PFASs and altered lipid profiles, specifically elevated plasma cholesterol and 

triglycerides, 17,41,42 although the evidence is not uniform and shows some inconsistencies 

in the results, also depending on the specific chemical examined. PFOS and PFOA are the 

two chemicals for which the evidence is the strongest, while other compounds like PFHxS 

and PFNA have not been studied as extensively, mainly because they are normally present in 

lower concentrations compared with the two PFOS and PFOA.17 Positive associations 

between PFOS and both HDL and LDL cholesterol have been reported among adults,42 

children and adolescents.43,44 Similarly, positive associations between PFOA and PFOS and 

triglycerides have been reported in adults,45 as well as in children.46 Instead, for compounds 

like PFHxS the evidence is not consistent: Nelson and colleagues reported an inverse 

association between PFHxS and total cholesterol17 whereas others have found a significant 

positive association with total and LDL cholesterol.41 In the present study we report that, in 

addition to PFOS and PFOA, PFHxS, PFNA and PFDA were also positively associated with 

increased lipid concentrations (total and LDL cholesterol). PFDA and PFUnDA, which were 

the two compounds with the lowest median serum concentrations among all PFASs in the 

WTCHR group, were both positively associated with HDL cholesterol.

With respect to insulin resistance, we detected an inverse relationship with PFHxS. Recently 

published data from a prospective cohort study, reporting that children with higher levels of 

PFASs had significantly lower insulin resistance,47 are consistent with our findings, and so 

are previous analysis from NHANES data.17 However, other studies have reported a positive 

association between PFOS and insulin resistance, although this was only present in 

overweight children.48 In addition, some available data suggest that the association of PFOS 

with insulin resistance differs between adults and adolescents, with the former showing 

increased insulin resistance with higher PFOS concentrations, whereas the opposite was 

noted for adolescents.49 This sample was not large enough for stratified analysis.

The biological mechanisms underlying the associations between PFAS and lipid levels and 

insulin resistance is less understood. Most of our information comes from animal studies 

showing that PFAS have affinity for PPARα and acts as agonists to these receptors. 

Nonetheless, these studies also indicate that the degree of agonist effect is variable and 

depends on the specific compound examined.50 Affinity to PPARγ has also been 

demonstrated51 and PPARγ activation could potentially lead to increased insulin 

sensitivity,52 a mechanism similar to that of thiazolidinediones, which are used to in the 

treatment of type 2 diabetes. Despite providing valuable insight, findings of toxicological 

research are not directly applicable to humans and further studies are therefore warranted to 

elucidate the underlying mechanisms. The long-term health consequences of an increase in 

serum lipid levels in the ranges observed in this study are unclear. However, if confirmed in 

further longitudinal studies, such increments may become significant when considered at the 

population level, in which even small increments can result in large increases in the 

prevalence of hyperlipidemia, shifting the distribution of blood lipids and increasing the 
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number of individuals who are above the cut off points to identify hyperlipidemic 

individuals.

In this study we also detected an inverse association between PFOA and PFNA and 

increased brachial artery distensibility. To our knowledge, this is the first time that such an 

association is reported, since not many studies have examined the association between 

PFASs and vascular function. Arterial stiffness is influenced by both genetic and hormonal 

factors,53 and current evidence suggests an effect of PFASs on sex hormones. Increases in 

estradiol and decreases in testosterone with PFOA exposure have been observed in 

rodents 15 but the results of the few human studies conducted so far are less clear. Recently, 

Zhou and colleagues have reported that higher levels of PFASs are associated with lower 

testosterone and higher estradiol levels, and these associations seem to be more relevant in 

males than females.54 We could speculate that the associations of PFOA and PFNA with 

increased arterial distensibility could be partly interpreted in light of concomitant alterations 

in sex hormone levels which, in turn, may influence vascular stiffness.

4.1 Limitations

We cannot rule out the possibility that some of the associations could be chance findings, 

including the association of PFUnDA with lower odds of being overweight, since none of 

the other chemicals examined was associated with BMI. In addition, this study collected 

data at a single time point, and longitudinal studies may be more informative in assessing the 

extent of cardiometabolic effects related to exposure to the WTC disaster. Another limitation 

to interpretation is that participants in both groups experienced environmental changes in the 

fifteen year period following the disaster, and we cannot rule out additional factors or 

exposures that could contribute to explaining the associations observed here. Furthermore, 

PFASs increases observed in this study could be correlated with all the other chemical 

contaminant exposures that were associated with the WTC. We acknowledge that this is a 

potential confounding factor but one difficult to control in a disaster epidemiology study.

5. Conclusion

This research adds to our knowledge of the physical health impacts in a large group of 

children who were exposed to the WTC disaster, and pinpoints the potential high risk of 

atherosclerosis and cardiovascular diseases in these children as a result of PFASs exposure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• WTC-related exposures to perfluoroalkyl substances (PFASs) may be 

associated with cardiometabolic consequences

• Cardiometabolic profiles of exposed youth were examined

• Higher serum levels of PFASs were associated with increased blood lipid 

levels

• These findings pinpoint the potential high risk of atherosclerosis as a result of 

PFASs exposure
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Figure 1. 
Recruitment Flowchart for WTCHR and Comparison Cohort
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Table 1

Characteristics of the two study populations.

Control group
n=222

WTCHR group
n=180

p value

Sex

Male 89 (40.1%) 97 (53.9%) 0.008

Female 133 (59.9%) 83 (46.1%)

Date of birth

9/11/93–9/10/95 45 (20.3%) 47 (26.1%) 0.159

9/11/95–9/10/98 89 (40.1%) 77 (42.8%)

9/11/98–9/10/01 88 (39.6%) 56 (31.1%)

Income < $25,000a 49 (27.4%) 28 (19.4%) 0.126

Race/Ethnicityb

Non-Hispanic White (%) 89 (40.1%) 66 (36.9%) 0.053

Non-Hispanic Black (%) 19 (8.6%) 16 (8.9%)

Non-Hispanic Asian (%) 44 (19.8%) 49 (27.4%)

Non-Hispanic Other (%) 10 (4.5%) 16 (8.9%)

Hispanic (%) 60 (27.0%) 32 (17.9%)

Caloric intake,c Median (IQR) 1535 (1061, 2087) 1621 (1141, 2331) 0.028

Physical activity, MET hours per week (IQR) 150 (90, 240) 180 (120, 285) 0.087

Body Mass Index Category

Normal weight/underweight 162 (73.0%) 150 (83.3%) 0.045

Overweight 36 (16.2%) 19 (10.6%) 0.028

Obese 24 (10.8%) 11 (6.1%) 0.087

Smoking status

Smokers 23 (10.4%) 24 (13.3%) 0.443

Median Cotinine Concentration 0.324 (0.106, 0.690) 0.412 (0.106, 0.984) 0.294

Tobacco smoke exposure d

--Low (<0.15 ng/mL) 102 (45.9) 73 (40.6) 0.353

--Medium (≥0.15 to < 2.32 ng/mL) 95 (42.8) 79 (43.9) 0.443

--High(≥2.32 ng/mL) 25 (11.3) 28 (15.6) 0.294

Cardiometabolic Markers, Median (IQR)

Triglycerides (mg/dL) 66.5 (48, 95.3) 63.5 (49.8, 88.5) 0.891

High-Density Lipoprotein (mg/dL) 53 (44, 66) 52 (43.75, 60.25) 0.294

Low-Density Lipoprotein (mg/dL) 77 (66, 94) 80 (69, 96) 0.131
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Control group
n=222

WTCHR group
n=180

p value

Insulin Resistance (HOMA-IR) 1.54 (1.14, 2.23) 1.37 (1.05, 2.04) 0.087

Total Cholesterol (mg/dL) 148.5 (133, 166.3) 148.5 (133, 170) 0.827

a
n=43 missing for comparison group; n=27 missing for WTCHR group;

b
n=1 missing for race/ethnicity;

c
n=2 missing for caloric intake;

d
Evaluated by saliva cotinine concentration and questionnaire. For subjects without saliva cotinine concentration, we categorized no smoker and no 

secondhand smoke exposure into “low”, no smoker but secondhand smoke exposure into “medium”, and smoker into “high” category.
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Table 2

Serum PFASs Population Characteristics (with exclusion of those who opted out of venous blood sampling).

Comparison (n=185) WTCHR (n=123) p value

Sex, n (%)

Male 74 (40%) 69 (56.1%)

Female 111 (60%) 54 (44.9%)

Date of birth, n (%)

9/11/93–9/10/95 35 (18.9%) 34 (27.6%)

9/11/95–9/10/98 73 (39.5%) 52 (42.3%) 0.070

9/11/98–9/10/01 77 (41.6%) 37 (30.1%)

Income < $25,000a 42 (22.7%) 19 (15.4%) 0.170

Race/Ethnicity,b n (%)

Non-Hispanic White 72 (38.9%) 42 (34.4%)

Non-Hispanic Black 17 (9.2%) 13 (10.7%)

Non-Hispanic Asian 37 (20%) 30 (24.6%) 0.040

Non-Hispanic Other 6 (3.2%) 13 (10.7%)

Hispanic 53 (28.6%) 24 (19.7%)

Serum PFASs, Median (IQR), ng/mL

PFHxS (n<LOD= 0 %) 0.53 (0.47) 0.67 (0.69) <0.0001

PFOS (n<LOD= 0 %) 2.78 (2.18) 3.72 (2.82) <0.0001

PFOA (n<LOD= 0 %) 1.39 (0.75) 1.81 (0.90) <0.0001

PFNA (n<LOD= 0.3 %) 0.49 (0.33) 0.61 (0.36) <0.0001

PFDA (n<LOD= 25 %) 0.11 (0.15) 0.14 (0.12) <0.0001

PFUnDA (n<LOD= 47 %) 0.04 (0.16) 0.12 (0.21) 0.007

Calories,c Median (IQR) 1537 (1014) 1709 (1317) 0.008

Tobacco smoke exposure

Low 102 (45.9) 73 (40.6)

Medium 95 (42.8) 79 (43.9) 0.353

High 25 (11.3) 28 (15.6)

Body Mass Index Category

Normal weight/underweight 137 (74.1) 98 (79.7)

Obese 20 (16.3) 8 (4.3) 0.387

Overweight 28 (15.1) 17 (13.8)

a
n=38 missing for comparison; n=27 missing for WTCHR;

b
n=1 missing for race/ethnicity;
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c
n=2 missing for caloric intake.
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