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Abstract

Compelling evidence suggests that epigenetic mechanisms such as DNA methylation play a role in 

stress regulation and in the etiologic basis of stress related disorders such as Posttraumatic Stress 

Disorder (PTSD). Here we describe the purpose and methods of an international consortium that 

was developed to study the role of epigenetics in PTSD. Inspired by the approach used in the 

Psychiatric Genomics Consortium, we brought together investigators representing seven cohorts 

with a collective sample size of N=1147 that included detailed information on trauma exposure, 

PTSD symptoms, and genome-wide DNA methylation data. The objective of this consortium is to 

increase the analytical sample size by pooling data and combining expertise so that DNA 

methylation patterns associated with PTSD can be identified. Several quality control and analytical 

pipelines were evaluated for their control of genomic inflation and technical artifacts with a joint 

analysis procedure established to derive comparable data over the cohorts for meta-analysis. We 
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propose methods to deal with ancestry population stratification and type I error inflation and 

discuss the advantages and disadvantages of applying robust error estimates. To evaluate our 

pipeline, we report results from an epigenome-wide association study (EWAS) of age, which is a 

well-characterized phenotype with known epigenetic associations. Overall, while EWAS are 

highly complex and subject to similar challenges as genome-wide association studies (GWAS), we 

demonstrate that an epigenetic meta-analysis with a relatively modest sample size can be well-

powered to identify epigenetic associations. Our pipeline can be used as a framework for 

consortium efforts for EWAS.
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Introduction

Traumatic events are reported by over 70% of individuals during their lifetime [Benjet and 

others 2016]. They have been associated with a number of deleterious outcomes, including 

posttraumatic stress disorder (PTSD), a psychiatric disorder characterized by cognitive 

intrusions, avoidance, negative alterations in thoughts and mood, and alterations in 

physiological arousal and reactivity [Association 2000]. PTSD can be severe and disabling 

and is often associated with a range of comorbid psychiatric conditions such as depression 

and substance use disorders [Brady and others 2000; Najt and others 2011]. PTSD has also 

been associated with a 2.8-fold increase in suicidal thoughts and behaviors [Sareen and 

others 2005] as well as with a number of chronic medical conditions [Boscarino 2008; 

Coughlin 2011; David and others 2014; Heppner and others 2009; Jakovljevic and others 

2008; Kubzansky and others 2009; Kubzansky and others 2007; Luft and others 2012]. 

While the risk of developing PTSD depends in part on the nature of the trauma [Kessler 

2000], only a minority of those exposed to trauma develop PTSD. As a result, despite the 

high prevalence of lifetime trauma, the overall lifetime prevalence of PTSD in the United 

States is 6.8%, [Breslau and others 1998; Kessler and others 2005; Resnick and others 

1993], which suggests there are individual differences in resilience that, if better understood, 

might inform the development of new approaches to prevention and treatment.

Genetic epidemiological studies suggest that both genetic and environmental factors 

contribute to PTSD risk. Twin studies estimate the heritability of PTSD to be between 30–

70%, [Sartor and others 2012; Sartor and others 2011; Stein and others 2002; True and 

others 1993; Xian and others 2000] with the remaining variance being attributed to 

environmental factors. Genetic research, based on both candidate gene and genome-wide 

association studies (GWAS), has provided support for the role of genetics in the 

development and severity of PTSD and has begun to identify variants that account for some 

of the genetic influence on PTSD. The genetic loci identified in the extant GWAS have been 

implicated in a variety of processes, including neuroprotection, actin polymerization, 

neuronal function, and immune function [Almli and others 2014; Guffanti and others 2013; 

Logue and others 2013; Xie and others 2013]. Although promising, no robust genetic 
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variants associated with PTSD have been identified and much work remains to be done to 

understand the biological basis of PTSD risk [Logue and others 2015].

A growing body of work has explored the role of environmental influences on an 

individual’s response to trauma. Given the dependence of PTSD development on exposure to 

environmental (i.e., traumatic) events, clarifying the ways in which environmental influences 

might affect biological function are critical to understanding the etiology of PTSD. In this 

regard, epigenetic mechanisms, which can mediate environmental influences on gene 

function, are particularly relevant. Epigenetic modifications, such as DNA methylation at 

cytosine-guanine dinucleotides (CpG sites), induce changes in gene expression in part 

through structural alterations of DNA that are maintained through each round of cell 

division; they respond to changes in the environment, are potentially reversible, and can be 

targeted for disease therapies [Feinberg 2007]. DNA methylation regulates gene expression 

by influencing the recruitment and binding of regulatory proteins to DNA. Typically, higher 

methylation at gene promoter regions correlates with decreased expression of that gene, 

while intragenic methylation can regulate alternative promoters and enhancers [Bonasio and 

others 2010; Maunakea and others 2010].

Animal studies have demonstrated that epigenetic changes—particularly alterations in DNA 

methylation in response to nurturing—are related to altered responses to stress [Jirtle and 

Skinner 2007; Weaver and others 2004]. Similar alterations have been reported in the human 

literature, in both central and peripheral tissues [McGowan and others 2009; Tyrka and 

others 2012]. Considering the influence of traumatic stress on DNA methylation seen in 

some studies [Vinkers and others 2015], epigenetic-based investigations may extend genetic 

research findings. For example, research reporting an association of PTSD with a genetic 

variant in the PAC1 receptor (ADCYAP1R1; rs2267735) went beyond this finding to 

observe that PTSD severity was also correlated with methylation levels of the gene [Ressler 

and others 2011]. Other work has suggested an interactive effect between trauma burden and 

DNA methylation in the serotonin transporter locus (SLC6A4) on PTSD risk, independent 

of the widely studied length polymorphism at this same locus [Koenen and others 2011] and 

a potentially interacting effect of genetic and epigenetic variation at the dopamine receptor 

(SLC6A3) on PTSD risk [Chang and others 2012]. Indeed, stress exposure itself has been 

shown to alter epigenetic patterns in both animal and human studies [Moser and others 2015; 

Roth and others 2009; Sipahi and others 2014]. In addition to candidate gene methylation 

studies, a small number of studies have examined genome-wide DNA methylation patterns 

in PTSD [Mehta and others 2013; Smith and others 2011; Uddin and others 2010]. In these 

first genome wide studies of DNA methylation, immune dysregulation figured prominently 

among the biological networks associated with PTSD and, at a CpG site level, DNA 

methylation levels in several CpGs showed suggestive evidence of replication between these 

studies [Mehta and others 2013; Smith and others 2011; Uddin and others 2010].

Although the emerging literature on epigenetic influences on PTSD is promising, the 

majority of research to date has been conducted with modest sample sizes, with inherent 

limited statistical power. Furthermore, studies of DNA methylation have been hampered by 

technical issues including batch effects [Harper and others 2013] and blood cell composition 

[Houseman and others 2012]. Experience from large-scale genetic studies, such as the 
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Psychiatric Genomics Consortium (PGC), underscores how large collaborative endeavors 

can provide the adequate sample sizes and the statistical power necessary to produce 

significant and replicable results [Logue and others 2015]. Based on this experience, the 

PGC-PTSD formed the epigenetics working group to organize an expansive network of 

investigators and their collection of samples with genome-wide DNA methylation data 

available for joint analyses.

Although there are many advantages to this collaborative approach, there are also 

challenges. First, methods for assessment of trauma exposure and PTSD symptoms/

diagnosis differ among cohorts, requiring harmonization of the phenotypic data. 

Participating cohorts have assessed PTSD using clinical interviews and self-report measures 

with possible case diagnoses of lifetime PTSD, current PTSD, or “probable” PTSD available 

in across different studies. The larger PGC-PTSD has made substantial progress 

harmonizing phenotypes across studies and a similar approach will be adopted by the PGC-

PTSD epigenetics group in its analyses. A second challenge of consortia is to address 

complications in the data sharing that is a prerequisite to increasing the power and 

reproducibility of the study. The trend in psychiatric genetics has been to establish large-

scale consortia for the purpose of expanding sample sizes beyond what is possible based on 

the data from any one group. Almost universally used in current large-scale genomic 

consortia is meta-analysis, through which the data from individual sites are analyzed 

separately and combined based on summary statistics. In many cases, meta-analysis of 

individual-level results yields results comparable to those of a “mega-analysis” of pooled 

data from different studies, [Lin and Zeng 2010; Mathew and Nordstrom 1999; Olkin and 

Sampson 1998]. However, there have been important distinctions in the way the meta-

analysis strategy has been implemented across consortia, including variations in the degree 

to which the cleaning and analysis of the individual-level data occurs (i.e., centralized versus 

distributed). The analysis of individual data in a centralized manner allows a high degree of 

control over the quality control (QC) process and an ability to quickly perform follow-up 

analyses, but poses difficulties of requiring a larger degree of computational resources and 

storage at the consortium level and permission from all groups to share data.

The PGC-PTSD epigenetics group uses many of the same protocols and tools developed by 

the PGC [Logue and others 2015], with the difference that not all data are centrally stored 

and managed since some constituent samples that originate from US military, US Veteran 

(VA), or foreign countries are subject to additional regulatory oversight, which do not allow 

the sharing of individual-level genomic data. To enable participation for these studies, the 

PGC-PTSD epigenetics group follows a strategy similar to that of the ENIGMA consortium 

[Thompson and others 2014], in which a set of protocols and scripts are created, in this case 

to implement standardized QC and analysis pipelines for the Illumina 

HumanMethylation450 BeadChip. These scripts are performed at each participating site and 

analysis results are submitted to the consortium where they are assessed, collated, and meta-

analyzed. In this study, we compare the performance of two QC and two analytical pipelines 

to control for genomic inflation, present the final PGC-PTSD epigenetics pipeline, and 

assess the performance of the PGC-PTSD epigenetics pipeline in a meta-analysis of age.
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Materials and Methods

The PGC EWAS Cohorts

The participating cohorts, presented in Table 1, consisted of four military cohorts (MRS, 

PRISMO, VA-M, and VA-NCPTSD) and three civilian cohorts (DNHS, GTP, and WTC) 

that all measured DNA methylation (DNAm) with the Illumina HumanMethylation450K 

BeadChip. Descriptions of the cohorts are in the supplemental information. Each cohort 

consists of PTSD cases as well as trauma-exposed controls. A total of 1,147 subjects (~50% 

cases) were selected for inclusion in the EWAS and were subjected to the quality control and 

analytical pipelines.

Posttraumatic Stress Disorder Assessment

Similar to other analyses conducted by the PGC-PTSD, our analysis required consistently 

defining and harmonizing PTSD diagnoses across cohorts that used different instruments 

and methods of diagnosis [Logue and others 2015]. We used a diagnosis of current PTSD 

based on the diagnostic criteria defined by each cohort’s principal investigator (see 

supplemental information). Individuals with lifetime diagnoses of PTSD but not current 

PTSD were excluded from analysis.

Quality Control Procedures

We tested two quality control protocols: the eventually proposed PGC pipeline and a 

Functional Normalization (Funnorm) pipeline. In the PGC pipeline (Supplemental Figure 1), 

study investigators first conducted a visual inspection of control-probes designed to report 

on each step of the Infinium protocol such as bisulfite conversion and hybridization 

efficiency. In addition, samples with probe detection call rates <90% and those with an 

average intensity value of either <50% of the experiment-wide sample mean or <2,000 

arbitrary units (AU) were excluded. Probes with detection p-values >0.001 or those based on 

less than three beads were set to missing as were probes that cross-hybridized between 

autosomes and sex chromosomes [Teschendorff and others 2013]. CpG sites with missing 

data for >10% of samples within cohorts were excluded from analysis. Probes containing 

single nucleotide polymorphisms (SNPs; based on 1000 Genomes) within 10 base pairs of 

the target CpG were maintained in each dataset, but flagged and tracked throughout the 

analysis pipeline. This decision was based on the growing recognition that sequence variants 

can influence DNA methylation patterns throughout the genome [Smith and others 2014]. 

Even if an associated CpG site is influenced by genetics, such as is the case for SKA2 [Boks 

and others 2016; Rice and others 2008], maintaining such probes is informative to our 

overall goal of identifying genes important for PTSD [Gibbs and others 2010; Guintivano 

and others 2014; Heyn and others 2013]. Normalization of probe distribution and 

background differences between Type I and Type II probes was conducted using Beta 

Mixture Quantile Normalization (BMIQ) [Teschendorff and others 2013] after background 

correction. We chose BMIQ after comparing distributions of BMIQ normalized Type II 

probes in the Detroit Neighborhood Health Study (DNHS) with the raw distributions and 

distributions after applying the DASEN procedure in the R package wateRmelon 

(Supplemental Figure 2) [Pidsley and others 2013]. Following normalization, batch effect 

removal as implemented in the ComBat procedure of the SVA package in bioconductor was 
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used to account for sources of technical variations including batch and positional effects, 

which can cause spurious associations [Johnson and others 2007]. Individual cohorts also 

controlled for additional covariates that may not have been balanced within chips but that 

were of interest in downstream analyses, such as case designation and sex (if relevant). 

Following completion of this QC pipeline, each cohort confirmed that there were no 

remaining sources of technical variation by examining the association of PCs of the 

methylation levels with chip and position using multivariate linear regression, bar plots, and 

heat maps.

The second QC protocol used the functional normalization procedure implemented in the R 

package minfi, which has been reported to remove technical variation more effectively than 

ComBat or other supervised methods [Aryee and others 2014; Fortin and others 2014]. 

Briefly, raw IDATs were loaded into R and functional normalization applied using the 

default of two principal components (PCs) as covariates. The resulting normalized beta 

matrix was then extracted and used for analysis.

Cellular Heterogeneity

DNA methylation is known to vary by cell type which impacts the measured whole blood 

methylation as a result of the amalgamation of the cell type proportions in each individual’s 

sample. To control for possible confounding by individuals’ underlying cell type 

heterogeneity, proportions of CD8, CD4, NK, B cells, monocytes and granulocytes were 

estimated using each individual’s DNA methylation data, publicly available reference data 

(GSE36069), and the method described by Jaffe and colleagues [Jaffe and Irizarry 2014; 

Reinius and others 2012], based on the Houseman algorithm [Houseman and others 2012]. 

CD8, CD4, NK, B cell, and monocyte cell proportions were included as covariates in our 

statistical analyses.

Ancestry

Accounting for population stratification has become routine practice for genetic association 

studies, and most recently has also been shown to be of importance in DNA methylation 

studies [Barfield and others 2014; Nielsen and others 2010]. GWAS methods such as 

principal components (PCs) derived from SNPs can be incorporated into EWAS, but were 

not always available for all cohorts, or all samples within a cohort. An alternative based on 

methylation probes that proxy nearby SNPs was developed by Barfield et al. for use in 

European and African American subjects [Barfield and others 2014]. Here we evaluated and 

extended this approach to other ancestral populations as part of the PGC-PTSD EWAS 

pipeline.

A subset of ancestry-diverse subjects (N=128, including European Americans, African 

Americans, Latinos/Native Americans and ‘others’ including East Asians) from the Marine 

Resiliency study (MRS) were selected based on available genome-wide genotype data 

(Illumina HumanOmniExpressExome array) and matching Illumina 450K methylation data 

[Nievergelt and others 2015]. Ancestry using GWAS data was inferred as described in 

Nievergelt et al. [Nievergelt and others 2013]. In brief, genotypes of 1783 ancestry-

informative markers (AIMs) were used to determine a subject’s ancestry at the continental 
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level using STRUCTUREv2.3.2.1, including prior population information of the HGDP 

reference set [Falush and others 2003; Li and others 2008]. Based on these ancestry 

estimates, subjects were placed into one of 4 groups: European Americans, African 

Americans, Latinos/Native Americans and ‘Others’. PCs were derived using Eigenstrat 

[Price and others 2006].

Ancestry estimates using methylation data were derived using subsets of methylation probes 

in close proximity to SNPs identified by Barfield et al. [Barfield and others 2014]. Probe sets 

with 0bp distance (N=7,703 CpG probes), within 1bp distance (17,995 CpG probes), and 

within 10bp distance (N=50,319 CpG probes) were compared. GWAS-derived PCs were 

visually compared to methylation-probe derived PCs and genotypes of SNPs in proximity of 

CpG sites were compared with respective CpG methylation values using Pearson correlation 

(r).

Statistical Analysis

Within each cohort, logit transformed ß values (M-values) [Du and others 2010] were 

modeled by linear regression as a function of PTSD, adjusting for sex, age, the estimated 

cell proportions, and ancestry using PCs. For cohorts with available GWAS data, the first 

three PCs from the GWAS were used. For cohorts without GWAS data, the method 

described by Barfield and colleagues was used to generate ancestry PCs directly from the 

EWAS data. Consistent with the original paper and our analysis (full results below), the 

second through fourth PCs were used as covariates in the model to control for ancestry. Note 

that while ancestry is a primary source for variation in GWAS, other potentially confounding 

factors such as cellular heterogeneity are a primary source for variation in EWAS data. 

Comparison with SNP data showed that ancestry inference is strongest when excluding 

EWAS-derived PC1. QQ-plots of the PTSD p-values were examined for evidence of 

genomic inflation due to unaccounted technical variation or other confounders. In addition, 

the genomic inflation factors (λ) were calculated for each study. Two adjustments were 

considered to improve the precision of the estimated variances. First, moderated t-statistics 

were calculated using the empirical Bayes method implemented in the R package limma 

[Smyth 2005]. Second, HC3 robust standard errors, which have been shown to be the most 

effective in samples smaller than 250, were calculated using the R package sandwich [Long 

and Ervin 2000; Zeileis 2004].

Cohort-level analysis results were combined using the inverse normal method [Marot and 

others 2009]. Briefly, one-sided p-values for each CpG site in each study were calculated 

from the t-statistics. Next z-scores were calculated from the one-sided p-values and 

weighted by the number of subjects in each study relative to the total in the meta-analysis. 

Two-sided p-values of the z-score were then calculated and genomic inflation examined. 

Finally, p-values were adjusted for multiple-testing using the False Discovery Rate (FDR) 

procedure at the type I error rate level of 5 percent [Benjamini and Hochberg 1995].

Sensitivity analysis

Numerous robust associations between age and DNAm have been reported [Bocklandt and 

others 2011; Hannum and others 2013; Horvath 2013; Horvath and others 2012; Weidner 
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and others 2014]. Because we expect that age will be associated similarly with DNAm in 

each cohort, we can leverage this highly reproducible relationship to evaluate the pipeline’s 

performance. In each cohort, we modeled methylation as a function of age along with 

covariates for ancestry and gender (if applicable) and meta-analyzed the results as outlined 

above. In addition, we measured concordance between studies by estimating the correlation 

between the t-statistics of the age variable.

Power

Power for EWAS is more favorable compared to GWAS as a result of the continuous nature 

of the DNA methylation measures, but instead suffers from poor distribution including low 

variances and heteroscedasticity [Du and others 2010]. The power to detect a differentially 

methylated CpG site depends on the percent difference in methylation between cases and 

controls, the pooled variation in methylation (σ) across CpG sites, and the number of cases 

and controls [Liu and Hwang 2007]. We conducted simulations to test the smallest mean 

difference between PTSD cases and controls we could detect based on our projected sample 

size and a σ=0.43, which represents the highest variation reported in one of our cohorts, and 

thus a very conservative estimate [Orr and Liu 2009].

Results

Participating cohorts

Sample characteristics for studies that have contributed data to this first PGC-PTSD EWAS 

study are listed in Table 1 (N=1,147). Three of the seven studies are composed of civilians, 

while the remaining studies include active duty and veteran military populations. The 

majority of participants, especially from the military cohorts, were male (73%) and of 

European American (EA) descent (56%). All participants were exposed to trauma and half 

of participants suffered from current PTSD (50%). Data collection occurred across the 

United States (e.g., Atlanta, Detroit, San Diego, Durham, Boston, and New York) and 

Europe. While a few studies used clinical interviews, the majority of studies used self-report 

ratings of PTSD symptoms that relied on established cutoffs to assign caseness. A detailed 

description of participating cohorts is provided in the supplementary information.

Power

The power analysis shows that with our sample of 573 cases and 574 controls (N = 1147), 

we are sufficiently powered to find at least one CpG site with a mean methylation difference 

of 0.08 between cases and controls (Figure 1).

Ancestry

We investigated the utility of DNA methylation-based ancestry estimates based on CpGs 

with nearby genetic variants in cis as proposed by Barfield et al. [Barfield and others 2014]. 

A comparison of CpG probes with SNPs within 1bp distance (N= 17,995) and CpG probes 

with SNPs within 10bp distance (N= 50,319) showed a higher genotype-methylation 

correlation for the 1bp probes (r=0.29, p=1.8 × 10−15) than the 10bp probes (r=0.06, 

p=0.0015). Figure 3 shows a SNP derived PC plot based on available GWAS data including 

PCs 1 and 2 (panel A), PCs 2 and 3 from the methylation-based CpGs with a SNP 1bp from 
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the probes (panel B), and the PCs from CpG probes within 10bp of a SNP (panel C). 

Supplemental Figure 5 shows PCs 2, 3, 4, and PCs 2, 3 and 6 for, respectively, CpGs within 

1bp and 10bp of a SNP. These results along with the genotype-methylation correlations 

show that the use of DNA methylation ancestry estimates (PCs 2–4) using probes within 1bp 

of a SNP provide reliable results and are suitable as ancestry covariates in our analyses.

Quality Control Results

The number of samples and probes, not including cross-reactive probes) removed in our 

proposed PGC-EWAS pipeline ranged from 677 to 10,218 across studies (Supplemental 

Table 3). Figure 2 presents the genomic inflation factors from the analysis of PTSD for each 

individual study using two different quality control methods as well as two different analysis 

pipelines: (i) our proposed PGC-EWAS pipeline, described in detail in the Methods section 

above, as well as (ii) the Functional Normalization (Funnorm) QC pipeline. Resulting data 

from each QC pipeline were then subjected to linear regression analysis, performed with 

empirical Bayes and HC3 standard errors, respectively. In studies using the Funnorm 

pipeline there were large variations in the genomic inflation factor with two studies showing 

high inflation (DNHS, GTP) and two studies showing substantial deflation (MRS, VA-NCP) 

regardless of whether empirical Bayes or HC3 standard errors were used. Using the PGC-

EWAS pipeline and HC3 standard errors, six of the seven studies showed genomic deflation 

with (λ < 1.0), while only one study was deflated when using empirical Bayes standard 

errors (Supplemental Table 1). These results indicate that the PTSD-PGC EWAS pipeline, 

combined with empirical Bayes standard errors, is the preferred method for cohorts 

participating in our meta-analysis.

Sensitivity analysis: Age Meta-Analysis Results

Results for the age analysis using our pipeline and no standard error adjustment are 

presented in Table 3. All studies reported numerous FDR-significant CpG sites but 

substantially more significant results were reported for the combined meta-analysis. MRS 

and PRISMO reported the fewest significant sites. However the age range for participants in 

these studies was narrower as both studies included active military personnel. The 

correlations of the t-statistics ranged from 0.171 to 0.692 when all sites were analyzed and 

from 0.441 to 0.886 among the FDR significant sites (Supplemental Figure 3). The strong 

correlations of the most significant sites indicate that each cohort retained the biological 

signal of age after QC. Of the 494 CpG sites reported to have been associated with age, 326 

were significant after FDR-correction (Supplemental Table 2). In addition, a forest plot of 

the most significant CpG site representative of the FDR significant sites, shows a consistent 

direction of effect in each study (Supplemental Figure 4).

Discussion

PTSD is unique among psychiatric disorders in that its occurrence requires exposure to a 

significant traumatic event. With an environmental exposure embedded into the etiology of 

the disorder, the PTSD diagnosis affords an unusual opportunity to identify individual 

differences in the biological response to trauma to increase risk for, or resilience to, the 

disorder. Here we have introduced an international collaboration that has been established to 
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identify epigenetic associations - specifically, DNA methylation - related to risk for, or 

resilience to, PTSD. We presented the development of a consistent pipeline for processing 

and quality-control of epigenome-wide association data comparing two quality control 

approaches and statistical pipelines. In our analysis of PTSD, we found that our proposed 

PGC-EWAS pipeline controlled for genomic inflation and deflation more consistently than 

functional normalization, regardless of the standard error correction used. In light of these 

findings, we encourage consortia with epigenome-wide methylation data to implement our 

quality control pipeline including checks for genomic inflation and strengthened 

associations with age before meta-analyzing across studies.

Through these collaborative efforts to analyze existing DNA methylation data from blood 

obtained from both military and civilian cohorts, we are poised to collectively address one of 

the main challenges of psychiatric genomics, namely the need for large, harmonized samples 

to adequately power genome-scale analyses. The current collaborative dataset allows 

detection of methylation differences around seven percent, larger than most reported 

methylation differences, [Vinkers and others 2015]. Additional EWAS datasets that are 

forthcoming will likely prove essential to detecting PTSD-associated DNA methylation 

differences in our planned meta-analyses. Moving forward, we anticipate that our 

collaborative efforts will grow to include additional cohorts from around the world; indeed, 

in the last year alone, several new studies have expressed interest in participating in future 

EWAS analyses as their data become available. In addition to the DNA methylation analysis 

the close allegiance with the PGC-PTSD group has laid the foundation for integrating data 

from GWAS, EWAS, and gene expression/transcriptome analyses. In combination with other 

biological measures and coordinated neuroimaging efforts [Logue and others 2015] that may 

become accessible through this collaboration, these system-wide integrations will facilitate a 

more complete understanding of the molecular architecture and biological underpinnings of 

PTSD.

The harmonization of some study characteristics paired with the demographic and clinical 

diversity of the samples, including the differences between military and civilian trauma, 

allows us the opportunity to identify DNA methylation patterns predictive for specific 

groups of individuals and types of trauma. This will not only provide insight into the 

heterogeneity of PTSD, but may also help explain mechanisms for the variation in 

conditional effects of different types of trauma on PTSD [Wisco and others 2014]. 

Additionally, it will also provide a framework from which DNA methylation may be 

informative for early risk prediction and treatment stratification.

Looking ahead, we are optimistic that our PTSD EWAS collaboration will identify blood-

based DNA methylation signatures that associate reliably with PTSD. Identification of 

robust peripheral biomarkers is an important first step and has potential for early detection 

and prevention. The ultimate goal is to provide new insights into the etiology of PTSD. To 

truly understand the mechanistic basis of PTSD, it will be critical to compare our blood-

derived epigenetic biomarkers with those from other tissues, in particular brain tissue. As a 

first pass, DNA methylation-based biomarkers that associate with PTSD at particular CpG 

sites in blood can, at this time, be compared to CpG site derived from brain tissues, thanks to 

the Epigenomic Roadmap datasets [Bernstein and others 2010; Kundaje and others 2015]. 
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However, these comparisons will be limited to a comparison of DNA methylation levels in 

brain and blood in general, as the current data are not representative of PTSD. Over time, 

however, the development of PTSD brain biobanks of brain and other tissue types including 

blood cells, will help us to pinpoint whether blood-derived, DNA methylation biomarkers of 

PTSD reflect similar alterations in brain tissue, as recent work suggests may be possible for 

certain pathways [Daskalakis and others 2014]. Collectively, these cross-tissue efforts will 

provide insight into the biological pathways underlying PTSD vulnerability and will 

ultimately facilitate new treatment and modes of prevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample size vs. power to to detect differentially methylated CpG sites. The black curve 

indicates the number of cases and controls necessary to find a differentially methylated if 

only one CpG site exists, while the gray line indicates the size necessary if 10 differentially 

methylated sites exist.
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Figure 2. 
Ancestry inference using SNPs versus methylation probes in 128 participants of the Marine 

Resiliency Study (MRS). (a) Principal component (PC) plot showing ancestry inferred using 

SNPs from a genome-wide association study (GWAS). PC plots based on CpG probes with 

SNPs within 1 bp distance (b) and with SNPs within 10 bp distance (c), respectively. Subject 

are placed into four ancestral groups based on ancestry estimates using ancestry-informative 

SNPs and a reference panel (see methods).
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Figure 3. 
PTSD genomic inflation factors (λ) by quality control pipeline (PGC vs. Funnorm) and 

standard error adjustment method (empirical Bayes vs. HC3).

Ratanatharathorn et al. Page 21

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratanatharathorn et al. Page 22

Ta
b

le
 1

PG
C

-P
T

SD
 E

W
A

S 
C

oh
or

ts

C
iv

ili
an

M
ili

ta
ry

To
ta

l
D

N
H

S
G

T
P

W
T

C
M

R
S

P
R

IS
M

O
V

A
-M

V
A

-
N

C
P

N
11

47
10

0
27

0
18

0
12

6
62

17
6

23
3

M
ea

n 
A

ge
 (

SD
)

38
.0

 (
−

)
53

.6
 (

14
.0

)
41

.7
 (

12
.4

)
49

.7
 (

8.
3)

22
.2

 (
3.

0)
27

.1
 (

9.
2)

34
.9

 (
9.

9)
32

.0
 (

8.
4)

C
ur

re
nt

 P
T

SD
, %

50
%

40
%

39
%

47
%

50
%

50
%

49
%

69
%

M
al

e,
 %

73
%

38
%

30
%

10
0%

10
0%

10
0%

78
%

90
%

R
ac

e,
 %

W
hi

te
56

%
15

%
5%

76
%

57
%

10
0%

10
0%

74
%

H
is

pa
ni

c
6%

0%
0%

0%
25

%
0%

0%
14

%

B
la

ck
33

%
85

%
94

%
4%

8%
0%

0%
9%

A
si

an
1%

0%
0%

0%
3%

0%
0%

2%

O
th

er
3%

0%
0%

20
%

0%
0%

0%
0%

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2018 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratanatharathorn et al. Page 23

Ta
b

le
 2

A
ge

 a
ss

oc
ia

tio
ns

 u
si

ng
 th

e 
PG

C
-P

T
SD

 e
pi

ge
ne

tic
s 

Q
C

 a
nd

 a
na

ly
si

s 
pi

pe
lin

e.

St
ud

y
Si

te
s

Si
te

s 
w

it
h

(F
D

R
 <

0.
05

)

Si
te

s 
w

it
h

(p
 <

 5
×1

0−5
)

Si
te

s 
w

it
h

(p
 <

 5
×1

0−6
)

Si
te

s 
w

it
h

(p
 <

 5
×1

0−7
)

D
N

H
S

45
5,

07
9

4,
76

6
1,

74
4

67
8

29
9

G
T

P
45

3,
35

1
59

,1
00

21
,5

62
14

,2
99

9,
58

6

M
R

S
45

5,
60

1
21

0
31

1
99

34

PR
IS

M
O

44
6,

68
8

24
6

31
6

12
1

41

V
A

-M
45

5,
64

1
42

,4
74

12
,9

13
7,

21
3

4,
15

9

V
A

-N
C

PT
SD

45
3,

74
7

35
,2

17
10

,5
22

6,
33

1
3,

99
1

W
T

C
45

5,
34

0
14

,2
39

5,
01

3
2,

73
0

1,
52

5

M
et

a-
A

na
ly

si
s

44
4,

16
4

11
9,

30
8

57
,3

32
46

,6
29

38
,6

56

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2018 September 01.


	Abstract
	Introduction
	Materials and Methods
	The PGC EWAS Cohorts
	Posttraumatic Stress Disorder Assessment
	Quality Control Procedures
	Cellular Heterogeneity
	Ancestry
	Statistical Analysis
	Sensitivity analysis
	Power

	Results
	Participating cohorts
	Power
	Ancestry
	Quality Control Results
	Sensitivity analysis: Age Meta-Analysis Results

	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2

