Rapid Elemental Analysis of Aerosols Using Atmospheric Glow Discharge Optical Emission Spectroscopy
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Rapid Elemental Analysis of Aerosols Using Atmospheric Glow Discharge Optical Emission Spectroscopy

Filetype[PDF-4.47 MB]

  • English

  • Details:

    • Alternative Title:
      Anal Chem
    • Description:
      A new, low-cost approach based on the application of atmospheric radio frequency glow discharge (rf-GD) optical emission spectroscopy (OES) has been developed for near real-time measurement of multielemental concentration in airborne particulate phase. This method involves deposition of aerosol particles on the tip of a cathode in a coaxial microelectrode system, followed by ablation, atomization, and excitation of the particulate matter using the rf-GD. The resulting atomic emissions are recorded using a spectrometer for elemental identification and quantification. The glow discharge plasma in our system was characterized by measuring spatially resolved gas temperatures (378-1438 K) and electron densities (2-5 × 10| cm|). Spatial analysis of the spectral features showed that the excitation of the analyte occurred in the region near the collection electrode. The temporal analysis of spectral features in the rf-GD showed that the collected particles were continuously ablated; the time for complete ablation of 193 ng of sucrose particles was found to be approximately 2 s. The system was calibrated using 100 nm particles containing C, Cd, Mn, and Na, respectively. The method provides limits of detection in the range of 0.055-1.0 ng, and a measurement reproducibility of 5-28%. This study demonstrates that the rf-GD can be an excellent excitation source for the development of low-cost hand-held sensors for elemental measurement of aerosols.
    • Pubmed ID:
    • Pubmed Central ID:
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov