Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air

Filetype[PDF-2.09 MB]


  • English

  • Details:

    • Alternative Title:
      Atmos Environ (1994)
    • Description:
      Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO|) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO| levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm|, although CO| levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO| levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm|. We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO| concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO| levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO| levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO| in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO| exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO| accumulation.
    • Pubmed ID:
      28781568
    • Pubmed Central ID:
      PMC5544137
    • Document Type:
    • Collection(s):
    • Main Document Checksum:
    • File Type:

    You May Also Like

    Checkout today's featured content at stacks.cdc.gov