Statistical Methods
We used modified segregation analysis to fit a range of genetic models to the observed colorectal cancer family histories for the proband and their first-degree relatives. Information on second-degree relatives and other relatives of the proband were not used for this analysis as data were incomplete. Individuals were assumed to be at risk of colorectal cancer from birth until the earliest of the following: diagnosis of colorectal cancer or any other cancer (except skin cancer), first polypectomy, death, the earlier of last known age at baseline interview or age 80 years. Individuals known to have died but with unknown age at death were censored at age 70 years. Relatives reported to have had colorectal cancer with unknown age at diagnosis were assigned an age at diagnosis as their age of death (if deceased) or their age at the time of the proband’s baseline interview. Relatives with no age information were treated as lost to follow-up with age censored at zero years. 
Models of Susceptibility
The model we used was an extension of the mixed model of Morton and MacLean (1974) (1). incorporating both major gene and polygenic components. In our model, the colorectal cancer incidence λi(t,k) for individual i at age t in sex group k (k = 1 for males, k = 2 for females) was assumed to depend on genotype according to a parametric survival analysis model λi(t,k)=λ0(t,k) exp(Gi+Pi(t)), where λ0(t,k) is the sex-specific baseline incidence at age t . Gi is the natural logarithm of the relative risk associated with the major genotype and Pi(t) is the polygenic component for age t. 
The major genotype was defined by six components representing each of the genes: MLH1, MSH2, MSH6, PMS2, MUTYH and one representing the hypothetical unidentified major genes, here given the name UNIDENTIFIED_MAJOR_GENES. As the probability of having a mutation in more than one of MLH1, MSH2, MSH6, PMS2, MUTYH was very small, to reduce the computation time, we coded these genes into one locus with seven alleles: MLH1 positive, MSH2 positive, MSH6 positive, PMS2 positive, MUTYH positive, UNIDENTIFIED_MAJOR_GENES positive and a normal allele. For simplicity, the hierarchical order in which mutations were assumed to be dominant over other alleles was as follows: MLH1, MSH2, MSH6, PMS2, MUTYH, UNIDENTIFIED_MAJOR_GENES and normal alleles. These assumptions are not critical to the model because carriers in multiple genes are rare. Thus, Gi takes on the following potential risk categories: MLH1 carriers, MSH2 carriers, MSH6 carriers, PMS2 carriers, MUTYH biallelic carriers, MUTYH monoallelic carriers, UNIDENTIFIED_MAJOR_GENES heterozygotes, UNIDENTIFIED_MAJOR_GENES homozygotes and non-carriers. We fitted models in which the unidentified major genes component was autosomal  with a normal and a mutant allele unlinked to mutations in the MMR genes or MUTYH. These assumptions are not critical to the model because carriers in multiple genes are rare. This is consistent with observation, since in this data set, there were no probands observed with mutations in more than one MMR gene. We have also previously observed that having MUTYH monoallelic mutation does not significantly alter the risk of colorectal cancer in addition to having a MMR mutation (2, 3). We also fitted models in which the average relative risk for the unidentified major genes component was assumed to be age dependent. As the number of MMR and MUTYH mutation carriers in our dataset was too small to obtain reliable colorectal cancer risk estimates for mutation carriers, we used the published age-, sex- and country-specific incidence rates for MLH1 and MSH2 mutation carriers (4), and published age- and sex-specific incidence rates for MSH6, PMS2 and MUTYH mutation carriers (2, 5, 6).    
The polygenic component for age t, Pi(t), was assumed to be normally distributed with zero mean and variance σ2p(t) . Because the standard polygenic model is not amenable to “peeling” (7-9), we used as an approximation the hypergeometric polygenic model (HPM) (10, 11). P was approximated by P=(R-N)σp/(N/2)1/2, where R has a binomial distribution Bin(2N, 1/2). N, the number of loci used in the HPM, was set to 3 (see Appendices in Antoniou et al. (2001) for further details of the model(12)). We also fitted models where the variance of the polygenic ‘modifying’ component was allowed to take a different value σ2m for MMR and for MUTYH carriers.
To compute the baseline colorectal cancer incidence λ0(t), we constrained the overall incidence of colorectal cancer to agree with the national age and sex specific incidences (1998-2002) separately for Australia, Canada and USA (13). Other cancers were ignored in this model. Published incidences are reported in 5-year intervals, which can result in large variation in incidences between adjacent age intervals, so we smoothed the population incidences using locally weighted regression (LOWESS)(14) with a bandwidth of 0.2. 
We assumed that the sensitivity of the mutation testing of probands for MMR genes and MUTYH was 80% (15), and we examined the effect of varying this sensitivity.  For relatives, we assumed the mutation screening for the proband’s mutation (i.e. predictive testing) was 100% sensitive and specific. 
Estimation
[bookmark: _GoBack]The genetic models were specified in terms of colorectal cancer incidence for MMR gene and MUTYH mutation carriers, the frequency (qA) of the putative high risk allele ‘‘A’’ of the unidentified major genes, the average relative risk of colorectal cancer for carriers of mutations in the unidentified major genes, the number of polygenic loci assumed in the HPM (N), and the variances of the polygenic and modifying components (σ2p and σ2m). Maximum likelihood estimation was used to estimate the parameters. The estimates we present are the values that were the most likely (i.e. most consistent) with the data. Maximum likelihood is the optimal method for making such estimates, and provides confidence intervals (CIs). We adjusted for ascertainment by maximizing the likelihood of each pedigree conditioned on the colorectal cancer status of the proband and his or her age of diagnosis (but not mutation carrier status as this information was not known at the time of recruitment). The variances of the parameter estimates were obtained by inverting the observed information matrix. To allow for the restricted ranges of the parameter values and to provide estimates likely to be more nearly normally distributed, we used transformed values of the parameters as a basis for calculating CIs: the high-risk allele frequencies qA were transformed using the logit function log[p/(1–p)], while for relative risk and σ2p we used the log transformation.
Goodness of Fit
The relative goodness of fit for nested models was tested by the likelihood ratio test. The Akaike’s Information Criterion(16) [AIC=-2 log-likelihood + 2x(no. of parameters)] was used to assess goodness of fit between non-nested models (1). 
Estimation of Familial Relative Risk
The familial relative risk of the polygenic component was estimated using exp(σ2 /2) (17).
Expected versus Observed Number of Affected Relatives 
The goodness of fit of the models was assessed by comparing the observed number of affected relatives with that expected under each model. For each model, we computed the predicted number of probands with one parent with colorectal cancer, one sibling with colorectal cancer, two siblings with colorectal cancer and one parent and one sibling with colorectal cancer. The probability of observing each of these events for a family was  computed from the ratio of likelihoods for two pedigrees: the likelihood for a family in which the predicted event occurred and the likelihood of the affected proband (12). The expected versus observed number of affected relatives under each fitted model was assessed using the Pearson χ2 goodness of fit statistic Σj[(Oj-Ej)2/Ej] where Oj is the observed number of probands or families with a particular characteristic and Ej is the corresponding predicted numbers under each model.
Expected versus Observed number of Mutation Carriers
The expected number of probands with MMR and MUTYH mutation carriers for families that had undergone mutation testing based on their cancer family history was computed using Bayes theorem (18). For example, P(MLH1 carrier | family history) = P(MLH1 carrier, family history) / ΣP(mutation carrier status, family history) = L1/(L0+L1+L2+L3+L4+L5), where Li is the likelihood of observing the family with the proband carrying mutation i (=0, 1, 2, 3, 4, 5 for mutation negative, MLH1, MSH2, MSH6, PMS2 and MUTYH, respectively). These probabilities were then added over all families to compute the total number of probands expected to carry a mutation for each gene (12).
Statistical Computation
Segregation analyses were performed using an optimised version(19) of the pedigree analysis software MENDEL version 3.2 (20). Incidence smoothing and other descriptive statistics were calculated using STATA 13.0 (21).
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