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Abstract

Objective—To investigate whether genetic variants of N-acetyl transferase genes (NAT1 and 

NAT2) are associated with diisocyanate asthma (DA).

Methods—The study population consisted of 354 diisocyanate-exposed workers. Genotyping 

was performed on genomic DNA, using a 5′ nuclease PCR assay.

Results—The NAT2 rs2410556 and NAT2 rs4271002 variants were significantly associated with 

DA in univariate analysis. In the first logistic regression model comparing DA+ and AW groups, 

the genotype combination, NAT2 rs2410556 and NAT2 rs4271002, showed association with DA 

risk (p=0.005). In the second model comparing DA+ and DA− groups, NAT2 rs4271002 and 

NAT2 rs13277605 variants were significantly associated with an increased risk of DA (p=0.002 

and p=0.027, respectively). In the third model comparing DA− and AW groups, the NAT1 

rs4921580 SNP and the combined genotype NAT2 rs2410556/rs4271002 showed association with 

the DA− phenotype (p=0.017, p<0.001, respectively).

Conclusion—These findings suggest that variations in the NAT2 gene and their interactions 

contribute to DA susceptibility.

CORRESPONDENCE: Address correspondence to Berran Yucesoy, PhD, Formerly of the Division of Immunology, Allergy and 
Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, berranyucesoy@gmail.com. 

CONFLICTS OF INTEREST
There are no conflicts of interests declared.

HHS Public Access
Author manuscript
J Occup Environ Med. Author manuscript; available in PMC 2017 January 05.

Published in final edited form as:
J Occup Environ Med. 2015 December ; 57(12): 1331–1336. doi:10.1097/JOM.0000000000000561.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

diisocyanates; occupational asthma; NAT1; NAT2; single nucleotide polymorphism; genetics; 
lung; toluene diisocyanate; 4,4′- diphenylmethane diisocyanate; hexamethylene diisocyanate

INTRODUCTION

Occupational asthma (OA) is characterized by variable airflow obstruction, airway 

hyperresponsiveness and/or inflammation caused by workplace exposure to certain 

substances and may account for 10–25% of all adult cases of asthma1, 2. Diisocyanates, low-

molecular weight reactive chemicals used in industry to generate polyurethane, are a leading 

cause of OA in industrialized countries. Toluene diisocyanate (TDI), 4,4′- diphenylmethane 

diisocyanate (MDI), and hexamethylene diisocyanate (HDI) are the most commonly used 

monomers in industry. Centers for Disease Control and Prevention (CDC) estimates that 

over 280,000 workers are exposed to diisocyanates in the workplace and 5–15 % of them 

with chronic exposure develop occupational asthma3–6.

Current evidence suggests that the pathophysiology of diisocyanate-induced asthma (DA) 

involves chronic airway inflammation and oxidative stress in the lungs. Following inhalation 

of diisocyanates, reactive oxygen and nitrogen species generated by activated inflammatory 

and bronchial epithelial cells induce a respiratory burst and result in tissue injury7–9. In vivo 

and in vitro studies have shown that diisocyanates alter thiol-redox homeostasis of airway 

epithelium10, 11. Marczynski et al. showed the formation of H2O2 in white blood cells of 

subjects after diisocyanate exposure12. Another study reported altered expression of proteins 

involved in oxidant/anti-oxidant-mediated airway inflammation in MDI-asthma patients13. 

Human serum albumin-conjugated TDI was found to induce oxidative stress in bronchial 

epithelial cells14. In a mouse model, expression of oxidative stress and thiol-redox balance 

related genes was increased following polymeric HDI exposure15. These findings suggest 

that oxidative stress is a major contributor to persistent airway inflammation and tissue 

damage in DA. A number of enzymatic antioxidants, including glutathione S-transferases 

(GSTs), manganese superoxide dismutase (SOD2) and microsomal epoxide hydrolase 

(EPHX1) play a major protective role in redox balance in the lung as well as help regulate 

oxidant-induced inflammatory responses. In support of this mechanism, we recently 

reported that genetic variations in SOD2, GST, and EPHX1 genes and their interactions 

contribute to DA susceptibility16.

In the present study, we evaluated associations between DA and gene variants of N-

acetyltransferase (NAT) enzymes involved in the activation/inactivation of numerous 

xenobiotics. The NAT1 and NAT2 genes are both located on chromosome 8 (8p21.3–23.1 

and 8p21.3–23.1 and 8p22, respectively) and catalyze N-acetylation and O-acetylation of 

aromatic and heterocyclic amines17, 18. They are also involved in the deactivation of pro-

inflammatory cysteinyl leukotrienes which are potent mediators of airway narrowing19. Both 

NAT1 and NAT2 are expressed in the airway epithelium and show wide inter-individual 

variation20, 21. NATs are also known to be involved in the deactivation of aromatic amines 

that can be formed from diisocyanates in aqueous environments22, 23. Since oxidative stress 
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is an important early event in diisocyanate-induced respiratory damage, genetic modification 

of the enzymatic activity of NATs can directly influence the expression of disease. The aim 

of this study was to identify NAT SNPs that could influence genetic susceptibility to DA.

METHODS

Study participants

The initial study population consisted of 411 diisocyanate (HDI, MDI and TDI)-exposed 

workers. This population was comprised of three distinct phenotypes including: 1) 132 

workers diagnosed with DA (DA+) based on a positive specific inhalation challenge (SIC) 

test; 2) 131 workers reporting respiratory symptoms at work in whom DA was excluded 

based on a negative SIC (DA−); and 3) 148 HDI-exposed asymptomatic worker controls 

(AWs). The main study analyses were conducted on only Caucasian French Canadian 

workers (n=354) to avoid the possibility of bias due to population stratification24; 

supplemental analyses were also conducted on the entire sample, as described below. 

Symptomatic subjects were recruited from occupational pulmonary disease clinics located in 

Canada (Sacre Coeur Hospital, Montreal; Laval Hospital, Sainte-Foy; University Health 

Network, Toronto) and Spain (Fundacion Jimenez Diaz, Madrid and Hospital Vall d’Hebron, 

Barcelona). The subjects underwent SIC with the appropriate work-relevant diisocyanate 

chemicals according to previously described protocols25, 26. Patients were classified as DA+ 

or DA− based on their positive and negative responses to diisocyanate SIC, respectively. A 

decrease in FEV1 of at least 20% from pre-challenge baseline during the early and/or late 

asthmatic response was defined as a positive SIC test. AW controls were recruited in 

Quebec, Canada from HDI-exposed painters. Data regarding age, sex, ethnicity, smoking 

status, duration of exposure and respiratory symptoms were collected by questionnaire. 

Atopy was evaluated by skin prick testing to common aeroallergens, defined by a positive 

reaction of at least 3 mm greater than saline control for at least one allergen. Whole blood 

was collected for genetic testing. All subjects gave informed consent, and the study protocol 

is approved and renewed annually by Institutional Review Boards of each participating 

institution.

Gene selection and genotyping

Genomic DNA was extracted from whole blood samples using the QIAamp blood kit 

(QIAGEN Inc., Chatsworth, CA). Genotyping was performed on genomic DNA, using a 5′ 
nuclease PCR assay. Primers and probes were designed, using the Assay-by-Design™ 

service from Applied Biosystems (Foster City, CA). The QuickSNP version 1.1 was used to 

select a total of 18 tagSNPs within the NAT1 and NAT2 genes that had a minor allele 

frequency >5% and an r2>0.8 in Caucasians27. Positive and negative controls were used 

within each run of PCR amplification. All samples with ambiguous results were repeated as 

were a random selection of 10% of all samples to ensure laboratory quality control.

Statistical Analyses

The primary analysis was restricted to Caucasian French-Canadians in order to minimize 

bias due to population stratification. The numbers of subjects recruited from other non-

Caucasian-French Canadian (n = 31) and Spanish (n = 26) populations were too small to 
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independently support statistical model development. However, the same logistic models 

were fit to the entire sample and results of those are included as supplementary data. 

Potential associations between each SNP and DA were tested using chi-square tests for 

single SNP associations. Because of the low prevalence of some of the minor alleles, a 

dominant model for each SNP was used for further statistical analyses. That is, each SNP 

was dichotomized as either 1) heterozygotes or homozygotes involving the minor allele or 2) 

major allele homozygotes. The sample size did not support including all possible two-way 

interactions between pairs of SNPs in a logistic regression model, therefore, interactions 

were screened using Breslow-Day tests for homogeneity of odds ratios. Logistic regression 

models predicting DA status were built using backward elimination, with the starting list of 

potential predictors including SNPs having significant single association with DA and main 

effects and two-way interactions of SNPs having significant heterogeneity of odds ratios, 

and all models also included demographic variables that were significantly associated with 

DA model [age, smoking status, and type of diisocyanate exposure (HDI vs. MDI or TDI) or 

length of exposure]. SNPs and their interactions having p < 0.05 were retained in the model, 

as were main effects of SNPs involved in significant interactions. In the first model, 

comparison of DA+ and AW controls was conducted whereas DA+ and DA− symptomatic 

groups and DA− and AW controls were compared in the second and third models, 

respectively. All statistical analyses were performed using SAS 9.3 (SAS Institute, Cary, 

NC). SNAP was used to find proxy SNPs within 500kb based on LD and physical 

distance28. RegulomeDB was used to annotate SNPs with known and predicted regulatory 

elements29.

RESULTS

The demographic characteristics of the Caucasian French-Canadians included in the 

statistical analyses are described in Table 1. Mean age was higher in the DA+ and DA− 

groups than AW controls (42.3, 40.3 vs 30.3 years; p <0.001). Type of diisocyanate exposure 

(HDI vs. MDI vs. TDI) differed significantly between the groups (overall p<0.001). 

Although the duration of work exposure was similar between the DA+ and DA− worker 

groups (144.6 vs 164.9 months, p=0.297), the AW controls had less exposure to isocyanates 

than both groups (65.8 months, p <0.001). The frequency of atopy was similar in all three 

groups (overall p=0.852). The prevalence of smoking was significantly different between 

DA+ and AW controls (p<0.001). The overall type and the severity of the respiratory 

symptoms (e.g., cough, wheezing, shortness of breath, tightness in chest) were similar in 

symptomatic groups. The allele frequencies in the control population were similar to those 

determined in other studies involving Caucasian populations and were in Hardy-Weinberg 

equilibrium (data not shown). The demographic characteristics of the entire study sample are 

given in Supplementary Table 1.

Table 2 shows the distribution of genotypes in the study population and the p-values 

represent the comparison of the proportions of genotypes between two groups. The NAT2 
rs24110556 and rs4271002 SNPs were the only candidate SNPs that were individually 

significantly associated with the DA diagnosis. The distribution of the NAT2 rs2410556 

genotype was significantly different in DA+ workers compared to DA− group (p=0.008), 
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and AW controls (p<0.001). The distribution of the NAT2 rs4271002 SNP was significantly 

different among DA+ cases compared to DA− group (p=0.001), and AW controls (P<0.001).

Tables 3–5 present logistic regression models examining statistically significant SNPs and 

interactions associated with DA after adjusting for significant confounders (age, smoking 

status, type or duration of exposure). SNPs were dichotomized as carriers of the minor allele 

(homozygote or heterozygote) versus major allele homozygotes. For the interaction terms, 

the odds ratio (OR) represents the odds of DA+ for carriers of at least one minor allele at 

both SNPs versus the odds of DA+ for any other genotype combination. The results of 

analyses on the larger sample that included subjects from Spain and non-Caucasian-French 

Canadians are shown in Supplementary Tables 3–5.

The first logistic regression model included DA+ and AW groups and adjusted the results for 

age, smoking status and length of exposure (Table 3). Only HDI-induced DA+ cases were 

taken into consideration since controls were exposed only to HDI. The co-presence of minor 

alleles of the NAT2 rs2410556 and rs4271002 SNPs was associated with an increased risk of 

DA (Odds ratio (OR), 30.62; 95% confidence interval (CI), 2.84- 330).

The second model included DA+ and DA− groups and adjusted the results for smoking 

status and type of diisocyanate exposure (HDI vs. MDI or TDI) (Table 4). The carriage of 

the minor alleles for the NAT2 rs4271002 and NAT2 rs13277605 SNPs was associated with 

an increased risk of DA with ORs of 2.77 (95% CI, 1.45–5.30, p=0.002) and 2.21 (95% CI, 

1.09–4.46, p=0.027), respectively.

The third model included DA− and AW groups and adjusted the results for age at diagnosis 

and length of exposure (Table 5). Only HDI-induced DA− subjects were taken into 

consideration since controls were exposed only to HDI. The NAT1 rs4921580 SNP was 

associated with a decreased risk of DA− phenotype with an OR of 0.30 (95% CI, 0.11–0.81, 

p=0.017). In addition, the carriage of the minor alleles for the NAT2 rs4271002 and NAT2 
rs2410556 SNPs was associated with susceptibility to DA− phenotype with an OR of 38.0 

(95% CI, 5.6–258, p<0.001).

The four significant SNPs identified from data analysis were used as inputs to the SNAP 

SNP Annotation and Proxy Search tools to update SNP IDs according to dbSNP135 and to 

find additional SNPs in LD (using an r2 of 1). This led to the identification of an additional 

7 correlated SNPs using data from the International HapMap Project. The total set of 11 

SNPs was then used as inputs to the RegulomeDB web source, which integrates data from 

the ENCODE projects and other data sources regarding various types of functional assays 

including DNaseI-seq, ChIP-seq, RNAseq, and eQTL analyses29. The rs4921580 and one 

proxy SNP (rs62492997) had a RegulomeDB score of 3a (based on the following available 

datatypes; TF binding + any motif + DNase peak). 6 SNPs (rs13277605, rs2410556, 

rs78344578, rs4345600, rs79533018, rs11780272) showed minimal binding evidence 

(RegulomeDB scores 5 and 6). We were unable to find information pertaining to the possible 

functional role for the other significant (rs4271002) and correlated (rs17642674, rs4546703) 

SNPs.
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DISCUSSION

The present candidate gene association study showed significant associations between DA 

and NAT2 variants. Two NAT2 variants, rs2410556 and rs4271002, were significantly 

associated with DA in the univariate analysis when evaluated against two control comparator 

groups (i.e., AW and DA− groups). A multivariate analysis was then applied adjusting for 

age, smoking status and length of exposure. Here, differences emerged between comparator 

groups in NAT2 genotypes associated with DA. With the AW group as a comparator, only 

the combined genotype NAT2 rs2410556/rs4271002 was significantly associated with DA. 

The NAT2 rs4271002 variant, however, remained significantly associated with DA when 

compared with the DA− group.

While the NAT2 rs2410556 SNP was individually associated with DA in the univariate 

analysis, this effect was seen only in combination with the rs4271002 SNP in the 

multivariate analysis. Increased risk related to this variant combination is context-dependent 

and suggests that some SNPs display significant association when considered as part of a 

SNP-covariate or SNP-SNP interaction. The NAT2 rs13277605 and NAT1 rs4921580 SNPs 

were also significant in the second and third logistic regression models. These results 

suggest previously unrecognized associations of NAT genotypes with the symptomatic 

workers population. The functional consequence and the role of these SNPs in asthmatic 

process have not been previously investigated.

A number of studies have reported associations between slow acetylation NAT2 genotypes 

and the risk of bronchial asthma30–33. A recent meta-analysis showed that slow acetylator 

NAT2 genotypes might increase asthma risk among Caucasians (OR 2.20; 95 % CI 1.31–

3.72)34. To our knowledge, there have been two other studies examining the role of NAT 
variants in DA. Earlier, Berode et al. reported that NAT2 slow acetylator individuals, 

exposed to common diisocyanate monomers at work, are more susceptible to asthma35. 

Later, they confirmed their finding in a larger study and showed that NAT2 slow acetylation 

could be a surrogate marker for DA susceptibility36. Wikman et al. studied the role of NAT 
genotypes in the development of DA in 182 diisocyanate-exposed workers; 109 diagnosed 

with DA and 73 with no asthma symptoms37. The authors found a significant effect of the 

slow acetylator NAT1 genotype on DA (OR: 2.54; CI: 1.32, 4.91). This effect was especially 

marked in workers exposed to TDI (OR: 7.77; 95% CI 1.18, 51.6). They also assessed the 

effect of NAT genotypes in combination with the previously examined GST genotypes. The 

combination of the GSTM1 null genotype with NAT1 (OR: 4.53, 95% CI: 1.76–11.6), NAT2 

(OR: 3.12, 95% CI: 1.11- 8.78) or NAT1 and NAT2 slow acetylator genotypes (OR: 4.20, 

95% CI: 1.51–11.6) conferred an increased risk for DA. This was the first report showing the 

importance of NAT genotypes individually or in combination with GST genotypes in DA. 

Two SNPs overlapping between this and our study, rs1801280 (NAT2*5) and rs1041983 

(NAT*7), were not significantly associated with DA in our analysis.

Among our significant SNPs, only the NAT2 rs4271002 has been previously investigated 

and found to be associated with risk of non-occupational asthma phenotypes38, 39. The 

NAT2 rs4271002 SNP was associated with an increased risk of asthma associated with 

paracetamol treatment in infancy38. Kim et al. found that the NAT2 rs4271002 SNP and a 

Yucesoy et al. Page 6

J Occup Environ Med. Author manuscript; available in PMC 2017 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



haplotype carrying this variant were significantly associated with aspirin exacerbated asthma 

(ORs 1.61 and 1.62, respectively)39. They reported a putative binding site in DNA sequence 

for candidate transcription factor, upstream stimulatory factor (USF)-1. USFs are key 

regulatory elements of the transcriptional mechanism and presumed to play an important 

role in the development of bronchial asthma40. In our analysis, Regulome DB gave ‘no data’ 

score for the rs4271002 SNP. However, SNAP search showed that there is a strong LD 

(r2=1) between the rs4271002 and NAT2 rs62492997 SNPs. RegulomeDB cites that 

rs62492997 SNP affects binding of ESR1 (estrogen receptor 1) protein and alters the Nr2f2 

binding motif. Nr2f2, a ligand inducible transcription factor that is involved in the regulation 

of many different genes, plays critical roles in cell differentiation and is known to be 

differentially expressed in asthma41. ESR1 polymorphisms were found to be associated with 

airway hyperresponsiveness and lung function decline42. This SNP was individually 

associated with DA in the univariate analysis. In addition, it conferred increased risk for DA 

individually (with an OR of 2.77) in the second logistic regression model and in 

combination with rs2410556 SNP in the first and third logistic regression models. It is 

noteworthy that the frequency of the combined genotype NAT2 rs2410556/rs4271002 was 

significantly greater in workers with DA− vs. AWs, a finding likely explained by a high 

incidence of non-occupational asthma among DA− subjects.

The major strengths of this study include a well-defined phenotype, and examination of 

candidate genes based on their functional role in disease pathogenesis. In addition to 

comparing with exposed workers without any evidence of respiratory disease, we were able 

to incorporate a comparator worker group (DA−) with respiratory symptoms not caused by 

diisocyanate exposure confirmed by negative SIC testing. We were also able to test our 

genetic associations while adjusting for potential independent confounding factors such as 

atopy, smoking history, exposure duration and specific diisocyanate exposure. The major 

limitations include small sample size due to rarity of DA, and the issue of multiple 

interferences. Also, small numbers of subjects carrying specific alleles or genotype 

combinations resulted in large confidence intervals. Another limitation is that the AW 

controls were younger and had less exposure to diisocyanates than cases. This was 

unintentional due to difficulty in the recruitment of age-matched workplace controls and 

may be problematic in terms of detection of age-related associations. The results were not 

corrected for multiple comparisons since our analyses were based on well-defined roles of 

the selected genes in disease process. Instead, we reported all tests that reached the 0.05 

level of significance.

Taken together, this case-control study reports that the NAT2 variants and their interactions 

may be important in susceptibility to DA supporting the hypothesis that genetic variability 

influencing oxidative balance contributes to the pathogenesis of this disease. Further studies 

are warranted to confirm these findings in an independent replication cohort and to 

characterize functional role of these markers in DA and other chemically induced 

occupational asthma phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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