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Abstract

Objective—To evaluate the association between inhalation exposure to jet propulsion fuel 8 

(JP-8) and urinary metabolites among US Air Force (USAF) personnel, and investigate the role of 

glutathione S-transferase polymorphisms.

Methods—Personal air samples were collected from 37 full-time USAF personnel during 4 

consecutive workdays and analyzed for JP-8 constituents and total hydrocarbons. Pre- and 

postshift urine samples were collected each day and analyzed for polycyclic aromatic hydrocarbon 

urinary metabolites.

Results—Work shift exposure to total hydrocarbons was significantly associated with postshift 

urinary 1-naphthol (β = 0.17; P = <0.0001), 2-naphthol (β = 0.09; P = 0.005), and 2-

hydroxyfluorene concentrations (β = 0.08; P = 0.006), and a significant gene-environment 

interaction was observed with glutathione S-transferase mu-1.

Conclusions—USAF personnel experience inhalation exposure to JP-8, which is associated 

with absorption of JP-8 constituents while performing typical job-related tasks, and in our data the 

glutathione S-transferase mu-1 polymorphism was associated with differential metabolism of 

naphthalene.
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Jet propulsion fuel 8 (JP-8), a volatile lipophilic kerosene-based fuel, is the main jet fuel 

used by the US Air Force (USAF). Because of its higher flash point and lower acute toxicity, 

JP-8 completely replaced JP-4 by 1995.1 Given that JP-8 is a complex mixture of 

approximately 228 hydrocarbons, it is a challenge to fully characterize personal exposure to 

JP-8.2 Personal and ambient air concentrations of various JP-8 constituents have been 

previously characterized among personnel on USAF bases, indicating a wide range of 

exposures, with the highest concentrations among workers who repair and inspect aircraft 

fuel systems and perform quality control tests on the petroleum products.3–5 Specifically, 

naphthalene has been suggested as a useful surrogate measure for exposure to JP-8 as it 

comprises 0.11% to 0.27% of the fuel on average.6

Urinary 1- and 2-naphthol concentrations have been investigated as a measure of absorbed 

naphthalene among USAF personnel as well as other occupations such as coke plant 

workers.7,8 Previous studies have reported significant associations between postshift urinary 

naphthol concentrations and personal work shift exposure to JP-8 and smoking.9,10 Because 

of the various compounds present in JP-8, several urinary metabolites may be used as 

biomarkers of exposure to JP-8.

Although urinary naphthol concentrations can be used to characterize exposure to 

naphthalene, smoking and genetic polymorphisms involved in the metabolism of 

naphthalene have been shown to affect urinary naphthol concentrations. Specifically, 

smokers with no other exposure to naphthalene with the glutathione S-transferase mu-1 

(GSTM1)-null genotype have higher urinary naphthol concentrations than those with the 

GSTM1-present genotype.11 Nan et al12 also reported that the GSTM1-null genotype was 

significantly associated with higher urinary 2-naphthol concentrations among naphthalene-

exposed coke oven workers and naphthalene-unexposed students after adjusting for 

smoking, though the effect estimate was larger among the coke oven workers (β = −3.5 vs 

−0.88).

We previously characterized urinary naphthols in a pilot study of 24 workers at one USAF 

base,7 but here we report the results from a larger follow-up study of 73 workers at three 

USAF bases that includes additional urinary metabolites and evaluates the potential role of 

GST polymorphisms. The Occupational JP8 Exposure Neuroepidemiology Study was 

designed to investigate the relationship between exposure to JP-8 and neurological 

outcomes,13 using the exposure assessment data presented here. In this article, we aimed to 

(1) describe pre- and postshift concentrations of urinary metabolites among Air Force 

personnel exposed to JP-8 at three bases, (2) assess the relationship between urinary 

concentrations of metabolites and breathing zone concentrations of naphthalene and total 

hydrocarbons (THC), and (3) investigate the potential interaction of GST polymorphisms 

and naphthalene air concentrations on urinary metabolite concentrations.

MATERIALS AND METHODS

Study Design

Seventy-four full-time active USAF personnel from three bases participated in this study 

during 1 workweek between January and April 2008. One participant did not provide 
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biological samples, resulting in 73 participants in this analysis. All participants had worked 

for a minimum of 6 months at their current job and were invited to participate to ensure that 

both workers with routine high exposure to JP-8 and low exposure were included in the 

study.13 Participants were categorized a priori into high- and low-exposure groups on the 

basis of their typical job tasks. Specifically, participants who performed jobs with routine 

exposure to JP-8 such as fuel cell repair, maintenance, and fuel distribution were categorized 

as the high-exposure group, whereas those with minimal direct exposure to JP-8 were 

categorized as the low-exposure group (ie, administrative, clerical, and health care 

personnel). Each participant provided written informed consent before participation in the 

study, and all protocols were reviewed and approved by human subjects committees from the 

Army (US Army Research Institute of Environmental Medicine), Air Force (AF Research 

Laboratory at Wright Patterson AF Base), Veterans Affairs (VA Boston Healthcare System), 

and Boston University School of Public Health. The involvement of the Centers for Disease 

Control and Prevention laboratory was determined not to constitute engagement in human 

subjects research.

Data Collection

Each participant was monitored during 4 consecutive workdays, beginning on Monday 

morning after 2 days away from work and ending on Thursday afternoon. All sample 

collection methods have been described in detail previously.13,14 Briefly, each participant 

completed a self-administered baseline questionnaire on the first day of the study to collect 

information on demographics, behavioral factors such as smoking, alcohol, grilled food, and 

caffeine consumption, health history, and military work history. Additional surveys were 

completed at the beginning and end of each work shift to describe more detailed personal 

exposures during the previous period.

All participants wore a Casella Apex Pro IS personal air monitor (Casella USA, Amherst, 

New Hampshire) attached to two sorbent tubes using a Y connector, on Monday through 

Thursday during their work shift to collect an air sample from their breathing zone. The first 

sorbent tube, a two-section (100/50 mg) Anasorb coconut shell charcoal tube (Anasorb; 

SKC Inc, Eighty Four, Pennsylvania), was analyzed for benzene, toluene, ethylbenzene, 

m-/p-xylene, o-xylene, and THC using National Institute for Occupational Safety and Health 

method 1501.15 The second sorbent tube, a Chromosorb 106 tube (Anasorb; SKC Inc), was 

analyzed for naphthalene according to OSHA method 35.16 All sorbent tubes were analyzed 

at the Organic Chemistry Analytical Laboratory at the Harvard School of Public Health in 

Boston, Massachusetts.

Each participant provided a urine sample at the beginning and end of each work shift, 

starting with preshift on day 1 after 2 days away from work and ending with postshift on day 

4, resulting in eight urine samples per individual. All urine samples were analyzed for 1- and 

2-naphthol as well as 2-, 3-, and 9-hydroxyfluorene, 1-, 2-, 3-, and 4-hydroxyphenanthrene, 

and 1-hydroxypyrene. In addition, urine samples were analyzed for creatinine concentrations 

to adjust for sample concentration. All urinary analyses were conducted at the Centers for 

Disease Control and Prevention in Atlanta, Georgia. Briefly, after the enzymatic 

deconjugation of the target analytes, automatic liquid–liquid extraction into pentene was 
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performed using the Gilson 215 Liquid Handler (Gilson Inc, Middleton, Wisconsin). The 

sample extracts were evaporated under a chemical fume hood, and reconstituted in toluene, 

and then the analytes were derivatized to yield the trimethylsiloxane derivatives. Analytical 

determination of the target analytes was performed by gas chromatography–isotope dilution 

high-resolution mass spectrometry, employing a MAT95XP (Thermo Finnigan MAT, 

Bremen, Germany) instrument.17 The limits of detection (LODs) were 48 ng/L for 1-

naphthol, 42 ng/L for 2-naphthol, 20 ng/L for 1-hydroxypyrene, and 10 ng/L for all other 

urinary analytes.

A blood sample was collected from each participant post-shift on Thursday. All blood 

samples were analyzed for GSTM1 and glutathione S-transferase theta-1 (GSTT1) genetic 

polymorphisms at Brown University using polymerase chain reaction methods described by 

Schwartz et al.18

Statistical Analyses

All statistical analyses were performed using SAS version 9.2 (SAS Institute, Cary, North 

Carolina). Chi-square tests were used to compare categorical variables between the high- 

and low-exposure groups, and Fisher exact tests were used for categorical variables where 

cell sizes were small. Wilcoxon ranked sum tests were used to compare continuous 

variables. Geometric means were calculated for the individual creatinine-corrected urinary 

metabolites by exposure category (high and low) and shift (preshift and postshift) by 

exponentiating the mean of the natural log-transformed values. Similarly, the geometric 

standard deviations were calculated by exponentiating the standard deviation of the natural 

log-transformed values. The LOD was used for samples below the LOD. Linear mixed-

effects models were used for all further analyses to account for the repeated measurements 

from the participants (eg, air measurements and pre-and postshift urinary samples on 4 

consecutive workdays from each individual).

RESULTS

The demographic characteristics of the 73 Air Force personnel who participated in this study 

are presented in Table 1. For variables that varied by day (ie, the number of cigarettes 

smoked per work shift and the number of barbeque meals consumed per work shift), we 

presented data for day 2 only as a representative day. Comparisons by exposure group show 

that there was no statistically significant difference in age, years of service, body mass 

index, current smoking status, race, marital status, education level, current military rank, or 

genetic polymorphisms between those in the high and low-exposure groups. Nevertheless, 

there was a statistically significant difference in sex (P = 0.001), with a greater proportion of 

males in the high-exposure group than in the low-exposure group. In addition, the high-

exposure group had significantly more participants who lived on the base (63% vs 31%; P = 

0.007). As reported previously, the workers in the low-exposure group were exposed to 

significantly lower personal air concentrations of THC (0.52 mg/m3 vs 2.64 mg/m3), 

naphthalene (0.37 μg/m3 vs 2.25 μg/m3), and other analytes than those in the high-exposure 

group.3
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Table 2 presents the comparison of the creatinine-adjusted urinary metabolite concentrations 

in preshift and postshift urine samples by exposure group and smoking status. The 

percentage of samples below the LOD ranged from 0% to 29% in the low-exposure group 

and 0% to 19% in the high-exposure group, with the greatest percentage for 4-

hydroxyphenanthrene concentrations. Although the greatest workday differences were 

observed in naphthols and hydroxyfluorenes among the high-exposure group, postshift 

urinary concentrations of 1-naphthol, 2- and 3-hydroxyphenanthrene were significantly 

higher than preshift samples in the low-exposure group among smokers, and 2-

hydroxyfluorene concentrations were higher among nonsmokers. In addition, when 

comparing the postshift urinary concentrations between the high and low-exposure groups, 

significantly higher concentrations of 1-naphthol, 2-naphthol, 2-hydroxyfluorene, and 3-

hydroxyfluorene were observed in the high-exposure group among nonsmokers only (Fig. 

1). In contrast, higher 1-hydroxypyrene concentrations were observed in the low-exposure 

group among smokers (Fig. 2).

Table 3 presents the associations between breathing zone air concentrations of THC and 

postshift urinary metabolites while adjusting for preshift urinary metabolite concentrations, 

USAF base, sex, cigarettes smoked per work shift, and postshift urinary creatinine 

concentrations. Breathing zone concentration of THC was a statistically significant predictor 

of postshift urinary concentrations of 1-naphthol (β = 0.15; P = <0.0001), 2-naphthol (β = 

0.09; P = 0.005), and 2-hydroxyfluorene (β = 0.08; P = 0.006). Specifically, for each 

additional 10% increase in breathing zone THC, there was approximately a 1% increase in 

1-naphthol, 2-naphthol, and 2-hydroxyfluorene. Similarly, breathing zone naphthalene 

concentrations were a statistically significant predictor of postshift urinary 1-naphthol and 2-

naphthol concentrations, with slightly greater effect estimates than observed for breathing 

zone THC concentrations.

The final multivariate models using air THC concentrations as a predictor of postshift 

urinary 1-naphthol, 2-naphthol, and 2-hydroxyfluorene concentrations are presented in Table 

4, showing that the models explain 85%, 79%, and 72% of the between-worker variability 

and 19%, 33%, and 39% of the within-worker variability, respectively. In these models, 

nonadjusted urinary metabolite concentrations were used, and postshift urinary creatinine 

concentrations were included as a predictor. Preshift urinary metabolite concentrations, 

postshift urinary creatinine concentrations, and current smoking status were statistically 

significant predictors of postshift urinary metabolites in addition to the breathing zone THC 

concentrations. We tested for possible interactions between smoking status and air THC 

concentrations but found no significant interaction when predicting any of the urinary 

metabolite concentrations.

The association between naphthalene in personal air and urinary naphthols was significantly 

different by GST polymorphisms (Table 5). Specifically, the naphthalene concentrations in 

personal air had a significantly larger effect on urinary naphthols among workers with the 

GSTM1-present genotype than among those with the GSTM1-null genotype. A significant 

gene-environment interaction was not observed for GSTT1 genotypes, and we did not 

observe a main effect of either GSTM1 or GSTT1. No other genetic association was 

observed with the other urinary metabolites.
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DISCUSSION

We investigated the effects of inhalation exposure to JP-8 constituents and the role of genetic 

polymorphisms on the concentrations of several urinary metabolites among Air Force 

personnel. Workers who were categorized a priori as having high exposure to JP-8 had 

higher urinary concentrations of 1-naphthol, 2-naphthol, and 2-hydroxyfluorene, suggesting 

that the a priori categorization on the basis of workers’ typical job tasks and routine 

exposure to JP-8 can serve as a useful surrogate exposure metric in the absence of actual 

measurements. Correspondingly, we observed significant increases in urinary metabolites 

from preshift to postshift and significant associations with personal work shift air THC 

measurements, suggesting that these urinary metabolites serve as good biomarkers of 

occupational exposures. In addition, a significant gene–environment interaction was 

observed, indicating that the GSTM1 polymorphism has an effect on the relationship 

between personal exposure to naphthalene in air and urinary naphthol concentrations.

Although postshift urinary samples had significantly higher concentrations of some 

metabolites compared with preshift samples among individuals in the low-exposure group, 

further analyses among those in the low-exposure group indicated that these differences 

were mainly observed among smokers (1-naphthol, 2-hydroxyphenanthrene, and 3-

hydroxyphenanthrene). Similar urinary concentrations of 2-, 3-hydroxyphenanthrene among 

the low-and high-exposure groups further support that these concentrations resulted from 

smoking rather than exposure to JP-8. In contrast, post-shift urinary concentrations of 2-

hydroxyfluorene were significantly higher than preshift concentrations among nonsmokers, 

though the magnitude of the change was comparable and slightly higher for smokers. This 

significance of the difference in 2-hydroxyfluorene may be due to a greater sample size (22 

nonsmokers vs 13 smokers). Others have shown that urinary 2-hydroxyfluorene is a sensitive 

and specific biomarker of exposure to polycyclic aromatic hydrocarbons, with smokers 

having significantly higher concentrations than nonsmokers19,20 and roofers having higher 

concentrations postshift compared than preshift.21 Urinary naphthol and 2-hydroxyfluorene 

concentrations may be influenced by exposure to JP-8 because higher urinary concentrations 

observed among those in the high-exposure group. Further analyses are warranted to 

determine the effect of smoking on these urinary biomarkers, possibly using more precise 

measures of smoking such cotinine concentrations.

In contrast to Serdar et al,9,10 who observed a decrease in variability explained by the model 

after adjusting naphthol concentrations for urinary creatinine, postshift urinary creatinine 

concentration was included as a significant predictor in our final regression models (Table 4) 

because it explained some of the within-worker variability and there was no decrease in the 

between-worker variability explained. On the other hand, we observed a significant 

interaction between naphthalene air concentrations and GSTM1 polymorphism only when 

urinary metabolite concentrations were not adjusted for creatinine, similar to findings 

reported by Yang et al.11

Although some have shown a significant negative main effect of the GSTM1-present 

genotype on urinary naphthol concentrations,11,12 and others have shown a significant 

positive effect,22 we did not observe a significant main effect of GSTM1, but we are the first 
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to report a significant gene–environment interaction with air naphthalene concentrations. In 

addition, effect modification of GSTM1 by smoking status has been shown,11 but we are 

unable to present our results by smoking status because of small sample size and limited 

power. Another limitation of our study is the lack of other genetic polymorphisms associated 

with naphthalene metabolism, such as CYP2E1.23 Similar to other findings, we observed no 

significant association between GSTT1 polymorphism and urinary metabolite 

concentrations.12,22

Because of the considerable variability in the composition of JP-8, results of the models 

using THC concentrations in air may not be generalizable to other occupational settings or 

even all Air Force bases over time.24 In fact, the average percent naphthalene was 0.10% of 

THC in air among nonsmokers in this study, but the range was 0.002% to 0.64%, showing 

some variability in the composition of their exposure.

We collected only one urinary spot sample preshift and post-shift from each participant, but 

we were able to collect samples over 4 consecutive workdays. Spot samples have greater 

variability than first-void or 24-hour urine samples, but we were able to reduce variability by 

adjusting for creatinine concentrations. In addition, the collection of repeated samples 

reduced the number of participants needed to observe statistically differences in metabolite 

concentrations.25

CONCLUSIONS

Urinary 1- and 2-naphthol concentrations, as well as 2-hydroxyfluorene, reflect occupational 

exposures to JP-8 during the workday among Air Force personnel and may be used as 

biomarkers of exposure to jet fuel. It is also important to consider smoking status and 

GSTM1 polymorphisms. Other routes of exposure, such as dermal, should also be 

investigated as urinary metabolite concentrations may also reflect exposure through the skin.
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Learning Objectives

• Discuss previous research on individuals exposed to jet propulsion fuel 

8 (JP-8), including genetic and environmental factors that may affect 

urinary naphthol levels.

• Identify the new findings on JP-8 constituents associated with post-

shift increases in levels of specific metabolites.

• Outline the new evidence for a significant gene-environment interaction 

affecting urinary metabolite concentrations after air naphthalene 

exposure.
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FIGURE 1. 
Postshift urinary metabolite concentrations among nonsmokers. **P = 0.0001; *P = 0.02.
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FIGURE 2. 
Postshift urinary metabolite concentrations among smokers. *P = 0.02.
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TABLE 1

Study Population Characteristics by Exposure Group

Overall
n = 73

Low
n = 35

High
n = 38 P

Median age (range) 23.7 (18–43) 23.9 (19–43) 23.6 (18–41) 0.57*

Median years of service (range) 4.0 (0.5–20) 4.0 (0.5–20) 3.3 (0.5–17) 0.45*

Median BMI (range) 25.6 (18–34) 25.8 (22–34) 25.6 (18–34) 0.81*

Sex, n (%)

 Male 61 (84) 24 (69) 37 (97) 0.001†

 Female 12 (16) 11 (31) 1 (3)

Base, n (%) 0.02†

 1 20 (27.4) 11 (31) 9 (24)

 2 20 (27.4) 15 (43) 5 (13)

 3 33 (45.2) 9 (26) 24 (63)

Current smoker, n (%) 0.18†

 Yes 33 (45) 13 (37) 20 (53)

 No 40 (55) 22 (63) 18 (47)

Average cigarettes smoked per day, n (%) 0.01‡

 None 40 (55) 22 (63) 18 (47)

 1/4 pack 19 (26) 8 (23) 11 (29)

 1/2 pack 9 (12) 1 (3) 8 (21)

 1 pack 4 (6) 4 (11) 0

 Missing 1 (1) 0 1 (3)

Cigarettes smoked during work shift, n (%)

Day 2 0.50‡

 None 48 26 22

 1/4 pack 18 7 11

 1/2 pack 3 2 1

 Missing 4 0 4

Number of BBQ/grilled meals during work shift

Day 2 0.34‡

 0 56 26 30

 1 8 4 4

 2 2 2 0

 3 1 1 0

 4 2 2 0

 Missing 4 0 4

Race, n (%) 0.83†

 White 53 (73) 25 (71) 28 (74)

 Nonwhite 20 (27) 10 (29) 10 (26)

Marital status, n (%) 0.94‡
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Overall
n = 73

Low
n = 35

High
n = 38 P

 Single 28 (38) 13 (37) 15 (39)

 Married 40 (55) 20 (57) 20 (53)

 Divorced 5 (7) 2 (6) 3 (8)

Live on base, n (%) 0.007†

 Yes 35 (48) 11 (31) 24 (63)

 No 38 (52) 24 (69) 14 (37)

Education, n (%) 0.64†

 High school 60 (82) 28 (80) 32 (84)

 More than high school 13 (18) 7 (20) 6 (16)

GSTM1, n (%) 0.19†

 Null 35 (48) 13 (37) 22 (58)

 Present 34 (47) 18 (51) 16 (42)

 Missing§ 4 (5) 4 (11) 0

GSTT1, n (%) 0.45†

 Null 9 (12) 3 (9) 6 (16)

 Present 60 (82) 28 (80) 32 (84)

 Missing§ 4 (5) 4 (11) 0

*
Wilcoxon ranked sum test.

†
Chi-square test.

‡
Fisher exact test

§
Blood samples were not collected from participants.

BBQ, barbeque; BMI, body mass index; GSTM1, glutathione S-transferase mu-1; GSTT1, glutathione S-transferase theta-1.
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TABLE 3

Effects of 8-Hour TWA THC and Naphthalene Concentrations in Air*

Predictor Postshift Urinary Concentration β (SE) P

THC, mg/m3 1-Naphthol 0.17 (0.04) <0.0001

2-Naphthol 0.09 (0.03) 0.005

2-Hydroxyfluorene 0.08 (0.03) 0.006

3-Hydroxyfluorene 0.04 (0.03) 0.23

9-Hydroxyfluorene 0.02 (0.03) 0.60

1-Hydroxyphenanthrene −0.04 (0.03) 0.20

2-Hydroxyphenanthrene 0.008 (0.03) 0.75

3-Hydroxyphenanthrene −0.01 (0.03) 0.64

4-Hydroxyphenanthrene −0.02 (0.03) 0.52

1-Hydroxypyrene −0.03 (0.03) 0.38

Naphthalene, μg/m3 1-Naphthol 0.22 (0.04) <0.0001

2-Naphthol 0.11 (0.03) 0.0006

*
Adjusted for preshift urinary concentrations, base, sex, cigarettes per shift, and postshift urinary creatinine; 8-hour TWA THC air concentrations, 

8-hour TWA naphthalene air concentrations, and urinary metabolite concentrations are natural log-transformed.

SE, standard error; THC, total hydrocarbon; TWA, time-weighted average.
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TABLE 5

The Effect of GSTM1 and GSTT1 on Postshift Urinary 1-Naphthol and 2-Naphthol Concentrations

Predictor Variables

Ln (post 1-naphthol) Ln (Post 2-Naphthol)

β (SE) P β (SE) P

GSTM1

 Intercept 4.31 (0.4) <0.0001 3.82 (0.5) <0.0001

 Ln (pre 1- or 2-naphthol) 0.49 (0.1) <0.0001 0.56 (0.1) <0.0001

 Ln (air naphthalene) 0.38 (0.1) <0.0001 0.26 (0.1) <0.0001

 GSTM1 (present vs null) −0.07 (0.2) 0.68 0.04 (0.1) 0.77

 GSTM1 × ln (air naphthalene) 0.19 (0.1) 0.03 0.15 (0.1) 0.05

GSTT1

 Intercept 4.11 (0.4) <0.0001 3.71 (0.5) <0.0001

 Ln (pre 1- or 2-naphthol) 0.51 (0.1) <0.0001 0.57 (0.1) <0.0001

 Ln (air naphthalene) 0.27 (0.05) <0.0001 0.18 (0.04) <0.0001

 GSTT1 (present vs null) −0.15 (0.2) 0.51 −0.15 (0.2) 0.48

 GSTT1 × ln (air naphthalene) 0.04 (0.1) 0.73 0.05 (0.1) 0.64

GSTM1, glutathione S-transferase mu-1; GSTT1, glutathione S-transferase theta-1.
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