Conceived and designed the experiments: AAK TH JS EG JH PDG RB JM. Performed the experiments: AAK TH JS EG PDG. Analyzed the data: AAK TH JS EG PDG. Contributed reagents/materials/analysis tools: AAK TH JS EG PDG. Wrote the paper: AAK TH JS EG JM PKM RB JH RKK AB PDG JM.
Several approaches have been used for measuring HIV incidence in large areas, yet each presents specific challenges in incidence estimation.
We present a comparison of incidence estimates for Kenya and Uganda using multiple methods: 1) Epidemic Projections Package (EPP) and Spectrum models fitted to HIV prevalence from antenatal clinics (ANC) and national population-based surveys (NPS) in Kenya (2003, 2007) and Uganda (2004/2005); 2) a survey-derived model to infer age-specific incidence between two sequential NPS; 3) an assay-derived measurement in NPS using the BED IgG capture enzyme immunoassay, adjusted for misclassification using a locally derived false-recent rate (FRR) for the assay; (4) community cohorts in Uganda; (5) prevalence trends in young ANC attendees. EPP/Spectrum-derived and survey-derived modeled estimates were similar: 0.67 [uncertainty range: 0.60, 0.74] and 0.6 [confidence interval: (CI) 0.4, 0.9], respectively, for Uganda (2005) and 0.72 [uncertainty range: 0.70, 0.74] and 0.7 [CI 0.3, 1.1], respectively, for Kenya (2007). Using a local FRR, assay-derived incidence estimates were 0.3 [CI 0.0, 0.9] for Uganda (2004/2005) and 0.6 [CI 0, 1.3] for Kenya (2007). Incidence trends were similar for all methods for both Uganda and Kenya.
Triangulation of methods is recommended to determine best-supported estimates of incidence to guide programs. Assay-derived incidence estimates are sensitive to the level of the assay's FRR, and uncertainty around high FRRs can significantly impact the validity of the estimate. Systematic evaluations of new and existing incidence assays are needed to the study the level, distribution, and determinants of the FRR to guide whether incidence assays can produce reliable estimates of national HIV incidence.
Measuring HIV incidence or the rate of new HIV infections in a population over time is of paramount importance for proper planning and evaluation of HIV prevention programs. Several methods have been proposed for measuring HIV incidence in large areas, yet each presents specific challenges
The original “gold standard” method for measuring population-level HIV incidence is a prospective cohort study that measures the occurrence of new infections in a well-defined HIV-negative population followed over time and tested at regular intervals for HIV infection. These studies, however, are rare, difficult and expensive to implement, and prone to biases that could reduce generalizability of results.
Most developing countries approximate adult HIV incidence using mathematical models that relate observed HIV prevalence to HIV incidence, which make assumptions on the average survival of HIV-infected individuals and the effect of antiretroviral (ARV) treatment on survival
HIV incidence assays are a laboratory-based approach for detecting recently acquired HIV infection in cross-sectional samples of HIV-positive specimens and designed to estimate population-level HIV incidence
The most commonly used FRR value to date was derived for the BED IgG capture enzyme immunoassay (hereafter referred to as the BED assay) among a cohort of post-partum women followed from 1997-2001 in Zimbabwe. This study calculated a FRR of 5.2% [CI 4.4, 6.1]
In Uganda, impressive declines in HIV prevalence were documented from peak prevalence in the early 1990s at >10% to an estimated 6% in the early 2000s
As countries gather multiple sources of incidence data, there is an opportunity to synthesize these data to determine the best supported level of incidence and incidence trends in populations. We compared several approaches for estimating incidence levels and trends among adults in the general populations of Uganda and Kenya. We used the availability of four different types of incidence methods to draw comparisons between the approaches.
HIV prevalence data for urban and rural ANC clinics were available for Uganda from 1990–2007 and for Kenya from 1990–2005. NPS with HIV testing were conducted in Uganda in 2004/2005 (UAIS) and in Kenya in 2003 (KDHS) and 2007 (KAIS). To allow comparisons across results obtained with different methods, we restricted the analysis to adults aged 15–49 years.
The EPP and Spectrum software packages are used widely by countries in sub-Saharan Africa to produce national estimates and projections for HIV/AIDS, including indirect estimates of national adult HIV incidence. For this analysis, EPP was used to fit a simple 4-parameter epidemiological model to observed HIV surveillance data from ANC, calibrated to HIV prevalence data from NPS, using a maximum likelihood method separately for urban and rural areas. Bayesian melding was used to generate multiple curves reflecting the uncertainty in the prevalence data
A mathematical method for estimating incidence from two sequential NPS with HIV testing was applied
The effect of ARV use on HIV survival was accounted for by removing the fraction of HIV-infected individuals that were alive due to treatment in each survey
The BED assay was applied to frozen HIV-positive dried blood spot samples from the 2003 KDHS
A mean duration of recency of 155 days for the BED assay was applied to estimate annualized assay-derived incidence rates
A literature search of published papers and conference abstracts reporting HIV incidence rates from community-based cohort studies in Uganda and Kenya from 1990 to present was conducted. Three community-based cohort studies in rural Uganda, in Kayunga, Masaka and Rakai districts
HIV prevalence data collected from young pregnant women (aged 15–24 years) attending ANCs between 2000–2007 in Uganda and between 2000–2005 in Kenya were used as a proxy for HIV incidence trends in the general population
Testing for differences in incidence level in a specific year was completed using the z-test statistic. Trends in EPP/Spectrum estimates from 2000–2005 in Kenya and 2000–2007 in Uganda were assessed for significance using a t-test statistic. Prevalence trends among young pregnant women attending ANC over time were considered statistically significant if the regression coefficients were significantly different from zero. HIV incidence estimates during the years of the NPS were compared to HIV prevalence estimates from the NPS to assess plausibility of the incidence level, using assumptions that national HIV incidence levels should not be substantially higher or lower than 10% that of national HIV prevalence levels in stable and mature epidemics.
The Uganda FRR was estimated by pooling published data from FRR surveys in the Rakai Health Science Project (n = 473) from 2004–2007 and the Home Based AIDS Care program in Tororo District (n = 226) from 2003–2005
In the 2004/2005 UAIS, the total number of individuals participating in the NPS was 18,525. Of these, 1,092 were HIV-antibody positive, 1,023 had BED assay test results, and 172 tested recent on the assay. Availability of ARV treatment programs was presumed to be negligible in 2004 and not believed to have affected the BED assay test results. Weighted assay-derived incidence was 1.9% [CI 1.4, 2.3] using the Zimbabwe FRR and 0.3% [CI 0, 0.9] using the Uganda FRR (
| Uganda | Kenya | |||||||
| 2004 | 2005 | 2003 | 2007 | |||||
| Rate | 95% range | Rate | 95% range | Rate | 95% range | Rate | 95% range | |
| EPP/Spectrum | 0.68 | 0.61, 0.75 | 0.67 | 0.60, 0.74 | 1.04 | 1.03, 1.09 | 0.72 | 0.70, 0.74 |
| Survey-derived | 0.6 | 0.4, 0.9 | 0.7 | 0.3, 1.1 | ||||
| Assay-derived: Zimbabwe | 1.9 | 1.4, 2.3 | 2.5 | 1.7, 3.3 | 2.1 | 1.6, 2.6 | ||
| Assay-derived: Uganda | 0.3 | 0.0, 0.9 | 0.8 | 0.0, 1.8 | 0.6 | 0.0, 1.3 | ||
| Cohort incidence | ||||||||
| Masaka | 0.49 | 0.25 | ||||||
| 6.4 | 6.0, 6.7 | 6.7 | 5.8, 7.6 | 7.4 | 6.7, 8.1 | |||
*Among adults aged 15–49 years.
†Uganda 2000–2005.
‡Kenya 2003–2007.
a. All assay-derived estimates were weighted to account for unequal probability of selection and adjusted for non-response, where necessary. For the 2007 Kenya estimate, any participant that reported current ARV use was excluded from the incidence analysis.
b. The Uganda FRR was generated from: (1) pooled data from 699 ARV naive long-term specimens from Rakai (76/473) and rural Tororo districts (28/226) in Uganda that classified as false-recent on the BED assay.
c. Statistically significant difference observed in assay-derived estimate and the EPP/Spectrum estimate in Uganda 2005.
d. No data published on community cohort incidence in Kenya.
e. 95% confidence intervals not reported.
f. All participants that that reported current ARV use were excluded from the 2007 Kenya HIV prevalence estimate.
In the 2003 KDHS, the total number of survey participants was 5,994. Of these, 399 were HIV-antibody positive, 362 had BED assay test results, and 70 tested recent on the assay. Similar to Uganda, the availability of ARV treatment programs in Kenya in 2003 was insignificant to have made an impact on test results. Weighted assay-derived incidence was 2.5% [CI 1.7, 3.3] using the Zimbabwe FRR and 0.8% [CI 0, 1.8] using the Uganda FRR. The EPP/Spectrum incidence was 1.04% [uncertainty range: 1.03, 1.09]. National HIV prevalence from the 2003 KDHS was 6.7% [CI 5.8, 7.6]
In the 2007 KAIS, the number of survey participants was 15,844. Of these, 1,098 were HIV- antibody positive, 876 had BED assay test results, and 151 were BED recent. A total of 92 participants that reported current ARV use and were later excluded from the incidence analysis. In 2007, EPP/Spectrum incidence was 0.72% [uncertainty range: 0.70, 0.74], survey-derived incidence was 0.7% [CI 0.3, 1.1], and weighted assay-derived incidence was 2.1% [CI 1.6, 2.6] and 0.6% [CI 0, 1.3] using the Zimbabwe and Uganda FRR, respectively. The KAIS reported a national HIV prevalence of 7.4% [CI 6.7, 8.1] in 2007
In Kenya, the EPP/Spectrum incidence was stable at approximately 1% from 2000–2003 and declined significantly from 2003–2007, where incidence was estimated at 0.7% (
In Uganda, EPP/Spectrum incidence remained stable at approximately 0.7% from 2000–2007 (
Comparison of assay-derived incidence to modeled estimates of incidence provided evidence that when calibrating assay-derived incidence based on the Zimbabwe FRR of approximately 5%, assay-derived incidence estimates were inconsistent with those obtained by other methods in both Kenya and Uganda. The application of a local FRR of approximately 15% resulted in assay-derived incidence estimates that were reasonably consistent to estimates by other methods in Kenya. In Uganda, assay-derived estimates were two times lower than modeled estimates and similar to cohort-derived incidence reported in the same year. The differences observed were not statistically significant. In the analysis of incidence trends, results obtained by the different methods appeared to correspond fairly well with each other. In Uganda, incidence was stable from 2000–2007. In Kenya, incidence appeared to have declined since 2000 by all approaches.
Comparisons of prevalence and incidence levels in the three NPS confirm that the incidence estimates from all methods (i.e., EPP/Spectrum, the survey-derived method, and assay-derived method using the Uganda FRR) fell within plausible levels for Kenya in 2003 and 2007 (e.g., incidence estimates were 8–15% that of observed HIV prevalence in the same population). In contrast, in Uganda, the two mathematical models of incidence produced plausible levels of incidence (e.g., incidence estimates were approximately10% of prevalence), but assay-derived and cohort-derived incidence estimates were both lower, falling at approximately 4–5% of the prevalence level. The application of the Zimbabwe FRR produced implausible levels of incidence, at levels approximately 30–40% of prevalence, in all three surveys.
These findings confirm that BED assay-based incidence estimates must incorporate a FRR in the incidence calculation to account for false-recent classifications
Given the widely differing values for BED FRRs obtained in studies with relatively large sample sizes in South Africa (1.7%), Zimbabwe, (5%), China (6%), and in Uganda (15%)
There is clear evidence that specimens from HIV-infected persons that are currently on ARV treatment have a high probability of falsely classifying as recent on an incidence assay and that this error varies significantly by time on ARV
The two indirect measurements of incidence in this analysis fell within a plausible range of HIV incidence in both countries. Though the survey-derived model was able to infer incidence using one NPS, this required an assumption of stable HIV prevalence in the preceding 5 years. This assumption was relevant for Uganda given documented evidence of stable HIV prevalence in the general population, but may not be for other countries considering this approach. If stable prevalence cannot be guaranteed for a given setting, it is recommended that this approach not be used until at least two NPS are available
The EPP/Spectrum estimate utilizes routinely collected data from ANC surveillance together with data from NPS to estimate national level adult incidence; therefore this approach remains an attractive method for estimating national incidence in generalized epidemics where these data are likely to exist. The advantage of mathematical models for incidence estimation is that they are easy to use, particularly if the model's input data can be easily accessed and are of good quality. A limitation, however, is that high quality data cannot be guaranteed for some countries due to incomplete reporting and lack of quality control measures in place. Additionally, a degree of uncertainty is associated with the modeled estimates given that they depend both on the structure of the model and on assumptions regarding key parameters which cannot always be determined directly from data for a specific country of interest. Though the assumptions in the EPP/Spectrum model are based on best available data, any errors in the model assumptions (example.g., with respect to survival of HIV-infected persons and ARV use) could impact the quality of the estimates. Further, at the time of writing these models have only been used to estimate incidence by age, sex and location but not by other characteristics (i.e., behaviors, marital status or income level) which may be useful for intervention planning. Finally, because both countries had collected nearly 20 years of ANC surveillance data and had completed one to two national HIV prevalence surveys, the corresponding prevalence and incidence estimates in the EPP/Spectrum models were constrained to narrow bounds which may not reflect the full uncertainty.
Prospective community cohort studies are commonly regarded as the “gold-standard” measure for community-level incidence because incidence can be directly observed in the sample. In this analysis, the main limitation of cohort studies is that they were conducted in limited geographical areas. The Rakai community cohort, for which only early years of incidence were available, reported substantially higher rates of incidence compared to other approaches for estimating population-level incidence. However the reported HIV prevalence level in Rakai in 2002 was nearly two times Uganda's national HIV prevalence in the 2004/2005 AIS. In contrast, the Masaka and Kayunga cohort studies, conducted in areas with lower prevalence than Rakai, reported incidence estimates that were lower than those observed in Rakai but consistent with the measures of incidence obtained with indirect methods for the same time period.
This analysis was subject to methodological issues that may have biased the interpretation of the results. First, the level of the Uganda FRR observed in this analysis was remarkably high. High levels of the FRR will result in large uncertainty in the assay-derived incidence estimate, rendering it difficult to interpret and use these data. Incidence assays that produce consistently low levels of the FRR in a variety of populations are optimal to ensure assays can reproduce valid estimates of incidence for all settings. To guide the development of improved incidence assays, a new target product profile has set the minimum acceptable value of a FRR at <2%, with a coefficient of variation <30%, for multiple HIV subtypes and geographic settings
The use of HIV prevalence among young pregnant women aged 15-24 years over time has been used as a surrogate measure for trends in incidence
In conclusion, in combination, multiple methods for estimating incidence in Kenya and Uganda appeared to converge in similar trend and levels, yet on an individual basis, each of the approaches have their limitations. It is evident that much work is still needed in the area of assay-derived incidence estimation. Systematic evaluations of incidence assays will help to determine whether this method can accurately and precisely measure incidence. Further, recent infection testing algorithms using a multiple incidence assays in combination with additional clinical (e.g., CD4 cell count, RNA testing), laboratory (e.g., ART testing), and historical information should be explored for improving the accuracy of assay-derived incidence estimates. Pending the development of improved incidence assays, we recommend triangulation of multiple methods for incidence estimation and interpretation of results in conjunction with other epidemiologic data (e.g., HIV prevalence in the same population) to assess plausibility of incidence trends and level in a country and use these data to improve programmatic and policy decisions in the national HIV response.
The authors would like the thank the following individuals and groups for their technical guidance in the implementation, data collection, analysis, and/or dissemination of the data presented in this manuscript: Oliver Laeyendecker; Catherine Gichimu; Tura Galgado; Xin Liu, Wilford Kirungi; Alex Opio; and the study teams and participants in the 2003 Kenya Demographic Health Survey, 2004/2005 Uganda AIDS Indicator Survey, and the 2007 Kenya AIDS Indicator Survey.
This work was presented at: 17th Conference on Retroviruses and Opportunistic Infection, San Francisco, California, February 2010.