II. The Reproduction Number

Case I. Age class i is isolated: 
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In this case, we may obtain the reproduction number for group i via either the endemic or disease-free equilibrium. The endemic equilibrium
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 can be solved as:
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where 
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Alternatively, consider the disease-free equilibrium. In this case, the next generation matrix is: 
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Because groups are isolated, this is a diagonal matrix. The non-zero elements, 
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are the sub-population reproduction numbers. The meta-population reproduction number is the dominant eigenvalue of K1, which is 
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Case II. Age classes are not isolated:
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In this case, the endemic equilibrium
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 generally cannot be solved explicitly. The component 
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 satisfies the following system of quadratic equations:
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Now we consider the disease-free equilibrium. In this case, the next generation matrix is: 
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 is the dominant eigenvalue of the matrix K2. Note that this matrix has n zero eigenvalues. The others are given by an n by n matrix, 
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which highlights the importance of mixing. Because K3 is a positive matrix, its dominant eigenvalue must be positive. The probabilities of transmission upon contact with infectious people in our model reflect differences in susceptibility. If these probabilities also or only reflected differences in infectiousness, the off-diagonal elements would be of the form 
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 which cannot be written as (0i ( cij. While one cannot generally obtain explicit formulae for dominant eigenvalues when n>3, one can always calculate them numerically. When n=2, for example, the dominant eigenvalue of matrix K3 is
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