Conceived and designed the experiments: AB KYW PJL. Performed the experiments: AB KYW CVD SJL NP. Analyzed the data: AB KYW SKM CVD SJL NP TGS MVEBdR PJL. Contributed reagents/materials/analysis tools: AB SKM SJL SAW NP PJL. Wrote the paper: AB.
Seven rounds of mass drug administration (MDA) have been administered in Leogane, Haiti, an area hyperendemic for lymphatic filariasis (LF). Sentinel site surveys showed that the prevalence of microfilaremia was reduced to <1% from levels as high as 15.5%, suggesting that transmission had been reduced. A separate 30-cluster survey of 2- to 4-year-old children was conducted to determine if MDA interrupted transmission. Antigen and antifilarial antibody prevalence were 14.3% and 19.7%, respectively. Follow-up surveys were done in 6 villages, including those selected for the cluster survey, to assess risk factors related to continued LF transmission and to pinpoint hotspots of transmission. One hundred houses were mapped in each village using GPS-enabled PDAs, and then 30 houses and 10 alternates were chosen for testing. All individuals in selected houses were asked to participate in a short survey about participation in MDA, history of residence in Leogane and general knowledge of LF. Survey teams returned to the houses at night to collect blood for antigen testing, microfilaremia and Bm14 antibody testing and collected mosquitoes from these communities in parallel. Antigen prevalence was highly variable among the 6 villages, with the highest being 38.2% (Dampus) and the lowest being 2.9% (Corail Lemaire); overall antigen prevalence was 18.5%. Initial cluster surveys of 2- to 4-year-old children were not related to community antigen prevalence. Nearest neighbor analysis found evidence of clustering of infection suggesting that LF infection was focal in distribution. Antigen prevalence among individuals who were systematically noncompliant with the MDAs, i.e. they had never participated, was significantly higher than among compliant individuals (p<0.05). A logistic regression model found that of the factors examined for association with infection, only noncompliance was significantly associated with infection. Thus, continuing transmission of LF seems to be linked to rates of systematic noncompliance.
Lymphatic filariasis (LF) is a mosquito-borne parasitic disease that affects an estimated 120 million people worldwide with over 1 billion at risk for infection. LF is considered to be a leading cause of permanent disability worldwide due to the clinical manifestations of the disease. A global effort was established to eliminate LF by 2020 through interruption of transmission by annual mass administrations of anti-parasitic drugs. In Leogane, Haiti, seven rounds of drug administration have been administered and, though infection levels have dropped, transmission has not been interrupted. In this study the authors examined factors that could contribute to continuing transmission of LF in Haiti. Ongoing transmission was confirmed by high infection rates among young children. Infection was found to cluster at the household level within communities. The factor most associated with this transmission was systematic noncompliance with drug administration (i.e. never taking the medication). While increased health education and awareness campaigns may improve noncompliance, new tools and approaches may be needed to stop transmission of LF in Haiti. Understanding obstacles and solutions from the Haiti program could aid elimination programs in other countries.
Lymphatic filariasis (LF) is a mosquito-transmitted parasitic disease that is ranked by the World Health Organization (WHO) as a leading cause of permanent disability worldwide. LF affects an estimated 120 million people in 81 countries, with over 1 billion, or one-fifth of the world's population, at risk for filarial infection due to their exposure to infective larvae through the mosquito vector
The Global Programme to Eliminate Lymphatic Filariasis (GPELF) was established in 2000 with the goal of eliminating LF as a public health problem worldwide by 2020. The programme is centered on annual mass drug administrations (MDAs) which are based on the community-wide distribution of albendazole plus either diethylcarbamazine (DEC) or ivermectin to all those at risk in an endemic community. These drug combinations suppress the parasite in the blood, thereby reducing the transmission potential of the parasite, and also kill a broad spectrum of intestinal worms
GPELF has scaled up impressively since it began. By the end of 2007, 48 countries had implemented elimination programs and approximately 570 million people had been treated.
The current benchmark for success, as defined by the WHO, is a microfilaria prevalence of less than 1% in a community. Microfilaremia is indicative of the presence of motile larvae of the parasite (microfilariae) in the blood stream. If microfilaremia in a community is less than 1%, it is thought that transmission of the parasite cannot be sustained and there should be few or no incident infections. In order to measure the effect of the MDAs on transmission, and thus their effectiveness, surveys were conducted at sentinel sites around Leogane commune
Although the WHO recommendations do not include monitoring of mosquito infection, information regarding the persistence of infection in the mosquito population is useful in determining whether transmission is ongoing. Persistence of filarial DNA in the mosquito population could be an indication that transmission has not been interrupted. The current study was designed to confirm continuing transmission of LF using blood and mosquito diagnostic tools and to analyze factors that may be contributing to the continued transmission of LF in Leogane, including population migration and systematic noncompliance.
Surveys were conducted in Leogane, Haiti. Leogane is located 30 km west of the capital Port-au-Prince. Based on initial antigen prevalence as high as 50%, Leogane commune was considered to be highly endemic for LF. Seven rounds of MDA had been carried out prior to the present surveys for which data were collected between January 15 and February 19, 2008.
Villages representing six communities were selected from those that were surveyed in the August 2007 study. Four communities with two or more antigen positive children out of ten tested [Guinebeau (4 positive), Corail Lemaire (4 positive), Dampus (3 positive), and Leogane (2 positive)] and two communities with no antigen positive children (Santo and Dufort) were selected for this study. In each village, 100 houses were mapped using Personal Digital Assistants (PDAs) (Dell, Round Rock, Texas) equipped with GPS. Thirty houses and 10 alternates were chosen randomly by the PDA program for the study. Residents of selected households were interviewed using a standardized questionnaire and blood samples were collected at night by fingerprick. Due to low levels of literacy all participants were given explanations of the study and gave their verbal consent to be interviewed and bled for filarial testing. Consent was documented on the PDAs. For children under the age of 12 years, parents or guardians gave the consent. The study protocol was reviewed and approved by the Institutional Review Board at the Centers for Disease Control and Prevention and the Ethics Committee of Hopital Ste. Croix.
Two teams surveyed each of the communities. Details of the PDA and GPS programs are described elsewhere
A short questionnaire was developed for the PDAs using Visual CE, as described elsewhere
Residents of households that had been selected for interviews were revisited in the evening (8–10 pm) and individuals older than three years of age were asked to provide blood samples. High-flow lancets (Becton Dickinson, Franklin Lakes, NJ) and EDTA coated blood collection tubes (Ram Scientific Inc, Yonkers, NY) were used to collect approximately 500 µl of blood from all consenting individuals. Tubes were stored in coolers until samples were processed the following day.
Antigenemia was assessed by two methods, ICT card (Binax, Portland, OR) and Og4C3 ELISA (TropBio, Townsville, Australia). Briefly, the day after blood collection, 100 µl of blood was added to the sample pad of an ICT card and read at 10 minutes according to manufacturer's instructions. Two lines in the viewing window of the card indicated a positive result
For samples positive for antigen by ICT test, 60 µl of blood was pipetted on to microscope slides in three lines of 20 µl each. The slides were dehemaglobinized, fixed, stained with Giemsa stain and read by trained laboratory technicians at Hopital Ste. Croix.
Serum was eluted from filter paper blood spots to analyze the antibody response to the Bm14 antigen by ELISA
Five CDC gravid traps were randomly placed around each community and the positions of the traps recorded with GPS. Mosquitoes were collected for five consecutive nights. Recently-fed vectors (blood-fed, gravid, or semi-gravid
Unless otherwise stated all statistical analysis was done using SAS version 9.1. The surveylogistic procedure was used to determine which possible transmission factors were significantly associated with filarial infection. This procedure was selected in order to properly weight the analysis based on the sampling design. The association between infection status and compliance was assessed by the chi-square test. A chi-square test was performed for each village and for the study area as a whole. Infection status was determined using a composite variable based on four tests for filarial infection. Global clustering of infected households, as well as of noncompliant households, was assessed by Cuzick and Edwards' nearest neighbor analysis at 2, 3, 4, and 5 nearest neighbors
A total of 564 people were surveyed by questionnaire. Of those who responded, a total of 455 (80.7%) people were tested for LF. People were not tested for LF because of refusal to give blood, low volumes of blood and loss to follow up. An average of 24 households per community were tested for LF of these, an average of seven households were originally selected as alternates. Reported age among tested individuals ranged from 3 to 95 years of age with the median age in the communities ranging from 18 to 25. Characteristics for the population tested for LF in each community are summarized in
| Community | N | Male | Female | Median Age | No. Households | Avg. number per household |
| Dufort | 68 | 26 | 42 | 24 | 19 | 3.6 |
| Guinebeau | 96 | 36 | 60 | 22.5 | 27 | 3.6 |
| Santo | 72 | 25 | 47 | 23.5 | 23 | 3.1 |
| Dampus | 64 | 27 | 37 | 25 | 24 | 2.7 |
| Leogane | 87 | 26 | 61 | 18 | 24 | 3.6 |
| Corail Lemaire | 68 | 35 | 33 | 24.5 | 28 | 2.4 |
Filarial infection was assessed by four different methods; antigen detection by ICT card and Og4C3 ELISA; antibody detection by Bm14 ELISA; and microfilaria (MF) detection by microscopy. Blood films for microfilaremia were prepared only for individuals positive by ICT, so the MF prevalence represents a minimum value. Briefly, the minimum MF prevalence was 4.6% overall, with MF prevalences ranging from 0–7.8%. Overall antigen prevalence by ICT was 18.5%, with the highest prevalence in Dampus (32.8%) and the lowest prevalence in Corail Lemaire (2.9%). Overall antigen prevalence by Og4C3 test was 21.7%. Corail Lemaire again had the lowest antigen prevalence (5.1%), however the rank of ICT prevalence and Og4C3 prevalence were not identical for the other communities. Antibody prevalence, a measure of exposure to the parasite, was 47.0% overall. The highest antibody prevalence was found in Leogane at 72.4% and the lowest was in Corail Lemaire at 26.5%. Complete results for each community can by found in
| Community | Min. MF Prevalence | ICT Prevalence | Og4C3 Prevalence | Bm14 Prevalence | Filarial DNA Rate |
| Dufort | |||||
| Guinebeau | |||||
| Santo | |||||
| Dampus | |||||
| Leogane | |||||
| Corail Lemaire | |||||
| Overall |
*A smaller number of individuals were tested by Og4C3 due to low sample volumes.
Age prevalence curves for all four infection measures are given in
Data are summarized across all communities. MF = microfilaremia ICT = filarial antigen detected by ICT card test. Og4C3 = ELISA assay to detect filarial antigen Bm14 = filarial antibody ELISA.
Molecular xenomonitoring (MX) was performed using mosquitoes collected from each community except Corail Lemaire (logistical reasons). The average mosquito pool size was approximately 18 and the number of pools tested from each community ranged from 47 – 67. The filarial DNA rate was calculated for each community by the Poolscreen v.2.02 program (
| Community | # Mosq | # Pools | Mean Pool Size | # Pos. Pools | Max. Likelihood Est | 95% Confidence Interval |
| Dufort | 1075 | 55 | 19.5 | 40 | 6.4% | 4.3%–9.1% |
| Guinebeau | 1202 | 67 | 17.9 | 58 | 11.5% | 8.1%–16.0% |
| Santo | 706 | 47 | 15.0 | 39 | 13.6% | 8.8%–20.3% |
| Leogane | 1128 | 62 | 18.2 | 60 | 26.7% | 14.9%–59.4% |
| Dampus | 1064 | 58 | 18.3 | 57 | 27.9% | 15.1%–60.6.% |
| Total | 5175 | 289 | 17.9 | 254 |
*Calculated by the Likelihood Ratio Method.
Compliance status was assessed by asking individuals if they had ever taken a pill for filariasis. If they answered yes to that question, they were asked if they had taken a pill for filariasis during the more recent MDA or in prior MDAs. Of the 455 people who were tested for LF, 109 (24%), reported never having taken a pill for filariasis. One person did not respond to the question.
Individuals were considered noncompliant if they had reported never participating in MDA (i.e. systematic noncompliance).
Of the individuals who reported having taken a pill for filariasis 232 individuals (67.2%) reported being treated during the most recent MDA (2007) and 272 individuals (79%), reported having taking pills in 2005 or earlier. There was no MDA in Haiti during 2006.
In order to determine if noncompliance was associated with infection, we first examined the prevalence of infection determined by ICT card test in compliant and noncompliant individuals.
ICT card test was used to determine infection prevalence. Noncompliant individuals were those who reported never participating in MDA. Compliant individuals were those who reported ever haven taken a drug for LF. The asterisk indicates a p-value <0.05. by Chi-square test.
Those individuals who reported never having taken drugs for LF were asked their reason for not taking the pills.
| Reason for Noncompliance | Frequency of Answer |
| Don't know | 44 |
| Fear of side effects | 30 |
| Not in Leogane during MDA | 18 |
| Taking other medication | 7 |
| Had side effects previously | 5 |
| Pregnant | 2 |
| Don't like to take pills | 2 |
| The pills are bad | 1 |
A total of 109 noncompliant, LF tested individuals were used in the analysis. Multiple answers were not allowed.
The factors examined in this study were migration to Leogane, travel from Leogane, knowledge of LF and noncompliance with the MDAs. In order to determine which variable(s) were significantly related to infection, univariate logistic regression analysis, controlling for village, was performed on the responses in the questionnaire. Of all the factors in this study, only compliance status was significantly related to infection as determined by ICT card test (p-value = 0.004,
| Factor | P-value | Odds Ratio | 95% CI |
| Sex | 0.658 | 0.906 | 0.584–1.405 |
| Age | 0.089 | 1.010 | 0.998–1.022 |
| Move to Leogane | 0.462 | 0.661 | 0.220–1.991 |
| Travel | 0.206 | 1.764 | 0.732–4.250 |
| Knowledge of LF | 0.399 | 1.366 | 0.762–2.448 |
| Knowledge of lymphedema | 0.237 | 0.764 | 0.483–1.197 |
| Knowledge of hydrocele | 0.690 | 0.881 | 0.473–1.270 |
*A move was defined as anyone who had not lived in Leogane their entire life.
**An individual was considered to have traveled if they had been outside Leogane within the last year.
Clustering of noncompliance by household was initially analyzed by Chi-square goodness-of-fit test; there was no evidence of clustering by household (data not shown).
Spatial analysis was done using the Cuzick and Edwards' nearest neighbors test. The number of antigen positive individuals per household ranged from 0 (59.4% of households) to 7 (0.7%). The number of non-compliant individuals per household ranged from 0 (53.9%) to 7 (0.7%). 40.6% of households had at least one antigen positive individual and 46.2% of households included at least one noncompliant individual.
| Household Attribute | k = 2 | k = 3 | k = 4 | k = 5 |
| Antigen positive by ICT test | 0.042 | 0.005 | 0.004 | 0.014 |
| Antibody positive by Bm14 test | 0.003 | 0.104 | 0.205 | 0.357 |
| Non-compliant | 0.382 | 0.267 | 0.245 | 0.105 |
*Nearest neighbor analysis of spatial association by household. A household was considered positive if there is one positive individual in the household. k = the number of nearest neighbors. Significant test results indicate clustering of the tested variable. A Simes correction is used to control for the type I error rate for multiple testing. Highlighted results are significant at a Simes correction level using an alpha = 0.05.
159 households out of the 180 households sampled were used in this analysis due participants refusing to be tested for LF. This led to households with incomplete data, which were excluded from the analysis.
In Haiti 7 rounds of MDA have been delivered to the commune of Leogane, with a missed round of MDA in 2006. By 2005 MF prevalence was below the <1% threshold that the WHO recommends for stopping MDA. However, subsequent studies in children suggested that transmission was ongoing despite the apparent success of the MDAs. The aim of this study was to determine the transmission status of LF in Leogane and to examine possible factors contributing to transmission in the area.
The levels of microfilaremia and antigenemia found in the communities in this study (with the exception of Corail Lemaire) indicate that transmission is still ongoing in Leogane. Only Corail Lemaire had MF prevalence below the <1% WHO threshold for stopping MDA. Antigen prevalence by both the ICT and Og4C3 test in children 3–5 years of age was above 10%. If transmission had been interrupted there should be little to no infection in this age group as they were born after the MDAs started. In addition to the high prevalence of microfilaremia and antigenemia in most of the communities surveyed, there was a high rate of infection in mosquitoes collected from those communities. The presence of a significant number of infected mosquitoes further supports the conclusion that transmission is ongoing. Although the MDA rounds have succeeded in lowering the overall prevalence of LF infection in Leogane, they have not succeeded in interrupting transmission of the parasite. Initial projections for the LF elimination predicted that 5–6 rounds of MDA would be sufficient to interrupt the transmission cycle of the parasite
Of the factors examined, only systematic noncompliance was statistically associated with infection status. Noncompliance has been previously reported in Haiti. After 3 rounds of MDA in Leogane, 18.6% of adults surveyed had not participated in MDA
These results suggest that a consistent proportion of the population has not been mobilized to participate in MDA. Social mobilization strategies employed by the program clearly are not reaching this segment of the population. It is important to acknowledge the limitations of questionnaire-based coverage surveys. It is possible that people do not remember taking the drug in previous years. Nonetheless, infection levels were significantly higher in noncompliant individuals as compared to compliant individuals, demonstrating a biologic correlate of the nonparticipation of the respondents in MDA. High rates of noncompliance maintain a reservoir of infection, which drives LF transmission.
Systematic noncompliance has been examined as a factor in MDA success in a number of different national elimination programs. In Egypt the noncompliance rate was very low (7.4%) and consequently, the program was able to successfully reduce infection levels to a point where transmission was probably interrupted
Other countries have experienced noncompliance rates more similar to that of Haiti. The compliance rates in India have been consistently low. In the southern state of Tamil Nadu compliance rates ranged between 46% and 64%
With similar rates of noncompliance in various countries, is there an underlying determinant or determinants that influence compliance with MDA? In the Philippines and India the perceived benefit of the MDA was associated with compliance. Knowledge of LF was found to be linked to MDA compliance in the Philippines and in Haiti
The variability of infection levels between communities (
Using any of several definitions of infection status (e.g. antigen by ICT card or antibody positivity) we found evidence for clustering of filarial infection by the nearest neighbor analysis (
Although noncompliance was the only factor that was significantly related to infection in our study, it may not account for all of the transmission seen in Leogane. Initial infection prevalence, vector density, biting density and topography all play a role in infection. In a 2008 paper that used statistical methods to define the Risk of Infection Index (RII) based on community microfilariae load (CMFL) and vector density per man-hour (MHD), the authors concluded that transmission may continue in areas where MF prevalence is low but vector density is high
Population migration was not found to be a significant contributor to transmission in this study; however, this could be a consequence of the timing of the study. It is thought that the instability in Haiti between 2004 and 2005 led to a migration of individuals out of affected areas such as Port-au-Prince to less affected areas such as Leogane. Port-au-Prince has never undergone MDA, and these individuals could have represented a reservoir of infection. Since this study was undertaken several years after the unrest many of those individuals could have returned to their place of previous residence. If this scenario was true then these individuals would not be captured in the study. Thus, population migration may still be a factor in the ongoing transmission of LF in Leogane but was not reflected in this analysis.
An added factor contributing to transmission of LF is the missed round of MDA in Haiti in 2006. A study conducted in September 2007 by Won et al argued that this missed round of MDA was responsible for a rebound in infection to levels that were present in 2003
The LF elimination program in Leogane has been ongoing for eight years. The program has been successful in reducing MF and antigen rates from baseline levels over the course of seven rounds of MDA. Despite these achievements, and despite reaching the WHO benchmarks for success, there is ongoing transmission of LF in Leogane commune. It appears that one of the main contributors to this transmission is individuals who have never participated in the MDA. They may provide a pool of infection by which the mosquitoes become infected and the parasite is transmitted to others. The reasons for noncompliance are not completely clear. Also, noncompliance is one of many factors that could play a part in transmission. Other factors include vector density, a missed round of MDA, and the heterogeneity of transmission. New tools and approaches are needed in this environment in addition to the further studies recommended above. Increased health education and awareness campaigns may improve compliance. The addition of vector control methods such as insecticide treated bed nets could provide the extra push needed to stop transmission. It is also possible that DEC-fortified salt represents a programmatic alternative that should be re-visited. The incorporation of new tools should be investigated and implemented so that the program in Haiti can proceed toward elimination. The situation in Haiti is not dissimilar to that found in other parts of the world. Haiti can be used as a model for LF elimination in areas of high infection prevalence and high vector pressure. Understanding obstacles and solutions from the program in Haiti could be helpful for elimination programs in other countries.
STROBE checklist.
(0.09 MB DOC)
Click here for additional data file.
The authors would like to thank the staff of the Leogane demonstration project at Hôpital Ste. Croix, Leogane, Haiti, for their support and the residents who volunteered for testing. We would also like to thank Adam Wolkon, Dr. John Williamson and Dr. Els Mathieu of the CDC for their technical advice.
The authors have declared that no competing interests exist.
This project was funded by the US Centers for Disease Control and Prevention (CDC) Emerging Infectious Diseases funds, by the Association of Public Health Laboratories, and by a grant from the Bill & Melinda Gates Foundation awarded to the University of Notre Dame, Indiana. SKM's research is supported by an appointment at the Division of Parasitic Diseases, National Center for Zoonotic Vector-Borne and Enteric Disease, CDC, Atlanta, Georgia, USA and the support of the Atlanta Research and Education Foundation, Decatur, Georgia, USA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript